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ABSTRACT

Current quantum computer (QC) fabrication encounters challenges when attempt-
ing to scale up the number of qubits. These challenges include errors, physical
limitations, interference, and various other factors. As a remedy, quantum circuit
cutting holds the promise for studying large quantum systems with the limited
qubit capacity of quantum computers today. With quantum circuit cutting, the out-
put of a large quantum circuit could be obtained through classical post-processing
of fragmented circuit outputs acquired through different measurement and prepa-
ration bases. However, such reconstruction process results in exponential quantum
measurement cost with the increase in the number of circuit cuts. In this paper, we
demonstrate efficient state reconstruction using a Restricted Boltzmann Machine
(RBM) with polynomial resource scaling. We explore the benefits of unsupervised
learning for simulating extensive quantum systems, exemplified by the reconstruc-
tion of highly entangled multi-qubit Greenberger—Horne—Zeilinger (GHZ) states
from fragmented circuits as well as output states from random unitary circuits.
Our experiments illustrate that fragmented GHZ circuits, at the state-of-the-art
scale of up to 18 qubits, can be reconstructed with near-perfect fidelity using only
100 sample measurements compared to 4'® sample measurements needed other-
wise.

1 INTRODUCTION

Large-scale quantum simulations provide a boost to the development of not only next-generation ad-
vanced technologies but also in advancing fundamental science Grover (1996); Shor (1997); Robert
et al. (2021). For instance, large-scale quantum simulations have been used in various applications,
from novel drug discoveries in healthcare to improving risk-modelling in finance. However, a key
challenge in bringing these applications to market at present is the lack of required simulation re-
sources and the unavailability of large-scale quantum computers (QC). QCs with a large number of
qubits could solve practical problems but require significant time and effort to build. Furthermore,
the low error tolerance of these systems limits the quality of solutions attainable.

Despite their limited resources, the state-of-the-art small-scale quantum computers offer some
respite to these promising applications. QCs with a lower number of qubits are already easily avail-
able through popular cloud platforms and have acceptable error tolerance on their outputs. In order
to benefit from these properties, large quantum circuits can be implemented on small-scale QCs us-
ing a method called quantum circuit cutting, wherein a large circuit is cut into fragments of smaller
circuits Bravyi et al. (2022). Enhanced scaling of quantum computing can be efficiently achieved
using these smaller fragments that run independently on existing quantum computers Peng et al.
(2020). Fragmentation also mitigates many hardware issues related to gate imperfections, read-out
errors and decoherence. Ayral et al. (2020; 2021).

In recent literature, classical post-processing has been adopted to reconstruct the output of the full
quantum circuit from the results of the fragmented circuits Lowe et al. (2023); Chen et al. (2022);
Uchehara et al. (2022). However, the reconstruction of multi-qubit states from the underlying cir-
cuit, also called quantum state tomography (QST) is a challenging and compute-intensive problem.
Both (1) the classical processing time, and (2) the number of quantum measurements required to re-



Under review as a conference paper at ICLR 2024

combine fragments scale exponentially with the number of cuts; the poor scalability severely limits
the practical usefulness of quantum circuit cutting.

In order to mitigate classical post-processing overhead, different methods have been proposed in
recent years. Stochastic methods through randomized measurements Lowe et al. (2023), sampling
Chen et al. (2022) along with optimizing Uchehara et al. (2022), and tailoring cut points Chen et al.
(2023a) were shown to reduce the time complexity. Furthermore, methods with maximum likelihood
fragment tomography (MLFT) have demonstrated the reduction of the computation overhead from
exponential to sub-exponential with finite-shot error mitigation Perlin et al. (2021). Chen et.al. used
classical shadow tomography with fewer measurements to predict the outcome of the circuit Chen
et al. (2023Db).

