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Abstract

Many-to-one neural machine translation sys-
tems improve over one-to-one systems when
training data is scarce. In this paper, we de-
sign and test a novel algorithm for selecting the
language of minibatches when training such
systems. The algorithm changes the language
of the minibatch when the weights of the model
do not evolve significantly, as measured by the
smoothed KL divergence between all layers of
the Transformer network. This algorithm out-
performs the use of alternating monolingual
batches, but not the use of shuffled batches,
in terms of translation quality (measured with
BLEU and COMET) and convergence speed.

1 Introduction

Multilingual neural machine translation (MNMT)
systems can be trained with several languages on
the source side, or on the target side, or on both
sides (Firat et al., 2016; Johnson et al., 2017).
Many-to-one MNMT systems are particularly ef-
fective for low-resource languages (LRLs) on the
source side, when they are accompanied by high-
resource languages (HRLs) related to them (Gu
et al., 2018). For instance, Neubig and Hu (2018)
trained a many-to-one recurrent model on a multi-
lingual dataset of almost 60 languages and showed
that including HRLs in the training data reduces
the chance of overfitting to the LRLs and improves
translation quality. Aharoni et al. (2019) used
Transformer models (Vaswani et al., 2017) to fur-
ther improve over these results.

Many-to-one MNMT systems are usually trained
with multilingual batches sampled from all source
languages to avoid catastrophic forgetting (Jean
et al., 2019), but the presence of several languages
in a minibatch may ineffectively constrain the
model and prevent it from training on the languages
where training is most needed. An open question
in many-to-one MNMT, therefore, is how the data
from different source languages should be sampled

during training, particularly when massive imbal-
ances in sizes or difficulties occur across languages.

In this paper, we propose a dynamic schedul-
ing approach which samples minibatches from the
source languages based on the variation of weights
in the layers of a Transformer. The main idea is
the following one: when a model becomes com-
petent for translating a certain source language, as
indicated by a decreasing variation of a model’s
weights across training steps, then the language of
the minibatches should be switched to a new one,
in order to allocate more time to more challenging,
hence useful tasks.

The main contributions of the paper are the pre-
cise formulation, implementation and testing of
the idea. Specifically, we propose to: (i) mea-
sure variation of weights by comparing the weights
of all layers of a Transformer across two consec-
utive steps with the same source language; (ii)
compare weights by using symmetric KL diver-
gence between softmaxes of layers, with exponen-
tial smoothing across time; (iii) trigger a change of
task, i.e. source language, when weight variation
decreases; (iv) compare translation quality and con-
vergence speed for 2-to-1 and 8-to-1 MNMT on a
dataset with four language families on the source
side, and one HRL and one LRL for each of them
(Neubig and Hu, 2018).

2 Related Work

Neubig and Hu (2018) study the upsampling of
the HRL data when building minibatches, and ob-
serve that keeping the original proportions of HRL
and LRL performs marginally better. Aharoni et al.
(2019) also sample each batch uniformly from a
concatenation of all language pairs. Arivazhagan
et al. (2019) compare a simple concatenation with
uniform balancing (Johnson et al., 2017), but ob-
serve better results for LRLs when translating into
a HRL by using a temperature-based upsampling,
which has been favored afterwards (Conneau et al.,



2020; Tang et al., 2021). As a method for dynamic
scheduling of multitask training (Caruana, 1997),
self-pacing consists in using the target model to
quantify the difficulty of each sample or dataset
— that is, measure the model’s competence — and
inform the scheduling module dynamically (Ku-
mar et al., 2010). For MNMT, Jean et al. (2019)
compare adaptively upsampling a language depend-
ing on various factors, observing best results on
the LRLs when dynamically changing the gradient
norm (Chen et al., 2018). Wang et al. (2020) adap-
tively balance the languages by learning language
weights on the model’s competence on a devel-
opment set. Zhang et al. (2021) adaptively learn
a sampling strategy by measuring per-language
competence and LRL competence evaluated with a
HRL’s competence.

3 Method for Self-Paced MNMT

To train a many-to-one MNMT model, we consider
M parallel datasets which correspond to as many
tasks 7 = {77, ..., Ta} with different source lan-
guages and their respective English translations.
Our algorithm chooses on which task 7 to train
the MNMT model with parameters 6; at each time
step t, based on an estimation of the model’s com-
petence for each task (i.e., source language). The
overall goal is to increase time spent on tasks where
the model is less competent, and to avoid over-
training on tasks where the model is already com-
petent.

