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ABSTRACT

Recent methods using diffusion models have made significant progress in Hu-
man Image Generation (HIG) with various control signals such as pose priors. In
HIG, both accurate human poses and coherent visual quality are crucial for im-
age generation. However, most existing methods mainly focus on pose accuracy
while neglecting overall image quality, often improving pose alignment at the cost
of image quality. To address this, we propose Knowledge-Based Global Guid-
ance and Dynamic pose Masking for human image Generation (KB-DMGen).
The Knowledge Base (KB), implemented as a visual codebook, provides coarse,
global guidance based on input text-related visual features, improving pose ac-
curacy while maintaining image quality, while the Dynamic pose Masking (DM)
offers fine-grained local control to enhance precise pose accuracy. By injecting
KB and DM at different stages of the diffusion process, our framework enhances
pose accuracy through both global and local control without compromising im-
age quality. Experiments demonstrate the effectiveness of KB-DMGen, achieving
new state-of-the-art results in terms of AP and CAP on the HumanArt dataset. The
project page and code will be available.

1 INTRODUCTION

The goal of human image generation (HIG) is to generate high-quality images under certain con-
ditions based on a series of prompts (e.g., pose (Iuef-all, Z023H)). HIG serves a wide range of
real-world applications, including animation (Corona_ef all, P075), game production (Pan_efal],
20074), and other fields.

Previous methods (Men“ef all, P020; Maef all, D0T'; [lang et all, Z020) require a source image dur-
ing training using variational autoencoders (VAEs) (Kingma et all, PZ0T3) or Generative Adversarial
Networks (GANs) (Goodfellow ef all, P070) for dictating the style of the generated images. These
methods synthesize target images with specific human features by adjusting the source images, but
the training process of these methods is unstable and highly dependent on the distribution of the
source images. Recent advances in controllable text-to-image (T2I) Stable Diffusion (SD) (Rom-
bach ef all, 2027) show potential to eliminate the need for source images, enabling greater creative
freedom through reliance on text prompts and external conditions (Zhang_ et all, 20273; [Zhao et all,
P073; Mon_ef all, P074; Ci"ef-all, P073). These methods often face challenges in accurately match-
ing conditional images with sparse representations such as skeleton pose data (In-efall, Z023H). To
achieve accurate pose control, various pose guided T2I methods are proposed, such as introducing
pose heatmap supervision loss (Iiref-all, P073R), establishing a graph topological structure between
the pose priors and latent representation of diffusion models (Yin'ef-all, 2075), applying pose masks
to the attention module of the ViT (Wang et all, 2074). These strategies effectively guide the network
to focus on pose regions, thereby improving pose fidelity.

While precise pose alignment is essential, high-quality human image generation also demands the
guidence of global visual semantics to ensure overall image quality. However, these methods (IYin
ef_all, DO7Y; Mu—ef-all, P0230; Wang et all, 2024) emphasize the modeling of pose details while
neglecting overall image quality. To address this issue, we propose Knowledge Based Global Guid-
ance and Dynamic pose Masking for HIG (KB-DMGen) in Fig. [l. KB-DMGen introduces a visual
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Figure 1: Overview of our method. The visual Knowledge Base (KB) provides global guidance by
encoding visual features related to the text description, while the Dynamic pose Mask (DM) enables
fine-grained local control. They achieve unified control of both global semantics and local details.
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Figure 2: The framework of KB-DMGen. The text encoding is used to retrieve semantic codebook
features from a visual Knowledge Base (KB), providing global semantic guidance; meanwhile, pose
information generates temporally dynamic masks through the diffusion process, enabling precise
control over human pose.
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Figure 3: (a) The codebook training. V' is the image feature after mapping. ¢(-) denotes the nearest-
neighbor mapping of V' in the codebook embedding space, where y is the nearest neighbor index and
V, is the image feature quantized by the codebook. (b) The process of classifier training. The text
encoder is consistent with 7 in Fig. 0. ¢ denotes the codebook entry assignment of visual tokens
predicted from text features, supervised by y obtained in (a).

Knowledge Base (KB) to provide global visual semantics related to the input text during image
generation, improving pose accuracy while maintaining image quality. Meanwhile, the Dynamic
pose Masking (DM) mechanism adaptively adjusts the weights of pose-related regions, enabling
the model to better balance local pose precision. By injecting them into the diffusion process, our
framework leverages global (KB) and local (DM) control to improve HIG quality. In summary, the
contributions of this paper are as follows:

* Designing a visual KB to improve pose generation accuracy while preserving image quality.
* Designing DM to control the precise generation of poses.