QST also requires a significantly large number of quantum measurements: e.g. to accurately recon-
struct an 8-qubit quantum state, 1 million measured samples are required. The sample complexity
can be reduced by different stratergies Haah et al. (2017); Qin et al. (2023). As QST is a data-driven
problem, machine learning (ML) methods have been employed to tackle the resource complexity.
In particular, using the variational ansatz of neural network quantum states and Restricted Boltz-
mann Machines (RBM), efficient reconstruction of quantum states for up to N = 80 qubits was
successfully demonstrated from the measurement data of the full circuit Torlai et al. (2018). Sim-
ilarly, other neural network topologies such as CNN Schmale et al. (2022); Lohani et al. (2020),
RNN Quek et al. (2021) and GA Ahmed et al. (2021); Zhong et al. (2022); Cha et al. (2021); Zhu
et al. (2022) along with RBM Carrasquilla et al. (2019) have been explored to provide a feasible
reconstruction of quantum states. However, ML methods until now have only been applied to recon-
struct the full quantum state, i.e., the output of a full quantum circuit. We extend the use of machine
learning-assisted tomography to reconstruct fragmented circuit states with manageable classical re-
sources. Unlike classical circuits, quantum circuits generate entanglement among the qubits, making
the reconstruction of states post circuit-cutting a complex task.

The objective of our paper is to apply unsupervised learning to fragmented circuits and recon-
struct the full state of a larger quantum circuit in an efficient and scalable manner. In particular,
we train RBM to efficiently reconstruct the probability amplitudes of the output from circuit frag-
ments. The full state of the circuit is then constructed by applying a tensor product formalism on
the output states of all the fragments. Using the prototype of a highly-entangled, multi-qubit Green-
berger—-Horne—Zeilinger (GHZ) circuit, we show that the corresponding highly entangled GHZ states
can be constructed with high fidelity using very few measured samples of fragmented circuits. To
generalize our results, we also test our method on random unitary circuits. Our paper has the fol-
lowing contributions:

* We propose efficient machine learning assisted fragment tomography to reconstruct the
quantum states from fragmented quantum circuits.

* Our proposed method can significantly reduce the fidelity loss due to the increase in com-
plexity with number of qubits / cuts with scalable classical resources.

» Experiments are conducted demonstrating the effectiveness of our approach by successfully
reconstructing highly entangled GHZ circuits with up to 18 qubits using only 100 sample
measurements, achieving near-perfect fidelity.

2 RELATED WORKS

The closest work related to our paper uses the Maximum-Likelihood Fragment Tomography (MLFT)
as an improved circuit cutting technique to mitigate the hardware noises Perlin et al. (2021). They
used clustered random unitary circuits to demonstrate the reconstruction of up to 18 qubits with 0.99
fidelity. However, their reconstruction procedure requires 1 million samples and a sub-exponential
scaling of the number of samples was observed with the increase in circuit size.

In Chen et al. (2022), efficient state reconstruction of subcircuits up to size 10 qubits was shown
using Monte-carlo sampling. Similarly, subcircuit reconstruction of 5 qubits was shown by using
optimal cut points in Chen et al. (2023a). Also, the expectation values of observables were studied
by cutting up to 8 qubit circuits in Uchehara et al. (2022); Chen et al. (2023b).
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Another important work is using randomized measurements Lowe et al. (2023) by which Quantum
Approximate Optimization Algorithm (QAOA) circuits of up to 13 qubits were executed by circuit
cutting. Also, variational energy of 129 qubits was estimated by circuit cutting. However, we
note that the problem of state reconstruction was unaddressed and only expectation values were
estimated. Also, exponential scaling of resources was required to obtain the results.

3 THEORY

3.1 BACKGROUND OF QUANTUM CIRCUITS

In classical computing, the information is stored in the form of binary digits called bits. The quantum
counterpart of a classical bit is a qubit (short form of quantum bit) that takes on the two basis states
|0) and |1). Unlike the classical bit, a qubit can simultaneously be in a superposition state represented
as a linear combination of probabilities in corresponding basis states, i.e., [¢)) = a|0) + 5|1) with
amplitudes («, 3) € C. Here, the probability conservation requires |a|? + | 3|2 = 1. With n qubits,
a superposition of 2" binary combinations is possible, each with a specific amplitude.

