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ABSTRACT

The non-stationary nature of time series data in many real-world applications makes
accurate time series forecasting challenging. In this paper, we consider concept
drift where the underlying distribution or environment of time series changes. We
first classify concepts into two categories, macro-drift corresponding to stable
and long-term changes and micro-drift referring to sudden or short-term changes.
Next, we propose a unified meta-learning framework called LEAF (Learning to
Extrapolate and Adjust for Forecasting). Specifically, an extrapolation module
is first meta-learnt to track the dynamics of the prediction model in latent space
and extrapolate to the future considering macro-drift. Then an adjustment module
incorporates meta-learnable surrogate loss to capture sample-specific micro-drift
patterns. Through this two-stage framework, different types of concept drifts
can be handled. In particular, LEAF is model-agnostic and can be applied to
any deep prediction model. To further advance the research of concept drift on
time series, we open source three electric load time series datasets collected from
real-world scenarios, which exhibit diverse and typical concept drifts and are
ideal benchmark datasets for further research. Extensive experiments on multiple
datasets demonstrate the effectiveness of LEA

1 INTRODUCTION

Accurate time series forecasting (Hyndman & Athanasopoulos} 2018; Benidis et al.}[2022) is of great
importance in many domains, such as stock market (Cavalcante & Oliveira, [2014; [Shahi et al.| [2020),
weather (B1 et al., 2023)), energy (Yang et al., 2023} |Hong et al.| [2020), etc. In many real-world
applications, time series data arrives as a stream. It is observed that the non-stationary nature of the
times series data in many scenarios makes the model trained on the historical data outdated and leads
to unsatisfying forecasting on the new data (Liu et al., [2023bj; |Pham et al.| 2023). Thus, there is a
growing interest in online time series forecasting, where the deployed model can swiftly adapt to
non-stationary environments.

Formally, in this paper we study the concept drift problem in time series forecasting, which refers to
the changing underlying distributions or environments. There are many classifications of concept
drifts in times series. For example, in (Liu et al.,[2023b)), the concept drift is categorized into two types:
real concept drift and virtual concept drift. Other concept drift groups include sudden concept drift,
incremental concept drift, gradual concept drift, and recurring concept drift. In this paper, we divide
it into two distinct categories, macro-drift and micro-drift, as illustrated in Figure[I} Specifically,
macro-drift refers to stable and long-term changes in the characteristics or patterns of time series,
which can be identified and characterized by analyzing a significant period of data. For instance,
the electric power load time series exhibits a growth trend influenced by factors such as population
growth and economic development. On the other hand, micro-drift refers to sudden or short-term
changes in time series. Data exhibiting micro-drift may deviate from the current distribution. An
example is the noticeable increase in traffic volume time series during rainy days and holidays.

Currently, the research of concept drift in time series faces several challenges. The first challenge is
the lack of benchmark datasets for concept drifts. Good benchmark datasets play an importance role

'Code and data are available at https: //anonymous . 4open.science/r/LEAF-66C4
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Figure 1: (a) Illustratlon of Macro- and Mlcro-Drift of Time Series. (b) Design Concept of LEAF.

in the advancements of the field, such as ImageNet (Deng et al.| 2009)) for the CV field. Unfortunately,
the field of time series analysis field lacks benchmark datasets with high quality. Although some
benchmark datasets are proposed for different time series tasks, most of them are challenged for their
quality (Hahn et al.}2023)). On the other hand, as pointed in (Hahn et al.| 2023)), the non-stationary
time series benchmark datasets are missing in the current time series benchmark datasets, which
hinders the development of forecasting algorithms for concept drift. The second challenge lies in the
difficulty of handling different types of drifts in forecasting algorithms. The presence of complex
macro- and micro-drift, as well as their potential superposition, makes capturing the evolving patterns
in time series data challenging. These drifts frequently occur in real-world scenarios, making it
imperative for our models to possess the capability to comprehend the concept drift phenomenon and
further effectively infer the future environment.

To address the concept drift problem in online time series forecasting, we propose a unified meta-
learning framework called LEAF (Learning to Extrapolate and Adjust for Forecasting). LEAF is
model-agnostic and can be applied to any deep prediction model, making it highly versatile. It learns
a low-dimensional latent embedding of parameters of the target prediction model, allowing it to
effectively track the dynamics of the model in response to concept drift in the time series. Optimization
in the low-dimensional space conforms to the characteristics of concept drift and alleviates the over-
fitting issue. Specifically, LEAF consists of two stages: extrapolation and adjustment, to deal with
macro- and micro-drift, respectively. In the extrapolation stage, a meta-learnt extrapolation network
is employed to utilize the optimal latent embeddings from past periods and infer the latent embedding
for the next period. This enables LEAF to capture and anticipate the macro-drift. In the adjustment
stage, to handle micro-drift with diverse types and extensions, we introduce a meta-learnable surrogate
loss for each sample, which guides the adjustment of inferred latent embedding above to become
sample-specific ones. This empowers the model to capture micro-drift patterns accurately. By
learning to extrapolate and adjust, the proposed LEAF framework offers a promising solution to
overcome the challenges posed by concept drift in online time series forecasting, providing improved
forecasting accuracy in dynamic and evolving environments.

