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Abstract

Due to privacy and security concerns, recent advancements in group fairness
advocate for model training regardless of demographic information. However,
most methods still require prior knowledge of demographics. In this study, we
explore the potential for achieving fairness without compromising its utility when
no prior demographics are provided to the training set, namely harmless Rawlsian
fairness. We ascertain that such a fairness requirement with no prior demographic
information essential promotes training losses to exhibit a Dirac delta distribution.
To this end, we propose a simple but effective method named VFair to minimize the
variance of training losses inside the optimal set of empirical losses. This problem is
then optimized by a tailored dynamic update approach that operates in both loss and
gradient dimensions, directing the model towards relatively fairer solutions while
preserving its intact utility. Our experimental findings indicate that regression tasks,
which are relatively unexplored from literature, can achieve significant fairness
improvement through VFair regardless of any prior, whereas classification tasks
usually do not because of their quantized utility measurements. The implementation
of our method is publicly available at https://github.com/wxqpxw/VFair.

1 Introduction

Fairness in machine learning has gained significant attention owing to its multifaceted ethical
implications and its far-reaching potential to shape and influence various aspects of society [1, 2, 3].
In high-stakes decision-making domains, algorithms that merely prioritize model utility may yield
biased models, resulting in unintentional discriminatory outcomes concerning factors such as gender
and race. Group fairness, a.k.a. statistical fairness [4], addresses this issue by explicitly encouraging
the model behavior to be independent of group indicators, such as disparate impact [5], or equalized
odds [6]. However, with increasing privacy concerns applied in practical situations, sensitive attributes
are not accessible which raises a new challenge for fairness learning.

According to literature, numerous efforts have been directed towards achieving fairness regardless
of demographic information, which can be mainly categorized into two branches. One branch is
to employ proxy-sensitive attributes [7, 8, 9, 10]. These works assume that estimated or selected
attributes are correlated with the actual sensitive attributes and thus can serve as a proxy of potential
biases. The other branch follows Rawlsian fairness [11], which focuses on reducing the disparity in
group utility. Unlike the former branch, the group utility here is predefined and centered, and thus it is
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Figure 1: Illustration of our idea through different forms of loss curves.

typically not meaningful to test learned models on other group fairness metrics. Worst-case fairness
methods [12, 13], belonging to Rawlsian fairness, commonly leverage a prior about the worst-off
group’s size to identify under-represented members and prioritize the utility of the approximate worst-
off group. Such a taxonomy overlooks the differences in tasks, as the majority of aforementioned
fairness approaches are designed for classification tasks. In applications where discrete outcomes
(e.g. binary decisions) provide insufficient information, there is a crucial need for fair regressors.
As relatively few discussions [14, 15] exist for fair regression tasks, our work bridges the gap by
incorporating regression tasks into a general predictive loss under Rawlsian fairness.

The trade-off nature between model utility and fairness has emerged as a subject of dynamic dis-
course [16, 17, 18]. Worst-case fairness methods which inherently prioritize the worst-off group’s
utility often come at the expense of the overall utility [13, 19]. In this work, we focus on scenarios
where no prior demographic information is provided, aligning the ingredients with the standard
training setup, and then advocate for a primary problem (harmless Rawlsian fairness):

Regardless of demographic prior, to what extent can we improve Rawlsian fairness without hurting
the model’s overall utility?

This problem is particularly important in utility-intensive scenarios [20], and we investigate it in both
classification and regression tasks to answer the question.

Our idea. We approach the problem from a novel perspective. The crux of the desired fairness lies in
pursuing minimum group utility disparity across all groups. Since during the training phase, we are
not aware of what the actual sensitive attributes are used for test data, the safest way is to ensure every
possible disjoint group of training data has the same utility. To this end, we expect the training loss
for each individual example to be very close, meaning that the loss variable approaches a Dirac delta
distribution. As shown in Fig. 1 (a). The Dirac delta distribution essentially represents an Oracle
model, where all the loss values are concentrated at zero, resulting in both a mean and variance of 0.
In the distribution view, the motivation of our method which is dubbed as VFair, is to approximate
this ideal by minimizing both the mean and variance of the training losses. Fig. 1 (b) also shows
the comparison between VFair and other methods, using a regression task as an example. Oracle
denotes models with unlimited capability that make predictions with zero error. Empirical Risk
Minimization (ERM) refers to models without any fairness design. Worst-case represents fairness
methods that require the prior of the worst-off group (e.g., lower bound of partition ratios). Uniform
model, initially introduced by [12], represents a model that performs equally poorly across all groups
on classification tasks. Here, we extend it to regression. In a simplified logistic regression task that
applies Mean Squared Error (MSE) loss with targets of 0 or 1, a “uniform regressor” predicts values
close to 0.5 for each example, resulting in losses close to 0.25, as indicated by the yellow dashed line.
As depicted by Fig. 1 (b), we expect VFair to exhibit the following two properties.

(1) VFair achieves a more flattened loss curve compared to ERM and Worst-case. A flattened curve
indicates similar losses for each example, indicating a fairer solution for unknown group partitions.
(2) VFair maintains an area under the curve comparable to that of ERM, reflecting the overall model
utility. Since a flattened curve may deteriorate into a uniform model that significantly sacrifices
overall utility, VFair prioritizes keeping the overall average loss at a low value.
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Statistically, our main idea can be understood as minimizing the loss distribution’s second moment
(e.g., loss variance) while not increasing its first moment. By developing a dynamic approach operated
at both the loss and gradient levels, our idea is proven feasible and effective.

Contributions. The key contributions of this research can be outlined as follows.

•We introduce the setting of harmless Rawlsian fairness regardless of demographic prior in both
classification and regression tasks. To well position this setting, we also discuss its connections with
Worst-case fairness and harmless fairness from the view of variance reduction and re-weighting.

•We advocate that minimizing the variance of prediction losses is a straightforward yet effective
fairness proxy. By incorporating it as a secondary objective, the overall model performance can
remain uncompromised.

•We develop a dynamic approach for conducting harmless updates, which is operated at both the
loss and gradient levels, guiding the model towards a fair solution without compromising utility.

• We analyze the difference between fair regression and classification tasks, and experimentally
demonstrate that, regardless of any prior, harmless Rawlsian fairness is achievable in regression tasks
but unfortunately not in classification tasks.

2 Related work

Worst-case fairness without demographics. In alignment with the Rawlsian fairness principle, a
sequence of studies has followed the Worst-case scheme, which focuses on improving the performance
of the worst-off group without full demographics. DRO [13] identified the worst-off group members
by a lower bound for the minimal group ratio. The behind insight is that examples yielding larger
losses are more likely sampled from an underprivileged group and thus should be up-weighted, which
inherits the fairness strategy for handling group imbalance [21, 22]. Similarly, [12] also considered
training a fair model with a given ratio of the protected group and connected such a fairness learning
setting with the subgroup robustness problem [23]. In contrast to these studies, ARL [24] introduced
the concept of Computational-Identifiability to enhance the Worst-case scheme. ARL presented an
adversarial re-weighting method to identify the worst-off group in the computational-identifiable
region without relying on any demographic prior. This embodies the genuine essence of achieving
fairness without demographics and is closest to our setting.

Harmless fairness. In utility-intensive scenarios, a fair model is meaningful only when it preserves
good utility. Basically, these works engaged in discussing the extent to which fairness can be
achieved without compromising model utility. Some [25, 26] searched for the so-called minimax
Pareto fair optimality for off-the-shelf binary attributes and then upgraded their method to the multi-
value attribute cases with only side information about group size [12]. A pre-processing method [20]
accomplished cost-free fairness through re-weighting training examples based on both fairness-related
measures and predictive utility on a validation set. Based on the concept of Rashomon Effect, [27]
achieved fairness from good-utility models under selective labels through a constrained optimization
perspective, needing a proper upper bound for the average loss. The same fairness notation also
applies to regression task [15], where the prediction error of protected groups remains below some
predefined threshold, and the fairness-accuracy frontier is experimentally achieved. Notably, these
works more or less require direct or implicit demographic information and cannot adapt to our
problem setting. A dynamic barrier gradient descent algorithm [28] was recently introduced which
allows models to prioritize must-satisfactory constraints. Inspired by this, we conceptualize harmless
fairness within a similar framework, enabling us to move beyond a utility-only solution and obtain a
fairer model that can narrow the utility gaps among possible data partitions.

