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Abstract

We demonstrate how neural networks can drive
mathematical discovery through a case study of
the Hadwiger-Nelson problem, a long-standing
open problem at the intersection of discrete ge-
ometry and extremal combinatorics that is con-
cerned with coloring the plane while avoiding
monochromatic unit-distance pairs. Using neu-
ral networks as approximators, we reformulate
this mixed discrete-continuous geometric coloring
problem with hard constraints as an optimization
task with a probabilistic, differentiable loss func-
tion. This enables gradient-based exploration of
admissible configurations that most significantly
led to the discovery of two novel six-colorings,
providing the first improvement in thirty years to
the off-diagonal variant of the original problem
(Mundinger et al., 2024a). Here, we establish the
underlying machine learning approach used to ob-
tain these results and demonstrate its broader ap-
plicability through additional numerical insights.

1. Introduction
The discovery of mathematical constructions is fundamental
to theoretical mathematics, where proving the existence of
objects with certain properties can advance our understand-
ing of abstract structures. Traditional computational meth-
ods have aided the search for such constructions through
exhaustive searches, optimization, and heuristics, while re-
cent advances in Machine Learning (ML) offer new ways to
explore mathematical structures and guide intuition. Purely
discrete problems can be approached through discrete and
combinatorial optimization and purely continuous problems
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Figure 1: Neural network output (left) that inspired our for-
mal construction (right) of a novel six-coloring of the plane.
Red points avoid all distances between 0.418 and 0.657
while other colors avoid unit distances. The neural network
was trained through gradient descent on a continuous and
differentiable relaxation of these geometric constraints.

through numerical methods, yet many important theoreti-
cal problems involve both discrete and continuous aspects.
These mixed discrete-continuous problems have remained
particularly challenging for traditional approaches.

The Hadwiger-Nelson (HN) problem perfectly illustrates
these challenges: determine the minimum number of col-
ors needed to color the Euclidean plane so that no two
points at unit distance share the same color. This number
is often referred to as the chromatic number of the plane
χ(R2). Despite its simple statement, this problem combines
discrete choices (color assignments), continuous geometry
(the Euclidean plane), and hard constraints (unit-distance
requirements) in a way that has resisted resolution for over
seventy years. While SAT solvers and discrete optimiza-
tion techniques have contributed to finding lower bounds,
discovering new colorings has remained challenging.

We present a framework that reformulates this geometric
coloring problem as a continuous optimization task by in-
troducing probabilistic colorings and a differentiable loss
function. This continuous formulation enables us to use
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neural networks (NNs) as universal function approxima-
tors to explore the solution space computationally. The
networks return numerical approximations of colorings that
are equally capable of representing regular patterns or un-
expected, irregular solutions (largely) without any strong
built-in assumptions about symmetry or periodicity.

Our method serves as a tool for mathematical discovery,
operating across a spectrum spanning from fully automated
approaches to human-assisted pattern recognition and for-
malization. Importantly, numerical results do not constitute
formal proofs but rather provide guidance that must be for-
malized. In practice, our approach often discovers clearly
interpretable patterns and tessellations that generate insights
and candidate constructions, which can be turned into for-
mal results through careful mathematical analysis or, in
select cases with sufficient freedom in the solution space,
through more automated computational approaches.

Contributions. The main contribution of this work is a
description of a continuous optimization framework for ge-
ometric coloring problems that uses NNs and probabilistic
colorings, enabling gradient-based exploration of solution
spaces without strong prior assumptions or discretization
of the underlying space. This framework was essential in
the discovery of several novel colorings that imply improve-
ments for variants of the HN problem:

1. We obtained two 6-colorings of the plane for a variant
of the original problem where five colors must avoid
unit distances while the sixth color avoids a differ-
ent specified distance. These colorings significantly
expand the known range of realizable distances to
[0.354, 0.657] from the previous best of [0.415, 0.447]
due to Hoffman & Soifer (1996) and Soifer (1994b).

2. We obtained a 5-coloring covering all but 3.74% of
the plane where each of the five colors must avoid
unit distances, improving on the previous best known
bound of around 4.01% due to Parts (2020b). We also
obtained a 14-coloring covering all but 3.46% of three-
dimensional space.

3. We extended the range of monochromatic triangles
avoidable when coloring the plane with a given number
of colors, another well-known variant. The previous
best bounds are due to Aichholzer & Perz (2019).

Formal descriptions of the colorings underlying the first re-
sult were published separately by Mundinger et al. (2024a),
while papers describing the remaining results are currently
in preparation. In the present article, besides describing
the underlying framework that enabled this mathematical
discovery, we provide additional numerical insights and
include negative results for other variants where the frame-
work indicated no avenue for improvement.

Related Literature. Recent years have seen growing in-
terest in applying ML to mathematical discovery, from auto-
mated theorem proving to finding novel constructions. We
focus on the latter, specifically on approaches that use ML to
discover mathematical objects with desired properties. For
a broader perspective, we refer to recent surveys by Wang
et al. (2023a); Krenn et al. (2022); Williamson (2023).