* Injecting KB and DM into different stages of the SD to enhance pose accuracy via global
and local control without compromising image quality.
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2 RELATED WORK

Pose-Guided Human Iage Generation. Previous pose-guided approaches take a source image
and pose as input to generate photo-realistic human images with preserved appearance, relying
on GANSs/VAEs for conditional generation (Men“ef-all, P020; [Tang et all, PO20; Ma“ef-all, DOT7;
2077; [Yang et all, 2O02T). Recently, Bhunia_ef all (2073) introduce texture diffusion modules and
disentangled classifier-free guidance to accurately model appearance-pose relationships and ensure
input-output consistency. Zhang et al] (2022) propose a novel Dual-task Pose Transformer Network
(DPTN), which introduces an auxiliary task (i.e., source to source task) and exploits the dual-task
correlation to promote the performance of PGPIG. Shenefall (Z023) presented a Progressive Con-
ditional Diffusion Model (PCDM), which narrows the gap between character images under target
poses and source poses step by step via a three-stage procedure. The above methods (Bhunia ef-all,
2023; [Zhang et al], P022; Shen_ef all, P073) remain highly dependent on the distribution of source
images, operating under the paradigm of pose transfer that necessitates original image inputs. Recent
work based on pose guided T2I dispenses with the need for source images entirely: HumanSD ([l
et all, P073H) enhances the pose accuracy of HIG via heatmap-guided losses and Stable-Pose (Wang
ef-all, 2024 employs coarse-to-fine masking for precise HIG. GRPose ([Yinef-all, P075) establish
a graph topological structure between the pose priors and latent representation of diffusion models
to capture the intrinsic associations between different pose parts. However, these methods prioritize
pose fidelity and lack global image quality assurance, prompting us to introduce a visual KB, which
enhances the pose accuracy of HIG and ensures image quality via global guidance and a DM to
guarantee pose precision via local control.

Controllable Diffusion Models. Large-scale T2I diffusion models (Rombach efall, 2077; Ramesh
ef-all, 021; P022) excel in generating diverse high-quality images but lack precision with text-only
prompts. Recent works have improved controllability mainly through two approaches: training full
T2I models (e.g., Composer (Huang_ et all, 2073) decomposes and composes diffusion models for
multi-control, HumanSD (Iu“ef-all, Z023R) fine-tunes Stable Diffusion with pose-specific losses)
or developing plug-in adapters for pre-trained models (e.g., T2I-Adapter (Mou_ef_all, P074) and
GLIGEN (Cief-all, 20773) integrate lightweight adapters into frozen SD, ControlNet (Zhang et all,
2023) encodes conditions via trainable encoder copies, Uni-ControlNet (Zhaoef all, 2073) enables
multi-scale conditional injection, and ControlNet++ (Li“ef-all, 2074 optimizes cycle consistency).
Our approach aligns with the adapter-based paradigm, freezing the pre-trained SD model.

Relation to VQ-VAE. The core idea of Vector Quantised-Variational AutoEncoder (VQ-VAE) (Van
Den Oord efall, DOT7) is to learn discrete latent representations by mapping continuous features
into a codebook of quantized vectors. This foundational framework has been used in various tasks.
For example, PCTPose (Geng et all, 2023) employs a discrete codebook to model 2D human joint
relations, while VQ-VAE-2 (Razaviefall, POTY) extends VQ-VAE for large-scale image generation.
Both methods adopt EMA updates to alleviate codebook collapse, but such updates require addi-
tional hyperparameters (e.g., decay rates) and converge slowly. Moreover, the pixel-wise sampling
in VQ-VAE-2 is time-consuming. In addition, Zero-shot T2I (Ramesh ef-all, P021)) explores VQ-
VAE-based frameworks for text-to-image generation, and Text2Human (Jiang et all, P077) uses a
VQ-VAE-style codebook to model local clothing attributes in HIG. In contrast, during the separate
KB training stage, we first discretize image features into a visual semantic codebook with an entropy
loss to prevent collapse, then train a classifier to retrieve visual tokens from the codebook based on
text prompts, providing efficient semantic guidance for image generation.