3 VFair methodology

3.1 Problem setup

Consider a supervised learning problem from input space X to a label space Y , with training set
{zi}Ni=1, where zi = (xi, yi) ∈ X × Y . For a model parameterized by θ ∈ Θ and a training point z#,

#Throughout this paper, random variables are represented with lowercase letters unless otherwise specified.
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let ℓ(z; θ) be the associated loss. Suppose for each zi, there exists a sensitive attribute si ∈ S. Thus
a K-value sensitive attribute s will naturally partition data into K disjoint groups. Such sensitive
attributes are not observed during model training but can be accessible for fairness testing. Following
the principle of Rawlsian fairness, the utility disparity over groups is used as a fairness evaluation
metric. For example, in classification tasks, denoting uk as the classification accuracy of the k-th
group, we can define the maximum utility disparity, i.e., MUD = maxi,j∈[K] (ui − uj), as a proper
fairness metric. More metrics will be introduced in Section 4.1, and the same applies to regression
tasks. The fundamental objective of this work is to develop a model that minimizes group utility
disparity [24, 12, 15] to the greatest extent possible while maintaining the overall predictive utility
(compared to ERM) regardless of demographic prior.

3.2 Fairness via minimizing variance of losses

An ERM model may exhibit variable predictive utility across different groups. Conventionally, a
fair counterpart is achievable by properly incorporating the objective of minimizing group utility
disparity (e.g., MUD), which is however not applicable when demographics are not accessible at
training stages. Intuitively, a predictive model that can be fair for any arbitrary partitions on the test
set implies that the loss of each training example should be close to each other, exhibiting a Dirac
delta distribution. A compelling piece of evidence is that an Oracle model, as depicted in Fig. 1 (b),
ensures that each individual loss ℓ(z; θ) is sufficiently small, resulting in no disparity, i.e., MUD = 0.
This case suggests that group fairness can be instance-wise characterized and hence bypasses the
unobserved sensitive attributes. We present this insight by the following proposition.
Proposition 1. u ⊥ s holds for any s that splits data into a number of groups, if and only if the loss
ℓ is (approximately) independent of the training example z, i.e., ℓ ⊥ z.

The proof of Proposition 1 is left to Appendix A, and the approximation arises from the quantization
of utility metrics, e.g., classification accuracy.

To achieve such a Dirac delta distribution, several fairness objectives can be adopted. We defer the
discussion to Appendix B and conclude that applying the variance of losses as a fairness objective is
simple yet efficient. Intuitively, the small variance does encourage the loss to be invariant of input.
Suppose that we intend to achieve a small MUD through minimizing the maximum group utility
disparity, denoted by ℓMUD. The following proposition shows that standard deviation of training
losses essentially serves as a useful proxy.

Theorem 1. ∀s ∈ S,∀θ ∈ Θ, ℓMUD ≤ C
√

Vz[ℓ(z; θ)], where C is a constant.

Appendix B.1 gives the proof of Theorem 1. Although ℓMUD is upper-bounded in the form of standard
deviation as stated in Theorem 1, we term it “variance” for convenience in statements where it does
not introduce ambiguity. So far, we connect Rawlsian fairness with the variance of training losses,
without using any prior of demographics.

3.3 Objective formulation

Notably, solely penalizing the variance of losses will not necessarily decrease the expectation of losses,
leading to the emergence of a uniform model [12]. Thus, to improve fairness without compromising
the overall model utility, our full objective is formulated as follows:

min
θ∈Θ

√
Vz[ℓ(z; θ)] s.t. Ez[ℓ(z; θ)] ≤ δ, (1)

where δ controls how much we can tolerate the harm on the overall predictive utility, and the sense
that δ = infθ∈Θ Ez[ℓ(z; θ)] suggests a zero-tolerance. In particular, we fold in any regularizers into
ℓ(·) to make our method easily adapt to specific scenarios. The empirical risk of Eq. 1 is written as

min
θ∈Θ

√√√√ 1

N

N∑
i=1

(ℓ(zi; θ)− µ̂(θ))
2

︸ ︷︷ ︸
σ̂(θ)

s.t.
1

N

N∑
i=1

ℓ(zi; θ)︸ ︷︷ ︸
µ̂(θ)

≤ δ. (2)

We use µ̂(θ) and σ̂(θ) to denote the primary and secondary objectives, respectively. Since we
minimize σ̂(θ) inside the optimal set of minimizing µ̂(θ), the eventually learned model is viewed to
be harmlessly fair with regard to the overall performance.
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Note that the objective of Eq. 1 looks similar to variance-bias research [29, 30]. Following Bennett’s
inequality, the expected risk can be upper bounded by the empirical risk plus a variance-related term
with a high probability:

Ez[ℓ(z; θ)] ≤
1

N

N∑
i=1

ℓ(z; θ) + C1

√
Vz[ℓ(z; θ)]

N
+

C2

N
, (3)

where C1 and C2 are some constants which reflect the confidence guarantee. We emphasize Eq. 3 is
apparently distinct from our fairness motivation. As derivated in [30], the right-hand side of Eq. 3
can be well approximately by a robust regularized risk, a.k.a. DRO’s objective [31],

min
θ∈Θ

inf
η∈R

{
F (θ; η) := C

(
Ez

[
[ℓ(z; θ)− η]

2
+

]) 1
2

+ η

}
, (4)

where C =
(
2(1/αmin − 1)2 + 1

)1/2
and αmin is a bound of the worst-off group’s ratio. Given an

ηt which is the optimal solution of the t-th inner optimization but also happens to be close to the
mean loss, i.e., ηt ≈ µ̂(θt), Eq. 4 can be viewed as penalizing the upper semi-variance of training
loss. This observation connects Worst-case fairness with variance penalization from a new aspect.
Although focusing on the variance of training losses in our method as well, we penalize it inside the
optimal set of empirical losses. Our method is eventually capable of achieving harmless fairness.

3.4 Harmless fairness update

Directly calculating the optimal set of µ̂(θ) ≤ δ in Eq. 2 can be very expensive. A common approach
is to consider an unconstrained form of Eq. 2, i.e., Lagrangian function, which however needs to not
only specify a proper δ beforehand but also optimize the Lagrange multiplier to satisfy the constraint
best. Besides, the constrained form of Eq. 2 makes our task different from traditional multi-objective
optimization tasks. Recognizing that such re-balancing between two loss terms essentially operates
on gradients, in a manner analogous to the approach outlined by [28], we consider the following
gradient update scheme,

θt+1 ← θt − γt
(
λt∇µ̂(θt) +∇σ̂(θt)

)
, (5)

where γt is a step size and λt(λt ≥ 0) is the dynamic coefficient we aim to get. For simplicity, we
omit the time stamp t and model variable θ when it is not necessary to emphasize them. Now we
provide how do we dynamically adjust λ.

(a) (b)

Figure 2: Two situations when updating primary
and secondary gradient simultaneously.

