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Abstract001

With the state-of-the-art IceNet model, deep learn-002

ing has contributed to an important aspect of climate003

research by leveraging a range of climate inputs to004

provide accurate forecasts of Arctic sea ice concentra-005

tion (SIC). The deep learning subfield of eXplainable006

AI (XAI) has gained enormous attention in order007

to gauge feature importance of neural networks, for008

instance by leveraging network gradients. In recent009

work, an XAI study of the IceNet was conducted,010

using gradient saliency maps to interrogate its fea-011

ture importance. A majority of XAI studies provide012

information about feature importance as revealed013

by the XAI method, but rarely provide thorough014

analysis of effects from reducing the number of in-015

put variables. In this paper, we train versions of the016

IceNet with drastically reduced numbers of input017

features according to results of XAI and investigate018

the effects on the sea ice predictions, on average and019

with respect to specific events. Our results provide020

evidence that the model generally performs better021

when less features are used, but in case of anomalous022

events, a larger number of features is beneficial. We023

believe our thorough study of the IceNet in terms024

of feature importance revealed by XAI may give025

inspiration for other deep learning-based problem026

scenarios and application domains.027

1 Introduction028

Arctic sea ice plays a pivotal role in our earth’s cli-029

mate system [1]. In recent years, drastic shrinkage030

of the sea ice extent has been observed due to an-031

thropogenic climate change [2]. This development is032

particularly worrying as a reduction in sea ice again033

accelerates global warming [3]. Accurate forecasts034

of seasonal sea ice help our general understanding035

of the earth’s climate but can also be put to use036

directly, e.g. to estimate possible shipping routes037

that depend on the extent of sea ice.038

Recently, Andersson et al. introduced the deep039

learning model IceNet that forecasts average sea040

ice concentration (SIC) with high accuracy for lead041

times up to 6 months [4]. Long lead times are par-042

ticularly challenging due to the spring predictability043

barrier [5], which is why other models are often re-044

stricted to short-term predictions [6–8]. IceNet uses045

a whole range of different climate observables as046

input features and provides very accurate forecasts, 047

in particular for anomalous events.However, the pre- 048

dictions are not easy to interpret and the question 049

was posed from which features the network draws 050

the information that leads to its accurate forecasts. 051

Joakimsen et al. [9] leverage a gradient based 052

method to provide an extensive deep learning XAI 053

[10] analysis of the IceNet’s feature importance. 054

Thereby, they focus on the forecast for the anoma- 055

lous month September 2013, as the IceNet showed 056

a particularly high accuracy in this prediction.The 057

results yield detailed information about the impact 058

of the individual features with spatial resolution and 059

with respect to lead times. Based on their results, 060

Joakimsen et al. conclude that only a fraction of the 061

input features provide a relevant contribution to the 062

forecast and suggest that a model trained with only 063

a few features should maintain a high accuracy. 064

Convolutional neural networks are computation- 065

ally demanding and typically require substantial 066

storage capacity [11]. There has been a lot of ef- 067

fort to leverage feature importance scores to prune 068

parameters and reduce redundancy, as this offers a 069

way to reduce storage requirements and computa- 070

tion costs while maintaining a high accuracy [12]. 071

In contrast to previous studies that often cut back 072

individual connections, node, etc. [13], we want 073

to examine a more radical approach by completely 074

discarding the features with low importance scores. 075

This has a distinct advantage because it entirely 076

removes the need for a portion of the input features, 077

that in many cases might be hard to come by. In- 078

spired by the findings of Joakimsen et al. [9], we 079

conduct a novel analysis where we train model vari- 080

ations of the IceNet with different configurations of 081

input features. We compare the performance for the 082

different configurations for the case that was studied 083

by Joakimsen et al. in detail and investigate how 084

the results generalize for all predictions. Finally, 085

we separate a set of anomalous events to examine 086

how the models compare when it comes to predict 087

outliers. 088

2 Related Work 089

Here, we present the work of Andersson et al., which 090

introduces the IceNet model, as well as the work of 091

Joakimsen et al., that interrogates IceNet’s feature 092

importance. 093
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094

A. IceNet095

In 2021, Andersson et al.’s work on the IceNet was096

published. It shows remarkable accuracy for the097

prediction of SIC, in particular when it comes to098

extreme events and long range forecasts. In its orig-099

inal form, the IceNet takes 50 input features, which100