Moreover, for the problem of limited time series benchmark datasets for concept drift, we collect
and open source three real-world electric load time series datasets. These datasets exhibit typical
and diverse types of concept drift, making them ideal to evaluate and compare different forecasting
algorithms. To validate the effectiveness of LEAF, we conduct extensive experiments on the three
electric load datasets as well as existing public benchmark datasets. Specifically, we apply LEAF to
various types of deep prediction models, such as MLP, RNN, CNN, and Transformer-based models.
Through evaluating LEAF’s performance of different prediction models on datasets from various
domains, we establish the universality and effectiveness of LEAF and highlight its robustness and
applicability in addressing concept drift in online time series forecasting.

To summarize, our contributions to this work are threefold:

* We propose the LEAF framework, a unified model-agnostic meta-learning framework that
effectively addresses the challenges posed by concept drift in online time series forecasting.
It learns to extrapolate and adjust the target prediction model in latent space and handle
macro- and micro-drifts effectively.

* We open source three electric load time series datasets collected from real-world scenarios.
These datasets exhibit diverse and typical concept drifts and are ideal benchmark datasets
for the study of concept drift. We believe that the real and challenging datasets can advance
and promote the research of concept drift in time series.

* We conduct extensive experiments on multiple public and real-world time series benchmark
datasets, demonstrating the superior performance of LEAF compared to existing approaches
in various dynamic and evolving environments.
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2 RELATED WORK

2.1 DEEP TIME SERIES FORECASTING

In recent years, deep learning-based forecasting methods have gained prominence within the time
series forecasting landscape. Models such as FC-LSTM (Sutskever et al., 2014) combine LSTM net-
works with fully-connected layers to make predictions. TCN (Bai et al., 2018)) introduces causal and
dilated convolutions, providing a framework to model temporal patterns effectively. DeepAR (Salinas
et al.} 2020), on the other hand, is an LSTM-based model that predicts the parameters of future value
distributions. Most notably, Transformer-based models have surged to the forefront (Wen et al., [2023)).
These models leverage attention mechanisms to capture long-term temporal dependencies efficiently.
For example, LogTrans (Li et al.| | 2019) introduces local/log-sparse attention, while Reformer (Kitaev
et al.| |2020) approximates attention with locality-sensitive hashing. Informer (Zhou et al., [2021)
employs sparsity queries for attention, and Autoformer (Wu et al., 2021)) introduces series decompo-
sition and time delay aggregation for improved periodicity modeling. FEDformer (Zhou et al., [2022)
proposed that time series data can be effectively represented in the frequency domain, leading to the
development of a frequency-enhanced Transformer with O(L) complexity. Quatformer (Chen et al.,
2022)) took a novel approach by introducing learning-to-rotate attention (LRA) based on quaternions,
infusing models with learnable period and phase information to capture intricate periodical patterns.
Some recent developments include DLinear (Zeng et al.l [2023)), PatchTST (Nie et al., 2023)), etc.
Unfortunately, all these deep learning algorithms cannot handle concept drift quite well. Our proposed
LEAF is a unified model-agnostic meta-learning framework resolving concept drift problems and can
be applied to all deep prediction models mentioned above, which is confirmed by our experiments on
MLP, RNN, CNN, and Transformer-based models on multiple datasets.

2.2 CONCEPT DRIFT AND ONLINE LEARNING

Addressing concept drift in online time series forecasting requires innovative strategies. A common
approach involves optimization-based meta-learning or model-based meta-learning (Huisman et al.,
2021). For example, DeepTime (Woo et al.| 2022) treats different lookback windows and forecast
horizons as tasks, learning mappings from time indices to values that generalize effectively. (You
et al., 2021) treats historical and future data as tasks and utilizes Model-Agnostic Meta-Learning
(MAML) (Finn et al., 2017) to adapt the model’s parameters. Techniques initially developed for
sequential domain adaptation and generalization, such as DDG-DA (Li et al.;,|2022)) and TDG (Liu
et al.,[2023al), are also applicable to online time series forecasting, where they adapt the model to
changing data distributions in various ways. In addition to meta-learning approaches, self-adaptive
methods (Arik et al., 2022)) employ backcasting self-supervised objectives to enhance a model’s
adaptability to future distributions during prediction. FSNet (Pham et al.l 2023) introduces per-layer
adapters and associative memory to dynamically adjust layer outputs and facilitate the learning of
evolving patterns. RevIN (Nie et al., |2023)) is a simple yet effective model-agnostic approach, which
normalizes input samples before modeling and then reverses the process after making predictions.
While these techniques collectively offer a rich landscape of strategies to mitigate the challenges
posed by concept drift, they fall short in adequately considering the specialties of concept drift in
time series data.

3 METHODOLOGIES
3.1 PROBLEM DEFINITION: ONLINE TIME SERIES FORECASTING VIA META-LEARNING

Time series forecasting. A time series is an ordered sequence of observations denoted as
Z = {2z1,29, -+, 27} € RTX¢ where T is the total number of time steps, z; € R¢, and c is
dimensionality. Time series forecasting aims at learning a prediction model fg to predict the next

. . . ;0 .
O-steps at time ¢ given a look-back window of length I as z;_141.¢ f—)> Z¢4+1:t+0, Where 0 is the

parameter of the prediction model. For simplicity, in the remainder of the paper, we denote the input
Z¢—1+1.¢ and the output z;41..10 as x and y and a set of input and output as X and Y, respectively.