Gradient view. The idea of designing λ is to
keep decreasing µ̂ when the constraint is not
met, meaning that the combined gradient should
never hurt the descent of µ̂. As depicted in
Fig. 2 (a), if the gradients∇σ̂ and∇µ̂ forms an
obtuse angle, a detrimental component emerges
in the direction of ∇µ̂ (indicated by the red
dashed arrow). Otherwise, the gradient conflict
does not happen, shown as Fig. 2 (b). Conse-
quently, λ should be sufficiently large to ensure
that the combined force’s component in the pri-
mary direction remains non-negative, that is

λ∇µ̂+ Proj∇µ̂(∇σ̂) ≥ ϵ∇µ̂ =⇒ λ ≥ ϵ− ∇µ̂ · ∇σ̂
||∇µ̂||2

:= λ1. (6)

Here, ϵ represents the extent to which we wish to update∇µ̂ when two gradients are orthogonal. We
choose ϵ = 1 in Eq. 6 because it keeps an intact update for the primary gradient∇µ̂ in any cases. The
harmless component of optimizing σ̂, illustrated as the dotted yellow arrow in Fig. 2 (a), undergoes
with equal strength. The derivation of λ1 essentially assumes that the constraint of Eq. 2 is satisfied if
∇µ̂ = 0, which avoids an elaborately specified δ. When ∇µ̂ ̸= 0 but ||∇µ̂|| is small, indicating that
the primary objective is nearly minimized, we set λ = max{λ1, 0} to prevent negative values.
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Loss view. Recall that σ̂ takes µ̂ as input according to Eq. 2, which inspires us to further inspect the
combined gradient, denoted by∇, beyond treating them separately as we do in the gradient view.
Theorem 2. Given the objective of Eq. 2, the combined gradient derived by the update scheme of
Eq. 5 can be expressed with an example-reweighting form,

∇ = λ∇µ̂+∇σ̂ =
1

N

N∑
i=1

(
λ+

1

σ̂
(ℓi − µ̂)

)
︸ ︷︷ ︸

wi

∂ℓi
∂θ

. (7)

The proof of Theorem 2 can be referred to Appendix C. Eq. 7 shows that our fairness formulation with
dynamic gradient update implicitly reweights each training example via an unnormalized weight wi,
i.e., the Z-score of loss plus a coefficient λ. This finding connects our work with recent Worst-case
fairness studies [13, 12, 22] which up-weight the training examples whose losses are relatively larger,
and also a harmless fairness method [20] which directly applies the re-weighting scheme.

As we can see wi < 0 for all examples whose Z-scores below −λ, raising a concern of unstable
optimization [32]. To guarantee that the weight of each training example is non-negative, we require

∀i ∈ [N ] λ+
1

σ̂
(ℓi − µ̂) ≥ 0

=⇒λ ≥ max
i∈[N ]

µ̂− ℓi
σ̂

=
1

σ̂

(
µ̂− min

i∈[N ]
ℓi

)
≥ µ̂

σ̂
:= λ2,

(8)

where the last inequality holds because predictive losses are typically designed to be non-negative,
facilitating the elimination of the sorting procedure.

Remark 2. According to Eq. 8, λ2 is positive. Notably, λ2 can approach 0 if µ̂≪ δ, where we may
obtain a model with good utility but poor fairness. Since Z-scores fall within the range of −3 to +3
capturing a significant portion (99.7%) of the data in a normal distribution, λ2 is often capped by 3.

In summary, combining Eq. 6 and Eq. 8, we compute the adaptive λ at each step that ensures harmless
fairness update:

λ = max (λ1, λ2) = max

(
1− ∇µ̂ · ∇σ̂

||∇µ̂||2
,
µ̂

σ̂

)
. (9)

Note that Eq. 9 requires the computation of gradients and values for both µ̂ and σ̂, which is time-
intensive and memory-intensive if executed on the entire dataset. To scale up to large datasets,
we provide an efficient mini-batch update strategy. Detailed implementation and algorithm can be
referred to Appendix D.

4 Experiments

4.1 Experimental setup

Datasets. Six datasets encompassing binary classification, multi-class classification, and regression
are employed. (i) UCI Adult [33], (ii) Law School [34], (iii) COMPAS [35], (iv) CelebA [36], (v)
Communities & Crime (C & C) [37], (vi) AgeDB [38]. Note that datasets (i-iii) can be transformed
into a logistic regression task by applying MSE loss with the category label as the target. Following
the convention established by [24, 15], we select sex (or gender) and race (or Young on CelebA) as
sensitive attributes for datasets (i-iv), four attributes for C & C, and one for AgeDB datasets.

Metrics. During the evaluation phase, we gain access to the sensitive attributes that partition the
dataset into K disjoint groups. As discussed in Section 3.1, our training objective is to uphold a
high overall predictive utility level while minimizing group utility disparities to the greatest extent
feasible. Henceforth, we assess the performance of our method across five distinct metrics: (i) Utility:
Overall accuracy for classification (also specified by other metrics like F1-score and prediction error
when necessary) and MSE for regression tasks. (ii) WU: The worst group utility among all K groups.
(iii) MUD: Maximum utility disparity, as described in Section 3.1. (iv) TUD: Total utility disparity.
TUD =

∑
k∈[K](uk − ū), where ū is the global average utility. (v) VAR: The variance of prediction

error. Since we are not able to exhaustively enumerate all possible sensitive attributes and test fairness

6



via the metrics (ii-iv), VAR necessarily serves as a fairness proxy for any other possible selected
sensitive attributes during the test phase. To ensure the reliability of the results, we repeat all the
experiments 10 times and average the outcomes.

Baselines. We compare VFair against seven baselines including ERM, DRO [13], ARL [24],
FairRF [9], MPFR [15], BPF [12], and FKL [39]. Note that DRO, BPF, FairRF, MPFR, and FKL
all require some prior demographic information; DRO and BPF necessitate the identification of
the worst-off group through a bound of group ratio, while FairRF selects some observed features
as pseudo-sensitive attributes, which consequently constrain its application to image datasets (i.e.,
CelebA); MPFR and FKL which are particularly designed for fair regression tasks also incorporate
sensitive attributes. Methods take general loss functions like VFair which apply to both classification
tasks and regression tasks, i.e., DRO and ARL are implemented for regression tasks by using the
MSE loss. Note that BPF, MPFR, and FKL are not designed with stochastic updates and they suffer
from out-of-memory issues under our experimental setup on the UCI Adult and AgeDB datasets.
Therefore, the experimental results of this part are not included. Please find more experimental setup
details in Appendix E.

Table 1: Comparison of regression results (×102) on five benchmark datasets with the best rank in
bold. Here, ↓ is for Utility and WU because MSE is used, and smaller values indicate better utility.

Utility ↓ WU ↓ MUD ↓ TUD ↓ VAR ↓

Law School

ERM 12.88(0.12) 19.75(0.21) 7.33(0.14) 13.45(0.21) 4.89(0.07)

DRO 24.85(0.09) 24.98(0.05) 0.14(0.08) 0.23(0.12) 0
ARL 12.86(0.11) 19.72(0.26) 7.33(0.19) 13.54(0.29) 4.86(0.13)

BPF 18.75(0.50) 43.25(3.44) 26.33(3.20) 47.33(5.16) 3.98(0.29)

MPFR 13.88 29.39 16.68 32.07 7.15
FKL 13.10 19.37 6.77 13.42 5.01

VFair(Ours) 12.95(0.11) 19.08(0.22) 6.63(0.18) 12.53(0.25) 3.66(0.12)

Improved -0.07 +0.67 +0.7 +0.92 +1.23

COMPAS

ERM 23.08(0.67) 24.49(0.76) 2.50(1.17) 3.45(1.76) 3.23(0.8)

DRO 24.97(0.04) 25.05(0.06) 0.12(0.07) 0.17(0.10) 0
ARL 22.73(0.4) 24.26 (0.84) 2.92(1.08) 3.78(1.11) 3.19(0.67)

BPF 50.80(2.18) 63.46(0.99) 22.87(1.69) 37.77(1.84) 11.18(1.11)

MPFR 36.26 38.36 6.23 9.13 17.33
FKL 28.56 30.49 3.69 6.47 7.58

VFair(Ours) 23.15(0.13) 23.83(0.21) 0.93(0.21) 1.17(0.28) 0.47(0.07)