comprise of: SIC observations from the preceding101

12 months, a linear trend forecast (LTF) of the SIC102

for the next 6 months, 11 climate variables (1-3103

months prior), seasonal encodings and meta data104

(land masks). Each of the features is spatially rep-105

resented by a 432 × 432, image-like data frame,106

whereas each grid cell or pixel corresponds to a107

25 × 25 km area in the northern hemisphere. The108

LTF is calculated by taking the previous 35 years109

of SIC data for each month and pixel individually110

and produce a linear fit through these points. That111

means, the LTF of an individual pixel is calculated112

based on the SIC values that were obtained for the113

same pixel in the same month within the previous 35114

years. The best linear fit through these values pro-115

duces the LTF for the same month in the subsequent116

year.117

The model itself is a convolutional neural net-118

work with a U-Net [14] architecture (see Figure 1).119

The sea ice prediction is arranged as a classification120

problem with the 3 SIC classes121

1. open-water: SIC ≤ 15 %122

2. marginal ice: 15 % < SIC < 80 %123

3. full ice: SIC ≥ 80 %.124

The model is trained to forecast probabilities for the125

individual grid cells to fall into any of these classes.126

Thus, the prediction for any month consists of three127

432 × 432 maps of probabilities, one for each SIC128

class. In this manner, the model directly produces129

forecasts for lead times of 1 to 6 months for any130

given initialization month.131

To increase the robustness, Andersson et al. train132

an ensemble of 25 models like this, using different133

random initializations. The mean of the individual134

predictions yields the finial forecast.135

A transfer learning approach is used to train the136

model. First, the model is pretrained on climate137

simulation data (CMIP6) from 1850 to 2100. Then,138

the training is continued on monthly averaged ob-139

servation data (era5) from 1980 to 2012. Detailed140

information about the type, origin and preprocess-141

ing of the data can be found in [4] and on https:142

//github.com/tom-andersson/icenet-paper.143

144

B. Interrogating Feature Importance145

Triggered by the accurate forecasts of IceNet for146

extreme events, Joakimsen et al. published an XAI147

study with the aim to identify the features, that are148

most relevant for these results.149

There are several approaches on how to estimate 150

feature importance for a deep neural network [15– 151

17]. Gradient based saliency maps [18], as they 152

are used in by Joakimsen et al. [9], offer a way to 153

not only assign importance scores to the individual 154

features, but also provide information on whether 155

or not features have a positive or negative impact 156

on the predictions. Furthermore, this method is 157

spatially resolved, which is particularly useful when 158

there are regions of special interest in the forecasts. 159

The gradient of a function can be seen as a mea- 160

sure of its sensitivity with respect to small changes of 161

the input variables. Let x = {x1, ..., xK} be a set of 162

K input features that result in a prediction f(x)mn 163

for the grid cell (m, n), with m ∈ {1, ...,M} and 164

n ∈ {1, ..., N}, whereas M and N are the number of 165

rows and columns of the grid. A gradient saliency 166

map can be created with respect to a distinct fea- 167

ture xk, by computing the gradients of the predic- 168

tion f(x)mn with respect to all spatial components 169

xk(i, j) of the input feature xk and accumulating 170

over the spatial components (m, n) of the prediction 171

as follows: 172

R(xk(i, j)) =
∂

∂xk(i, j)

(
M∑

m=1

N∑
n=1

f(x)mn

)
. (1) 173

The value of R(xk(i, j)) yields information on how 174

a change of the (i, j)-component of feature xk influ- 175

ences the overall prediction. In order to get a single 176

value R(xk) to rank the feature importance, it is 177

summed over the spatial components (i, j): 178

R(xk) =

M∑
i

N∑
j

R(xk(i, j)). (2) 179

Joakimsen et al. use this method but sum only over 180

a specific region of interest, that corresponds to the 181

area of unusual sea ice extent. This way the result 182

is more meaningful with respect to the anomalous 183

part of the forecast. Focusing on this application 184

on the particular anomalous month September 2013, 185

they provide results that suggest only few of the 186

50 input features are important for the forecast of 187

the anomalous sea ice extent, namely the historic 188

SIC, the LTF, seasonal encoding and the land masks. 189

They conclude that IceNet should still yield accu- 190

rate forecasts, when only these input features are 191

considered. [9] 192

We acknowledge that there is an ongoing discus- 193

sion about the reliability and trustworthiness of 194

the results from gradient-based XAI methods [19, 195

20]. Future works will therefore aim to investigate 196

alternative XAI methods [21–23] to see if similar 197

conclusions as in Joakimsen et al. are reached. 198
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Figure 1. IceNet’s U-Net architecture takes a stack of 432 × 432 input features and processes them with an
encoder-decoder structure to output 6 months of forecast, each separated into 3 SIC classes. Image taken from [4].

