
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MILDEDIT: REASONING-BASED MULTI-LAYER DE-
SIGN DOCUMENT EDITING

Anonymous authors
Paper under double-blind review

Ours: MiLDEBench 
Transparent-Background Multi-Layer Design Document Editing

Original design doc.
with multiple layers

Edited layers
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forming edited doc.

Transparent Background Multi-Layer 
Design Document Generation

Traditional Image Editing

Transform the poster into a classic detective story theme.

Change the summer camp to winter camp theme.
Generate a plate, cake and a spoon

Change to a blue shirt

Original Image Edited Image

Original Layout

Generated Layers

Composed Image

Figure 1: Examples of MiLDEBench. Different from traditional image editing and multi-layer
generation task, our benchmark is the first targeting to transparent-background, multi-layer design
document editing.

ABSTRACT

Real-world design documents (e.g., posters) are inherently multi-layered, combin-
ing decoration, text, and images. Editing them from natural-language instructions
requires fine-grained, layer-aware reasoning to identify relevant layers and coor-
dinate modifications. Prior work largely overlooks multi-layer design document
editing, focusing instead on single-layer image editing or multi-layer generation,
which assume a flat canvas and lack the reasoning needed to determine what and
where to modify. To address this gap, we introduce the Multi-Layer Document
Editing Agent (MiLDEAgent), a reasoning-based framework that combines an
RL-trained multimodal reasoner for layer-wise understanding with an image editor
for targeted modifications. To systematically benchmark this setting, we introduce
the Multi-Layer Document Editing Benchmark (MiLDEBench), a human-in-the-
loop corpus of over 20K design documents paired with diverse editing instructions.
The benchmark covers both content and layout edits and is complemented by
a task-specific evaluation protocol, MiLDEEval, which spans four dimensions
for content editing (instruction following, layout consistency, aesthetics, and text
rendering) and two dimensions for layout editing (instruction following and content
consistency). Extensive experiments on 14 open-source and 2 closed-source models
reveal that existing approaches fail to generalize: open-source models often cannot
complete multi-layer document editing tasks, while closed-source models suffer
from instruction misalignment and format violations. In contrast, MiLDEAgent
achieves strong layer-aware reasoning and precise editing, delivering over 50%
improvements compared to all open-source baselines and attaining performance
comparable to closed-source models, thereby establishing the first strong baseline
for multi-layer document editing.
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1 INTRODUCTION

While recent breakthroughs in image generation have transformed creative workflows, editing real-
world design documents such as posters, flyers, and slides still remains an open challenge. Unlike
natural images, these design documents are intrinsically multi-layered, combining backgrounds,
graphics, text, and foreground imagery in a carefully structured hierarchy. Effective editing requires
reasoning about which layers are relevant to user intent, how their relationships constrain possible
modifications, and where changes can be applied without disrupting layout or occluding critical
content. Existing reasoning-based editing methods (Jiang et al., 2025; Chen et al., 2025b; Zhang
et al., 2025b) are built for flat, single-layer canvases and fail to capture this complexity. Besides,
despite some works focuing on design document generation workflows (Huang et al., 2024; Pu et al.,
2025; Chen et al., 2025a), layer-aware document editing remains largely unexplored, leaving a critical
gap in vision-language reasoning and multimodal editing.

To fill this gap, we propose the first benchmark for reasoning-based multi-layer document editing,
Multi-Layer Document Editing Benchmark (MiLDEBench). MiLDEBench systematically targets
two complementary axes: content editing, which demands semantic modification while preserving
layout coherence, and layout editing, which requires geometric manipulation under inter-layer
constraints. Building on 20K transparent-background documents from the public Crello dataset
(Yamaguchi, 2021), we synthesize 50K natural-language editing instructions and 87K layer-aligned
edit steps through a hybrid pipeline that combines open-source multimodal LLMs with human-in-the-
loop verification. For content editing, we aim to approximate real-world application scenarios where
users come from diverse backgrounds. To this end, we design persona-conditioned and document-
conditioned prompts that capture heterogeneous editing intents, ensuring that the dataset reflects a
broad spectrum of user needs (e.g., converting a Christmas card into a Halloween card). While for
layout editing, we instantiate four fundamental layer-level primitives—move, swap, scale, and rotate.