Several approaches have emerged for using ML in combina-
torial discovery. Most closely related to our work, Karalias
& Loukas (2020) developed an unsupervised GNN-based
framework that uses probabilistic relaxations and differ-
entiable loss functions to solve graph optimization prob-
lems. While they focus on purely discrete problems like
maximum clique finding, we consider a problem with an
inherent continuous structure. Fawzi et al. (2022) solved a
discrete optimization problem using a reinforcement learn-
ing approach, from which they were able to derive a faster
matrix multiplication algorithm. Similarly, Wagner (2021)
studied the ability of a reinforcement-learning approach
to construct discrete counterexamples to conjectures in ex-
tremal combinatorics. Building on this framework, Rou-
cairol & Cazenave (2022) studied conjectures in spectral
graph theory. However, Parczyk et al. (2023) found that
this approach was largely outperformed by well-established
local searches while studying the Ramsey multiplicity prob-
lem. This finding was at least in part supported by the
work of Mehrabian et al. (2024). Charton et al. (2024)
combine both approaches and propose PatternBoost,
which trains an NN on the output of a local search and
which was also used by Bérczi & Wagner (2024). Taking a
markedly different approach, Romera-Paredes et al. (2024)
propose FunSearch, which uses LLMs to guide greedy
search through evolutionary optimization of generated code.
Novikov et al. (2025) very recently improved upon this ap-
proach through AlphaEvolve. Other notable approaches
of applying ML to mathematical problems in general in-
clude Alfarano et al. (2024) and Trinh et al. (2024).

Our approach differs from the ones used in these results,
since we use ML primarily as a tool for mathematical dis-
covery requiring further interpretation and formalization,
similar to work of Davies et al. (2021) on knot invariants,
which laid the foundation for Davies et al. (2024) to prove a
formal statement with significant additional mathematical
effort. This approach of using Artificial Intelligence (AI) to
guide mathematical intuition, while still requiring rigorous
proofs, represents a challenging but underserved direction
in AI-assisted mathematics - one that demands expertise in
both ML and pure mathematics.

The paradigm of approximating functions by NNs which
take coordinates as input is known as implicit neural repre-
sentations (Park et al., 2019; Mescheder et al., 2019; Chen &
Zhang, 2019). Our approach adopts this strategy while intro-
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ducing a loss function that penalizes deviations from desired
geometric properties. This connects our method to physics-
informed neural networks (Raissi et al., 2019; Cuomo et al.,
2022; Wang et al., 2023b), where NNs approximate solu-
tions to differential equations through unsupervised residual
minimization. Berzins et al. (2024) recently extended these
ideas to geometric constraints.

Finally, our approach fits within the broader AI4Science
paradigm, where ML is revolutionizing scientific discovery
in domains such as protein structure prediction (Jumper
et al., 2021) or the earth sciences (Pauls et al., 2024).

2. The Hadwiger-Nelson Problem
First posed in 1950, the HN problem has become one of
the most famous open questions in combinatorial geometry
and graph theory, with a rich history of partial results and
increasingly sophisticated approaches. For a comprehensive
treatment of the problem, see Soifer (2009).

Lower bounds for χ(R2) are typically established by con-
structing unit distance graphs – graphs whose vertices can
be embedded as points in the plane in such a way that edges
only connect vertices whose embeddings are a unit dis-
tance apart. The Moser spindle establishes that at least four
colors are needed (Moser & Moser, 1961) and this bound
remained the best known until the breakthrough proof of
de Grey (2018) established that χ(R2) ≥ 5. His construc-
tion, originally involving a unit distance graph with 20,425
vertices, sparked intense and largely computational efforts,
including through a Polymath project, to simplify and re-
duce this graph (Heule, 2018; Exoo & Ismailescu, 2020;
Parts, 2020a; Polymath, 2021; Gwyn & Stavrianos, 2020).

Upper bounds on the other hand are commonly established
through explicit colorings of the plane. There exists a large
number of distinct seven-colorings that avoid monochro-
matic pairs at unit distance, the first of which used a tiling
of congruent regular hexagons and was already discovered
in 1950 according to Soifer (2009). This upper bound of
χ(R2) ≤ 7 has remained unchanged since. While computa-
tional methods have proven highly successful in establishing
lower bounds, there have been surprisingly few systematic
computational approaches to constructing new colorings.
The only one we are aware of was the use of SAT solvers to
color coarsely discretized versions of specific metric spaces
as part of the discussions during the Polymath project (Poly-
math, 2021), highlighting the need for techniques that can
explore the continuous solution space more directly.

Given the challenge of closing the gap between the lower
and upper bounds of the original problem, several natural
variants have been proposed. Solutions to these variants can
provide additional insight into the underlying structure and
complexity of the original problem.

Figure 2: The formalized almost 5-coloring obtained using
the discretization procedure described in Algorithm 1. It is
periodic and constant on small parallelograms as indicated
by the magnified section. The red color represents the part
that covers 3.74% of R2 and that needs to be removed.

Variant 1: Almost coloring the plane. A natural ques-
tion concerns how much of the plane needs to be removed
before the remainder can be colored with six colors without
monochromatic unit-distance pairs. Pritikin (1998), with
a later refinement due to Parts (2020b), established that
99.985% of the plane can be colored with six colors while
maintaining this property. This result also effectively bounds
the density of a potential counterexample: any unit distance
graph requiring seven colors would need to have order at
least 6,993, see Lemma 1 by Pritikin (1998) for a proof. The
construction uses intersecting pentagonal rods and our NN
approach, when applied to the original HN problem with six
colors, consistently recovered structures remarkably similar
to these pentagonal constructions. Parts (2020b) also studied
the same question for fewer than six colors and we likewise
applied our approach in this setting with a modification in
the form of a Lagrangian term. This resulted in an improve-
ment for the 5-color variant, where our construction, see
Figure 2, successfully covers all but 3.7356% of the plane.
This improves on the previous best value of 4.0060% due
to Parts (2020b), who explicitly asked in his paper for new
approaches to push the value below the mark of 4%. See
Section 4.1 for further details.