Improved -0.07 +0.66 +1.57 +2.28 +2.76

C & C

ERM 41.15(1.25) 109.72(5.60) 106.56(5.67) 337.26(18.15) 87.52(9.43)

DRO 99.34(3.85) 257.51(40.23) 248.56(48.63) 715.62(189.66) 284.49(72.71)

ARL 40.43(1.14) 109.00(6.06) 106.88(5.70) 331.38(19.63) 83.98(5.55)

BPF 71.05(1.02) 127.28(4.78) 110.16(10.06) 320.65(26.11) 96.76(8.08)

MPFR 93.57 296.36 295.59 843.47 375.79
FKL 83.73 278.30 275.29 794.59 321.42

VFair(Ours) 41.17(0.64) 106.40(2.66) 104.54(3.11) 318.33(8.96) 67.44(3.36)

Improved -0.02 +3.32 +2.02 +18.93 +20.08

AgeDB

ERM 4.25(0.49) 4.32(0.53) 0.15(0.12) 0.15(0.12) 0.57(0.26)

DRO 17.72(22.59) 17.98(22.65) 0.5(0.37) 0.5(0.37) 5.76(7.67)

ARL 5.11(1.76) 5.29(1.98) 0.36(0.41) 0.36(0.41) 2.51(3.23)

VFair(Ours) 3.57(0.76) 3.63(0.77) 0.12(0.09) 0.12(0.09) 0.23(0.08)

Improved +0.68 +0.69 +0.03 +0.03 +0.34

4.2 Examine harmless fairness in regression tasks

Table 1 showcases the comparison results of different methods on regression tasks. The standard
deviation calculated from every 10 repeated experiments is presented in the bracket. In the “Improved”
row, we computed the improvement of VFair compared to ERM, where “+” denotes improvement
rather than a numerical increase. Results with significant changes at the 0.05 significance level are
highlighted in green, while others are in yellow. Note that our objective is to gain improvement in
fairness metrics while maintaining utility, non-significant changes in utility are desired. However,
significant drops in utility violate the harmless setting.

According to Table 1, we have the following findings. (1) VFair significantly improves most fairness
metrics with non-significant changes in Utility. Exceptions on C & C and AgeDB are due to their
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specific group partition. C & C is split into 16 groups with some extremely small groups, limiting the
improvement on WU and MAD while VFair still outperforms others on TAD and VAR. AgeDB is
split by gender with a ratio of 4:6, where ERM can also be relatively fair. (2) VFair gains significant
VAR improvement on all datasets, guaranteeing that the group utility disparity remains low for any
downstream sensitive attributes. (3) The utility of the test set turns out clear distinctions among
compared methods because prediction error (MSE) is sensitive to both the possible distribution shift
of test data and model parameters. In this sense, only VFair and ARL can still approach the utility of
ERM while the rest usually cannot. (4) DRO gains utility close to 0.25 on each group (i.e. a uniform
regressor as shown in Fig. 1 (b)) on Law School and COMPAS while using the real prior, shadowed
in gray.

4.3 Examine harmless fairness in classification tasks

In the context of classification, fairness metrics provide limited improvements without compromising
utility (see Appendix F.1 for detailed results). To further investigate the performance gap between
regression and classification tasks, we depict classification losses in Fig. 3 following the same scheme
in Fig. 1 (b) on real dataset COMPAS. Curves on other datasets are left in Appendix F.2.
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Figure 3: Per-example losses for all com-
pared methods sorted in ascending order
on train set.

Our observation. (1) Regardless of the uniform classifier
DRO, our method VFair exhibits a more flattened loss
curve compared to others while maintaining a compara-
ble area under the curve (filled with pink), signifying a
harmless fairness solution. Such results align with our
initial idea, as presented in Fig. 1 (b). (2) Our method
VFair implies the Worst-case fairness, the average loss of
the worst-off group for VFair will be consistently lower
than any other method. Our claim is obviously true if the
group size is small. Regarding a larger group size, thanks
to the fact the total area under each curve is nearly equal
and the curve of VFair is always above others at left, we
conclude that the worst-off group’s losses for VFair are
also the lowest. (3) The vertical dotted blue line represents
the threshold, where the intersection with the loss curve
of VFair values -log(0.5). Divided by it, the samples on
the left are correctly classified, and conversely on the right. As evidenced by the figure, this threshold
is close to each method’s intersection. Imagine a situation where the loss curve rotates around the
decision point with a smaller angle to the x-axis, obtaining a smaller sample disparity. However,
due to the discrete metric and unchanged group partition, the accuracy-based metrics’ values for this
method remain unchanged after rotation. Therefore, despite our method approaching a horizontal
loss curve, thus providing a smaller disparity for any potential group split, the fairness improvement
is still bounded by the overall utility.

Beyond accuracy as utility. Classifying imbalanced data often applies F1-score as a metric, which is
free of the effect on true negative samples which can dominate the accuracy result. We test F1-score
performance on UCI Adult and CelebA because they have a remarkable imbalance ratio. The results
are summarized in Table 2.

Table 2: Classification results (×100) comparison on two imbalanced datasets with F1-score as the
utility metric. The best rank is highlighted in bold.

UCI Adult CelebA
Utility↑ WU ↑ MUD ↓ TUD ↓ Utility↑ WU ↑ MUD ↓ TUD ↓

ERM 75.02 72.17 6.87 8.88 91.40 70.17 19.39 22.82
DRO 36.27 16.06 23.59 41.17 77.52 74.29 3.9 4.78
ARL 74.90 71.85 7.32 9.49 91.60 70.39 20.14 24.33
VFair 75.98 72.74 5.82 7.40 91.91 75.70 14.39 18.50

We observe that on UCI Adult, the earned fairness for each fairness method is still limited while
on CelebA, VFair yields superior performance. A reasonable explanation is that VFair has the
opportunity to discover better solutions in a relatively larger solution space, where more diverse
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minima can be examined through fairness criteria. And though F1-score removes the influence of
true negative samples, it takes the quantified property and hence may only help amply the gains.

From quantized to continuous. For scenarios where prediction error (the difference between
prediction and true label) is desired in classification, e.g., assessing whether a model overestimates
or underestimates, VFair should be more applicable. To justify this insight, we compare fairness
methods (except for FairRF and DRO as they often fall short on utility) on the three datasets reused
for regression tasks. Instead of evaluating specific attributes as we do in Section 4.2, we test VFair on
all possible divisions of the test set by randomly splitting them into K groups. The three methods are
ranked based on their performance under each metric. From the best to the worst, the rank score is 1,
2, and 3. The average rank over 100 times is reported.

Table 3: Average rank of four compared methods. All methods are trained only once.

K = 4 K = 10 K = 20
Utility WU MUD TUD Utility WU MUD TUD Utility WU MUD TUD

UCI Adult

ERM 2.5 2.5 2.31 2.36 2.5 2.51 2.4 2.46 2.5 2.27 2.44 2.39
ARL 2.5 2.41 2.48 2.51 2.5 2.35 2.6 2.54 2.5 2.23 2.56 2.61
VFair 1 1.09 1.21 1.13 1 1.14 1 1 1 1.5 1 1

Law School

ERM 2.7 2.66 2.37 2.36 2.7 2.61 2.52 2.54 2.7 2.52 2.5 2.53
ARL 2.3 2.34 2.36 2.37 2.3 2.39 2.48 2.46 2.3 2.31 2.5 2.47
VFair 2.7 1 1.27 1.27 1 1 1 1 1 1.17 1 1

COMPAS

ERM 2.5 2.21 2.56 2.57 2.5 1.89 2.57 2.56 2.5 1.53 2.58 2.62
ARL 2.5 2.44 2.43 2.42 2.5 1.98 2.43 2.44 2.5 1.56 2.42 2.38
VFair 1 1.35 1.01 1.01 1 2.13 1 1 1 2.91 1 1

Results in Table 3 show that our method VFair has a better rank than other methods regardless of
the choice of K, demonstrating that VFair prefers the utility metrics that are loss/error-related. As
mentioned in Section 4.1, VAR serves as an approximation for an extreme group split, where each
group consists of only one member. Thus, the significantly low VAR in Table 1 and Table 5 implies
good results in random partitions on the test set, evidencing that variance can serve as an effective
optimized term in Rawlsian fairness tasks without prior demographic information.