Online time series forecasting. In real-world applications, time series data often arrives in a
streaming fashion with frequent concept drift. Traditional approaches training a prediction model once
and evaluating it separately are unsuitable. Instead, a more appropriate approach is to continuously
learn or update the model over a sequence of periods. At each period p, the model accesses and
learns from the most recent data available. It then uses this knowledge to make predictions for future
periods. Subsequently, the ground truth is revealed, allowing for updating the model for prediction
in the upcoming period. In online forecasting settings, the model is iteratively updated at regular
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Figure 2: Illustration of online time series forecasting via LEAF. LEAF is a meta-model that guides
the optimization of the prediction model fg.

periods, referred as online forecasting period, and then evaluated on the next period of incoming data.
This cyclic process ensures that the model remains up-to-date and adapts to the changing nature of the
time series. Moreover, online forecasting often does not start from scratch. In most cases, we warm
up the model based on historical data. Figure [2] provides a visual representation of the procedure
involved in online time series forecasting.

Meta-learning. Note that simply fitting a prediction model to the most recent observed data is
insufficient for online time series forecasting, as the model needs to effectively generalize to future
data that may exhibit varying characteristics due to concept drift. Adapting the prediction model
to future data requires a meta-learning approach. Meta-learning, also known as learning to learn,
is a machine learning approach where a model learns how to learn from experience or previous
tasks, enabling it to quickly adapt and generalize to new tasks. In the context of online time series
forecasting, our objective is to learn how to adapt to future data. Our meta-learning based LEAF
algorithm is trained over a sequence of online forecasting periods, referred as the meta-training
phase, and evaluated over another sequence of periods called the meta-test phase. The procedure of
meta-learning for online forecasting is depicted in Figure 2]

3.2 LEARNING TO EXTRAPOLATE AND ADJUST

Model Overview. We first introduce notations and outline the objective of LEAF. At each online
forecasting period p, we have a training set DY, = {X,,Y,} and a test set DY, = {X,,Y,}.

ai tes

Without loss of generality, we assume that bottrlflilhe training set and the test set contain an equal
number of samples, with a total of B samples. Specifically, X, = {x\’}5 | and X, = {%\1B .
The main objective of LEAF is to leverage knowledge gained from historical periods and generate
model parameters to make accurate forecasts on D2, in the presence of concept drift. To achieve
this goal, LEAF learns two functions: extrapolation £(+; ¢.) and adjustment A(-; ¢, ), addressing
macro- and micro-drift, respectively, to generate parameters 6, of the prediction model at period p.
The objective can be formulated as:

B
min L i(i);O(i) ;N(i) ,
Perba (7657:6,7):957) 6))

s.t., 00) = A(0,,%); ¢4), 0, = E(O_y.p_1: D),

where the extrapolation function £(-; ¢.) is used to anticipate the macro-drift which takes as the
optimal parameters 6, _, .., from the previous k periods as input and infer parameters ,, for period
p, the adjustment function performs sample-specific parameter adjustment considering micro-drift
within each sample, and £(-) is the prediction loss. Figure b) illustrates the framework of LEAF.

3.2.1 LEARNING TO EXTRAPOLATE IN LATENT SPACE

During the extrapolation stage, the meta-model LEAF aims at inferring a prediction model based on
previously optimal models. It focuses on generating overall suitable model parameters for the next
period by tracking and anticipating the macro-drift between different periods of data. However, we
have observed that although LEAF is used to generate a bulk of model parameters, it does not need to
operate on high-dimensional parameter spaces. This is because model parameters are used to depict
the complex data patterns, most of which remain invariant, and only a small part will experience drift.
In other words, the concept drift can be effectively modeled in a low-dimensional latent space. As a
result, we introduce a latent embedding H which can be decoded to the model parameter 8 , and the
extrapolation is performed on this latent space.
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Figure 3: Model Architecture. (a) Warm-up of the target prediction model. The initial latent
embedding Hj,;; is randomly generated and frozen during the warm-up phase, and the encoder is
learned with prediction loss on warm-up dataset. (b) Meta-learning of LEAF which consists of three
meta-learnable modules: extrapolation, adjustment, and parameter decoder.
={X,,Y,}and D’,, = {X,,Y,}. Notably, D?

s irain 15 1dentical to the

P
train?

At period p, we have D?

train
test data Dfe_stl, as shown in Figure [2| In other words, if we optimize the prediction model on D
we can obtain the optimal model at period p — 1 in the latent space as follows:

H | =SGD(H,_, L™ DP ., 2

train

where SGD represents gradient descent on D} . with respect to prediction loss. This optimization

process leads to the optimal latent embedding H;_,. Subsequently, we introduce an LSTM that
infers H, based on the previous & optimal latent embeddings H ,  _, and a decoder to generate
model parameters, which can be formulated as:

H, =LSTM(H;_,., 1), 6, = Decoder(Hp). 3)

p+1
train

Moving forward period p + 1, DL, (or D
H;, Hp+1 and 0p+1'

) is revealed. The above steps can be repeated to obtain

3.2.2 LEARNING TO ADJUST VIA SURROGATE LOSS

The inferred model in the extrapolation stage is designed to anticipate and account for macro-drift.
However, they do not consider the micro-drift that can occur within each individual sample. To
address this issue, we introduce a meta-learnable surrogate loss that adjusts or modulates the latent

embedding H,, for each sample {ig) 1B | in DI, to obtain sample-specific embeddings { H, ,Si) 5.

This surrogate loss is implemented using neural networks and applied during the testing phase,
enabling the adjustment of the latent embedding based on sample-specific characteristics.