3 Methodology199

Based on the importance scores provided by Joakim-200

sen et al., we want to investigate how the IceNet201

model performs, when features with low importance202

are discarded. In this section we present our changes203

to the original model and our approach to evaluate204

the generalization of the results.205

206

A. Feature Reduction and Retraining207

To test how IceNet performs under reduction of input208

features, we set up different feature configurations:209

1. original: This configuration contains all 50 fea-210

tures that were used in the original IceNet by211

Andersson et al.212

(total features: 50)213

2. reduced : This configuration discards all 11 cli-214

mate variables but contains all 12 SIC observa-215

tions, the LTF, seasonal encodings and meta data216

(land masks).217

(total features: 21)218

3. minimal : This configuration only contains the219

LTF, seasonal encodings, meta data (land masks)220

and one SIC observation of the preceding month.221

(total features: 10)222

The reduced configuration includes the features that223

Joakimsen et al. suggested to be sufficient for a good224

forecast, while the minimal configuration represents225

a further shrunk set of features that sets a higher226

threshold for the importance scores of a feature to be227

included. For each of these configurations we train228

an ensemble of 10 models with different random229

initializations but the same architecture. We do230

not pretrain the models on simulation data, as it is231

computationally expensive and it was shown that232

the benefit particularly for the critical months is233

very little [4]. Instead the models are trained purely234

on monthly observational data from 1980 to 2011.235

The data of 2012 - 2017 is assigned for validation236

and a test set contains the data from 2018 - 2020.237

238

B. Performance Evaluation 239

Consistent with [4], the performance of the trained 240

model is evaluated using a binary accuracy measure, 241

based on the 15 % threshold, which is a common 242

metric to measure differences in sea ice extent [24]. 243

Each cell is regarded as either ice (SIC > 15 %) 244

or no ice (SIC ≤ 15 %). As for the predictions, 245

that means if the accumulated probability of the 246

classes 2 (marginal ice) and 3 (full ice) is above 50 % 247

the cell is regarded as ice, otherwise it is consid- 248

ered to be no ice. The binary accuracy calculates 249

as the percentage of correctly classified grid cells 250

for every individual prediction. In addition to the 251

pure measure of accuracy, we use the standard devi- 252

ation between ensemble members to provide a brief 253

uncertainty estimation for the different IceNet con- 254

figuration in Appendix A. 255

To get a deeper understanding of how the fea- 256

ture reduction affects the predictions beyond simply 257

measuring the average accuracy, we look at different 258

cases separately. The analysis of feature importance 259

by Joakimsen et al. was performed on the predic- 260

tion for September 2013, as this was a particularly 261

anomalous but accurately predicted event. Thus, we 262

will first compare how the reduced input features af- 263

fect the model predictions for this particular month 264

in detail. Next, we look at the general case, where 265

we include all predictions to see if the results that 266

were obtained for September 2013 generalize. Last 267

we separate a set of predictions for that we classify 268

as anomalous months and compare the model per- 269

formances for these predictions. With this set of 270

experiments we aim to analyze the impact of feature 271

reduction on general predictions but also to uncover 272

how anomalous events relate to that, as they are of 273

particular interest. Further, we can put the predic- 274

tion for September 2013 into context and use it to 275

reveal some details of how the different predictions 276

differ. 277
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Figure 2. Anomalously large SIC (%) during September
2013 in the northern hemisphere.