We estimate the per-task competence of the
model as the average variation of its weights in
all layers (due to the back-propagation of gra-
dients) at a given training step. We thus mea-
sure competence as the Kullback-Leibler diver-
gence (Dgr.) between the updated weights and the
weights at the previous step at which the model
was trained on the same task. Originally used
to quantify the dissimilarity between two proba-
bility distributions P and (), Dk is defined as:
DkL(P||Q) = 2, P(x)log(P(x)/Q(x)) where
x are the possible values of the P and () random
variables. To use Dk as a distance measure be-
tween two sets of weights in a neural network, we
apply softmax o to convert the weights to probabil-
ity distributions. Moreover, we take the logarithm
of the first term in KL to handle the potential issue
of capacity overflow and maintain the stability of
divergence calculations (Liang et al., 2021). Fi-
nally, we symmetrize the distance by summing

KL divergence in both directions. Therefore, we
compute the average variation between two sets
of values 0;_1 and 0; of all the trainable weights
of a Transformer network (layers 1 through L) as
follows:

D(:-1,6) =5 3 Diallog(o(6i-1))[[o(6))

+ Dxe (log((6)) o (6;-1))-

Furthermore, we ensure that when the training
switches to another task, the model trains on it for
at least two updates, so that both 8;_; and 6, are
the result of training on minibatches of the same
source language: with this, we avoid measuring a
large variation between weights simply as the result
of switching between tasks. In order to obtain
a task-switching schedule that is robust to local
variations, we apply exponential smoothing and
compute per-task competence, transforming D into
D!, as follows:

D;(Ht_l, 0,5) = (1 — w)D(Qt_l, et) + wDé(Gt,k, 9,5_1)

where k > 2 is the smallest value such that B;_;, €
T. (in other words, ¢ — k is the latest step before
t — 1 for which B;_j, € T.). The smoothing weight
was set at w = 0.995 after empirical analyses (see
Appendix A.2).

The proposed algorithm for dynamic scheduling
(Algorithm 1 below) has the following rationale. If
the network is trained on a task 7, and the weight
variation across consecutive steps increases, we
consider that the network lacks competence on 7,
and should keep training on it. Conversely, the less
the weights change, the more competent the model
is. So, if weight variation slows down, then training
on the same task produces diminishing returns, and
the network should switch to a task on which it is
less competent. This condition appears in line 8 of
Algorithm 1.

We define the model’s per-task competences at
step t as C = {C1,...,Cp}, such that C. =
D/(0;_1,0;), and j < t is the last step such that
minibatch B; € T,. That s, for each T; € T, C; is
the result of exponential smoothing over the weight
variations of all the updates in which 6 has trained
on a minibatch from 7;. We define a sampling func-
tion — noted ‘sample*’ in line 10 of the algorithm —
which, with the following role: in the initial phase,
it randomly samples any of the T; € T on which
the system has never been trained on; then, when
all tasks have been seen at least once, it samples



anew 7. € T based on the softmaxed per-task
competence distribution o(C). Additionally, we in-
troduce hyper-parameter « in order to compare the
importance of previous weight variation versus the
current one (line 8). However, after empirical anal-
yses, we found that the best results were obtained
with o = 1 (see Appendix A.3).

Algorithm 1: Self-paced scheduling algo-
rithm for MNMT using the variation of
model weights.

Require: tasks 7 = {71, .., Tar }, steps s

1 T, < Th;

2 fort<+1,...,sdo

3 Sample minibatch B; from T¢;
4 041 < 0 — Vo, L, (0:);

5 if changedTask then

6 | changedTask < False;

7 end

8 else if D, (0,-1,6:) < aD.(0¢—2,0:—1) then
9 CC %DL(@t_l,Gz);

10 Te < sample™ (T — {T.});
11 changedTask <— True;

12 end

13 t—t+1;

14 end

In training, we use the ‘noam’ learning rate
schedule (Vaswani et al., 2017, Eq. 3), which in-
creases linearly from zero during the warmup steps,
and afterwards decays proportionally to the in-
verse square root of the current step. Although
the variation in weights throughout the entire train-
ing is strongly influenced by the learning rate
schedule (Figure 2), we find that when comparing
the smoothed weight variations between two near-
consecutive steps, the influence of the learning rate
variation is negligible. Finally, we note that our al-
gorithm carries little computational overhead, since
the self-assessed competence is obtained from the
weight variation across standard updates.

4 Data and Systems
4.1 Corpora

We experiment on a subset of the multilingual TED
corpus (Qi et al., 2018). As in previous multilingual
studies (Neubig and Hu, 2018; Wang et al., 2019),
we focus on four pairs of related LRL-HRL, as
shown in Table 1, with the goal of translating them
into English (EN).

