
Hierarchical Time Series Forecasting Via Latent Mean
Encoding

Alessandro Salatiello
Zalando SE

alessandro.salatiello@uni-tuebingen.de

Stefan Birr
Zalando SE

stefan.birr@zalando.de

Manuel Kunz
Zalando SE

manuel.kunz@zalando.de

Abstract

Coherently forecasting the behaviour of a target variable across both coarse and
fine temporal scales is crucial for profit-optimized decision-making in several busi-
ness applications, and remains an open research problem in temporal hierarchical
forecasting. Here, we propose a new hierarchical architecture that tackles this
problem by leveraging modules that specialize in forecasting the different temporal
aggregation levels of interest. The architecture, which learns to encode the average
behaviour of the target variable within its hidden layers, makes accurate and coher-
ent forecasts across the target temporal hierarchies. We validate our architecture on
the challenging, real-world M5 dataset and show that it outperforms established
methods, such as the TSMixer model.

1 Introduction

Hierarchical forecasting studies methods to ensure coherent forecasts across the inherent hierarchies
in data [Hyndman et al., 2011]. It is a growing research field, particularly relevant in domains such as
e-commerce [Rangapuram et al., 2023, Sprangers et al., 2024] and electricity demand forecasting
[Taieb et al., 2017]. In these domains, cross-sectional hierarchies, such as geographical hierarchies
or product category trees in retail demand forecasting [Kunz et al., 2023], are naturally present
in the data. Similarly, temporal hierarchies arise from the need to provide coherent forecasts on
multiple time resolutions [Taieb, 2017]. In retail demand forecasting, for example, high-resolution
forecasts are required to steer inventory on a daily or weekly frequency. In contrast, strategic planning
and finance need forecasts on a quarterly level for geographical regions or product categories
[Sprangers et al., 2024]. Although structural and temporal hierarchies can be intertwined [Kourentzes
and Athanasopoulos, 2019], here we focus on providing coherent forecasts along the temporal
dimension. This problem is often addressed by training independent, specialized forecasting models
for each frequency of interest, followed by a post-processing reconciliation step to ensure coherence
[Kourentzes et al., 2014]. Alternatively, established methods [Athanasopoulos et al., 2017] avoid
the post-processing step by using a bottom-up approach that only requires training a single model
at the observed, fine-grained frequency. With this work, we provide a novel approach to coherent
temporal hierarchical forecasting based on using a single hierarchical neural network model with
frequency-specific modules. Importantly, the network — trained end-to-end on a state-of-the-art
deep learning architecture — does not require post-processing steps and outperforms established
forecasting models on real-world data.

NeurIPS 2024 Workshop on Time Series in the Age of Large Models.

2 Methods

In this work, we set out to develop an efficient architecture for coherent time series forecasting at
multiple temporal aggregation levels. More formally, we aim to address the problem of simultaneously
and coherently forecasting the future behaviour of a target variable y(t) at its original base sampling
frequency and at a coarser frequency over a forecasting horizon of h samples. Specifically, we
are interested in the coarse-grained time series y(t)avg obtained from the fine-grained one y(t) by
computing non-overlapping averages over k bins of w samples. Thus, in summary, our architecture
should be able to forecast yt+1:t+h := {yt+i}hi=1 and yavgt,1:k := {yavgt,j }kj=1 with k = h

w , respecting
the following constraint:

yavgt,j =
1

w

w∑
i=1

yt+i+w(j−1) (1)

The predictions can be based on the past and future values of both categorical covariates xcatt−c+1:t+h

and continuous covariates xcontt−c+1:t+h, over a window extending c samples into the past and h samples
into the future. Importantly, the covariates can include the past true values of the target variable
yt−c+1:t as well as static variables.