4 Results278

In this section we provide the results of three exper-279

iments and evaluate the results with respect to the280

impact of feature reduction in different scenarios.281

282

A. September 2013 in Detail283

Figure 2 shows the observed SIC for the anomalous284

September 2013. In particular the upper right re-285

gion represents an unusual extent of sea ice [9]. In286

contrast, Figure 3 provides the deviations of the in-287

dividual model predictions from the observation for288

a lead time of one month. A supplementary figure,289

showing the results also for a lead time of 6 months290

can be found in Appendix B, Figure B.1. The pix-291

els are color-coded, with red areas corresponding292

to pixels where sea ice was observed but not pre-293

dicted, and blue areas for pixels where sea ice was294

predicted but not observed. We can clearly see that295

all (mis-)predictions have the same overall structure,296

with false predictions located around the borders297

of the ice surface. The tendencies of predicting too298

high or too low SIC are distributed very similarly,299

with generally too much sea ice in the regions north300

of Europe extending to mid Russia and too little301

sea ice north of Canada, Alaska and eastern Russia.302

Considering that in this month, an anomalous large303

extent of sea ice has been observed, it is surprising304

that none of the models seems to predict generally305

too little sea ice. Instead, it seems like the whole sea306

ice surface of the predictions is shifted towards Eu-307

rope compared to the observed sea ice. Sea ice drifts308

are mainly determined by wind [25]. The original309

IceNet configuration is the only one that takes wind310

as input feature but the results show that this model311

could not predict this shift of the sea ice surface any312

better than the models without wind.313

Another key observation concerns an area in the314

right center of the plots (circled by a dashed line315

in Figure 3(a)) which contained ice at the targeted 316

time. Both of the reduced models could predict this 317

area very accurately for a lead time of one month, 318

while the original IceNet was not able to pick up on 319

indications for this. 320

Figure 4 shows the binary accuracies for the pre- 321

dictions of all models for lead times from 1 to 6 322

months. Supplementary figures of the binary ac- 323

curacies which include uncertainty estimations can 324

be found in Appendix A. The accuracies between 325

the models for a given lead time vary slightly but 326

remain in the same domain and thus, support the 327

results of Figure 3. It is notable that the binary 328

accuracies of the reduced models both exceed the 329

accuracy of the original model with 1.2 and 1.0 per- 330

centage points (pp.) for a lead time of 1 month. 331

These results strongly support the hypothesis that 332

IceNet’s good performance for the prediction of the 333

extreme event in September 2013 is mainly based 334

on previous SICs. Also the observation that the 335

accuracy of the reduced models increases relative to 336

the original model matches the results of Joakimsen 337

et al. 338

339

B. Overall Performance 340

Next we examine whether this behavior also extends 341

to the general model performance, apart from this 342

individual extreme event. For this purpose, we av- 343

erage the binary accuracies for each lead time over 344

all predictions from 2012 to 2020. Figure 5 shows 345

the resulting average accuracy versus lead time for 346

each configuration. The original IceNet configura- 347

tion yields a slightly (ca. 0.5 pp.) lower accuracy 348

than observed by Andersson et al., but this can be 349

explained by discarding the pre-training and the 350

lower number of 10 ensemble members in our exper- 351

iment compared to 25 members in the experiments 352

of Andersson et al. Remarkably, while decreasing 353

in the same manner, the reduced IceNet is 0.1 - 0.4 354

pp. more accurate over all lead times, with a max- 355

imum accuracy of 95.7 % for 1 month lead time. 356

Even the minimal configuration of the model shows 357

higher accuracy than the original version for lead 358

times up to 2 months. From lead times of 3 months 359

and up, the accuracy drops below the original one. 360

While nearly matching the accuracy of the reduced 361

model for small lead times, the minimal model’s 362

accuracy is clearly the lowest for large lead times 363

and thus, decreases faster with increasing lead time. 364

These results show that Joakimsen et al.’s hypothe- 365

sis, which corresponds to the reduced model, holds 366

true even for the general case. For longer lead times 367

it seems that not only the LTF is relevant, but also 368

the monthly SICs of the preceding year, as the min- 369

imal model’s accuracy decreases quicker compared 370

to the configurations that include these SICs. It 371

should be noted that the LTF itself already provides 372

a good estimate for the future SIC [4], particularly 373

4
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false negative
false positive

(a) original model
lead time: 1 month

(b) reduced model
lead time: 1 month

(c) minimal model
lead time: 1 month

Figure 3. Deviations of the binary IceNet predictions from observed data for September 2013 for a lead time
of one month. Blue areas correspond to false positive predictions and red ares to false negative predictions,
respectively. The individual plots represent the results for the different IceNet configurations.
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Figure 4. Average binary accuracy of the three differ-
ent IceNet configurations plotted versus lead time for
September 2013.

for non-extreme events. Thus, being able to predict374

anomalous events with a high accuracy holds more375

value than regular predictions.376

377

C. Performance for Anomalous Months378

So far, we just analyzed the model performances in379

general and for one particular extreme event. In the380

next step, we therefore examine how the different381

models compare for cases that we classify as anoma-382

lous, without focusing on one explicit event. As383

a metric to determine how anomalous an event is,384

we use the binary accuracy of the LTF. If the LFT385

has a high accuracy, it means the SIC for the given386

month is very similar to the expectation based on387

the SIC of the previous years. A low LTF accuracy388

can thus be interpreted as an anomaly. To show389

how the different IceNet configurations behave with390

respect to the grade of anomaly, Figure 6 shows391

the binary accuracies of the IceNet forecasts with a392

lead time of 1 month plotted versus the accuracy of393

1 2 3 4 5 6
Lead time (months)
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94.5