4.4 A closer look at VFair

We examine our VFair through extensive experiments. Here we present the partial results and main
conclusions. One can refer to Appendix F.2, F.3, and F.4for more details.
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(a) Training results on COMPAS
in the classification task.
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(c) The curves of λ1 and λ2 during
training on C & C.

Figure 4: Experimental verification of the harmless update strategy.

Method efficacy. We monitor the performance of VFair during the training phase by evaluating it
with four utility-related metrics on the test set of COMPAS. Fig. 4 (a) indicates these curves naturally
improve in the desired direction under the variance penalty, verifying the effectiveness of our method.

Ablation study. We train our model under four settings: λ = 1, λ = max(λ1, 0), λ = λ2, and
λ = max(λ1, λ2). As depicted in Fig. 4 (b), we present the per-dataset utility on five regression
datasets (results are proportionally scaled on each dataset for a clearer presentation). The full version,
considering both λ1 and λ2, exhibits the most stability in preserving low MSE, enabling a harmless
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solution. In Fig. 4 (c), we demonstrate an example of λ1 and λ2 on C & C dataset during training,
where both serve distinct and complementary roles in preventing the model from sacrificing utility.

Model examination. We scrutinize the fair models by studying their parameters and prediction
similarity with ERM. Our experiments found that the model learned by VFair is more dissimilar from
ERM than other methods. For example, on Law School, the cosine similarity of model parameters in
ARL and VFair with ERM is 0.6106 and 0.5839, respectively. This indicates that VFair may explore
a larger model space to achieve better performance.

5 Conclusion

Towards harmless Rawlsian fairness regardless of demographics, we have introduced a straightforward
yet effective variance-based method VFair. VFair harnesses the principle of decreasing the variance of
losses to steer the model’s learning trajectory, thereby bridging the utility gaps appearing at potential
group partitions. The optimization with a devised dynamic weight parameter operated at both the loss
and gradient levels, ensuring the model converges at the fairest point within the optimal solution set.
By capping the Z-score, our dynamic weight parameter can also prevent the model from overfocusing
on outliers with larger losses. The experiments affirm that regression can be a prior-free task to
Rawlsian harmless fairness because error-based metrics are more consistent with loss. Strong prior
for demographics may be needed for quantized metrics like accuracy in classification tasks. As
discussed in Appendix G, limitations may arise from computational costs, where VFair takes twice
the time of ERM to uncover more information without access to demographic prior. Future work will
involve identifying and addressing further challenges that may arise when applying VFair for the
prediction of non-IID data.
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A Proof of Proposition 1

Proposition 1. u ⊥ s holds for any s that splits data into a number of groups, if and only if the loss ℓ
is (approximately) independent of the training example z, i.e., ℓ ⊥ z.

Proof. Suppose that s splits data into K disjoint groups. Let the random variable k represent the
group index. We can rephrase the statement as ∀s, u ⊥ k|s⇔ ℓ ⊥ z, which is established through
the following two steps.

Step 1. Since proving “∀s, u ⊥ k|s ⇒ ℓ ⊥ z” is difficult, we consider its contrapositive, i.e.,
“ℓ ̸⊥ z ⇒ ∃s, u ̸⊥ k”. If the value of ℓ spreads across a large range, indicating some examples are
well-fitted (small loss) while others are not (large losses), we can simply let s split them according to
if well-fitted. Since u1 ̸= u2, u ̸⊥ k follows.

Step 2. The assertion, “ℓ ⊥ z ⇒ ∀s, u ⊥ k”, is true when the condition ℓ ⊥ z is strictly satisfied.
Particularly, if a quantized utility is applied, e.g., accuracy, the assertion holds even if we relax
the condition–ℓ exhibits approximate dependence on z. Two distinct scenarios arise. (i) All losses
are concentrated in proximity to the decision boundary, resembling the characteristics of a uniform
classifier. In the context of a finite partition by s, the accuracy of each subgroup within a uniform
classifier statistically converges towards 0.5 for a binary classification. (ii) All losses are conspicu-
ously distanced from the decision boundary, akin to an ideal classifier. In this case, an ideal classifier
consistently achieves a subgroup accuracy of 1, irrespective of the chosen split. In both situations, we
can indeed conclude that ∀s, u ⊥ k|s. □

B Fairness objective

B.1 Proof of Theorem 1

To prove Theorem 1, we need the following lemma.

Lemma 1. Given N non-negative numbers {vi}Ni=1, the following inequality holds

max
i∈[N ]

vi − min
i∈[N ]

vi ≤
N−1∑
i=1

|vi − vi+1|. (10)

Proof. Let a = min

(
argmin
i∈[N ]

vi, argmax
i∈[N ]

vi

)
, b = max

(
argmin
i∈[N ]

vi, argmax
i∈[N ]

vi

)
. According to

the triangle inequality, we have

max
i∈[N ]

vi − min
i∈[N ]

vi = |max
i∈[N ]

vi − min
i∈[N ]

vi| ≤
b∑

i=a

|vi − vi+1|

≤
N−1∑
i=1

|vi − vi+1|.

Particularly, the equality holds if {vi}Ni=1 are arranged in monotonic order.

Theorem 1. ∀s ∈ S,∀θ ∈ Θ, ℓMUD ≤ C
√

Vz[ℓ(z; θ)], where C is a constant.

Proof. Let rk denote the expected loss of k-th group. We have
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ℓMUD := max
k∈[K]

rk − min
k∈[K]

rk ≤ max
i∈[N ]

ℓi − min
i∈[N ]

ℓi

1
≤

N−1∑
i=1

|ℓi − ℓi+1| (11)

≤
N∑
i<j

|ℓi − ℓj |
2
≤

√√√√C2
N

N∑
i<j

|ℓi − ℓj |2

3
= N

√
C2

NVz[ℓ(z; θ)] (12)

4
≤ C2

NN2

L
Vz[ℓ(z; θ)] (13)

where 1 follows inequality given by Lemma 1, 2 uses the norm inequality of ||x||1 ≤√
dim(x)||x||2, 3 is derived from the fact that Vz[ℓ(z; θ)] =

1
N2

∑N
i<j(ℓi − ℓj)

2, and 4 is similar

to 2 and further uses
∑N

i<j |ℓi − ℓj | ≥ L. □

Note that Theorem 1 adopts the result of Eq. 12 which scales one side by a factor N , making it not
a very tight bound. However, we justify that this option is more efficient than others in the next
subsection. Additionally, although we start with ℓMUD, it is easy to verify that the derived bound also
serves as a proxy for other utility disparity metrics, e.g., TUD.

B.2 Option of loss for Rawlsian fairness

To compare the efficacy of three forms of fairness loss, i.e., Eqs. 11, 12, and 13, we denote each as π̂,
σ̂2, and σ̂ respectively:

• π̂ =
∑N−1

i=1 |ℓi − ℓi+1| (Pairwise)

• σ̂ = 1√
N

√∑N
i=1(ℓi − µ̂)2 (Standard deviation)

• σ̂2 = 1
N

∑N
i=1(ℓi − µ̂)2 (Variance)

Here, we analyze the choice of the objective from both theoretical and experimental levels. The
experiment results are shown in Table 4.