3 METHOD

3.1 OVERVIEW OF KB-DMGEN

Our goal is to generate high-quality human images conditioned on pose priors. To this end, we
propose KB-DMGen, a Stable Diffusion based framework equipped with two adapters: a KB
Adapter and a DM Adapter in Fig. . Specifically, SD provides the backbone, where an input
image * € R¥>*W>3 i5 encoded into latent zg = F(x), perturbed into z; by Gaussian noise, and
denoised across 1" steps. At each step, a U-Net conditioned on text p, pose priors ¢, KB, and DM
predicts the noise to reconstruct .
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3.2 KNOWLEDGE BASE

The KB is composed of diverse codebook entries, each encoding distinct visual feature priors. The
training of KB consists of two stages: first, aligning image features to the codebook vectors, and
second, training a classifier to predict codebook assignments.

Stage 1: Codebook training. The goal of codebook training is to learn a discrete representa-
tion of image features that can be queried by text. As shown in Fig. B4, similar to VQ-VAE (Van
Den Oord_ef all, P0T7), we freeze the CLIP encoder and add a projection layer to process the en-
coded features, facilitating stable training of the codebook. The codebook consists of trainable
entries Z = (ey, ea,...,¢ex), where Z € RE *C with K denoting the number of codebook entries
and C' the feature dimension.

Given an image, we encode it to obtain dense image features V' = (vy,v9, - ,0n) € RNVXC,
where N = H x W is the number of spatial tokens and C is the feature dimension. Each token v;,
i €{1,2,---,N},is quantized via a nearest-neighbor lookup in the codebook embedding space, as

defined by the following equation:

1 if k = argmin; ||v; — e/
i =k|V) = ) S a2 1
atv V) {0 otherwise, M
where j € {1,2,---, K} and g(v; = k|V') denotes a one-hot indicator. We use ¢(v;) to represent
the index to the corresponding codebook entry. We denote the set of codebook indices for image
token as y = (g(v1),q(v2),--- ,q(vn)), which not only allows us to select the quantized image
features Vy; = (ey,, €45, s €yy) € RV*C, but also serves as the target labels for subsequent

classifier training. Finally, the VQ-VAE loss consists of a reconstruction term and a commitment
term, formulated as: ) )

Lvq = [IsglVal = VI" + B1IVy —sglVII™, 2)
where sg denotes stop-gradient and 8 = 0.25.
After the basic VQ-VAE objective, we encourage balanced codebook usage. Without regularization,
training often collapses to a few entries. To mitigate this, we add an entropy loss that promotes di-
verse token assignments. Formally, recall that the quantization process yields the index set of image
tokens y = (q(v1), q(va),--- ,q(vN)), where each g(v;) corresponds to the selected codebook en-

try. To measure the usage distribution of the codebook, we define the empirical frequency of token
assignments as:

N
1
pr = N;Hq(w) =k, peRK, 3)

where K denotes the number of codebook entries and py, is the average usage probability of the k-th
entry. Based on this distribution, we compute the Shannon entropy:

K

H(p) = —>_ prlog(pk +¢), )

k=1

where € is a small constant for numerical stability. The entropy is then normalized by the maximum
entropy log K, yielding a value in [0, 1]:

_ Hp)
log K
Finally, the entropy regularization loss is defined as:

Eentropy =1—Hnom (p)» (6)

which penalizes skewed token usage and encourages uniform allocation across all codebook entries.
The overall codebook training objective becomes:

L= »CVQ + Eentropy~ (7)

Hnorm (p )

&)

Stage 2: Classifier training. In this stage, the classifier is trained to use text features to predict
quantized image features from learned Z. As shown in Fig. BH, Given an input text, we extract a
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Table 1: Comparison with state-of-the-art methods on the Human-Art dataset.

Dataset  Method Pose Accuracy Image Quality T2I Alignment
AP(%)1T CAP(%)1T PCE| FID| KID/| CLIP(%) 1
SD#* 0.24 55.71 230 11.53 3.36 33.33
T2I-Adapter 27.22 65.65 1.75 1192 273 33.27
ControlNet 39.52 69.19 1.54 11.01 223 32.65
Human- Uni-ControlNet  41.94 69.32 148 14.63 230 32.51
Art GLIGEN 18.24 69.15 1.46 - - 32.52
HumanSD 44.57 69.68 1.37 10.03 2.70 32.24
GRPose 49.50 70.84 143 13776  2.53 32.31
Stable-Pose 48.88 70.83 1.50 11.12 235 32.60
KB-DMGen 53.47 72.33 1.56 1054 254 32.43
Table 2: Ablation study of KB, DM, and their joint effects on Human-Art dataset.
Components AP (%)t CAP (%)t PCE] FID| KID] CLIP(%)t
Stable-Pose (Base) 48.88 70.83 1.50 11.12  2.35 32.60
+KB 50.73 71.04 1.58 11.28 2.52 32.47
+DM 49.16 70.63 1.53 11.41 2.35 32.44
+KB+DM 51.40 71.17 1.54 10.56  2.54 32.41
+KB w/o 4+DM w/o Sig.  53.47 72.33 1.56 10.54 254 3243