95.0

95.5
Bi

na
ry

 a
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[%

]
original
reduced
minimal

Figure 5. Average binary accuracy of the three different
IceNet configurations plotted versus lead time.

the LTF. The figure shows that IceNet’s accuracies 394

are generally lower when also the LTF accuracy is 395

low. But at the same time the accuracies distinguish 396

more from the LTF line, for low LTF accuracies. In 397

other words, the more the observed sea ice deviates 398

from its usual extend for a given month, the more 399

superior are the IceNet predictions compared to the 400

LTF. While this view makes it hard to draw gen- 401

eral conclusions about the differences between the 402

IceNet configurations, the figure shows that for most 403

extreme events the original configuration performs 404

better than the reduced versions and that the pre- 405

dictions for September 2013 (marked in the figure) 406

is just an exception. 407

To evaluate the performance for extreme events 408

more quantitatively, we classify the 10 % lowest 409

LTF accuracies as anomalous / extreme and assess 410

the performance for these months separately. That 411

corresponds to the predictions left of the red dotted 412

line in Figure 6. Figure 7 shows the average accuracy 413

for these extreme events versus the lead time for 414

5
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Figure 6. Binary accuracies of individual IceNet pre-
dictions (lead time of 1 month) with different feature
configurations plotted versus the binary accuracy of the
LTF. The dashed grey line corresponds to the accuracy
of the LTF as a reference and the dashed red line indi-
cates the border of the 10 % most anomalous events.
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Figure 7. Average binary accuracy of the three IceNet
configurations for the 10 % most anomalous events plot-
ted versus lead time.

all the configurations. Compared to Figure 5 we415

can see that the ranking has changed and in fact,416

the original IceNet has the highest accuracies for417

all lead months. While all models have a similar418

accuracy of 92 - 93% for a lead time of 1 month,419

their difference increases with lead time up to about420

1.2 pp. between the reduced and original model421

for a lead time of 6 months. We can also see that422

the accuracy drop from lead time of 1 month to 6423

months is more significant (∼ 4 - 5 pp.) than in the424

general case (∼ 2 pp.) for all models.425

5 Conclusion426

We have trained versions of the IceNet model using427

different configurations (original, reduced, minimal)428

of input features. For these models we provided an429

extensive performance analysis including different 430

sets of predictions. Our results show that averaged 431

over all predictions, the reduced model yields the 432

highest accuracy for all lead times. The minimal 433

model shows an increased accuracy for lead times up 434

to two months but drops below the original model for 435

larger lead times. For the particular event of Septem- 436

ber 2013, we also demonstrated that the reduced 437

versions capture properties of the ice structure, that 438

the original version missed. In the end we show that 439

the original model remains superior in cases that 440

deviate a lot from the usual SIC for a given month. 441

We conclude that XAI studies as provided by 442

Joakimsen et al. [9] can be leveraged to effectively 443

minimize the amount of input features for deep learn- 444

ing models, by maintaining overall high accuracy, 445

or even increasing it. This yields a practical and 446

straightforward method, e.g. for cases when certain 447

data is not easily obtainable or data storage is an 448

issue. For the generalization to extreme events and 449

outliers, however, models might still benefit from 450

additional features. 451

Future work might investigate the computational 452

benefits of decreasing the number of features. Fur- 453

ther studies might benefit from more extensive un- 454

derlying XAI studies that, e.g. include different 455

methods to estimate feature importance to increase 456

reliability. Additionally, the robustness of the mod- 457

els might be analyzed by introducing perturbations 458

to the model. Interesting insights could also be 459

gained by going deeper into the uncertainty estima- 460

tion, for example by training several ensembles per 461

configuration and compare the accuracy deviations 462

of the ensembles within one configuration. 463
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A Uncertainty Estimation635