4.2 Tokenization

As the data is already tokenized, we directly use
Byte Pair Encoding (BPE) (Sennrich et al., 2016)

LRL train dev test HRL train
BE 451k 248 664 RuU 208k
Az 594k 671 903 TR 182k
GL 10.0k 682 1.0k Pt 51.8k
SK 61.5k 2.2k 24k Cs 103k

Table 1: Data sizes for pairs of LRLs and HRLs.

for subword extraction and vocabulary construc-
tion. We learn a vocabulary by concatenating 10k
random lines from each language in the training
data, and upsample the LRL if it has fewer lines.
For experiments involving only one LRL and one
HRL in the source, we learn a vocabulary of 10k
subwords. For experiments involving all four LRLs
and all four HRL in the source, our vocabulary has
32k subwords. To facilitate language identifica-
tion, we prefix the dataset of each language with a
unique tag.

4.3 System Architecture

We use Transformer models (Vaswani et al., 2017)
from the OpenNMT-py library (Klein et al., 2017)
version 3.1.1. In all our systems we use the fol-
lowing default values of hyper-parameters from
Transformer-Base: 6 encoder/decoder layers, 8 at-
tention heads, label smoothing of 0.1, hidden layer
of 512 units, and FFN of 2,048 units. We use Adam
optimizer (Kingma and Ba, 2014) and a batch
size of 10k tokens. After empirical testing (Ap-
pendix A.6) we observe better quality with systems
using more aggressive regularization. In particular,
from the recommended values by OpenNMT-py,
we increase the dropout rate to 0.3, the scaling
factor to 10 and the number of warmup steps to
16k, and we re-normalize gradients if their norm
is greater than 5. Our 2-to-1 and 8-to-1 models
have 59M and 93M of parameters respectively. We
train all our models on 2 GPUs (GTX 1080 or RTX
2080) for a maximum of 26 hours. In this study we
trained approximately 40 models.

4.4 Evaluation

For each pair, we measure the BLEU score (Pa-
pineni et al., 2002) on the LRL test set using
the SacreBLEU library! (Post, 2018) as well as
the COMET score (Rei et al., 2020) using model
wmt22-comet-da. We use bootstrap resam-
pling from SacreBLEU to compute the 95% confi-

!github.com/mjpost/sacrebleu
signature: nrefs:1|case:mixed|eff:noltok:13a
| smooth:exp|version:2.3.1.


https://github.com/mjpost/sacrebleu

Task System 2-to-1 8-to-1
y BLEU COMET Updates BLEU COMET Updates
shuffed 217 (£1.3) 638 48k 200 (£14) 614 64k
BE— EN alternation  19.8 (£1.2) 61.5 44k 18.7 (£1.3) 61.3 120k
self-paced  20.5 (£1.3) 62.8 32k 19.7 (£1.3) 61.8 128k
shuffled 15.6 (£1.0) 66.0 32k 14.3 (£1.0) 64.4 144k
Az EN alternation 144 (£1.0)  63.9 44k 166 (£1.0) 629 140k
self-paced 14.5 (£1.0) 64.9 48k 14.4 (£1.0) 64.0 150k
shuffed 302 (£1.2) 709 S0k 319(+13) 728 92k
GL— EN alternation  30.0 (£1.2) 71.0 50k 304 (+1.2) 71.3 136k
selfpaced 302 (£1.1) 712 44k 307 (£12) 720 150k
shuffled 33.6 (+0.8) 76.2 24k 33.9 (+0.9) 75.4 32k
SK— EN alternation 334 (£0.8) 753 20k 31.8(+£0.9) 735 144k
selfpaced 333 (£0.9) 753 20k 319(£0.9) 740 128k
Aver  th shuffled 253 69.2 39k 25.0 69.0 83k
fovuer ‘iglfLOS ¢ alternation 24.4 68.0 40k 24.4 67.3 135k
self-paced 24.6 69.0 36k 242 68 139k

Table 2: Results of the three methods compared on four 2-to-1 setups and an 8-to-1 setup, as well as the number of
updates necessary to obtain the highest scores. We use our stronger regularization hyper-parameters (as in Table 6),
and denote in bold the best score in each metric for each task.

dence interval around the mean of the BLEU score.
We use a rolling ensemble of four checkpoints and
select the best on the development set for the final
translations.