embedding feature F' using a freezed pretrained text encoder (e.g., CLIP). Next is the setting of the
classifier. The dimension of the result after F' is flattened and projected is changed:

X = Linear(flatten(F")). (8)

where X € RV*V_ N matches the number of image tokens, hence the same symbol and V' is
feature dimension. subsequently, like the operation of PCTPose, four MLP-Mixer ([[olsfikhin et all,
P07T) blocks is used to process the features X, and output the logits of token classification:

§=M(X), ©)

where ¢ has the shape of RV*X and K is the number of codebook entries. The supervision y is

obtained from a pretrained and frozen stage 1, which takes the input image corresponding to the
current text inputs. We optimize ¢ against y using cross-entropy loss:

Las = CE(y, 9). (10)

This learning process enables text features to predict the corresponding visual codebook entries,
allowing text-based retrieval of visual tokens.

KB Embedding Diffusion Model. In this stage, the pretrained KB is integrated into a diffusion
model to guide the image generation process. Fig. D illustrates that the text p is encoded by text
encoder 7y to query the KB and generate visual semantic priors z;, which corresponds exactly to
the stage-2 inference process (Fig.BH), where the feature V, is equivalent to z;/. To achieve the
integration of z;/ and U-Net, we employ a FiLM-style (Perez ef all, 0T¥) modulation block. Con-
cretely, the feature z;/ retrieved from the codebook Z is passed through an Multi-Layer Perceptron
(MLP) (CeCnnef all, DOTS) to generate the affine parameters (Yep, Bep). Meanwhile, the diffusion
time step ¢ embedding 7; € R®"* is projected to generate (7;, 3;), which serves as a global mod-
ulation to further ensure overall image quality. The final modulation parameters are obtained by
combining both sources:

Y= O B=PBuwb0OPb, (an
where © means element-wise multiplication. The z!/ in Fig. D can be obtained and injected U-Net:

1"

z =20 (1+9)+8, (12)
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where (v, 3) = MLP(z, , ;) are adapted by both visual priors z, and time step ¢. Therefore, the
KB-conditioned image generation k¢ can be formulated as:

K@(Ztazat)zzt®(1+’y)+ﬁ7 (13)
where Z denotes the codebook set in KB.

3.3 DYNAMIC MASKING

Our method builds upon the coarse-to-fine Pose-Masked Self-Attention (PMSA) of Stable-
Pose (Wang_ et all, 2074), which applies Gaussian-dilated pose masks to gradually refine latent
representations. The difference is that we combine Dynamic Mask and PMSA (DM-PMSA).

DM-PMSA. A binary pose mask my, is obtained from the skeleton image, downsampled to match
the latent feature z; € R®*"*% (see Fig. D), and dilated by Gaussian kernels of decreasing sizes
{k1 > -+ > ky}—we directly adopt the optimal Gaussian kernel configuration {23,13} with
standard deviation 0 = 3 from Stable-Pose—to produce my,, ..., mk,. The latent feature z; is
then processed by a sequence of N = 2 ViT blocks, each associated with one of the Gaussian-
dilated masks in a coarse-to-fine manner. Within each block, the all patch embeddings of z; are
projected into querie @, key K, and value V, and standard attention logits (Vaswani ef all, DOT7) are
computed as:
QK"
\/g )
where d is the projected channel. Then, Attention is restricted to pose-relevant regions and dynami-
cally modulated:

dots =

(14)

Ay, = softmax {(1 + dmy,)(dots + AttnMask(my))}V, (15)

where 0 = Sigmoid{MLP(¢)} is a timestep-dependent modulation factor applied only to pose re-
gions via dmy, and AttnMask(my,) € Rl wherel = h x wisa pose-aware attention mask: entries
corresponding to pose-related patches (my = 1) are set to 0, while all other entries are assigned
—o0, suppressing attention outside pose regions. This coarse-to-fine progression of N blocks grad-
ually steers the latent representation to align with the target pose, while the dynamic modulation
provides additional flexibility in controlling pose influence across timesteps.