2.1 The encoder-decoder architecture

The architecture we developed to tackle this problem is represented in Fig.1. The architecture consists
of three trainable modules — the embedder b(z;ψ), the encoder e(z; θ), and the decoder d(z;ϕ)
modules — which work synergistically to solve the hierarchical forecasting problem. Indeed, our
design encourages the encoder module to specialize in forecasting the coarse-grained time series
while the decoder module specializes in forecasting the fine-grained time series. Meanwhile, the

Figure 1: The proposed architecture. The architecture forecasts h future values of a target variable y
using c past and h future values of categorical xcat and continuous xcont covariates. The architecture
comprises three main modules — the embedder, the encoder, and the decoder modules — as well
as a non-trainable readout layer. The embedder module learns a continuous representation of the
categorical variables. The encoder module learns to predict ŷavgt,1:k(θ, ψ): the average values of the
target variable over k consecutive bins of size w. The decoder learns to predict ŷdevt+1:t+h(ϕ, ψ): the
deviations from the average values. Finally, a non-trainable readout layer computes the architecture
output ŷt+1:t+h(ϕ, ψ) by summing aligned representations of the averages and deviations. The
architecture is trained by minimizing two loss functions: the encoder loss lenc(θ, ψ), which optimizes
the encoder and the embedder, and the decoder loss ldec(ϕ, ψ), which optimizes the decoder and the
embedder.

2

embedder module specializes in learning continuous representations of the categorical covariates that
are useful for forecasting both the coarse and fine-grained behaviour of the target variable.

More precisely, the embedder module embeds the categorical variables xcatt−c+1:t+h into a dense,
multidimensional continuous space; these are then concatenated with the continuous variables into
a tensor xfeatt−c+1:t+h(ψ) and forwarded to both the encoder and decoder modules. The encoder
module learns to predict the average values of the target variable over k consecutive bins of size w:
ŷavgt,1:k(θ, ψ). These average values are then forwarded to the decoder, which can, in turn, learn to
predict the deviations from the average values ŷdevt+1:t+h(ϕ, ψ). This is enforced by postprocessing the
decoder output with a centering module that subtracts the average values the decoder outputs over the
k bins of size w.

Finally, a non-trainable readout layer computes the architecture output ŷt+1:t+h(ϕ, ψ) by summing
aligned representations of the averages and the deviations according to:

ŷt+1:t+h(ϕ, ψ) = Sw,kŷ
avg
t,1:k(θ, ψ) + ŷdevt+1:t+h(ϕ, ψ), (2)

with Sw,k = (si,j)1≤i≤h, 1≤j≤k defined by:

si,j =

{
1 if (j − 1)w < i ≤ jw,

0 otherwise.
(3)

The architecture is trained by minimizing two loss functions. The encoder loss, which is used to
optimize the encoder and the embedder modules:

lenc(θ, ψ) =
||ŷavgt,1:k(θ, ψ)− yavgt,1:k||22

k
(4)

and the decoder loss, which is used to optimize the decoder and the embedder modules:

ldec(ϕ, ψ) =
||ŷt+1:t+h(ϕ, ψ)− yt+1:t+h||22

h
(5)

As backbone networks for the encoder and decoder modules, we used untrained Time-Series Mixer
(TSMixer) models Chen et al. [2023]1, due to their proved efficiency at extracting temporal and
cross-variate patterns stacking simple time-mixing and feature-mixing MLP layers. However, the
choice of the backbone network is flexible and not constrained by the architecture.

Further training details are provided in the appendix, in section A.0.2.

2.2 The dataset

To validate the proposed architecture, we chose the challenging M5 dataset: the real-world, large-scale
dataset used in the M5 forecasting competition Makridakis et al. [2022]. The dataset comprises
30,490 time series representing the number of retail sales of products sold in ten US stores over
a period of six years. The features we used, the cardinality of the categorical variables, and their
corresponding number of embedding dimensions are provided in the appendix in Table 2 and Table 3.

2.3 Evaluation

The M5 dataset contains sales data over a period of 1942 days. Following common practice (e.g.,
see Chen et al. [2023]), we used the first 1886 days for training, the next 28 days for validation, and
the last 28 days for testing. Similarly to Chen et al. [2023], we chose a context window c = 35 and
a forecasting horizon h = 28. As the forecasting horizon includes four weeks, we chose a binning
size of a week (i.e., w = 7 and thus k = 4). Our main performance measure is the one used by the
M5 competition to rank the submissions: the weighted root mean squared scaled error (WRMSSE2

— see the appendix for a formal definition). However, we also consider more traditional metrics
such as the root mean squared error measured at the fine-grained, daily frequency (RMSEd), and
at the coarse-grainded, weekly frequency (RMSEw). Additionally, we considered the RMSE of
the residuals (RMSEr), that is, the one of the daily-level time series after subtracting the estimated
average over the binning windows. Finally, we also considered the median fraction of explained
variance (MFEV) and the mean absolute deviation (MAD).