In section 4, we discussed the performance of dif-636

ferent IceNet configurations in terms of the binary637

accuracy, using the predictions given by an ensemble638

of 10 models per configuration. Here, we leverage639

the standard deviation of the ensemble members to640

give a simple estimate for the uncertainty of the641

results.642

Each ensemble member yields individual predic-643

tions and thus, an individual accuracy score per644

predicted month and lead time. In order to supple-645

ment the our performance analysis in a meaningful646

way, we want to leverage the standard deviation647

of the ensemble members to give a simple estimate648

for the uncertainty of the results. Each ensemble649

member yields individual predictions and thus, an650
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Figure A.1. Average binary accuracy of the three dif-
ferent IceNet configurations plotted versus lead time for
September 2013. The plot shows the accuracy standard
deviation of the ensemble members for this prediction
as error bars.
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Figure A.2. Average binary accuracy of the three
different IceNet configurations plotted versus lead time.
The plot shows the average accuracy standard deviation
of the ensemble members for the respective predictions
as error bars.

individual accuracy score per predicted month and 651

lead time. According to our performance analysis, 652

the calculation of the standard deviation should be 653

performed in such a way that we get distinct results 654

per lead time and set of predictions. We could calcu- 655

late the standard deviation between the individual 656

model accuracies, taking into account all of their 657

predictions for a set of dates and fixed lead time at 658

once. However, to reduce the effect of the size of 659

the data set, i.e. the number of dates included into 660

the calculation, we decide to calculate the standard 661

deviation of an ensemble for each lead time and each 662

prediction at a time. Thus, for each ensemble we get 663

one value per prediction month and lead time. For 664

the evaluation of a prediction set, we average over 665

the respective standard deviations. To show the 666

results of our uncertainty estimation, we reproduce 667
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Figure A.3. Average binary accuracy of the three
IceNet configurations for the 10 % most anomalous
events plotted versus lead time. The plot shows the
average accuracy standard deviation of the ensemble
members for the respective predictions as error bars.

Figure 4, Figure 5 and Figure 7, which show the668

accuracies for different sets of predictions and we669

add the respective standard deviations as error bars.670

These plots are shown in Figure A.1, Figure A.2 and671

Figure A.3, respectively.672

For the prediction of September 2013 (Figure A.1),673

the standard deviations differ a lot between model674

configuration and lead times. This is can be at-675

tributed to the fact that we are only looking at676

a single prediction and individual differences con-677

tribute a lot to the standard deviation.678

Figure A.2 and Figure A.3, showing the corre-679

sponding plots for all available predictions and the680

10 % most anomalous months, respectively, are show681

more consistent standard deviations. Overall, both682

plots show that all three IceNet configurations tend683

to increase in their uncertainty as the lead time in684

creases. A comparison of both figures shows that685

the uncertainty for the anomalous events is in most686

cases larger than for the general case that includes all687

predictions. However, this effect might be enhanced688

by the fact that the number of predictions included689

for the anomalous events is much smaller and thus,690

individual fluctuations have a larger impact.691

Even though, e.g. for the lead time of 4 months692

in the general case (Figure A.2), the standard devi-693

ation of the reduced configuration is clearly larger694

than the one of the original configuration, it can695

be stated that overall the uncertainty of all three696

configurations are in a similar regime and there are697

no distinct differences. It should also be noted that698

the standard deviations in most cases exceed the699

differences between the different averaged accura-700

cies of the three configurations. However, more701

sophisticated and detailed analyses are necessary to702

give reliable results and interpretations of the model703

uncertainties.704

B Prediction Deviations for 705

September 2013 706

Figure B.1 shows the deviations of the September 707

2013 forecasts for the three IceNet configurations. 708

Areas in red show regions where the models falsely 709

predicted no ice and areas in blue correspond to 710

regions where the models falsely predicted ice. This 711

figure extends Figure 3 from section 4 by adding 712

the forecasts with a lead time of six months to the 713

one month forecasts. It shows, that for longer lead 714

times, i.e. predictions of this months further ahead 715

of time, all models mispredicted the region in the 716

right center which is highlighted in Figure B.1(a). 717
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false negative
false positive

(a) original model
lead time: 1 month

(b) reduced model
lead time: 1 month

(c) minimal model
lead time: 1 month

(d) original model
lead time: 6 months

(e) reduced model
lead time: 6 months

(f) minimal model
lead time: 6 months

Figure B.1. Deviations of the binary IceNet predictions from observed data for September 2013. Blue areas
correspond to false positive predictions and red ares to false negative predictions, respectively. The upper row ((a) -
(c)) corresponds to predictions with a lead time of 1 month and the lower row ((d) - (f)) to predictions with a lead
time of 6 months. The individual plots in each row represent the results for the different IceNet configurations.
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