Quantum programs are essentially quantum circuits expressed as a collection of quantum gates act-
ing on qubits. Execution of the circuit involves applying quantum gates on qubits. The quantum
gates used in our paper are the Hadamard (H) gate and the CNOT gate as shown in Fig. 1, 2 and
4. H-gate is a single qubit gate that transforms the qubit state to the superposition of base states.
CNOT-gate acts on two qubits and flips the target qubit (indicated by symbol &) if the controlled
qubit (indicated by symbol o) is in state |1); |0) state of the controlled qubit leaves the target qubit
unchanged. When a gate acts on two or more qubits, the qubits become entangled: their states can
only be represented collectively rather than individually. Consequently, a system of n entangled
qubits encodes 2" output states simultaneously, giving quantum computers immense representation
capacity compared to the equivalent classical computers which require 2™ bits. For example, in
the 3-qubit system of Figure 1 (left), all three qubits are entangled by the controlled-NOT gates
that correlate the states of each qubit together. Hence, there are 22 = 8 potential output states
(|000), ]001), ... |111)) that can be observed when the output qubits are measured.

A quantum gate performs a trace-preserving linear operation on all quantum states of the system.
When a gate is applied to any one of the n entangled qubits, the probabilities of all 2™ states are
transformed. The effects of entanglement make the division of qubits into independent sub-circuits
non-trivial, as inter-circuit correlations cannot be maintained without proper circuit-cutting methods.

3.2 BASICS OF QUANTUM CIRCUIT CUTTING

Larger quantum circuits can be cut into smaller sub-circuits that can be independently executed on
quantum computers with limited qubits. There are different ways of cutting the quantum circuit
such as wire cutting and gate cutting. In this paper, we focus on the quantum wire cutting where
the wire carrying the quantum information of a qubit is divided into sets of measurement and state-
preparation operations.

Consider a single qubit - The state of the qubit can be completely characterized by the density matrix
p € C?*? representing qubit state probabilities:

1
p=75 > cTr(pO:)pi, (1)

i=1,8

where O;’s (e.g. O; and O, on [-axis) are the Pauli operators I, X, Y, Z of the different base-
axis with their corresponding eigenprojections p; and their eigenvalues c;. T'r represents the trace
operation and other variables follows as, ¢; = 1,01 =02 =1,03 =04, = X, 05 =05 =Y,
O7 = Os = Z, p1 = p7 = [0){0], p2 = ps = [1)(1], p3 = [+) (], pa = [=)(=]. p5 = [ + D) (+]
and pg = | — 4)(—i|.

Each term Tr(pO;)p; in the Eq. 1 can be divided into two parts. The first part, Tr(pO;) is the
measurement outcome i.e., the expectation of the observable O; when the qubit is in the state p;.
The second part is the initialization of the qubit or the preparation of its eigenstate p;. Wire cutting
of quantum circuit is based on Eq. 1.
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Figure 1: Fragmentation of a three-qubit GHZ circuit into two parts. Left part shows the full circuit
and the point of the cut whereas right part shows the two fragmented subcircuits. The first fragment
outlined with green color constitutes the first and second qubit while the second fragment highlighted
in the pink box constitutes the second and third qubit.

Consider a n-qubit quantum circuit fragmented into two halves. The state of the full circuit p €
C?"*2" can be written as the tensor product of the states of two fragments as

1
Py > cicip1(0:) @ pa(0;). @)
i,j=1,8

The fragmented state in Eq. 1 consists of two terms: p;(0;) and p2(O;) representing the mea-
surement and state preparation terms, respectively. From Eq. 2 it follows that each p2(0;) is a
conditional state obtained after the measurement of the first fragment to state p; or preparing qubit
in the state p;. An illustration of the fragmentation of a three-qubit GHZ circuit in Fig. 1. Here,
the circuit is cut at the second qubit. The first fragment is shown in the green box while the second
fragmented circuit is denoted by the pink box. It is clear from the figure that fragmentation always
introduces an extra qubit. However, we note that fragmented circuits are smaller in general. Addi-
tionally, they can be executed independently. In effect, fragmentation enables complexity savings
by reducing the circuit size.