Table 4: Comparison of three fairness objectives on four benchmark datasets, where the utility-based
results are with %, and the results of VAR are ×102 for a neat presentation. Best results are in bold.

Objective Utility ↑ WU↑ MUD↓ TUD↓ VAR↓

UCI Adult
π̂ 82.98 78.35 16.19 21.10 0
σ̂2 84.70 80.34 15.72 20.79 7.18
σ̂ 84.74 80.36 15.71 20.71 8.17

Law School
π̂ 84.05 72.96 11.92 22.51 0.03
σ̂2 85.33 74.60 11.67 20.91 6.91
σ̂ 85.40 74.81 11.24 20.31 19.35

COMPAS
π̂ 55.78 51.60 8.70 12.24 0
σ̂2 63.45 59.14 8.71 11.36 0.04
σ̂ 66.80 63.86 6.25 8.47 1.86

CelebA
π̂ 44.88 20.16 49.16 53.85 0
σ̂2 92.45 89.53 3.44 4.63 14.4
σ̂ 93.43 91.09 2.73 3.85 11.7
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Pairwise difference objective. Eq. 11 computes the consecutive pairwise difference of all training
losses. Putting it under the proposed harmless update, we need to particularly get the dynamic value
for λ2.

Similar to Eq. 8, the λ2 is set to guarantee samples will not be assigned negative weights.

∇π̂ = ∇
N−1∑
i=1

|ℓi − ℓi+1| = ∇
N∑
i=1

ϕiℓi =

N∑
i=1

ϕi
∂ℓi
∂θ

(14)

By inspecting the possible combination of the absolute equation, it is obvious that ϕ1, ϕN ∈ {−1, 1},
and ϕi ∈ {−2, 0, 2},∀i ∈ (1, N). Consequently, λ2 can be calculated as:

∀i ∈ [N ] λ+ ϕi ≥ 0 =⇒ λ ≥ 2 := λ2 (15)

When operated on a mini-batch, unlike σ̂ and σ̂2, the pairwise difference objective does not consider
global information, losing the relative relationships when attempting to identify the Worst-case group
(also discussed in Appendix D). The instability arising from the difference of pairwise sample losses
might mislead the upgrading process, as evidenced in our experiments. On challenging datasets such
as COMPAS and CelebA, the model tends to converge towards a uniform classifier, even constrained
by dynamic parameters.

Variance objective. By dropping constant factor of Eq. 13, we employ σ̂2 = 1
N

∑N
i=1(ℓi − µ̂)2 as

secondary objective. Similar to the proof of Theorem 2, we have

∇ = λ∇µ̂+∇σ̂2

=
1

N

N∑
i=1

(λ+ 2 (ℓi − µ̂))
∂ℓi
∂θ

(16)

Consequently, we get λ2 = 2
(
µ̂−mini∈[N ] ℓi

)
.

It can be observed from Eq. 13 that σ̂2 serves as a broader constraint for ℓMUD. As a result, it is a less
restrictive objective for group disparity compared to σ̂. However, the square-version term penalizes
more on both smaller and larger losses, resulting in an unavoidable decrease in overall utility (e.g.,
unreliable data with spurious correlation) and hence on all utility-based fairness metrics. Please see
the evidential experiments in Table 4 that using σ̂2 as objective results in lower variance but higher
group disparity.

C Proof of Theorem 2

Theorem 2. Given the objective of Eq. 2, the combined gradient derived by the update scheme of
Eq. 5 can be expressed with an example-reweighting form,

∇ = λ∇µ̂+∇σ̂ =
1

N

N∑
i=1

(
λ+

1

σ̂
(ℓi − µ̂)

)
︸ ︷︷ ︸

wi

∂ℓi
∂θ

.

Proof. Based on the form of µ̂(θ) and σ̂(θ) in Eq. 2, we have

∇µ̂ =
1

N

N∑
i=1

∂ℓi
∂θ

(17)
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∇σ̂ =
1

2
√

1
N

∑N
i=1(ℓi − µ̂)2

1

N

N∑
j=1

2(ℓj − µ̂)
∂(ℓj − µ̂)

∂θ

=
1

N

N∑
j=1

ℓj − µ̂

σ̂

∂ℓj
∂θ
− 1

Nσ̂

N∑
j=1

(
(ℓj − µ̂)

1

N

N∑
k=1

∂ℓk
∂θ

)

=
1

N

N∑
j=1

ℓj − µ̂

σ̂

∂ℓj
∂θ

− 1

Nσ̂

 N∑
j=1

ℓj

−Nµ̂


︸ ︷︷ ︸

=0

(
1

N

N∑
k=1

∂ℓk
∂θ

)
(18)

The example-reweighting form of gradients follows by unifying Eq. 17 and 18. □

D Implementation and algorithm

To enable the application on large datasets, we provide a mini-batch update strategy. It is worth
noting that the mean loss encompasses global information that could guide the update direction
for each sample. The variance on a mini-batch computed on a local mean loss may cause unstable
optimization, especially when the batch size is small. As such, we consider maintaining a global
mean which assists with the mini-batch update. To this end, we employ Exponential Moving Average
(EMA) as an approximation for the global mean loss:

µ̂t = βµ̂t−1 +
1− β

b

b∑
i=1

ℓi, (19)

where the decay parameter β is set 0.99 for all datasets in our experiments, and b denotes batch size.
The comprehensive implementation of our VFair is elucidated in the following algorithm.

Algorithm 1 Harmless Rawlsian Fairness without Demographics via VFair.
Input: Training set D = {zi}Ni=1, where zi = (xi, yi) ∈ X × Y
Output: Learned model parameterized by θ ∈ Θ

1: Initialize parameters θ
2: Initialize µ̂0 ← 0
3: for epoch← 1 to Nepochs do
4: for mini-batch B ⊂ D do
5: Compute the losses {ℓi}bi=1
6: Update µ̂t as in Eq. 19

7: Update σ̂ ←
√

1
b

∑b
i=1(ℓi − µ̂t)2

8: Compute primary gradient∇µ̂
9: Compute secondary gradient∇σ̂

10: Compute λ1 as in Eq. 6
11: Compute λ2 as in Eq. 8
12: Compute dynamic λt as in Eq. 9
13: Update parameters θ as in Eq. 5
14: end for
15: end for

E Experimental setup details

All the deep-learning-based models, excluding FairRF, which operates within a distinct problem
setting, conform to a shared neural network framework. Specifically, for binary classification tasks,
the core neural network architecture consists of an embedding layer followed by two hidden layers,
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with 64 and 32 neurons, respectively. In the ARL model, an additional adversarial component is
integrated, detailed in its respective paper, featuring one hidden layer with 32 neurons. For multi-
classification tasks, the primary neural network transforms into Resnet18, and the embedding layer
transitions to a Conv2d-based frontend. Throughout these experiments, the Adagrad optimizer
was employed. FairRF, utilizing its officially published code implementation, maintains the same
backbone network with nuanced variations in specific details. Particularly, fair regression methods
MPFR and FKL are implemented adapted from [15].

As For the loss function, we implemented Binary Cross-Entropy, Cross-Entropy, and Mean Square
Error for binary classification, multi-class classification, and regression tasks, respectively. Note that
our method is general and can be compatible with any other forms of loss.

All experiments were conducted on Ubuntu 20.04 with one NVIDIA GeForce RTX 3090 graphics
processing unit (GPU), which has a memory capacity of 24 GB.

To compare all baselines under the harmless fairness setting, we implement them into the same
scheme and select the epoch with the nearest loss compared to a converged ERM. Detailedly, each
method has an empirical loss, which in our method is denoted as µ̂ and in ARL is denoted as learner
loss (compared to adversarial loss). Based on this loss, we select the harmless epoch which has the
nearest loss value compared to a well-trained ERM model.

F More experimental results

F.1 Experimental results on classification tasks

Table 5: Comparison of classification results on four benchmark datasets, where the results of utility
(i.e., accuracy) based metrics are with % and the results of VAR are ×102 for a neat presentation.