Variant 2: Avoiding different distances. Another nat-
ural generalization of the problem considers colorings
where different colors avoid different distances. More
precisely, we say that an k-coloring of the plane has col-
oring type (d1, . . . , dk) if color i does not realize dis-
tance di. This defines a natural ‘off-diagonal’ variant of
the original problem, where finding a coloring of type
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Figure 3: Formalized version of a neural network-generated
6-coloring of the plane where no red points appear at dis-
tance 0.45 and no other color has monochromatic unit-
distance pairs. The dotted circles have unit distance radius
while the dashed circle have radius 0.45.

(1, 1, 1, 1, 1, 1) would establish χ(R2) ≤ 6. Stechkin
found a coloring of type (1, 1, 1, 1, 1/2, 1/2) (Raiskii,
1970b) and Woodall (1973) constructed one of type
(1, 1, 1, 1/

√
3, 1/

√
3, 1/

√
12). Erdős asked for the poly-

chromatic number of the plane χp(R2) (Soifer, 1992a), that
is the smallest number of colors k such that there exist some
d1, . . . , dk and a coloring of type (d1, . . . , dk). So far no
better bounds than 4 ≤ χp(R2) ≤ 6 are known. Soifer
(1992b) found the first six-coloring with a non-unit dis-
tance in only one color, having type (1, 1, 1, 1, 1, 1/

√
5).

Hoffman & Soifer (1993) later found colorings of type
(1, 1, 1, 1, 1,

√
2− 1). These constructions are part of a fam-

ily that realizes (1, 1, 1, 1, 1, d) for any
√
2−1 ≤ d ≤ 1/

√
5

(Hoffman & Soifer, 1996; Soifer, 1994b). This led Soifer
(1994a) to pose the ‘still open and extremely difficult’ (Nash
& Rassias, 2016) problem of determining the continuum of
six colorings – that is the set of all d for which a six-coloring
of type (1, 1, 1, 1, 1, d) exists.

Using our approach we discovered two novel colorings of
the plane that extend the continuum of six colorings, provid-
ing the first improvement in thirty years. The first coloring
is parameterized by d and valid for type (1, 1, 1, 1, 1, d) as
long as 0.354 ≤ d ≤ 0.553, see Figure 3. The second color-
ing is constant and covers the range of 0.418 ≤ d ≤ 0.657,
see Figure 1 and Figure 11. Together they significantly ex-
pand the range of distances for which colorings are known
to exist. A complete description of these constructions is
given by Mundinger et al. (2024a). We also explored the

polychromatic number computationally but found no way
to improve the upper bound, see also Section 4.2.

Variant 3: Coloring n-dimensional space. This variant
extends the HN problem to higher dimensions, seeking to
determine the chromatic number χ(Rn) of n-dimensional
space while maintaining the constraint that points at unit
distance must receive different colors. A general lower
bound of χ(Rn) ≥ n+2 was established by Raiskii (1970a).
The three-dimensional case has received particular attention:
Nechushtan (2002) proved χ(R3) ≥ 6 using a graph on
approximately 400 vertices, which de Grey (2020) later
refined to a 59-vertex construction. Regarding upper bounds,
Coulson (2002) famously showed χ(R3) ≤ 15, a bound
that Soifer (2009) conjectures to be tight. Our approach
successfully found colorings using 15 colors as well as,
applying the techniques from the first variant, a 14-coloring
covering all but 3.4622% of R3, see also Section 4.3.

Variant 4: Avoiding triangles. Finally, one can ask how
many colors are needed to avoid monochromatic triples of
points each at unit distances to each other. The answer in
this case is actually quite simple: coloring the plane with
alternating parallel and half-open stripes of width

√
3/2 us-

ing two colors, taking care to include the correct parts of
the border of each strip in the color, avoids any monochro-
matic such triangle. One may again consider a natural off-
diagonal version of this problem in which the triples form
triangles with prescribed side lengths 1, a, and b for some
0 ≤ a, b ≤ 1 satisfying a + b > 1. Note that the (degen-
erate) case a = 0 and b = 1 corresponds to the original
HN problem. A conjecture of Erdős, Graham, Montgomery,
Rothschild, Spencer, and Straus (Graham, 2003) states that
three colors should always be sufficient, though so far little
progress has been made towards that conjecture with some
cases, where a+ b is close to 1, still requiring seven colors,
see Aichholzer & Perz (2019). Currier et al. (2024) recently
also proved that any two-coloring contains three-term arith-
metic progressions, which can be viewed as a degenerate
triangle with a = b = 0.5. Using our approach, we were
able to extend the previous best bounds in several regions,
see Figure 4 and Section 4.4.

Many other variants of the HN problem exist, including
generalizations to other metric spaces, colorings avoiding
arbitrary unit-distance graphs, or colorings avoiding several
distinct differences in each color. Our framework should
be largely applicable to these variants with minimal modifi-
cations, providing a systematic tool for exploring potential
constructions.
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A B

Cprevious ours

3 colors
4 colors
5 colors
6 colors

Figure 4: Location of the vertex C of triangles ABC
with side AB of length 1 for which a coloring avoiding
monochromatic copies of such a triangle is known to exist
for between three and six colors. The previously known
results due to Aichholzer & Perz (2019) are shown on the
left and the results including our improvements on the right.
Note that Figure 7 in (Aichholzer & Perz, 2019) contained
an error that significantly under-reported the size of the four-
color region and that has been corrected here.