As shown in the figure, for the first fragment the cut appears at the end of the circuit and hence the
second qubit is measured in different bases X,Y, Z, I. Similarly, the cut appears at the front of the
second fragment and hence the corresponding qubit is prepared in a variety of initial states p;. In
short, each fragment has several different possibilities with each of them either prepared in some
initial states and measurement bases. It is clear from Eq. 2 that for a circuit cut into two halves,
there are a total of 16(4%) possibilities. In general, classical post-processing requires a cost of 4%
for a circuit with K cuts.

3.3 FRAGMENT TOMOGRAPHY

One alternative to reducing the complexity is to use the fragments as objects rather than their con-
ditional states p1 2 and perform the fragment tomography on these objects Perlin et al. (2021). A
fragmented circuit of n-qubits will have n; quantum inputs and n,, quantum outputs at the cut place
in addition to the usual inputs and the classical outputs. By treating the quantum circuit as a channel,
we can rewrite the action of the circuit as a four-partite state as

A= Y R @m)nl e p) g @ [r)sl, 3)
k,lym,np,q;r,s

where p, q (1, s; k,[;m, n) index states in classical input (classical output, quantum input, quantum
output) respectively. Using the initial state as |00...0) as well as the computational state for the
classical output we can simplify the channel state as

A= Y Ik @Ip)al ®ls)(s| )

k.,Lip,q;s

> Asls)sl
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To characterize the output of the fragmented circuit, we need to approximate the probability A, of
obtaining the bit string s on the classical output from all the experiments with a variety of quantum
inputs to the circuit and measuring the quantum outputs in different bases. In our work, we use
unsupervised learning with RBM to approximate this probability distribution and reconstruct the
states p1 o of the fragmented circuits.

4 METHOD
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Figure 2: RBM parameterization of the quantum state ). Measurements from a quantum circuit of
N = 4 qubits {x1,x2,x3, x4} are fed as samples to RBM of N = 4 visible nodes. Hidden layer
h;’s acts as auxiliary qubits. After training, the distribution of RBM as given in Eq. 6 approximates
the output state of the quantum circuit. Note that for the computational basis (Z or I basis) z; and
h; take values of 0 and 1.
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We use the neural network (NN) architecture of RBM as shown in Fig. 2 in our study. RBM features
two binary stochastic layers - one visible layer x = {x;} consisting of the physical qubits and one
hidden layer h = {h;} of neurons that are fully connected to the visible layer with some weighted
edges W,;. The expressive power of the NN is determined by the ratio « = M /N between the
number of hidden M to visible neurons N. The associated probability distribution of RBM is given
by the Boltzmann distribution as

1
p(x,h) = Eez,- bjxj+32,; cihi+32, Wiﬂj7 5)

Here, b; and c; are the biases of visible and hidden layers respectively, W;; are the weights and Z =
>~ p(x,h) is the normalization constant. The distribution over the visible nodes can be obtained by
the marginalization of hidden degrees of freedom as

p(x) = 2y biTi+2, log(lteit; Wijz;) (6)

4.1 QST USING RBM

A quantum state of n-qubits in some reference basis x (with |z) = |z122..2,)) can be represented

by RBM as ¥rpa(x) = +/p(x)/Z with the probability distribution given in Eq. 6. We chose the
computational basis for which z;, h; = [0, 1