Utility ↑ WU ↑ MUD ↓ TUD ↓ VAR ↓

UCI Adult

ERM 84.67(0.58) 80.20(0.82) 16.13(0.82) 20.78(0.99) 33.89(4.77)

DRO 74.39(9.74) 69.82(0.36) 16.89(0.35) 27.26(0.24) 0
ARL 84.60(0.63) 80.11(0.91) 16.17(1.05) 20.91(0.95) 36.18(8.41)

FairRF 84.27(0.13) 80.01(0.15) 15.73(0.18) 20.26(0.58) 25.83(1.38)

VFair 84.74(0.34) 80.36(0.49) 15.71(0.73) 20.71(0.80) 08.17(0.98)

p-value 0.08 0.54 0.24 0.86 0

Law School

ERM 85.59(0.67) 74.49(1.84) 12.08(2.74) 21.50(3.35) 36.95(1.37)

DRO 59.76(9.69) 52.28(5.07) 10.49(6.31) 16.56(11.87) 244.81
ARL 85.27(0.71) 74.78(2.12) 11.52(2.21) 21.52(1.97) 37.95(1.80)

FairRF 81.91(0.27) 68.75(1.61) 14.48(1.65) 26.84(2.20) 30.80(1.59)

VFair 85.40(0.99) 75.25(1.51) 11.00(1.92) 19.91(2.43) 06.29(0.24)

p-value 0.62 0.33 0.32 0.24 0

COMPAS

ERM 66.70(0.66) 63.20(1.64) 07.15(1.46) 09.12(1.79) 15.63(3.38)

DRO 24.97(0.50) 25.05(1.27) 0.12(1.08) 0.17(1.77) 0
ARL 66.65(0.55) 63.27(1.99) 06.93(1.83) 09.09(3.71) 14.42(3.64)

FairRF 62.90(0.43) 61.55(1.06) 02.64(1.55) 03.69(2.1) 06.93(1.26)

VFair 66.80(0.27) 63.86(0.57) 06.25(0.8) 08.47(1.23) 1.86(0.12)

p-value 0.66 0.24 0.1 0.36 0

CelebA

ERM 92.80 89.77 03.64 04.77 40.08
DRO 83.97 82.19 2.37 2.7 21.48
ARL 93.26 89.84 04.02 05.41 37.38

FairRF - - - - -
VFair 93.43 91.09 02.74 03.85 11.70

From the experimental results in Table 5, we can observe that: (1) VFair, without any prior, consis-
tently achieves top-2 performances in classification tasks, competing with or outperforming baselines
that use priors, e.g., DRO and FairRF. However, except for VAR, metrics earn limited improvements.
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We calculated the p-value for each metric between ERM and VFair to quantify the limitation. The
results show that the p-value of metrics, except for VAR, remains high. Generally, a p-value less than
0.05 is considered indicative of a significant difference between the two groups. Even with the same
datasets, especially on COMPAS, it is found that harmless Rawlsian fairness is difficult to earn for
classification while comparatively easier for regression tasks. (2) From the Utility dimension, FairRF
and DRO sometimes fail to guarantee a comparable utility, because constraining group fairness
on their proxy attributes unavoidably hurts the overall model performance. With this cost, they
sometimes achieve a noteworthy fairness improvement. Note that DRO turns into a uniform classifier
on COMPAS, shadowed in gray. (3) CelebA seems an exception where VFair attains meaningful
fairness improvement while others do not. A reasonable explanation is that VFair has the opportunity
to discover better solutions in a relatively larger solution space, where more diverse minima can be
examined through fairness criteria. (4) We also notice that because we explicitly optimize variance,
VAR has been remarkably decreased in VFair across all datasets, showing flattened prediction errors
on all test sets.

F.2 VFair training curves
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(d) CelebA

Figure 5: Full version of per-example losses for all compared methods sorted in ascending order on
the training set of four benchmark classification datasets. Dash lines represent their average losses.
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(d) CelebA

Figure 6: Full version of test performance curves of four utility-based fairness metrics during the
training process (Step/5) on four benchmark datasets with Accuracy served as the utility.
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Figure 7: The loss curve of primary objective during the training process on four benchmark datasets.

We depict the full version of the per-sample losses for all compared methods sorted in ascending
order on the training set in Fig. 5. From Fig. 5, we surprisingly see that across different datasets our
VFair is the unique one that has the flattened curve while DRO, ARL, and FairRF are essentially
close to ERM.

18



The full version of test performance curves of four utility-related metrics during the training process
on four benchmark datasets are present in Fig. 6. Our VFair effectively improves all utility-related
metrics.

Fig. 7 illustrates the convergence of training loss on four benchmark datasets. As the final combined
objective is updated directly at the gradient level, which does not have a unified loss form, we display
the curve of losses of the primary objective, representing the model’s utility. We observe that our
upgrading method in Eq. 7 effectively steers the model towards convergence. Note that our dynamic
updating strategy is similar to [28], which is theoretically proven to converge.

F.3 Detailed ablation results

According to the ablation setting in Section 4.4, we conducted throughout experiments on the
classification task and the regression task, respectively.

As shown in Table 6, our method already achieves competitive results by solely employing λ2. The
full version which integrates both λ1 and λ2 demonstrates more stable results. Notably, on the Law
School and COMPAS datasets, there exist situations when the model converges towards a uniform
classifier, as indicated by the gray region. These uniform classifiers predict all the samples near the
decision boundary, causing their losses to share very similar values and form variances at a scale of
around 1e− 7. This phenomenon underscores the effectiveness of λ2 in preventing the model from
collapsing to a low-utility model. Moreover, by adding λ1, our method consistently improved in four
utility-related metrics. These results show that λ1 effectively guides the model to converge to a better
point at the gradient level.

Table 6: Comparison of classification ablation results (%) on four benchmark datasets. All of the
results are averaged over 10 repeated experiments to mitigate randomness, with the best results
highlighted in red and the second-best in blue (excluding the uniform situation).

λ1 λ2 Utility ↑ WU ↑ MUD ↓ TUD ↓ VAR ↓

UCI Adult

λ = 1 84.71(0.32) 80.36(0.44) 15.85(0.65) 20.94(0.72) 3(0.32)

✓ 84.68(0.36) 80.27(0.50) 15.91(0.63) 20.97(0.89) 7.75(0.81)

✓ 84.52(0.44) 80.08(0.65) 15.99(0.73) 20.92(0.56) 6.58(1.15)

✓ ✓ 84.74(0.34) 80.36(0.49) 15.71(0.73) 20.71(0.80) 8.17(0.98)

Law School

λ = 1 84.36(0.11) 74.30(0.84) 10.88(0.95) 20.73(1.63) 0.05(0.02)

✓ 85.40(0.30) 75.09(0.58) 11.20(0.82) 20.43(1.66) 6.3(0.14)

✓ 45.39(28.53) 32.03(14.79) 30.31(3.41) 53.12(5.08) 0(0)

✓ ✓ 85.40(0.99) 75.25(1.51) 11.00(1.92) 19.91(2.43) 6.29(0.24)

COMPAS

λ = 1 55.21(2.43) 49.90(3.44) 10.51(4.34) 13.28(5.51) 0(0)

✓ 64.29(0.99) 60.44(3.63) 7.34(3.76) 9.67(4.87) 0.03(0.02)

✓ 66.45(0.85) 63.49(1.90) 6.60(2.40) 8.40(3.12) 1.91(0.24)

✓ ✓ 66.80(0.27) 63.86(0.57) 6.25(0.80) 8.47(1.23) 1.86(0.12)

CelebA

λ = 1 92.04 89.22 3.66 4.65 0.1269
✓ 93.46 90.62 3.49 4.67 0.1161

✓ 93.23 90.08 3.70 5.14 0.0753
✓ ✓ 93.43 91.09 2.73 3.85 0.1170

As shown in Table 7, simply employing λ = 1 or λ1 can reach more significant fairness improvement,
but at the cost of sacrificing utility. The full version considering both λ1 and λ2 is the only one
containing harmless on all datasets, which was discussed in Section 4.4.