3. Methodology
In this section we develop the formulation of the HN prob-
lem as a continuous optimization problem using probabilis-
tic colorings. The original problem asks whether there exists
a function g : R2 → {1, . . . , c} such that

g(x) ̸= g(y) ∀x, y ∈ R2 with ∥x− y∥2 = 1. (1)

We relax the constraints by replacing the discrete color as-
signment with a probabilistic one. Instead of assigning a
fixed color to each point, we assign a probability distribution
over the c colors, represented by a mapping p : R2 → ∆c,
where ∆c is the c-dimensional probability simplex. The
inner product p(x)T p(y) then naturally captures the prob-
ability that points x and y receive the same color when
independently sampling from their respective distributions.

Given such a probabilistic coloring p, we define a loss func-
tion measuring the violation of the unit distance constraint
in [−R,R]2 through

LR(p) =

∫
[−R,R]2

∫
∂B1(x)

p(x)T p(y) dν(y) dµ(x), (2)

where ∂Br(x) =
{
y ∈ R2 | ∥x− y∥ = r

}
denotes the eu-

clidean sphere of radius r around x and ν = U (∂B1(x))
as well as µ = U

(
[−R,R]2

)
are uniform distributions over

∂B1(x) and [−R,R]2, respectively. The inner integral rep-
resents the probability of a conflict between a fixed point
x and a randomly sampled point y at unit distance from
it, while the outer integral averages this over all points in

[−R,R]2. While we are ultimately interested in this loss as
R tends to infinity, in practice we study it for some fixed
(sufficiently large) value of R and aim to solve

argmin
p

LR(p). (3)

A coloring of a finite box [−R,R]2 does not necessarily
extend to a valid coloring of the entire plane R2. However,
our objective is to find patterns within this box that can be
extended across the plane.1

Clearly, any valid discrete coloring g of the plane can be
converted to a probabilistic coloring p through one-hot-
encoding, yielding LR(p) = 0 for all R > 0. In the other
direction, we have the following simple result.

Proposition 3.1. If R > 0 and p is a probabilistic color-
ing with LR(p) = 0, then the coloring given by g(x) =
argmax

(
p(x)

)
satisfies Equation (1) for almost all pairs

{(x, y) ∈ [−R,R]2 × R2 | ∥x− y∥ = 1}.

Proof. Let X ⊆ [−R,R]2 denote the set of points x for
which the inner integral

∫
∂B1(x)

p(x)T p(y)dy is non-zero
and for any given x ∈ [−R,R]2 let Y (x) ⊆ ∂B1(x) de-
note the set of points y for which the support of p(y) is not
disjoint from p(x), i.e., the points y with p(x)T p(y) > 0.
By basic properties of the Lebesgue measure and since
p(x)T p(y) in the definition of LR(g) is non-negative as a
dot product of probability vectors, X has measure zero
in [−R,R]2 and so does Y (x) in ∂B1(x) for any x ∈
[−R,R]2 \ X . It follows that {(x, y) | x ∈ X, y ∈
∂B1(x)} ∪ {(x, y) | x ∈ [−R,R]2 \X, y ∈ Y (x)}, like-
wise has measure zero with respect to the uniform distribu-
tion over {(x, y) ∈ [−R,R]2 × R2 | ∥x− y∥ = 1}.

The minimization of Equation (2) over probabilistic color-
ings therefore provides a path to finding colorings for the
original HN problem through Proposition 3.1, assuming a
suitably parameterized family of functions that ideally can
approximate arbitrary colorings.

3.1. Parameterizing the space of probabilistic colorings

We approximate probabilistic colorings p through NNs pθ
of fixed architecture and size with trainable parameters θ,
turning Equation (3) into the finite-dimensional optimiza-
tion problem argminθ LR(pθ). By virtue of the universal
approximation property (Cybenko, 1989) and their inherent
spectral bias towards low-frequency functions (Rahaman
et al., 2019), NNs provide both the expressiveness needed

1Instead of sampling x uniformly from a finite box, one could
sample from a Gaussian distribution with variance corresponding
roughly to the box size R. In limited tests, this alternative did not
yield significantly different or improved constructions.
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to capture complex spatial patterns and a natural tendency
towards structured, interpretable solutions.

We employ a standard multilayer perceptron which encodes
geometric structure by operating on coordinates, making
this a geometric learning approach despite its simple archi-
tecture. Following best practices for implicit neural repre-
sentations (Sitzmann et al., 2020), we implement pθ with
sine activation functions. The networks we used consisted
of two to four hidden linear layers with 32 to 256 neurons
each, directly mapping coordinates to color distributions
through a softmax activation after the final layer.

3.2. Batched gradient descent

To minimize the loss function, we employ gradient descent
on the NN parameters θ. The main challenge lies in approx-
imating ∇θLR(pθ), which involves nested integrals that we
approximate through Monte Carlo sampling. Specifically,
we sample n center points xi ∼ U

(
[−R,R]2

)
and, for each

center xi, sample m points yij ∼ U (∂B1(xi)), obtaining
the estimate

∇θLR(pθ) ≈ ∇θ

 1

nm

n∑
i=1

m∑
j=1

pθ(xi)
T pθ(yij)

 . (4)

3.3. Considerations for each of the four variants

Let us outline how the formulation in Equation (2) can be
adapted to the four variants described in Section 2, including
necessary adjustments to the NN and sampling procedures
already described.