The rationale behind this approach is that micro-drift is often caused by external events, such as
weather conditions or holidays. Although data affected by micro-drift may exhibit different patterns,
they tend to deviate from their context in a similar manner. For example, the electricity consumption
pattern during the summer typically differs from that in the winter, while during holidays it tends
to decrease regardless of the season. By incorporating a meta-learnable surrogate loss, we aim to
capture and adjust for these sample-specific deviations caused by micro-drift. Specifically, during the
meta-training phase, the surrogate loss is learned to capture and compensate for different types of
deviations. During the meta-testing phase, the model utilizes the learned surrogate loss to adjust the
latent embedding based on the specific characteristics of each individual sample. To achieve this, the
loss network takes into account the following three factors to capture sample-specific micro-drift:

Sample and base prediction. The sample itself il(,i) and the base prediction with inferred model

parameters in extrapolation stage f (igi); 0,,) are introduced as basic characteristics.

Base latent embedding. Another important part of information is the prediction model. As we
optimize the model in a latent space, the inferred latent embedding in the extrapolation stage H), is
passed to the loss network, providing the contextual information and underlying pattern.

Sample’s relationship to training data. Furthermore, we introduce a relation network to account
for sample’s relationship to its context. The relation network R (-) receives embeddings of the sample

P

igf) and training set D .;  and returns a vector representing their relationship:

Rz()i) =R (g(ipi)),Ex;ﬂNDp Q(ij))) ) @

train
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Algorithm 1: Training Procedure of LEAF

Input: Number of meta-training periods P, data { D:
extrapolation stage k, prediction model f(-)

P

p 1P ,. ‘ o .
trains Prest }pzl, learning rates 7, o, i, number of historical periods in

Randomly initialize the parameters ¢., ¢4, and w of LEAF ;

Lett) = { e, a, @} :

Randomly initialize the latent embedding Hy ;

Create a queue Q of size k storing the recent k optimal latent embeddings;
Initialize Q as @ = [Hy, - -+ , Ho] ;

forp=1,2,---,Pdo

Evaluate inner-loop prediction loss ,C;”“" on training dataset DP

train
Perform gradient descent H;7 1 =Hp,_ | — nVHp_ L L':fai“;
Q.Deque().Enque(H,;_ .detach())
Compute H, and 8,, using Equation ; /* Extrapolation stage */
for fc;i) in X, do
/* Adjustment stage: traverse all test inputs, and conduct sample-specific adjustment */
Compute L£51TTogate (igi)) using Equation ;
H;i) — Hp _ QVH,, Esun»ogate(g;i));
01(,1) = Decoder(Hz(j)), and load Ol(f) into f(+);
Evaluate prediction loss ,C;fjt W.L.t. i;i) ;
end
Compute LUEAF using Equation ;
Perform gradient descent @) = 1 — 1V,

LEAF,
L ;

end

where ¢(-) is an embedding function, and the training data embedding is computed as the mean
pooling of embeddings of all samples in training set. The relation network captures the similarities or
dissimilarities in their patterns, which is valuable in capturing the sample-specific micro-drift.

To sum up, the final loss network s(-) are defined as
preee(z0) = s (X9, (510:6,), Hy, RE)) . ©)

The surrogate loss guides the adjustment of the latent embedding for each sample using gradient
descent, which can be further decoded to obtain sample-specific model parameters:

H\) = H, — oV, L2709 (%()), 0} = Decoder(H,"), ©

where o is the learning rate, and H, Z(,i) and 0,(,“ stand for sample-specific latent embedding and model
parameters, respectively. Finally, the sample-specific parameters are loaded into the model to make
forecasts using f(%\”); 85").

3.2.3 MODELING LEARNING

In this subsection, we outline the training procedure of LEAF, as depicted in Algorithm[I] We
denote the parameters of extrapolation module and adjustment module as ¢, and ¢, respectively.
Additionally, w represents the parameter of the decoder.

At each period p, as shown in Figure[3[b), after extrapolation and adjustment stages (the "inner loop"),
we make predictions on DZ . The test set is then utilized to update the parameters of meta-learners
®q, P, w (the "outer loop"). More precisely, the optimization process of "outer loop" is performed
by minimizing the following objective:

B

[LLEAF _ emd,inw Z[’test(f(ig); 01(01)); S,](Dz)) + 'y||st0pgrad(H;) _ HpH%, (7)
Pasw

where the first term is the prediction loss on the test set, the second term regularizes the extrapolation

in Equation (3) to output latent embedding that is close to the optimal latent embedding, and + is the

coefficient of the regularization.

Recall that online forecasting often involves a warm-up phase. Since we optimize the parameters of
the prediction model in the latent space, the traditional training strategy is not directly applicable.
To address this issue, we randomly generate a latent embedding Hjy;, which is then decoded into
parameters of prediction model using the decoder. During the training procedure of the warm-up
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phase, Hj,;; remains fixed and the decoder is trained using the prediction loss on warm-up dataset.
Subsequently, at the onset of the meta-learning, we initialize Hy with Hj,;; and w with the learned
decoder parameter from warm-up phase. Figure 3|a) illustrates the warm-up strategy.

Remarks. LEAF generates the parameters for the last few layers of the target prediction model. It is
important to note that LEAF is a model-agnostic framework, allowing for the application of different
types of layers. For instance, when using DLinear as the target model, we generate the parameters for
a linear layer. In the case of PatchTST, we generate the parameters for the last transformer block,
which includes the Query/Key/Value projection networks and a feed-forward network. To apply
LEAF to different types of layers, we require prior knowledge of the parameter shapes of the network
layers. By calculating the total number of parameters that need to be generated, we can determine
the width of the decoder in LEAF. The generated parameters are then appropriately reshaped and
loaded into the respective layers of the target prediction model. By employing this approach, LEAF
is able to adapt to various types of layers in the target prediction model, allowing for flexibility and
compatibility across different network architectures.