F.4 Model similarity with ERM.

We examine the similarity between fair models and an ERM model. We conduct experiments
comparing ERM, DRO, ARL (without adversary network), and VFair, as they share the same model
structure. By calculating the Cosine similarity of model parameters and prediction similarity with
ERM as a reference, we get results shown in Table 8.
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Table 7: Comparison of regression ablation results (%) on four benchmark datasets. All of the results
are averaged over 10 repeated experiments to mitigate randomness, with the best results highlighted
in red and the second-best in blue (excluding the uniform situation).

λ1 λ2 Utility ↓ WU ↓ MUD ↓ TUD ↓ VAR ↓

UCI Adult

λ = 1 15.53(0.64) 17.47(0.46) 6.94(0.71) 11.27(1.22) 0.89(0.18)

✓ 12.62(0.28) 15.26(0.18) 9.55(0.53) 15.50(0.88) 1.63(0.22)

✓ 11.43(0.25) 14.14(0.25) 9.78(0.44) 15.97(0.75) 2.44(0.40)

✓ ✓ 11.49(0.27) 14.24(0.34) 9.92(0.39) 16.25(0.73) 2.52(0.43)

Law School

λ = 1 24.22(0.13) 24.55(0.07) 0.36(0.07) 0.66(0.13) 0.01(0)

✓ 17.39(0.31) 20.77(0.29) 3.73(0.08) 7.10(0.20) 0.85(0.07)

✓ 12.90(0.12) 19.01(0.15) 6.60(0.13) 12.51(0.21) 3.63(0.13)

✓ ✓ 12.95(0.11) 19.08(0.22) 6.63(0.18) 12.53(0.25) 3.66(0.12)

COMPAS

λ = 1 24.92(0.06) 25.03(0.11) 0.24(0.13) 0.34(0.17) 0.02(0.01)

✓ 23.17(0.16) 23.86(0.20) 0.91(0.20) 1.18(0.28) 0.45(0.07)

✓ 24.79(0.04) 24.92(0.10) 0.24(0.11) 0.31(0.13) 0.02(0.01)

✓ ✓ 23.15(0.13) 23.83(0.21) 0.93(0.21) 1.17(0.28) 0.47(0.07)

C & C

λ = 1 40.63(0.67) 106.52(1.92) 105.58(2.06) 315.92(7.62) 68.69(3.75)

✓ 41.32(0.65) 106.28(2.26) 104.22(2.85) 315.11(7.19) 66.96(3.05)

✓ 44.92(1.21) 106.21(2.65) 96.55(2.11) 299.77(5.95) 60.54(2.37)

✓ ✓ 41.17(0.64) 106.40(2.66) 104.54(3.11) 318.33(8.96) 67.44(3.36)

Table 8: Similarity between fair models and an ERM model on three benchmark datasets.
Cosine Similarity Prediction Similarity

DRO ARL VFair DRO ARL VFair

UCI Adult 0.2956 0.9957 0.9955 32.75% 97.45% 96.55%
Law School 0.1693 0.6106 0.5839 37.19% 95.61% 95.91%

CelebA 0.1663 0.1886 0.1474 66.47% 95.41% 94.62%

As evidenced by Law School and CelebA, similar predictions do not necessarily indicate similar
model parameters. Note that VFair could be more distinct from ERM compared to other fair models,
especially on complicated image dataset CelebA. The better fairness improvement in Table 5 also
proves that VFair can explore different minima in broader model space, guiding the model to converge
to a fairer point.

F.5 Regression results on UCI Adult

Table 9: Comparison of regression results (×102) on UCI Adult. Here, ↓ is for Utility and WU
because MSE is used, and smaller values indicate better utility.

Utility ↓ WU ↓ MUD ↓ TUD ↓ VAR ↓

UCI Adult

ERM 11.37(0.77) 14.34(1.13) 10.83(1.16) 17.72(2.00) 4.94(1.01)

DRO 22.54(0.78) 23.13(0.57) 2.12(0.87) 3.54(1.4) 0.12(0.06)

ARL 11.70(0.39) 14.78(0.49) 11.23(0.54) 18.26(0.82) 4.63(0.69)

MPFR - - - - -
FKL - - - - -

VFair 11.49(0.27) 14.24(0.34) 9.92(0.39) 16.25(0.73) 2.52(0.43)

Improved -0.12 +0.1 +0.91 +1.47 +2.42

Table 9 shows the compared regression results on the UCI Adult dataset. Note that MPFR and
FKL are not designed with stochastic updates and they suffer from out-of-memory issues under our
experimental setup on the UCI Adult dataset.
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F.6 Comparison with Rawlsian fair classification methods with sensitive attributes

Table 10: Comparison with methods with access to attributes, where the utility-based results are with
%, and the results of VAR are ×102 for a neat presentation.

Utility ↑ WU ↑ MUD ↓ TUD ↓ VAR ↓

UCI Adult
PMG 79.48 73.02 22.36 27.85 416.86

MMPF 85.33 81.23 12.78 14.38 -
VFair 84.74 80.36 15.71 20.71 8.17

Law School
PMG 78.52 70.14 9.47 15.59 81.83

MMPF 82.72 74.70 9.92 18.57 -
VFair 85.40 75.25 11.00 19.91 6.29

COMPAS
PMG 53.52 49.14 9.97 10.58 13.21

MMPF 66.39 63.91 2.15 5.44 -
VFair 66.80 63.86 6.25 8.47 1.86

We have further supplemented control experiments, where the model has access to sensitive attributes
and is optimized under constrained regularization. In detail, we reproduced the MMPF in [25] and
further designed experiments that penalize the losses of the minority group, denoted as PMG. As
MMPF is not applicable to image datasets, the results are conducted on three benchmark datasets
shown in Table 10. By leveraging additional group information, MMPF achieves improved fairness
results, showing that group priors are indeed needed for significant fairness improvement in classifi-
cation tasks. However, MMPF is not a harmless approach, particularly evident on Law School, where
it sacrifices model utility for a fairer point. PMG yields unsatisfactory performance consistently due
to its excessive focus on the minority group, missing general information from other groups.

G Computational costs

Since the backward pass is the bottleneck of the total computation, we found that VFair requires
approximately twice the computation time compared to the ERM method, as shown in Table 11 with
the Law School dataset as an example. Note that ARL, an adversarial method, requires a comparable
wall-clock time to VFair due to its inner and outer optimization nature.

Table 11: Comparison of four methods’ wall-clock time on Law School with the same experimental
setup.

Method ERM DRO ARL VFair

Time 349.4s 243.5s 640.1s 677.6s
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We highlighted our method VFair’s contributions in abstract and the last
paragraph in Section 1(Introduction).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limited improvement on accuracy-base metric tasks in
Section 4.3 on harmless Rawlsian Fairness problems. Moreover, the limitation of computa-
tional costs is discussed in Appendix G.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We give the proof of proposition and theorems in Appendix A, Appendix B.1,
and Appendix C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the algorithm of our method in Appendix D and the full code in
supplemental materials including our method and compared methods.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our provided code includes dependencies, training codes, testing codes,
README file and some ready-to-use datasets.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the training and testing details in Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Table 1 shows the strandard deviation in the bracket. Results with significant
changes at the 0.05 significance level are highlighted in green, while those with non-
significant changes are highlighted in yellow. Table 5 directly show the p-value between
results from ERM and VFair.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the details of experiments compute resources in Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our paper follows the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The main topic of our paper is how to improve fairness in machine learning or
deep learning.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .

Justification: All the original paper and code are correctly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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