Variant 1: Almost coloring the plane. To formalize the
idea of an almost coloring, we introduce an additional color,
in which no conflicts are penalized. We extend the co-
domain of pθ to ∆c+1, with the last entry corresponding to
the additional color. Formally, we then want to solve the
constrained optimization problem

argmin
pθ

LR(p
c
θ)

s.t.
∫

[−R,R]2

pθ(x)c+1 dµ(x) ≤ δ

for some pre-determined δ > 0, where pcθ refers to the first
c components of pθ. More precisely, we want to determine
the minimum δ for which the answer to this problem is zero.
In practice, we solve the Lagrangian relaxation

Lλ
R(pθ) = LR(p

c
θ) + λ

∫
[−R,R]2

pθ(x)c+1 dµ(x). (5)

While in theory there exists a corresponding λ for each δ,
we simply treat λ as a hyperparameter controlling the trade-

off between using the additional color and maintaining valid
colorings.

Almost colorings contain some inherent freedom in the the
solution space, as we can simply increase the size of the ad-
ditional color by a small amount if needed, so we designed
a fully automated pipeline to obtain rigorously verified col-
orings. After identifying periodic structures in an initial
trained NN in the form of a tesselation using a parallelo-
gram, we retrain a separate NN to enforce precisely that
periodicity. We then discretize the output and eliminate any
unit-distance conflicts through an iterative discrete heuris-
tic. The periodic extension of this discrete solution yields a
continuous almost coloring that provably satisfies all unit-
distance constraints, see also Algorithm 1 and Figure 2.

Algorithm 1 Automated almost-coloring formalization

1. Initial training. Train pθ : R2 → ∆c+1 to minimize
Equation (5) on a large enough box [−R,R]2.

2. Periodicity extraction. Determine two vectors
v1, v2 ∈ R2 with 0 ≪ ∠(v1, v2) ≪ π such that the
coloring (largely) consists of tiling the parallelogram

P = {αv1 + βv2 : α, β ∈ [0, 1)}

along the lattice Λ = {n1v1 + n2v2 : n1, n2 ∈ Z}.

3. Periodicity-constrained retraining. Form the invert-
ible change-of-basis matrix M = [ v1 v2 ] ∈ R2×2.
Prepend the mapping x 7→ M−1x (mod 1) to pθ,
which enforces exact periodicity over Λ, and retrain.

4. Discrete almost-coloring. Discretize P into kl copies
of {αv1/k + βv2/l : α, β ∈ [0, 1)} and determine a
color for each parallelogram pixel by sampling pθ at
its respective center.

5. Iteratively fix remaining conflicts. Determine a dis-
crete mask in which conflicts need to be avoided around
each parallelogram pixel to obtain a formal coloring.
Iteratively reduce any remaining conflicts by solving
an auxiliary minimum edge cover problem and recol-
oring some parallelograms. After a fixed number of
rounds, resolve any remaining conflicts by recoloring
with the additional color c+ 1.

Variant 2: Avoiding different distances. For colorings
of type (d1, . . . , dc) we modify the loss formulation to

c∑
k=1

∫
[−R,R]2

∫
∂Bdk

(x)

pθ(x)k pθ(y)k dνk(y) dµ(x), (6)
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with µ = U
(
[−R,R]2

)
and νk = U (Bdk

(x)), i.e., we now
need to choose the points y from the sphere ∂Bdk

(x) of
radius dk around x for each color k. Minimizing the loss
function finds probabilistic colorings that attempt to avoid
distance dk for color k. Note that we recover Equation (2)
for d1 = . . . = dc = 1.

This model can also be extended to handle sets or ranges
of distances for some or all colors. To achieve this, we
redefine the domain of the candidate functions g to include
the current distance. Given distance ranges [dmin

k , dmax
k ] for

each color k for example, we set

p : R2 ×
c×

k=1

[dmin
k , dmax

k ] → ∆c. (7)

By integrating Equation (6) over this expanded domain,
we average the loss across all distances within the speci-
fied range for each color by sampling points on c circles,
corresponding do the distances d1, . . . , dc. Note that this
increases the effective batch size from nm to nmc. This
approach allows exploration of a larger part of the solution
space instead of just a single type.

Variant 3: Coloring n-dimensional space. To extend
to higher dimensions, it suffices to integrate over Rn and
letting ∂B1(x) represent the sphere in the appropriate space.
We are particularly interested in the three-dimensional case.
Apart from adapting the input dimension of gθ as well as
sampling in the higher dimensional space, this case is anal-
ogous to the two dimensional cases. The question of al-
most colorings arises naturally in higher dimensions as well.
Here, the automated verification procedure described in
Algorithm 1 is particularly useful, as visualization and inter-
pretation of colorings gets much more challenging in higher
dimensions.

Variant 4: Avoiding triangles. In order to avoid
monochromatic triangles with side lengths 1, a, and b, we
replace the integrand pθ(x)k pθ(y)k in Equation (2) with

c∑
k=1

pθ(x)k pθ(y)k
(
pθ(z1)k + pθ(z2)k

)
/2 (8)

where z1 and z2 are the two candidates for the the point
z such that x, y, and z form a triangle with ∥x− y∥ = 1,
∥x− z∥ = a and ∥y − z∥ = b, assuming a+ b > 1.

In this variant we sample center points x ∈ [−R,R]2 and
proximity points y on the unit circle as before. We then
obtain the two candidates z1 and z2 for the third point of
the triangle by calculating the intersection points of the
circles of radius a and b around x and y, respectively. As
in Variant 2, the domain of the function p can be extended
to R2 × [amin, amax] × [bmin, bmax] to allow for continuous
ranges of a and b within one network and we integrate the
loss over the intervals [amin, amax] and [bmin, bmax].