4 EXPERIMENTS

In this section, we conduct experiments to investigate the performance of LEAF compared with
existing algorithms, focusing on the following research questions: (RQ1) Can LEAF outperform
SOTA model-agnostic concept drift adaptation methods in online time series forecasting scenarios?
(RQ2) How do different components of LEAF contribute to resolving concept drift problems?

4.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate our method on six time series forecasting datasets. (1) ETT—smallE| (Zhou
et al.| [2021) dataset contains observations of oil temperature along with six power load features over
two years. We take into consideration the ETTm1 benchmark, wherein the observations are recorded
on an hourly basis, as well as the ETTh2 benchmark, which records observations at 15-minute
intervals. For ETTh2, the model update interval (number of timesteps in each Digiy) is 288, the
look-back window is 96 and the forecast horizon is 24. For ETTml, the model update interval is
672, the look-back window is 288 and the forecast horizon is 24. (2) ECI_E| (Electricity Consuming
Load) dataset records hourly electricity consumption of 321 users over three years. We random
sample 12 users. The model update interval is 288, the look-back window is 96 and the forecast
horizon is 24. (3) Load dataset contains three real-world univariate electric load benchmarks in
different types of areas at 15-minute intervals from 2020 to 2022. Figure[5]and Figure[6]( in Appendix
[A7T) visually demonstrate the presence of concept drift within each benchmark, including diverse
types of macro- and micro-drifts. These drifts arise due to multifaceted factors such as intricate
weather conditions (e.g., extreme weather events), social dynamics (e.g., adjustments in factory
production plans, increased utilization of renewable energy sources, population growth, and holidays),
as well as political influences (e.g., the impact of COVID-19 and changes in electricity price). These
factors, characterized by their complexity, cannot be comprehensively captured or precisely quantified
numerically. Consequently, forecasters must endeavor to model the evolving hidden dynamics solely
based on the available load data.

Baselines. We compare our method with four model-agnostic baselines, including: (1) Naive that
only trains model on warm-up dataset and freeze henceforth, (2) Naive { that trains on warm-up
and meta-train dataset and freeze at meta-test, (3) Retrain that updates the last layer of backbone
model at each period by gradient descent using all available data, (4) Fine-tune that updates the
last layer of backbone model at each period by gradient descent using only the data in the period,
(5) ER (Chaudhry et al., |2019) that employs a memory bank of most recent samples, and (6)
DER++ (Buzzega et al} 2020) that is a variate of ER with knowledge distillation. We also compare
our method with FSNet (Pham et al.} 2023)), a recent SOTA for concept drift in online time series
forecasting that uses TCN (Bai et al.,[2018)) as the backbone and incorporates an experience replay.
Since few model-agnostic methods exist for alleviating concept drift in online time series forecasting,
we use ER and DER++ from continual learning. We show empirically that ER and DER++ are
competitive baselines in online time series forecasting scenarios (Pham et al.|[2023).

Zhttps://github.com/zhouhaoyi/ETDataset
*https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014
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Table 1: The final comparison performance averaged over meta-test and five random seeds. The bold
values are the best results.

Load-1 Load-2 Load-3 ETTh2 ETTml1 ECL
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Naive 2.0479 1.0194 | 2.0147 1.0076 | 3.9826 1.4059 | 0.8073 0.6296 | 2.2222  0.9538 | 0.2406 0.3399

Naivef 1.4887  0.8487 | 1.6944 09192 | 29772 1.1576 | 09171 0.6414 | 1.4304 0.7529 | 0.1794 0.2943

Retrain 1.5145 0.8507 | 1.6379 0.8879 | 2.9498 1.1489 | 0.9011 0.6396 | 1.4140 0.7331 | 0.1723 0.2884

LSTM Fine-tune | 1.4838 0.8545 | 1.5356 0.8553 | 3.0218 1.1342 | 0.7729 0.6114 | 1.4362  0.750 | 0.1629 0.2700
ER 14722 0.8570 | 1.4737 0.8346 | 2.9411 1.1192 | 0.8920 0.6359 | 1.4351 0.7409 | 0.1660 0.2828

DER++ 1.4839  0.8622 | 1.4858 0.8393 | 2.9266 1.1142 | 0.8841 0.6338 | 1.4390 0.7423 | 0.1674 0.2839

LEAF 0.6150 0.4765 | 0.6426 0.5064 | 1.7515 0.8084 | 0.7398 0.5892 | 0.7246  0.5397 | 0.1216 0.2328

Naive 0.6739  0.5056 | 0.6445 0.4827 | 1.9530 0.8812 | 0.6818 0.5609 | 0.7419 0.5388 | 0.1447 0.2364

Naivef 0.6371  0.4813 | 0.6233 04739 | 1.8153 0.8165 | 0.7429 0.5721 | 0.6666 0.5006 | 0.1365 0.2284

Retrain 0.6329  0.4803 | 0.6214 0.4763 | 1.7959 0.8103 | 0.7498 0.5721 | 0.6668 0.4987 | 0.1363  0.2275

DLinear  Fine-tune | 0.7172  0.5217 | 0.6738 0.5068 | 2.1112  0.9038 | 0.6465 0.5493 | 0.7173  0.5200 | 0.1380 0.2291
ER 0.6246  0.4728 | 0.6158 0.4802 | 1.7930 0.8098 | 0.7511 0.5733 | 0.6654 0.4978 | 0.1359  0.2275