We define Fg " as the DM-PMSA process, and the conditioning function v (z;, ¢, ) as the com-
bination of the DM-PMSA and the pose encoder:

Vo (21,9 t) = Fo*" (21,0, 1) + Bo (), (16)
2 = 2 + vg(z1, o, 1) (17)

where ¢ € R"*%*3 is the input pose skeleton in Fig. D. In this way, vy captures both the spa-

tial dependencies between body parts (via Fg ') and global pose features (via (35), with adaptive
modulation across diffusion timesteps. Following Stable-Pose, (g is a trainable encoder.

As shown in Fig. [, in our framework, DM is injected in the first layer (L;,; = 1) for fine-grained
local pose control, while KB is injected in intermediate and later layers (L;,; = 4,7, 10) to provide
global visual guidance.

3.4 Loss oF KB-DMGEN

As shown in Fig. D, the denoising network €y adopts a UNet backbone. Let ey(z,t,p), t €

{1,---, T}, represent a T-step denoising UNet with gradients V6 over a batch and input text prompt
p. The denoising model predicts the noise as:
6pred - 60(Zt, tv T@(p)a V@(Zt7 @, t)) KZQ(Zt, Z? t))a (18)

where 7y is the text encoder, vy (zt, ¢, t) is DM conditioning function in Sec. B3 and kg (z¢, Z) is
the KB-guided conditioning function in Sec. B2

The reconstruction error outside the pose regions is computed as:

»Cum - E — Cpre 1— 2 , 19
2,p,,6,Z~N(0,1),t (e = €prea) © (1 =y )12 (19)
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acrobatics, a woman doing a handstand on a white background
] -

(a) pose (b) Stable-Pose (c) KB-DMGen (c) KB-DMGe

(a) pose (b) Stable-Pose

Figure 4: Comparison of visualization between Stable-Pose (Wang et all, P(074)) and KB-DMGen on
the Human-Art dataset.

Table 3: The KB and DM ablation experiments on the Human-Art dataset.

Components AP (%)t | CAP (%)T | FIDJ
Base 48.88 70.83 11.12
+KB 50.73 71.04 11.28
+KB(W/0 Lentropy) 50.61 71.16 11.33
+KB(W/0 vep & Bep) 48.34 70.57 11.70
+KB(w/0 ;& 3;) 51.12 71.70 11.85
+DM 49.16 70.63 11.41
+DM(w/o sigmoid) 49.36 71.43 12.45

where my,,, be the finest-level pose mask and e denote the Gaussian noise added to the latent encod-
ing z; at timestep ¢. This term ensures that the model maintains consistency in the background and
non-pose regions. For pose-relevant areas, the error is measured by:

ﬁm = E [ . ‘e 2 ) 20
z,p,p,6,Z2~N(0,1),t ”(6 €p d) @mkN”Q ( )

This loss explicitly enforces accurate reconstruction within the pose-constrained regions. Finally,
the overall training objective is a weighted sum:

L=Lm+aln, (21)

where o« = 5 is a hyperparameter emphasizing the masked (pose) regions, following the optimal
design of Stable-Pose.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets We evaluated our model on the Human-Art (In“ef-all, 2023d). The Human-Art dataset
comprises 50,000 high-quality images from 5 real-world and 15 virtual scenarios, featuring human
bounding boxes, key points and textual descriptions.

Implementation Details Similar to previous work (Wang et all, 2024), we fine-tune our model on
SD with version 1.5. We utilize Adam (Kingma & Ba, P0014) optimizer with a learning rate of
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Table 4: Number of parameters of FILM across different inject layers L;,,; in KB-DMGen.

Linj {4v {7} {10} all{4,7,10}
Params (M) | 10.8 28.2 28.2 67.3

1 x 10%. We also follow (Zhang et all, 2073) to randomly replace text prompts as empty strings at
a probability of 0.5, which aims to strengthen the control of the pose input. During inference, no
text prompts are removed and a DDIM sampler (Song_ et all, Z020) with 50 time steps is utilized
to generate images. We train our models with 10 epochs on all datasets. The number of codebook
entried K is set 1024. The batch size of inference is same as Stable-Pose (Wang et all, 2074). For
the Human-Art dataset, the training is executed using five NVIDIA A6000 GPUs with 1 batch size.