Measurements in a variety of bases b = {X,Y, Z} will be distributed according to the probabil-
ities p®(®) o [4(z)|>. RBM of some internal parameter x can be tuned in to approximate the
wavefunction to the probability distribution in each of the bases 1% (z) = |¢®(z)|%. This can be
done by minimizing the total statistical divergence Z(x) between the targeted and the reconstructed
distributions. In particular, we use Kullbach-Liebler (KL) divergence defined as

2
E(k) = ZKL(H) = Z Zp(mb)long)Q. (7)
,, 2 (D)

The total divergence =(x) is positive definite and attains a value of 0 when the reconstruction is
perfect.
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4.2 FRAGMENTED SAMPLING

Our method of reconstructing the states of the full circuit is depicted in Algorithm 1. Our study uses a
multi-qubit GHZ circuit as the model. First, we cut the ciruit into &K number of fragments which can
be executed independently. For each fragment, measurement samples are collected by running the
fragmented circuits on a quantum simulator called ?"QUIMB” Gray (2018). We fix the computational
basis as the reference basis and |000...0) as the initial state in our simulations. Specifically, for a
circuit fragmented into two halves (as given in Fig. 1), we collect samples with measurement bases
{III...I,I11..X,I11...Y} for the first fragment. The samples for the second fragment are collected
by inputting different states {|000...0), |100...0),| + 00...0), | — 00...0), | + ¢00...0), | — ¢00...0) }
and measuring the circuit in the corresponding bases {III...I, XII..I,Y1I...I'}. We initialize the
biases, weights and learning rate of RBM. The collected samples from the simulator are fed to the
RBM. RBM is then trained to learn the action of the circuit as given in Eq. 4. Training of RBM is
done for a fixed number of epochs N, by minimizing the KL divergence such that the probability
distribution of the output of the fragmented circuit is obtained. In particular for each epoch, we
calculate KL divergence given in Eq. 7 and gradients of the biases and weights (Eq. 10) using
stochastic gradient descent method. The updated parameters are then used to calculate the RBM
wavefunction. Once, the training is completed for N, epochs, we sample through the [t/ rp/|?
using Gibbs sampling and construct probability amplitudes of fragmented circuit. Once an accurate
distribution of the sub-circuit is obtained, the full state can be determined from the tensor product of
the fragmented probability distribution.

Algorithm 1: Fragmented circuit state reconstruction

Input: N =number of samples, K = number of cuts, N.=number of epochs

Output: ¢ Amplitudes of reconstructed state

while K # 0 do

Get N, measurement data using QUIMB simulator;

Initialize RBM (learning rate, weights, biases);

for j = 1to N, do // Training of fragmented circuits
Calculate KL divergence;
Update gradients;
Update RBM wavefunction ¥ rpr;

Sample through |1z 5| using Gibbs sampling and construct probability amplitudes of
fragmented circuit;

Reconstruct full circuit state amplitudes v using tensor product formalism

5 RESULTS

We now illustrate the efficiency of our method using a GHZ circuit generator. GHZ states are
a highly entangled states that are central for quantum metrology Omran et al. (2019) and quantum
error correction Nielsen & Chuang (2010). A multi-qubit GHZ state v fr 7 is an equal superposition
of all qubits in the up and down state as

lVerz) = %(lOOO...O) + [111...1)). (8)

The efficiency of our method in reconstructing the states is quantified by calculating the overlap
between the GHZ state 1z and the RBM wavefunction )i g s defined in Eq. 6. For this, we use
the measure fidelity F defined as

F = (Yremlveuz). 9)
When the reconstruction is perfect, fidelity F = 1.