DER++ | 0.6241 0.4723 | 0.6151 0.4786 | 1.7921 0.8091 | 0.7480 0.5725 | 0.6642 0.4976 | 0.1358  0.2273

LEAF 0.6042  0.4605 | 0.5915 0.4590 | 1.6952 0.7742 | 0.6457 0.5491 | 0.6161 0.4836 | 0.1126 0.2200

Naive 25162 1.1297 | 0.9509 0.6813 | 2.4200 1.0442 | 0.8120 0.6244 | 1.4665 0.7599 | 0.1516  0.2501

Naivef 0.7630  0.5818 | 0.6674 0.5216 | 1.8485 0.8729 | 0.7378 0.5869 | 0.6579 0.5136 | 0.1120 0.2214

Retrain | 0.6678 0.5318 | 0.6471 0.5206 | 1.7869 0.8608 | 0.7260 0.5861 | 0.6395 0.5036 | 0.1112  0.2193

PatchTST  Fine-tune | 0.9482 0.6445 | 0.8756 0.6265 | 2.7394 1.1105 | 0.6919 0.5740 | 0.8853 0.5944 | 0.1159 0.2244
ER 0.6771  0.5370 | 0.6353 0.5131 | 1.7507 0.8348 | 0.7232 0.5823 | 0.6479 0.5067 | 0.1106 0.2190

DER++ | 0.6705 0.5332 | 0.6338 0.5108 | 1.7388 0.8300 | 0.7213 0.5808 | 0.6442 0.5052 | 0.1104 0.2187

LEAF 0.6429  0.5165 | 0.6155 0.5054 | 1.9582 0.8794 | 0.6707 0.5640 | 0.6717 0.5082 | 0.1098 0.2161

Naive 1.3692  0.8554 | 0.8599 0.6093 | 2.3085 1.0086 | 0.9151 0.6854 | 1.9414 0.9073 | 0.2916 0.3718

Naivef 1.1528  0.7598 | 0.7877 0.5770 | 1.9786 0.8871 | 0.9194 0.6676 | 1.1733  0.7067 | 0.2138  0.3230

Retrain 1.0901  0.7308 | 0.7956 0.2759 | 2.0241 0.8921 | 0.9212 0.6676 | 1.2118 0.7132 | 0.1912  0.3076

TCN Fine-tune | 1.2864 0.7807 | 0.9606 0.6523 | 2.3098 0.9889 | 0.7911 0.6271 | 1.3077 0.7544 | 0.1887 0.2911
ER 1.1033  0.7447 | 0.8044 0.6089 | 2.1006 0.9430 | 0.9434 0.6684 | 1.2573 0.7216 | 0.1859 0.3023

DER++ L1110 0.7495 | 0.8108 0.6120 | 2.0919 0.9387 | 0.9112 0.6585 | 1.1896 0.6995 | 0.2203  0.3267

FSNet 0.8024  0.5657 | 0.7221 0.5488 | 2.2942  0.9489 | 1.4468 0.8292 | 0.9761 0.6352 | 0.1658 0.2840

LEAF 0.7080  0.5312 | 0.6934 0.5299 | 1.8872 0.8858 | 0.7214 0.5887 | 0.7727 0.5526 | 0.1340  0.2499

Model Method

Implementation Details. For all benchmarks, we split the data into warm-up/meta-train/meta-test by
the ratio of 0.1/0.6/0.3. In warm-up phase, we use Adam (Kingma & Ba,, [2014) with fixed learning
rate of 0.001 to optimize the prediction model w.r.t [; (Mean Squared Loss) loss. The warm-up
epoch is 10 and warm-up batch size is 32. In meta-training and meta-testing phases, at each period
p, we use Adam with learning rate of 0.001 to obtain the optimal latent embedding and update
parameters of meta-learners, the update epoch is 50 and 1 respectively. We implement Decoder,
relation network R(-), and loss network s(-) with MLPs. We perform cross-validation on meta-train
to select appropriate hyper-parameters for all methods. We notice that LEAF is able to achieve
competitive results with minor hyper-parameter tuning. We report the hyperparameter sensitivity in
Appendix Besides, all baselines are well-tuned using Bayesian optimization algorithm in Neural
Network Intelligence toolkiﬂ All experimental results are the average of the five independent trials
with different random seeds.

4.2 PERFORMANCE COMPARISON (RQ1)

The results of comparison performance are shown in Table[I] We apply model-agnostic methods to
four types of prediction models, including LSTM (Hochreiter & Schmidhuber, [1997)), DLinear (Zeng
et al.l 2023), PatchTST (Nie et al., 2023) and TCN (Bai et al., 2018). We place FSNet (Pham
et al.| 2023)) in TCN category since it employs a TCN-based backbone. We use mean squared error
(MSE) and mean absolute error (MAE) as evaluation metrics and they are averaged over meta-test
periods. From Table[I] we can observe that: (1) our proposed LEAF significantly improves forecast
performance in almost all cases, especially in Load benchmarks, for different types of prediction
models. Overall, LEAF has a 17.8% reduction in error compared with second-best method. Especially,
LEAF has an average decrease of 45.2% in MSE when using LSTM as prediction model and 22.3%
when using TCN; (2) LEAF performs surprisingly well on Load-1, Load-2, and ETTmI1 datasets,
while the advantage is not so obvious on ECL dataset. This is because time series from Load-1,
Load-2, and ETTmI! datasets exhibit much stronger and more complex concept drift; (3) ER and
DER++ show competitive performance in ECL dataset, as time series in this dataset holds strong
seasonality and recurring patterns. These methods incorporate a memory of samples which helps
alleviate catastrophic forgetting and remembering recurring patterns in history. We note here ER and
its variant are orthogonal to our work which can be embedded easily into LEAF.