1https://github.com/ditschuk/pytorch-tsmixer
2https://github.com/pmrgn/m5-wrmsse

3

https://github.com/ditschuk/pytorch-tsmixer
https://github.com/pmrgn/m5-wrmsse

Table 1: Results. The table contains the performance of the considered models on the test split. For
each performance metric, we indicate the value of the best-performing model with a bold font style
and the value of the second-best model with an underlined font style. Note that the metric values of
the models with a "‡" superscript are taken from Chen et al. [2023]. Also note that our models were
trained for a maximum of 100 epochs, whereas the models in Chen et al. [2023] were trained for
up to 300 epochs. NBNLL indicates the negative binomial negative log-likelihood loss, while MSE
indicates the mean squared error loss. We refer to section 2.3 for details on the considered metrics
and to section 2.4 for details on the benchmark models.

Model Loss Metric

WRMSSE (↓) RMSEd (↓) RMSEw (↓) RMSEr (↓) MFEV (↑) MAD (↓)

CtxWindAVG 1.085 2.242 1.316 1.815 0.000 1.066

DeepAR‡ NBNLL 0.789
TFT‡ NBNLL 0.670
TSMixer-Ext‡ NBNLL 0.640

MonoNB NBNLL 0.681 2.179 1.269 1.771 0.024 1.053
MonoMSE MSE 0.672 2.192 1.330 1.742 0.026 1.058

EncDecNB NBNLL 0.634 2.091 1.178 1.728 0.027 1.035
EncDecMSE MSE 0.620 2.146 1.263 1.735 0.028 1.051

2.4 Benchmark models

Our main comparison is against the monolithic TSMixer architecture (Mono), which was shown
to outperform several established forecasting models on popular datasets, including the M5 dataset
[Chen et al., 2023]. Critically, for a fair comparison, we kept the number of parameters comparable
by splitting the number of hidden units of the monolithic architecture (nh = 64) between the encoder
and the decoder modules (i.e., nence = 32 and ndece = 32). We also compare our architecture
(EncDec) against established time series forecasting models such as the Temporal Fusion Transformer
(TFT — Lim et al. [2021]) and the Deep Autoregressive Recurrent Network (DeepAR —Salinas
et al. [2020]), and against a simple naive model which always forecasts the average over the context
window (CtxWindAVG).

3 Results

The results — summarized in Table 1 — indicate that the encoder-decoder architectures (EncDecNB
and EncDecMSE) outperform the monolithic ones (MonoNB and MonoMSE) across all the consid-
ered metrics. The results also show that the encoder-decoder architectures outperform established
forecasting models (DeepAR, TFT, and TSMixer-Ext) in terms of WRMSSE despite being trained
for a lower number of epochs (100 vs 300 epochs).

Interestingly, in contrast to previous works [Chen et al., 2023, Salinas et al., 2020] that reported large
performance boost when using the negative binomial negative log-likelihood (NBNLL) loss to train
models on demand data characterized by bursty behaviour and widely varying magnitudes (similar to
the M5 dataset), we were able to train models equally effectively with both the NBNLL and the MSE
losses. As a matter of fact, in our case, we observed that MSE-trained models tend to outperform
NBNLL-trained ones on two of the six considered metrics, namely the WRMSSE and MFEV metrics.
This seems to suggest that MSE-trained models are better at capturing the behaviour of the time
series with larger magnitudes and variances, while, conversely, NBNLL-trained models are better at
capturing the behavior of the time series with smaller magnitudes and variances.

Finally, we note that the encoder-decoder architecture presented in this work was primarily designed
to address the challenge of temporal hierarchical forecasting. As such, improved performance at
the coarse, weekly level (RMSEw) was an expected outcome of a competent method. However,
the general performance boost shown by our architecture suggests that the inductive bias we en-
forced is conducive to overall improved forecasting accuracy. Particularly noteworthy is, perhaps,
the improvement in WRMSSE, which points to better performance in cross-sectional hierarchical
forecasting.