Experimental setup: We use an RBM of IV visible nodes to train fragmented circuit of /N qubits.
Number of hidden nodes are also chosen to be equal to N. Zero bias is used for the hidden layer
whereas the bias c; of the visible layer is chosen from uniform random distribution in the interval
[0,1]. Similarly, the values of weights W;j are chosen randomly from the uniform distribution in
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the interval [—0.1,0.1] x 1/6/2N. Stochastic gradient descent is used to update the neural network
parameters x(1) = (¢;(1), W;; (1)) with KL divergence defined in Eq. 7 as the cost function. The
updated parameters at the [th iteration are given by

r(l+1) = k(1) =1 () D),

where D(I) is the gradient averaged over the samples (for more details, see Torlai et al. (2018)) and
~(1) is the learning rate fixed to 0.5 for the first half of the training after which it is decreased to
0.05.

(10)

5.1 SINGLE CUT

First, we consider a single cut such that the circuit is divided into two equal halves as shown in Fig.
1. The two fragmented circuits are then trained independently using unsupervised machine learning
with RBM.
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Figure 3: Fidelity as a function of sample size (left panel) and number of epochs (right panel) for
GHZ circuit of N qubits fragmented into two equal halves. Here, blue solid lines are for N = 10
qubits, brown dashed lines for N = 14 and green dot-dashed lines for N = 18 qubits for GHZ
circuit and red, purple and brown dotted lines are for N = 10, 14, 18 qubits for random unitary
circuit. For the left panel, the number of epochs is fixed to 10000 whereas for the right panel,
100 samples are used for GHZ circuit and 1000 samples for random unitary circuit. The figure
demonstrates the efficiency of using neural network training for state reconstruction with scalable
resources.

From Eq. 1, it is clear that at least four measurements are required to determine the state of a single
qubit. In general, for an N qubit system one needs to determine 4" unknown parameters which
require at least the same number of measurements. For instance, a 10 qubit system requires 107 (10
million samples). However, our fragmentation scheme can reconstruct the state with 0.99 fidelity
using only 100 samples. This is illustrated in Fig. 3.

The left panel of Fig 3 shows the dependence of fidelity on sample size. As the plots are for single
instance of experiment, a drop in fidelity is seen with sample size for GHZ circuit. We note that 2%
variance in the results are obtained while repeating the experiments. Here, the number of training
steps (epochs) is fixed at 10000. When the number of qubits in the circuit is increased, the fidelity
also drops. This can be attributed to the increase in the complexity of the circuit as the number of
qubits increases. However, we observe that with a small sample size of 100, one can get very near to
perfect fidelity by increasing the training steps. This is clear from the right panel of Fig. 3 where the
plot of fidelity vs. number of epochs is shown for a sample size of 100. Our result also demonstrates
the power of RBM as a good sampler. Indeed, we see that even after almost doubling the size of
the circuit from 10 to 18 qubits, the number of samples required to accurately reconstruct the data
remains the same. Note that an exponential scaling of resources is required to reconstruct the state
exactly. The generalization of our method is demonstrated by effeciently reconstructing the state
using random unitary circuit in Fig. 3.
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5.2 MULTIPLE CUTS
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Figure 4: An example of cutting 4 qubit GHZ circuit into three parts. The full circuit is shown
on the left side whereas three fragmented sub-circuits are shown on the right. Here, the first cut is
between the second and third qubit and the second cut is between the third and fourth qubit. The
front fragment consists of the first and second qubit (green box), the middle fragment consists of the
second and third qubit (yellow box) and the end fragment contains the third and fourth qubit (pink
box).