‘nttps://nni.readthedocs.io/en/stable
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Table 2: Ablation study results on Load-1 and ETTm1 with prediction models of DLinear and
PatchTST. The bold values are the best results.

Load-1 ETTml
Model Method MSE  MAE | MSE  MAE
Fine-tune 07172 05217 | 07173  0.5200
DlLincar Latent fine-tune 0.6683 05057 | 07019  0.5196
Latent fine-tune + A | 0.6562  0.5045 | 0.6745  0.5295
EN 0.6578  0.4931 | 0.6723  0.5066
EN+A 0.6042  0.4605 | 0.6161  0.4836
Fine-tune 09482  0.6445 | 14665  0.7599

Latent fine-tune 0.8103  0.6068 | 0.7546  0.5473

PatchTST  Latent fine-tune + A | 0.6783  0.5198 | 0.6823  0.5143
EN 0.7539  0.5800 | 0.7334  0.5410

EN+A 0.6429  0.5165 | 0.6717  0.5082

4.3 ABLATION STUDIES (RQ2)

We conduct ablation studies of LEAF to validate the effectiveness of extrapolation and adjustment
stages. We evaluate the performance of four variants of LEAF, utilizing DLinear and PatchTST as
target prediction model on Load-1 and ETTm1 datasets. Considering that LEAF can be seen as
an advanced method of fine-tuning, we begin with the most basic fine-tune method and gradually
incorporate designed modules in LEAF to construct the model variants. The variants includes: (1)
Fine-tune that is foundation of LEAF where the optimization is performed in the parameter space,
(2) Latent fine-tune that uses an average of last five H* instead of the extrapolated latent embedding
H, (3) EN that introduces the extrapolation module as described in Section with £ = 5, (4)
Latent fine-tune + A that incorporates the adjustment stage on Latent fine-tune, and (5) EN + A
that incorporates the adjustment stage on extrapolation module and is identical to standard LEAF.

The results of ablation studies are shown in Table 2] We observe first that fine-tuning model in
the latent space (Latent fine-tune) can significantly improve the forecast performance in almost
all benchmarks. This outcome verifies that optimizing model in a low-dimensional latent space is
rational. Furthermore, EN introducing our proposed extrapolation module surpasses the performance
of Latent fine-tune, thereby confirming its effectiveness in extrapolating the macro-drift. Lastly, the
inclusion of the sample-specific adjustment yields a further enhancement in predictive performance,
demonstrating the effectiveness of this stage in alleviating micro-drift. Moreover, we plot prediction
results of different variants in Figure[/|(see Appendix [A.3))

4.4 CASE STUDIES

In this section, we examine the forecast ability of LEAF under macro-drift and micro-drift by case
studies. Figure []illustrates the predictions of different methods on four slices of Load-1 using LSTM
as predcition model. The first two rows demonstrate cases wherein there exists a drift in the pattern of
load within a period. Specifically, two load usage peaks are gradually transition into a singular peak
which may be caused by alterations in weather conditions. In both scenarios, LEAF successfully
captures the micro-drift and generates precise forecasts, whereas other methods fail to adapt to
such micro-drift. The third row illustrates a case involving long-term macro-drift characterized
by a gradual modification in the trend and seasonality of the time series. In this case, LEAF can
capture the gradually increasing trend as well as the change in seasonality. Conversely, even with the
integration of RevIN (Nie et al.l [2023)), wherein the statistical attributes of the look-back window
are incorporated into the forecasting process, the baseline methods continue to falter in adapting to
the macro-drift. The final case exemplifies a combination of macro-drift and micro-drift, and in this
instance, LEAF demonstrates considerably superior performance compared to the baseline methods.

In Appendix Figure [§| illustrates the trajectories of latent embedding H and optimal latent
embedding H* over the last 20 periods of Load-1. Notably, at each period, the predicted latent
embedding H (inferred during the extrapolation stage) consistently aligns closely with the optimal
latent embedding, which serves as evidence of the extrapolating capabilities of our method in
effectively tracking the evolving dynamics of data distributions.

5 CONCLUSION AND FUTURE WORK

In conclusion, our proposed LEAF framework offers a promising solution to the concept drift
problem in online time series forecasting, specifically addressing both macro-drift and micro-drift.
By integrating meta-learning, LEAF enhances the capabilities of deep prediction models by acquiring
the ability to extrapolate and adapt to macro- and micro-drift, respectively. This model-agnostic
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Figure 4: The predictions of LEAF, Fine-tune, ER, and DER++ using LSTM as prediction model on
four slices of Load-1 dataset. The blue (orange) represents the ground truth (prediction).

framework can be applied to various deep prediction models, making it versatile and applicable
in different domains. Extensive experiments on real-world benchmark datasets demonstrate the
effectiveness of LEAF. The consistent superior performance of LEAF across different models and
datasets highlights its ability to handle concept drift and improve forecasting accuracy in dynamic
and evolving environments. In addition, we collected and open sourced three benchmark datasets
with diverse and typical concept drifts. In the future, we plan to extend our framework to handle
more intricate concept drift scenarios, and one potential direction is the combination of LEAF and
continual learning methods.
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A APPENDIX