5 Results

In Table 2 we present the scores of models trained
on the four 2-to-1 setups (presented in Section 4.1)
by order of increasing LRL size, as well as an 8-
to-1 setup, which includes all the tasks. For each
MNMT system, we compare three methods: first,
we train a model on multilingual batches, by upsam-
pling all the tasks until they are the same size and
then shuffling them. Second, we apply a cyclical
alternation of monolingual batches for each task,
which results in the model being trained the same
amount of time on all tasks. Third, we apply our
self-paced method described in Section 3. Introduc-
ing more source languages does not improve scores
in either of the three methods, although we observe
a small negative effect on higher-resourced LRLs,
which has been reported previously (Neubig and
Hu, 2018; Aharoni et al., 2019). Self-paced tends
to perform better than alternation on 2-to-1, but is
more severely affected on an 8-to-1 setup. Both
of these methods, which rely on monolingual up-
dates, clearly underperform with respect to shuffled,
which is trained with multilingual batches.
Additionally, in the 2-to-1 case, the difference
between shuffled and self-paced decreases as the
size of the dataset increases, but in the 8-to-1 case,

the difference increases as the dataset size also in-
creases. This indicates that with a small amount
of training tasks, the more available data, the less
important the sampling method is, but with many
training tasks a more careful selection of the bal-
ancing of the data becomes more important for
lower-resourced datasets. Regarding convergence
speed, we measure the amount of updates that each
model requires in order to reach its highest BLEU
scores. We observe that all three methods train
in nearly the same speed on the 2-to-1 case, but
on the 8-to-1 case we observe that training with
monolingual batches, regardless of the balancing
of the tasks, results in a much slower training. This
is likely due to either the model forgetting what it
learned the last time it trained on a given task, or to
the monolingual updates resulting in weights that
are less useful to the other tasks.

6 Conclusion and Future Work

In this study we have presented a self-paced method
to balance tasks in a many-to-one MNMT system
by monitoring the average per-task weight variation
across steps, with the objective of not over-training
on tasks in which the model is competent, and bet-
ter allocating resources to tasks in which the model
is less competent. Our method carries no dedicated
computational overhead. However, we have ob-
served that a multilingual, uniform balancing of all
tasks outperforms our method both on 2-to-1 and
8-to-1 setups.



7 Limitations

A limitation of our method may be that measuring
the weight variation between two consecutive up-
dates might result in too small a value, with too
many oscillations even with the use of smoothing.
Additionally, we have shown that as the amount
of training tasks increases, performing single-task
updates is counter-productive, both in quality and
in speed. In the future, we hope to extend our
method to assemble multilingual batches based on
the per-task weight variation in order to solve this
issue.

8 Ethics Statement

This study does not process personal or sensitive
data. While MT in general may facilitate disclosure
or cross-referencing of personal information, which
may pose threats to minorities, the community ap-
pears to consider that the potential benefits far out-
weigh the risks, judging from the large number of
studies for low-resource and unsupervised MT.
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A Appendices: Design Choices and
Hyper-parameter Setting

Firstly, we study the effect of several metrics to
measure weight variation (Section A.1). Next, we
perform various experiments in order to optimize
our method, involving: the smoothing parameter
w (Section A.2), the importance of the previous
weight variation a (Section A.3), and training dur-
ing the warmup steps only on the HRL, which sim-
ulates a pre-training regime (Section A.4). Exper-
iments in Sections A.2 to A.4 are performed in a
2-to-1 setup (GL-PT-to-EN) using default hyper-
parameters.

A.1 Weight Variation Metric

In order to measure the weight variation of a model
between steps, firstly we train a model on a unidi-
rectional low-resource NMT task (60k lines) and
compare measuring the average of all weight ma-
trices versus the last output layer, and using KL
divergence as our metric, inverse cosine similarity,
or L2 norm. We show in Figure 1 these six com-
binations, computing the variations every 10 steps
and performing a rolling average with a window
size of 100. We can observe in all of them the ef-
fect of the learning rate schedule (warmup steps
and decay). Additionally, we also note a more reg-
ular pattern when measuring the change across all
matrices versus the last layer. We decide on using
KL divergence as our measure due to it striking
a balance between the irregularity of the inverse
cosine similarity and the L2 norm.