Figure 5: The almost coloring due to Pritikin (1998) and
Parts (2020b) (left) and the coloring suggest by our approach
(right). The wavy lines are caused by the inherent degrees
of freedom present in many colorings.

4. Experimental results
In this section we present our numerical results for the orig-
inal HN problem and its four variants. We implemented
our approach in PyTorch, updating the parameters using the
Adam optimizer (Kingma & Ba, 2015) with a learning rate
schedule linearly decaying (Li et al., 2020) from an initial
value between 10−3 and 10−4. We typically used between
16,384 and 65,536 training steps, sampling 1,024 to 4,096
points for x and 1 to 32 points for y on the circle(s) around
x during each step, resulting in 106 to 1010 total samples
during training. A single such run takes between two and
20 minutes on an NVIDIA V100 GPU, though adequate
results can be achieved in under 10 minutes on a standard
laptop CPU. Due to the heuristic nature of our approach
and the need to tune hyperparameters, we did however per-
form thousands of runs for each variant, particularly when
exploring parameter spaces in the off-diagonal and triangle
variants.

Our initial experiments focused on six-color solutions in the
classical setting. The method consistently recovered pat-
terns resembling Pritikin’s construction, providing early val-
idation of our approach, see Figure 5. However, these results
also revealed that NNs often introduce irregularities such
as wavy lines, reflecting inherent freedoms in the solution
space. This becomes even more pronounced for seven col-
ors, see Figure 9 in the appendix. These findings highlight
that our method can successfully discover valid colorings,
but formalizing the discovered patterns into rigorous mathe-
matical constructions may still require substantial additional
effort. Additionally, the method’s inability to suggest valid
colorings with fewer than seven colors provides additional
numerical evidence that the chromatic number of the plane
may in fact be seven. The code needed to reproduce our
results and the constructions obtained using Algorithm 1 are
available at https://github.com/ZIB-IOL/neural-discovery-
icml25.

4.1. Variant 1: Almost coloring the plane

Applying the Lagrangian-modified loss function described
in Section 3.3 to six colors, we achieved conflict rates
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Table 1: We compare our results with the best known for
almost coloring the plane, reporting the fraction of points
that must be removed to color the remainder without unit-
distance conflicts. Prior results are due to Croft (1967) and
Parts (2020b). Numerical values were obtained by evalu-
ating a trained model on a parallelogram with periodical
boundary conditions. The formalized values were obtained
by applying Algorithm 1.

# colors 1 2 3 4 5 6

prior 77.04% 54.13% 31.20% 8.25% 4.01% 0.02%

numerics 77.07% 54.21% 31.34% 8.29% 3.60% 0.03%
formalized 77.13% 54.29% 31.51% 8.52% 3.74% 0.04%

of around 0.03%, slightly higher than those reported by
Parts (2020b). The optimization process proved sensitive to
the Lagrangian term λ, but consistently recovered known
constructions once a good range (typically between 10−3

and 10−1) was found. The discovered patterns for one to
four colors closely match known constructions due to Croft
(1967), see Figure 10 in the appendix. The five-color case
exhibits patterns similar to those in the construction de-
scribed by Parts (2020b), but the numerical value of around
3.60% suggested the possibility of an improvement. The
formalized construction does in fact attain a significantly
improved value of 3.7356%. Complete numerical results
for k = 1, . . . , 6 colors along with the formalized values
obtained using Algorithm 1 are reported in Table 1.

4.2. Variant 2: Avoiding different distances

We report the numerical results on colorings of type
(d1, . . . , d6) with a particular focus on the cases di = 1
for either i ∈ {1, . . . , 5} or i ∈ {1, . . . , 4}.

Colorings of type (1, 1, 1, 1, 1, d). Following Section 3,
we included the free distance d in the domain of the color-
ing function, exploring the interval [0.2, 2.2]. This approach
not only allows optimization over a continuous range of
distances but also reveals smooth transitions between color-
ings, see Figure 12 in the appendix, which proved crucial
in identifying a broader family of valid solutions. Figure 6
shows the conflict rates as a function of d for sixteen indi-
vidual runs and their pointwise minimum. While previous
work established valid colorings for d ∈ [

√
2 − 1, 1/

√
5]

(orange dashed lines), our constructions extend this range
to [0.354, 0.657] (blue dashed lines). Additional regions of
interest appear at d ≈ 1, corresponding to the original HN
problem and d ≈ 1.6, where conflict rates fall below 1%.

Colorings of type (1, 1, 1, 1, d1, d2). Analogously, we
treated the last two colors as free distances and augmented
the domain of the NNs accordingly. The resulting colorings
remain continuous in both d1 and d2. As shown in Figure 7,
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Figure 6: Fraction of conflicting points versus the free dis-
tance d in colorings of type (1, 1, 1, 1, 1, d). The thick blue
line shows the minimum over multiple runs (thin lines). Or-
ange and blue shaded regions indicate the previously known
and our extended ranges of valid colorings, respectively.

we found three regions of minimal conflicts: two symmetric
regions near (d1, 1) and (1, d2) with d1, d2 ≈ 0.5, recover-
ing our earlier (1, 1, 1, 1, 1, d) colorings, and an additional
region near (0.5, 0.5) corresponding to a construction simi-
lar to Stechkin’s, see Figure 12.

Figure 7: The fraction of conflicts in (1, 1, 1, 1, d1, d2) col-
orings as a function of d1 and d2 (center, showing minimum
over sixteen networks). Three regions of minimal conflicts
emerge: symmetric regions near (d1, 1) and (1, d2) with
d1, d2 ≈ 0.5, and one near (0.5, 0.5). Sample colorings
from these regions are shown in the surrounding plots.