A.1 INTRODUCTION OF LOAD DATASETS

Load dataset contains three real-world univariate electricity load benchmarks in different types of
areas in China at 15-minute intervals from 2020 to 2022. Figure [5]and Figure [f] visually demonstrate
the presence of concept drift within each benchmark, including diverse types of macro- and micro-
drifts. These drifts arise due to multifaceted factors such as intricate weather conditions (e.g., extreme
weather events), social dynamics (e.g., adjustments in factory production plans, increased utilization
of renewable energy sources, population growth, and holidays), as well as political influences (e.g.,
the impact of COVID-19 and changes in electricity price). These factors, characterized by their
complexity, cannot be comprehensively captured or precisely quantified numerically. Consequently,
forecasters must endeavor to model the evolving hidden dynamics solely based on the available load
data. The model update interval is 672, the look-back window is 288 and the forecast horizon is 24
for all benchmarks.

0 20000 40000 60000 80000 [ 20000 40000 60000 800D 0 20000 40000 60000 80000

18000 19000 20000 21000 22000 23000 24000 62000 63000 64000 65000 66000 67000 68000 84000 85000 86000 87000 88000 89000 90000 91000

20000 20250 20500 20750 21000 21250 21500 21750 22000 66000 66200 66400 66600 66800 67000 30000 30250 30500 30750 31000 31250 31500 31750

Figure 5: The Visualizations of Typical Concept Drift in Load Dataset. The observed concept drift
within the dataset can be attributed to a confluence of intricate weather patterns, socio-economic
factors, and political dynamics. While these factors are predictable in nature, their numerical
representation as features poses significant challenges.
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Figure 6: The visualizations of Three Load Datasets with t-SNE. All three Load datasets involve
strong concept drift.

A.2  STUDIES OF HYPERPARAMETER SENSITIVITY

Our proposed LEAF involves a few hyper-parameters, and we have not carefully tuned these pa-

rameters in our experiments. LEAF can consistently perform well under different hyper-parameter
settings. Here, we run sensitivity experiments of three hyper-parameters, including the dimension

13
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of H, number of historical periods considered in extrapolation module k, and the coefficient of
regularization term -, on Load-1 and ETTm1 datasets for examples and report the numerical results
in Table 3]It can be seen that LEAF can maintain its performance with a wide range of parameter
values.

Table 3: Sensitivity analysis on hyper-parameters latent-dim (the dimension of latent embedding
H), k and . The analysis is performed using DLinear as prediction model on Load-1 and ETTm1
benchmarks.

Configration Load-1 ETTml
latent-dim &k ol MSE MAE MSE MAE
32 3 0.1 ] 05920 04551 | 0.6106 0.4807
32 10 0.1 | 0.5867 0.4550 | 0.6113 0.4809
32 3 02 0581 04521 | 0.6149 0.4820
32 10 0.2 | 0.5856 0.4552 | 0.6107 0.4815
64 3 0.1 | 06059 0.4664 | 0.6110 0.4817
64 10 0.1 | 0.6034 0.4608 | 0.6175 0.4830
64 3 02 ] 0594 04582 | 0.6134 0.4828
64 10 0.2 | 0.6031 0.4659 | 0.6164 0.4833
128 3 0.1 | 06232 0.4666 | 0.6108 0.4813
128 10 0.1 | 0.6031 04616 | 0.6125 0.4828
128 3 02 ] 06104 0.4668 | 0.6062 0.4800
128 10 0.2 | 0.6010 0.4606 | 0.6136 0.4830

A.3 PLOTS OF ABLATION STUDIES

In addition to numeric results of ablation studies, we plot prediction results of different variants in
Figure[7] We find that Fine-tune fail to capture details of data characteristics. By adding modules
of latent optimization, extrapolation, and adjustment one by one, the algorithm gradually gains the
ability to capture data details and concept drift.
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Figure 7: The predictions of different variants of LEAF using PatchTST as prediction model on
Load-1 benchmark. The blue (orange) represents the ground truth (prediction).

A.4 SUPPLEMENTARY CASE STUDIES

Figure[8]illustrates the trajectories of latent embedding H and optimal latent embedding H* over the
last 20 periods of Load-1. Notably, at each period, the predicted latent embedding H (determined
during the extrapolation stage) consistently aligns closely with the optimal latent embedding, which
serves as evidence of the extrapolating capabilities of our method in effectively tracking the evolving
dynamics of data distributions.
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=25.01

Figure 8: The Visualization of Latent Embeddings with t-SNE. The inferred latent embedding H
and optimal latent embedding H* over the last 20 periods of Load-1 with DLinear as prediction
model. The blue (red) represents H (H*). Different periods are represented by different shapes and

connected by black (H*) and gray lines (H).

Table 4: The final comparison performance averaged over meta-test and five random seeds with

forecast horizon 192. The bold values are the best results.

6

Load-1 ETTml
Model  Method | \qp™ MAE | MSE  MAE
Fine-tune | 1.0913 0.6439 | 1.0553 0.6503
Dlinear ER 1.0868 0.6416 | 1.0435 0.6462
ca DER++ | 1.0825 0.6392 | 1.0362 0.6435
LEAF | 1.0035 0.6210 | 1.0278 0.6470
Fine-tune | 1.3368 0.7903 1.6296 0.8210
ER 12561 0.7723 | 1.4456 0.7840
PatchTST — Lepit | 12386 07633 | 13812 0.7674
LEAF | 1.0967 0.6917 | 1.0570 0.6630
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