4

References
George Athanasopoulos, Rob J Hyndman, Nikolaos Kourentzes, and Fotios Petropoulos. Forecasting

with temporal hierarchies. European Journal of Operational Research, 262(1):60–74, 2017.

Si-An Chen, Chun-Liang Li, Nate Yoder, Sercan O Arik, and Tomas Pfister. Tsmixer: An all-mlp
architecture for time series forecasting. arXiv preprint arXiv:2303.06053, 2023.

Rob J Hyndman, Roman A Ahmed, George Athanasopoulos, and Han Lin Shang. Optimal com-
bination forecasts for hierarchical time series. Computational statistics & data analysis, 55(9):
2579–2589, 2011.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Nikolaos Kourentzes and George Athanasopoulos. Cross-temporal coherent forecasts for australian
tourism. Annals of Tourism Research, 75:393–409, 2019.

Nikolaos Kourentzes, Fotios Petropoulos, and Juan R Trapero. Improving forecasting by estimating
time series structural components across multiple frequencies. International Journal of Forecasting,
30(2):291–302, 2014.

Manuel Kunz, Stefan Birr, Mones Raslan, Lei Ma, and Tim Januschowski. Deep learning based
forecasting: a case study from the online fashion industry. In Forecasting with Artificial Intelligence:
Theory and Applications, pages 279–311. Springer, 2023.

Bryan Lim, Sercan Ö Arık, Nicolas Loeff, and Tomas Pfister. Temporal fusion transformers for
interpretable multi-horizon time series forecasting. International Journal of Forecasting, 37(4):
1748–1764, 2021.

Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. M5 accuracy compe-
tition: Results, findings, and conclusions. International Journal of Forecasting, 38(4):1346–
1364, 2022. ISSN 0169-2070. doi: https://doi.org/10.1016/j.ijforecast.2021.11.013. URL
https://www.sciencedirect.com/science/article/pii/S0169207021001874. Special
Issue: M5 competition.

Syama Sundar Rangapuram, Shubham Kapoor, Rajbir Singh Nirwan, Pedro Mercado, Tim
Januschowski, Yuyang Wang, and Michael Bohlke-Schneider. Coherent probabilistic forecasting
of temporal hierarchies. In International Conference on Artificial Intelligence and Statistics, pages
9362–9376. PMLR, 2023.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic
forecasting with autoregressive recurrent networks. International journal of forecasting, 36(3):
1181–1191, 2020.

Olivier Sprangers, Wander Wadman, Sebastian Schelter, and Maarten de Rijke. Hierarchical forecast-
ing at scale. International Journal of Forecasting, 2024.

Souhaib Ben Taieb. Sparse and smooth adjustments for coherent forecasts in temporal aggregation of
time series. In NIPS 2016 Time Series Workshop, pages 16–26. PMLR, 2017.

Souhaib Ben Taieb, James W Taylor, and Rob J Hyndman. Coherent probabilistic forecasts for
hierarchical time series. In International Conference on Machine Learning, pages 3348–3357.
PMLR, 2017.

5

https://www.sciencedirect.com/science/article/pii/S0169207021001874

Table 2: Features table. All the features we provide to the network are listed here. Note that the
network receives in input only the c past values of the daily_sales; for all the other dynamic continuous
variables, c+ h values are instead provided.

Features

Static Dynamic

Categorical Continuous Categorical Continuous

item_id avg_price weekday daily_sales (c)
store_id avg_nsales month daily_price
department_id cultural_event year
category_id sporting_event
state_id religious_event

national_event
snap_day

Table 3: Feature cardinality table. Note that the number of embedding dimensions was determined
according to the formula: nemb =

⌈
6r0.25

⌉
. The binary variables were not embedded as we did not

find this to be beneficial.

Categorical Features

Static Dynamic

Name Cardinality Num. Emb. Dim. Name Cardinality Num. Emb. Dim.

item_id 3049 45 weekday 7 10
store_id 10 11 month 12 12

department_id 7 10 cultural_event 2 1
category_id 3 8 sporting_event 2 1

state_id 3 8 religious_event 2 1
national_event 2 1

snap_day 2 1

A Appendix

A.0.1 Input features details

In this section, we provide the input features we used in Table 2. We also provide the cardinality of
the categorical variables and their corresponding number of embedding dimensions in Table 3.