Next, we turn to multiple cuts in the circuit. In general, any circuit with more than two cuts has
three different kinds of structure: one front, middle, and end. This is illustrated for a 4 qubit
GHZ circuit in Fig. 4. Here, the green boxed part consisting of the first two qubits is the front
fragment, the middle fragment in yellow contains the second and third qubit and the pink color
end fragments contains the third and fourth qubit. The front and the end structures are similar to
the circuit with two cuts. Here, the last qubit of the fragmented circuit is measured for the front
structure with the measurements done in {I...X, I...Y,I...I'} bases. For the end fragment, the first
qubit is prepared in different initial states and measured in corresponding bases. For the middle
fragment, the cut is at both the front and the end of the circuit. Hence, one needs to prepare
the first qubit of the fragment in different initial states. In addition to this, the last qubit for the
middle fragmented circuit has to be measured in different bases. In short, one needs sampling in
{I.X,X. XY . XI1.YX.Y,Y.Y I.I X.IY..I}basesforthe middle fragment.
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Figure 5: Comparison of fidelity with fragmentation. Here, the GHZ circuit is fragmented into K
cuts. The horizontal axis is for sample size and the vertical axis is for fidelity. The left panel displays
the results for NV = 10 qubit circuit and the right panel for N = 18 qubit circuit. Here, blue solid
lines are for K = 2, brown dashed lines for X = 3 and green dot-dashed lines for K = 4 cuts.
Fidelity drop with qubits and cuts illustrates the increase in complexity of the state reconstruction
with increase in the number of qubits/cuts.
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Figure 5 shows the reconstructed state’s fidelity for multiple cuts. Here, K denotes the number of
pre-defined cuts. We study the circuits with K = 2,3, 4. The left panel is for the GHZ circuit with
N = 10 qubits and the right panel is for N = 18 qubits. For NV = 10 qubit circuit, the cut is made
at 5th qubit for K = 2. Circuit is cut at 4th and 7th qubit for K = 3 cuts and 4th, 6th and 8th for
K = 4. Similarly, N = 18 qubit circuit is fragmented at 9th qubit for K = 2. For K = 3, the
cuts are at 7th and 13th qubit. For K = 4, the circuit is sliced at 6th, 11th and 15th qubit. Here, the
number of epochs is fixed at 10000. In both panels, we see that the fidelity drops significantly with
the increase in the number of cuts. This is because of the exponential increase in complexity with
the number of cuts. Also, the fidelity drop is larger in deep circuits (with more number of qubits)
on account of growing complexity. For instance, the fidelity is around 0.9 with K = 4 cuts for 10
qubit circuit (left panel) while it is only around 0.8 for N = 18 qubit circuit (right panel). However,
we see that the fidelity can be improved by increasing the training steps. This is illustrated in Fig.
6 where fidelity as a function of the number of epochs for training each sub-circuit is plotted. It is
clear from the figure that using a very small sample size of 100, we could obtain near-perfect fidelity
by increasing the training steps for larger qubits as well as multiple-cut fragmented circuits.
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Figure 6: Fidelity versus number of epochs for N = 10 qubit (left panel) and N = 18 qubit (right
panel) GHZ circuit fragmented into K cuts. Here, blue solid lines are for X = 2, brown dashed
lines for K = 3, and green dot-dashed lines for &' = 4 cuts with sample size fixed to 100. Results
show that the fidelity can be significantly improved by increasing the training steps for fragmented
tomography with large number of cuts.

6 CONCLUSION

Quantum circuit cutting is a promising method for large-scale, many-qubit quantum computation
with currently available quantum computers. However, the state reconstruction procedure requires
an exponential amount of classical resources, limiting the wide use of circuit cutting. In this work,
we show how to overcome this issue using unsupervised learning with an RBM network architecture.
We demonstrate that GHZ circuits of up to 18 qubits can be reconstructed with near-perfect fidelity
using only 100 sample measurements. Though we observe a decrease in fidelity with an increasing
number of qubits or cuts, we show that the fidelity loss can be greatly improved by increasing the
number of training steps. We note that all calculations can be done using a laptop CPU in a few
hours.

Another important feature of our proposed method is that requires only raw data of experimental
snapshots of measurement rather than the estimation of the expectation value of observables. Also,
the method estimates the wavefunction and overcomes the challenges of probabilistic approaches
that demand positive definite distribution. Our method deals directly with wavefunction and can even
be used to determine the phases of the state. We note that this is one of the unique features of our
method compared to existing traditional approaches. In short, our study illustrates the importance
of classical machine learning in quantum computing applications and reinforces the use of hybrid
classical-quantum computing.
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