Polychromatic Number. We investigated potential five-
color solutions of type (d1, . . . , d5) by including the dis-
tances in the domain of the NN and determining the best
candidates for such a type after training using first- and
second-order methods. Our result achieved a minimal con-
flict rate of 4.9% with distances d1 = 1, d2 ≈ d3 ≈ 1, and
d4 ≈ d5 ≈ 0.56, see Figure 13 in the appendix. Despite
extensive optimization, our inability to find a conflict-free
five-color solution provides additional evidence that the
polychromatic number may indeed be six. More details are
provided in Appendix C.
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4.3. Variant 3: Coloring n-dimensional space

Our method successfully found (near) conflict-free 15-color
solutions, consistent with the bound established by Coulson
(2002). Our attempt to improve this bound directly to 14
was not successful. We also studied the almost coloring
variant in three dimensions, which resulted in numerical
solutions with a conflict rate of around 2.3%. Applying a
three-dimensional modification of Algorithm 1 yielded a
formal coloring covering all but 3.4622% of R3, though fur-
ther refinements improving this value seem possible. More
details are provided in Appendix D.

4.4. Variant 4: Avoiding triangles

We applied our approach to study triangles with sides of
length 1, a, and b satisfying a + b > 1. For four and five
colors, our NNs consistently discovered constructions based
on stripes and hexagonal tessellations, similar to those used
by Aichholzer & Perz (2019). However, the numerical
results suggested that alternative scalings of these basic
patterns could yield improvements beyond those previously
known, see the suggested patterns in Figure 8. We were
able to formalize some of those based on stripes, obtaining
several new bounds that expand the regions where three to
five colors suffice, as already shown previously in Figure 4.
This significantly reduces the area of the parameter space
still requiring seven colors, though further improvements
seem possible.

Beyond further resolving the parameter space with respect
to the number of required colors both numerically (Figure 8)
as well as via formalized patterns (Figure 4), the numeri-
cal results also provide evidence against the conjecture of
Graham (2003) that three colors should always suffice: our
experiments consistently required more colors as one side
of the triangle became shorter while the other became closer
to unit length, suggesting these cases (which more closely
resemble the original HN problem) may be fundamentally
more challenging.

5. Discussion
Our framework provides a novel approach to exploring math-
ematical structures through continuous optimization, lead-
ing to several concrete improvements to long-standing open
problems. Beyond just being applicable to variants of the
HN problem, we believe that it naturally extends to other
problems in discrete geometry and extremal combinatorics.
For instance, graph-theoretic problems involving discrete
structures can often be reformulated through graph limits,
where the objective becomes optimizing over continuous
maps [0, 1]2 → [0, 1]. Our approach of using NNs as uni-
versal function approximators combined with suitable loss
functions could be directly applied in this setting. The

Figure 8: Numerical results showing the achievable color
bounds when avoiding monochromatic triangles, together
with a selection of found colorings. We trained thousands
of networks on different sub-areas of the above region and
say that a point can be achieved with three, four, five, or six
colors if the top 3% of runs for that point reported that less
than 0.1% of sampled triangles were monochromatic in the
argmax coloring derived from the trained NNs.

framework could also potentially be extended to handle
non-differentiable losses using auxiliary ‘critic’ or ‘value’
networks that learn to approximate these losses, similar to
techniques used in adversarial and reinforcement learning.

We also experimented with other function families such as
Fourier bases and Voronoi diagrams; however, NNs consis-
tently performed best, due to their expressiveness, ease of
training, and ability to represent complex functions with rel-
atively few parameters. The approach required a substantial
amount of tuning, particularly in the choice of architecture
and hyperparameters. Beyond the usually relevant parame-
ters such as the learning rate, the Lagrangian penalty term
was particularly important: although scale-sensitive, it led
to stable and consistent results once a good range was found.
The size of the bounding box was less critical, as long as it
was large enough to avoid trivial colorings.

We believe that the combination of AI-aided constructions
with human insight is highly beneficial, leveraging the
strengths of automated exploration alongside human inter-
pretation and mathematical intuition. We also emphasize
that, in the case of the almost colorings, we developed a
fully automated pipeline that no longer requires human in-
tervention. This automation was already helpful in two di-
mensions, but became essential for higher-dimensional vari-
ants of the problem, where manual interpretation becomes
increasingly challenging. More broadly, this work demon-
strates how continuous relaxations and gradient-based opti-
mization can bridge the gap between ML and mathematical
discovery, potentially opening new paths to approaching
long-standing open problems in mathematics.
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A. Coloring the plane with seven colors
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Figure 9: Colorings found for the Hadwiger-Nelson problem with seven colors. Left and middle: Rather structured colorings.
Right: Less structured coloring.
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B. Details on variant 1: Almost coloring the plane
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(f) k = 6

Figure 10: Almost colorings for k = 1, . . . , 6 obtained through Algorithm 1. The parallelograms indicate the fundamental
domain along which periodicity is enforced.

In the case of almost colorings, we designed a fully automated pipeline to generate rigorously verified colorings which
tessellate the plane using parallelograms and are piecewise constant on smaller parallelograms, as outlined in Algorithm 1.
To infer the directions of periodicity, we evaluate the trained models from step 1 along radial lines from the origin and
translate these lines by increasing offsets. A direction is categorized as a direction of periodicity if the similarity between
the original and translated evaluations exceeds a threshold after a distance d. From all such directions, we then extract two
vectors that have minimal norm and are sufficiently separated in angle. These vectors span the fundamental parallelogram
which tiles the plane.