For the training of KB, we fine-tune on the OpenCLIP (Cherfief all, 2073) implementation us-
ing the pretrained CLIP model (ViT-L/14) with frozen encoders. Training is performed in two
stage—codebook training and classifier training—both using the same strategy over 30 epochs with
Adam (Kingma & Bad, 2(014) (initial learning rate 0.001), a cosine decay schedule and 256 batch size
on per GPU. The training and validation splits as same as Human-Art. On the Human-Art dataset,
two-stage training takes about 2.5 hours with two NVIDIA 3090 GPUs.

Metrics. To evaluate pose accuracy, we use mean Average Precision (AP), Pose Cosine Similarity-
based AP (CAP), and People Counting Error (PCE) (Cheong_et all, P0027), computed using High-
erHRNet (Cheng et all, 207(]) to compare ground-truth poses with those extracted from generated
images. For image quality assessment, we employ Fréchet Inception Distance (FID) (Hensel'ef all,
7017) and Kernel Inception Distance (KID) (Binkowski ef all, Z0T&) to measure diversity and fi-
delity. KID is multiplied by 100 for Human-Art.Text-image alignment is evaluated using the CLIP’s
score (Radford ef all, PO2T).

4.2 COMPARISON WITH SOTA METHODS

Our method with other state-of-the-art (SOTA) approaches are shown in Table [I.

On the Human-Art dataset, our final model achieves the highest AP and CAP, reaching 53.47 and
72.33 respectively, which surpasses GRPose (Yin_ef-all, 2075) by +3.97 AP and +1.49 CAP. Com-
pared with the baseline Stable-Pose (Wang et all, 2024), the improvement is even more substantial
(+4.59 AP and +1.50 CAP). Meanwhile, our method maintains competitive global image quality,
with FID and KID comparable to other strong methods. This demonstrates that our design not only
significantly improves pose accuracy but also preserves overall image quality. Qualitative results in
Fig. B further confirm that our method produces visually more faithful images with superior pose
accuracy and semantic consistency. What’s more, more visualization results including comparison
of results of each module will be presented in detail in Appendix (A75)

4.3 ABLATION STUDIES

Our method builds on Stable-Pose as the baseline, with ablations on the Human-Art dataset.

Overall Effects of KB and DM. We first evaluate the effectiveness of the proposed KB and DM
modules, as well as their joint impact on performance. As shown in Table @, adding KB improves
both AP and CAP ensuring image quality. It outperforms the recent SOTA method GRPose (Yin
efall, 2079) with a 1.23 AP and 0.2 CAP improvement, while achieving better image quality with
a 2.48 drop in FID and a slight 0.01 decrease in KID. DM alone mainly enhances AP slightly.
Importantly, their combination consistently improves on AP, CAP, FID, while other indicators have
only slightly worsened, demonstrating the complementarity between KB and DM. Surprisingly,
when removing the temporal scaling factor v.&3; from KB in Eq. [ and the sigmoid gating from
DM in Eq. 3, compared with KB+DM, this method achieves the best AP and CAP with only a slight
increase in PCE, demonstrating the better complementary role of KB (w/o ;& ;) global guidance
and DM (w/o Sig.) local refinement, as further confirmed by the visualizations in Appendix (B=).
A detailed discussion on decomposing text and extracting corresponding visual features from the
KB is provided in Appendix (A).
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Effect of KB. To further investigate the KB design, we conduct several ablations as reported in
Table B. Removing the entropy regularization Leygopy degrades performance in AP and FID. Elim-
inating the affine modulation parameters (7., Se,) causes a significant drop in AP and CAP, high-
lighting KB necessity for HIG. Interestingly, removing the timestep-dependent modulation (~y:, 5;)
yields the highest CAP and AP, but comes at the cost of worse generative fidelity (FID). We omit
KID for brevity, as its variance across settings is negligible. The impact of codebook size K on the
index results will be discussed in the appendix (B3).

Effect of DM. Table B also summarizes the ablations on the DM module. While DM improves AP
compared to the baseline, removing the sigmoid gating (6 = Sigmoid{ MLP(¢)}) in Eq. 3—where
the MLP has only 0.6M parameters—further increases AP and CAP but causes severe degradation
of FID by about 1. This indicates that the Sigmoid gate is crucial for stabilizing the modulation
strength and preserving global quality, even though it slightly limits precision gains.