A.0.2 Training details

The encoder-decoder architecture was trained using two loss functions: the encoder loss lenc(θ, ψ)
— which is used to compute the gradients of the encoder e(z; θ) and the embedder b(z;ψ) — and
the decoder loss ldec(ϕ, ψ) — which is used to compute the gradients of the decoder d(z;ϕ) and the
embedder b(z;ψ). More specifically, while the encoder and decoder modules are optimized using
their respective loss functions, the embedder is optimized using the sum of these loss functions; that
is:

∇enc
θ := ∇θl

enc(θ, ψ) (6)

∇dec
ϕ := ∇ϕl

dec(ϕ, ψ) (7)

∇emb
ψ := ∇ψl

enc(θ, ψ) +∇ψl
dec(ϕ, ψ) (8)

For each training step, we perform a single forward pass through the model to compute the coarse-
grained predictions ŷavgt,1:k(θ, ψ) and the fine-grained ones ŷt+1:t+h(ϕ, ψ). Importantly, the decoder
computes the fine-grained predictions based on a detached copy of the coarse-grained predictions
(represented by the "detach" block in Fig.1). This ensures that the fine-grained predictions, and thus
the decoder loss and the decoder gradients, do not depend on the encoder parameters θ.

6

Table 4: Hyperparameters table. The table reports the hyperparameters of the models shown in Table
1. All models were trained for a maximum of 100 epochs, without dropout, and with gradient clipping
with a threshold value set to 1.

Model Hyperparameters

Name Loss Loss Rescaling Learning Rate Hidden Units TSM Blocks
Search Space {Yes, No} {1e-4, 1e-3, 4e-3}

MonoNB NBNLL Yes 1e-3 64 2
MonoMSE MSE No 1e-3 64 2

EncDecMB NBNLL No 4e-3 32+32 2+2
EncDecMSE MSE No 1e-4 32+32 2+2

The training hyperparameters are provided in Table 4. We reused most of the hyperparameters
specified in Chen et al. [2023] and performed a grid search for the learning rate and the loss-rescaling
option, which specifies whether to rescale the time series to their original range before computing
the loss. All models were trained using the Adam [Kingma, 2014] optimizer. The minibatches had
size 30 and contained random items sampled by a weighted sampler with weights proportional to the
average number of sales [Salinas et al., 2020]. The best model configurations were selected based on
RMSEd computed on the validation set.

A.0.3 The weighted root mean squared scaled error (WRMSSE)

The main metric we used to evaluate the performance of our models is the WRMSSE: the metric
used to rank the performance of the point forecasts in the M5 Forecasting Accuracy Competition3.
WRMSSE aims to measure the ability of a model to coherently forecast data structured in cross-
sectional hierachies such as those in the M5 dataset, which contains 30,490 time series of unit sales
that can be grouped in 12 aggregation levels, for a total of 42,840 time series.

Specifically, WRMSSE is defined by:

WRMSSE =

42,840∑
i=1

wi ×RMSEEi (9)

with:

RMSEE =

√√√√ 1
h

∑n+h
t=n+1 (yt − ŷt)

2

1
n−1

∑n
t=2 (yt − yt−1)

2 (10)

In the equation above, h is the forecasting horizon, and n is the number of training days. Thus,
RMSSE scales the RMSE of the test predictions with respect to the RMSE of the training predictions
of a naive random walk model. Therefore, WRMSSE is a weighted average of RMSSE computed for
all the atomic and aggregated time series in the dataset, accurately tracking the ability of a model to
make accurate forecasts at each level of the hierarchy. Importantly, the weights wi are chosen to be
proportional to the total sales volume of the atomic and aggregated time series, which is estimated
from the sales recorded in the validation window.

3https://github.com/Mcompetitions/M5-methods/blob/master/M5-Competitors-Guide.pdf

7

https://github.com/Mcompetitions/M5-methods/blob/master/M5-Competitors-Guide.pdf

	Introduction
	Methods
	The encoder-decoder architecture
	The dataset
	Evaluation
	Benchmark models

	Results
	Appendix
	Input features details
	Training details
	The weighted root mean squared scaled error (WRMSSE)