A.2 Setting of the Smoothing Weight

In Figure 2 we show the average weight variation
between all weight matrices when experimenting
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Figure 1: Comparison between three different metrics for model weight variation: L2 norm, inverse cosine similarity,
and KL divergence. For each of them we compare monitoring the average over all weight matrices and only the

final output layer.
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Figure 2: Evolution of the bidirectional Kullback-
Leibler divergence for different values of the exponen-
tial smoothing coefficient w in an experiment on GL-
PT—EN with dynamic sampling

# System w Updates BLEU
shuffled - 44k 27.49
alternation - 44k 25.64

I self-paced 0.99 48k 25.76
self-paced  0.995 48k 25.92
self-paced 0.999 40k 26.28

| self-paced  0.9995 28k 25.42

Table 3: BLEU scores on the LRL test set of our method
with several values of the smoothing coefficient, w. We
denote in bold the best result in the comparison methods,
as well as in our method, and we underline our chosen
value for w.

with various values for w, and in Table 3 the re-
sulting scores, which we compare to shuffled and
alternation. We can see that increasing w not only
produces a more regular weight-variation curve, but
also accelerates training without much loss in test
score. Nonetheless, although some of the smooth-
ing values produce better scores than a simple al-
ternation of monolingual batches, none of them
improve over the multilingual shuffled batches. We
select a w = 0.995 for our main experiments as a
balance between translation quality and regularity
of the weight variation curve.

A.3 Importance of Previous Weight Variation

System « Updates BLEU
shuffled - 44k 27.49
alternation - 44k 25.64
self-paced 0.9 48k 11.12
self-paced  0.95 48k 11.91
self-paced 1.0 48k 25.92
self-paced 1.1 40k 25.04
self-paced 1.2 44k 25.37

Table 4: BLEU scores on the LRL test set of our method
with several values of the importance hyper-parameter
o, with w = 0.995. We denote in bold the best result in
the comparison methods, as well as in our method, and
we underline our chosen value for a.

Similarly, we also experiment on the value of «,
a hyper-parameter to weight the importance of the
previous weight variation when comparing steps ¢
and ¢t — 1. In Table 4 we show the results of training
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Figure 3: Amount of task switches and percentage of training on the LRL (task I).

with our selected value of w = 0.995 and various
values for a.. We observe best results without any
additional weighting of the previous variation, and
so select for our main experiments o = 1.

A.4 Training with HRL Warmup Steps

System HRL Updates BLEU
warmup

alternation no 36k 24.92

alternation yes 44k 26.04

self-paced no 48k 25.92

self-paced yes 48k 26.16

Table 5: BLEU scores on the LRL test set of our method
when observing the role of HRL warmup, with o = 1
and w = 0.995. We denote in bold the best result in
the comparison methods, as well as in our method, and
underline our chosen final technique.

Due to the effect that the learning rate warmup
steps has on weight variation during the first 8k
steps of training, we also consider starting training
the two methods involving monolingual batches (al-
ternation and self-paced) exclusively on the HRL,
which simulates a pre-training regime. We show
in Table 5 the effects of HRL warmup between
each of these two methods. We observe alterna-
tion benefits significantly (+1 BLEU points) from
HRL warmup, but our self-paced method much
less noticeably. We do not consider HRL warmup
to produce a positive balance between complexity
and score improvement for our method, so we do
not perform it in our main experiments.

A.5 Amount of Task Switches and Balancing

Finally, in Figure 3 we show the amount of task
switches in training, aggregated by 100 steps,
where fask I is the LRL. We can see that on this
2-to-1 case, after initial learning rate warmup steps,
our method settles on a third of the training consist-
ing of the LRL and two thirds on the HRL.

A.6 Hyper-Parameter Search

We search for the appropriate level of regularization
to apply to our approach, by considering 2-to-1
MNMT systems, and compare the same methods as
in Section 5. For each of the methods we compare
a model trained with default hyper-parameters and
more regularized ones (Atrio and Popescu-Belis,
2022).

System BLEU COMET Updates
shuffled 22.1 64.7 36.0k
+ regularization 25.3 69.2 38.5k
alternation 20.9 63.2 35.0k
+ regularization 24.4 68.0 39.5k
self-paced 21.2 63.8 49.0k
+ regularization 24.6 68.5 36.0k

Table 6: Average BLEU scores on the test sets of the four
LRLs on 2-to-1 setups for the three sampling strategies,
with standard and increased regularization (best scores
in bold).

The average BLEU scores over the four LRL
tests sets of each model are shown in Table 6. Train-
ing with more regularization improves all three
methods by 3 to 3.5 BLEU points. Additionally, the
more regularized models improve over the scores



of previous studies on the same data (Neubig and
Hu, 2018; Aharoni et al., 2019; Wang et al., 2020).
On this 2-to-1 setup we obtain better results when
training with multilingual shuffled batches, and a
small improvement of self-paced versus an alter-
nation of monolingual batches. All regularized
models methods reach their highest BLEU score at
a very similar number of updates, although when
training with more aggressive regularization, we
observe a noticeable improvement in speed in the
self-paced method.