Joint Effects of ;& 3; and Sigmoid. The joint analysis in Table D shows that the combination of KB
without ;& 3; and DM without sigmoid achieves the best AP (53.47) and CAP (72.33). When used
individually, each component requires additional constraints to stabilize training, whereas their joint
application is complementary, with KB providing global control and DM providing local refinement,
achieving the best balance between pose accuracy and image quality.

4.4 PARAMETERS ANALYSIS

Table B lists the trainable parameters of the FILM modules (see Fig. ) for different injected layers
Lin; in KB-DMGen. Overall, KB-DMGen has 106M more trainable parameters than Stable-Pose
and 58M more than GRPose, most of which come from the FILM modules, with a small portion
from other mapping layers. Detailed KB parameter statistics at different training stages are reported
in Appendix B2

5 CONCLUSION

We propose an image generation method combining a visual KB with DM, validated by experiments
to generate high-quality images. Future work includes expanding the knowledge base and further
optimizing dynamic masking.
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A APPENDIX

A.1 D&C ANALYSIS

As shown in Table B, applying component-wise KB querying (+KB+DM+D&C) achieves the best
overall performance compared with KB+DM. Specifically, D&C leverages the simple and regular
structure of HumanArt descriptions to decompose each text into three parts—type, object, and status
(e.g., "cartoon, an animal character with a sword in the woods" -> type = "cartoon"; object = "an
animal character"; status = "with a sword in the woods".). Each component independently queries
the KB, and the results are combined into the diffusion model, which enhances semantic parsing
by capturing fine-grained correspondences between visual features in KB and textual components.
Fig. [ further shows that using D&C can improve the quality of generated images and pose accu-
racy. Decomposing the text into multiple queries yields several results concatenated along channels,
leading to about 18M more trainable parameters in KB+DM+D&C than in KB+DM.

Table 5: Ablation study of KB, DM, and their joint effects on Human-Art dataset.

Components AP (%)1 CAP (%)t PCE] FID| KIDJ CLIP(%)1
Stable-Pose (Base) 48.88 70.83 1.50 11.12 2.35 32.60
+KB+DM 51.40 71.17 1.54 10.56 2.54 32.41
+KB+DM+D&C 51.71 71.40 1.53 10.29 2.45 32.45

Table 6: Number of trainable parameters across different stages and the number of codebook entries
K in KB.

Trainable Parameters (M)

Stage 555K =512 K =102 K = 2048
T 9.70 9.96 10.49 1154
2 78.33 78.35 78.38 78.45

Table 7: The number of codebook entries K Ablation experiments on Human-Art dataset

K | AP (%)t | CAP (%)T | PCE} | FID] | KID] | CLIP-score(%)}
256 50.09 71.06 156 | 11.34 | 2.47 32.48
512 50.35 70.85 1.56 | 11.11 | 2.44 32.45
1024 | 50.73 71.04 1.58 | 11.28 | 2.52 32.47
2048 | 50.40 71.08 1.52 | 11.49 | 2.53 32.47

A.2 TRAINABLE PARAMETERS OF THE KB

Table B reports the number of trainable parameters when training the KB alone, across its two stages
and for different codebook sizes K. Increasing K slightly increases the parameters in Stage 1, while
Stage 2 remains largely unaffected.

A.3 EFFECT OF CODEBOOK SIZE IN KB

Codebook Size. We analyze the impact of different codebook sizes K in Table @ using KB model
alone. We observe that the performance first improves as K increases, peaking at K = 1024,
and then slightly decreases with larger codebooks. This indicates that too small a codebook limits
the representational capacity, while an excessively large one introduces redundancy and instability.
Thus, K = 1024 provides the best trade-off between efficiency and expressiveness.

A.4  VISUALIZATION OF INJECTION BEHAVIORS
Visualization of Codebook Injection. In Fig. B, we compare the effects of KB and DM on the

FiLM parameters v and (3 at different injection layers. KB alone provides strong global trends
but shows large fluctuations during sampling. Introducing DM smooths the variations of + and 3,
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Figure 5: Visualization of the modulation parameters « and /3 in Eq. [ across the reverse sampling
steps (t = 50 — 1) at different injection layers (Liyj = {4,7,10}).
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Figure 6: Visualization of the DM modulation parameter § in Eq.3 along the reverse sampling steps
(50 — 1).

enabling fine-grained local refinement. Different layers exhibit distinct roles: shallow and middle
layers use larger modulation to guide coarse structure generation, while deeper layers apply smaller,
more stable adjustments to refine details.