We then retrain a new model enforcing periodicity on this parallelogram and subdivide it into smaller sub-parallelograms
(which we refer to as ‘cells’) and treat the coloring as constant within each one. For each cell cbase, we determine all the
cells which contain points that are at unit distance to any point in cbase by computing the cells that intersect with unit circles
at the corners of cbase. We then turn the unit distance constraint into the stricter (but discrete) constraint of not having cells
with the same color if they contain unit distance pairs.

Finally, in step 5, we employ a heuristic to completely eliminate unit distance conflicts while minimizing the use of the
"bonus" color. While one could trivially assign the "bonus" color to all conflicting cells, we instead construct an auxiliary
conflict graph whose nodes are conflicting cells and whose edges connect same colored cells at approximate unit distance.
By computing a minimum edge cover and setting the selected cells to the "bonus" color, we effectively resolve all remaining
conflicts.
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C. Details on variant 2: Avoiding different distances
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Figure 11: A 6-coloring of the plane where no red points appear at any distance between 0.418 and 0.657 while no other
color has monochromatic unit-distance pairs. The dotted circles have unit distance radius, while the dashed circles have
radius 0.657 and the dash-dotted circles have radius 0.418. Shown is the formalized version, which was inspired by the NN
outputs, see also Figure 1.
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Figure 12: A more detailed view of the colorings generated by a single model for different values of the last distance. Upper
row (from left to right): d = 0.4, d = 0.6, d = 0.8, d = 1.0. Lower row (from left to right): d = 1.2, d = 1.4, d = 1.6,
d = 1.8.

The polychromatic number of the plane is the minimum number of colors needed such that no color realizes all distances in its
monochromatic pairs. While known to be at most 6, finding a five-color solution would constitute a significant improvement.
Our search focused on colorings of type (d1, . . . , d5), where we set d1 = 1 without loss of generality. Our approach sampled
distances from [0.2, 2.2] and included them directly in the domain of the NN. Rather than performing an expensive grid
search over the four remaining distances, we employed first- and second-order optimization methods to find optimal values
after training. This optimization led to our best result with distances d1 = 1, d2 ≈ d3 ≈ 1 and d4 ≈ d5 ≈ 0.56, achieving a
minimal conflict rate of approximately 5% (see Figure 13). This suggests that the polychromatic number of the plane may
indeed be six.

Note that when including the distances in the domain of the function of the coloring, we conceptually parametrize a whole

15



Neural Discovery in Mathematics

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 13: The best five-coloring with d1 = 1, d2 ≈ d3 ≈ 1 and d4 ≈ d5 ≈ 0.56 and approximately 5% of conflicts in a
box of size [−3, 3]2.

family of implicit neural representations. Instead of viewing this as a function of both coordinates and distances as in
Equation (7), we can view it as a function-valued function (i.e., an operator):

G :
c×

k=1

[dmin
k , dmax

k ] →
{
g | g : R2 → ∆c

}
. (9)

This perspective connects to the rapidly growing field of operator learning (Kovachki et al., 2024). DeepONets (Lu et al.,
2021) are particularly suitable architectures for such mappings, and have proven effective in the numerical treatment of
differential equations (Wang et al., 2021; Mundinger et al., 2024b).
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Figure 14: Three different distance configurations generated by the same model: (d1, d2) = (1, 0.4) (left), (0.5, 0.5)
(middle), and (0.6, 1.0) (right). The bottom two rows show patterns similar to Stechkin’s construction at (0.5, 0.5), while
the outer columns reveal patterns that led to our formalized constructions.
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D. Details on Variant 3: Coloring three-dimensional space
Visualizing and thus also interpreting and formalizing a three-dimensional coloring is much more challenging than in the
two dimensional case. To better understand the structure of colorings, we extracted polyhedral regions from the NN output
and explored them in interactive plots. One of these colorings is shown in Figure 15.

Since our numerical experiments did not suggest the existence of a 14-coloring without unit distance conflicts, we applied
an adapted version of Algorithm 1 to construct an almost-14-coloring of space in a fully automated fashion. It covers all but
3.46% of R3, though it seems that this value might be improved through a finer discretization.

Figure 15: A three-dimensional coloring found by our approach. We only show four out of the fourteen colors.
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E. Details on Variant 4: Avoiding triangles

Figure 16: Numerical results showing the achievable color bounds when avoiding monochromatic triangles. We trained
thousands of networks on different sub-areas of the above region and say that a point can be achieved with three, four,
five, or six colors if the top 3% of runs for that point reported that less than 1% (left), 0.1% (middle), and 0.01% (right) of
sampled triangles were monochromatic in the argmax coloring derived from the trained NNs.
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F. Different p-norms
Our approach extends to different norms in Rn. The loss function remains the same, while the respective ball B1(x) is
replaced by the Lp-ball Bp(x) = {y ∈ Rn | ∥x− y∥p ≤ 1}. To generate samples from the Lp-ball, we use the probabilistic
method proposed by Barthe et al. (2005). The cases p = 1 and p = ∞ in R2 are relatively straightforward to derive, as there
exist colorings using four colors by arranging the balls in a regular grid. However, in particular the case p = 1 produces
visually interesting results, as not only the trivial constructions are found but variations thereof, see Figure 17.
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Figure 17: Colorings found for the L1 norm. Left: The trivial grid coloring. Middle and right: Colorings which utilize the
degrees of freedom present in the coloring.
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