Visualization of Dynamic Mask. As shown in Fig. B, the curve of DM w/o Sig. gradually transi-
tions from positive to negative during the sampling process, indicating a reversal in the modulation
direction of ¢ in Eq. [3. This leads to unstable attention on the pose regions and results in uneven
modulation. DM effectively enhances and stabilizes the magnitude of  in DM and KB+DM. What’s
more, guided by the knowledge base, KB (w/o v:&/5;)+DM (w/o Sig.) effectively enhances ¢’s mag-
nitude, significantly improving generation accuracy while ensuring overall quality and enabling the
dynamic mask to stay focused on key regions even without sigmoid.

A.5 EFFECT ON GENERATED RESULTS

Complementary analysis. We further evaluate the effects of different injection strategies on the
generated images (Fig. B). In this figure, KB (w/o ;& 8;)+DM (w/o Sig.) combination demon-
strates a clear synergistic effect, producing more accurate poses and higher-quality images than
either component individually.

Single component analysis. The comparison of KB and KB (w/o v.&3;) visualization results are
shown in Fig. B, which clearly shows that KB has an advantage in terms of generation quality. The
comparison of DM and DM (w/o Sig.) visualization results results are shown in Fig. [, which
clearly shows that DM has an advantage in terms of generation quality.

The impact of different KB and DM combinations. We compare the visualization results of the
KB+DM combination and the KB(w/o ;& 3;)+DM(w/o Sig.) combination. As shown in Fig. [,
the result surface has advantages in both the accuracy and quality of the generated image pose.
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acrobatics, a woman doing a handstand on a wooden floor

}‘f , i ‘
(a) pose (b) Stable-Pose (c) KB+DM (d) KB+DM+D&C

Figure 7: Comparison of visualization results of KB+DM and KB+DM+D&C on the Human-Art
dataset.

Final result visualizations of KB-DMGen. Fig. [2, [3 and [4 show more visualization results of
KB-DMGen.
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garage kits, a figurine of a girl with long hair and a sword

(a) pose (b) Stable-Pose (c)KB | (d) DM (¢) KB-DMGen

(W/o y:&Bt) (w/o Sig.) (KB w/o y;&f,+ DM w/o Sig.)

Figure 8: Visual comparison on the Human-Art dataset. The KB (w/o v.&5;)+DM (w/o Sig.)
combination exhibits a synergistic effect, enhancing both pose accuracy and image quality beyond
individual contributions. Sig. means Sigmoid.

acrobatics, a male gymnast performing on the floor during the olympics

\
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(a) pose (b) Stable-Pose (c)KB (d) K
(wio y:&pe) (W0 v.&60)

(a) pose (b) Stable-Pose (c)KB (d) KB

Figure 9: Visual comparison between KB (w/o v:&/3;) and KB. The results show that the image
quality is better when KB is used alone.
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cosplay, a woman in a green dress sitting on a bench digital art, a man sitting on a benh chair with a drink

acrobatics, a man doing a handstand in a dance studio

N [

(a) pose (b) Stable-Pose  (c) DM (d) DM (a) pose (b)Stable Pose  (c) DM (d) DM
o Sig)

(who Sig)

Figure 10: Visual comparison between DM (w/o Sig.) and DM on the Human-Art dataset. The
results show that the image quality is better when DM is used alone.

acrobatics, a man is playing volleyball on the beach

(a) pose (b) Stable-Pose  (c) KB+DM  (d) KB-DMGen

(KB w/o y,.&B,+ DM w/o Sig.)

Figure 11: Visual comparison between KB+DM and KB-DMGen on the Human-Art dataset. The
results show that the image quality is better.
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acrobatics, a woman doing aerial yoga in a room acrobatics, a man and a woman doing a trick on a balance beam

|

acrobatics, a man in white tank top and black pants is jumping
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Figure 12: KB-DMGen visualization results on the Human-Art dataset.

cartoon, a man holding a sword in front of a wooden door digital art, a woman with red hair and a gun in her hand
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Figure 13: KB-DMGen visualization results on the Human-Art dataset.
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drama, a woman sitting on a chair with her hand up drama, a woman in a dress sitting on a couch reading a book

digital art, a man in a tuxedo

| e

(c) KB-DMGen
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2 ] T
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Figure 14: KB-DMGen visualization results on the Human-Art dataset.
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