To evaluate this new setting, we introduce MiLDEEval, a task-specific protocol covering four content
dimensions: instruction following, layout consistency, aesthetics, and text rendering, as well as two
layout dimensions: instruction following and content consistency. Together, these components provide
a standardized testbed for reasoning-intensive, layer-aware editing that reflects practical multi-layer
design document editing scenarios. We evaluate 14 open-source and 2 closed-source image-editing
models on MiLDEEval. Open-source models show limited instruction-following capability, often
returning unmodified documents, while closed-source models achieve higher semantic alignment
and visual quality but sometimes compromise layout or format consistency. Incorporating explicit
reasoning yields only modest improvements, indicating that existing reasoning modules are largely
text-centric and do not fully leverage the multi-layer document structure. These findings suggest
that multi-layer design document editing poses challenges beyond the scope of current image-editing
paradigms and motivate the need for a reasoning-based, layer-aware approach.

To address these limitations, we propose MiLDEAgent, a reasoning-based, layer-aware editing agent.
It integrates (i) an RL-trained multimodal reasoner, optimized with a novelly designed reward for
layer identification and layer-conditioned editing prompt synthesis, and (ii) a pluggable image editor
for targeted layer-wise modifications. Experimental results on content editing task indicate that
explicit layer-aware reasoning is critical for faithful and controllable document-level editing. Our
agent outperforms all open-source models by over 50%, achieves instruction-following performance
comparable to closed-source models, and surpasses them in layout consistency. Notably, it achieves
the best balance between instruction adherence and layout consistency, highlighting the effectiveness
of reasoning-based multi-layer editing.

We summarize our main contribution as follows:

• Task and Benchmark. We formalize the problem of multi-layer design document editing
and introduce MiLDEBench, a corpus of 20K documents with 50K editing instructions and
87K layer-aligned steps spanning both content and layout edits, along with the task-specific
evaluation protocol MiLDEEval.

• Comprehensive Evaluation. We benchmark 14 open-source and 2 closed-source systems,
identifying consistent challenges in instruction following, layout fidelity, and coordination
across layers.
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• Method and Results. We propose MiLDEAgent, which combines a GRPO-trained mul-
timodal reasoner with a pluggable layer-wise editor. MiLDEAgent demonstrates strong
instruction adherence and layout consistency, surpassing open-source baselines and perform-
ing competitively with closed-source systems.

2 RELATED WORK

Multi-Layer Image Generation. Existing work on multi-layer design documents has predominantly
focused on generation. Datasets for this purpose are typically constructed by harvesting layered assets
from large-scale corpora (e.g., LAION (Schuhmann et al., 2022), COCO (Lin et al., 2014)) (Zhang
et al., 2023b; Huang et al., 2024; Tudosiu et al., 2024; Gu et al., 2024) or by curating poster- and
graphic-style designs from content platforms (Pu et al., 2025; Yamaguchi, 2021). Concurrent studies
explore unified models that jointly perform generation and understanding with reasoning capabilities
(Deng et al., 2025; Xiao et al., 2025b), as well as synthetic data pipelines (Chen et al., 2025a; Burgert
et al., 2024), while several frameworks explicitly aim to produce coordinated multi-layer outputs
(Huang et al., 2024; Pu et al., 2025; Chen et al., 2025a). In contrast, practical design workflows are
often characterized by non-expert users editing existing documents under high-level instructions while
preserving structure. This omission creates a clear gap between current research and real-world needs.
To bridge this gap, we introduce MiLDEBench, the first benchmark that pairs layered documents
with document-level instructions and stepwise, layer-aligned edit traces validated through human
evaluation, reframing the task from multi-layer generation to faithful and controllable multi-layer
editing.

Reasoning-based Image Generation and Editing. Driven by recent advances in large language
models (LLMs) and training algorithms (Shao et al., 2024; Yu et al., 2025b), reasoning-oriented
image generation and editing have achieved remarkable progress (Zhang et al., 2025b; Duan et al.,
2025; Jiang et al., 2025; Wu et al., 2025b; Guo et al., 2025; Pan et al., 2025; Jin et al., 2024; Zhang
et al., 2025a). Current methods may be classified according to the manner in which reasoning is
incorporated into the pipeline: (i) prompt interpretation, where the system resolves compositional or
implicit semantics in user instructions (e.g., temporal or causal cues) prior to editing (Chen et al.,
2025b; Sun et al., 2025; Jin et al., 2024; Zhang et al., 2025a); (ii) prompt extension, which augments
concise instructions with additional structure (e.g., constraints, spatial hints) to enhance output
faithfulness (Wu et al., 2025b; Jiang et al., 2025; Zhang et al., 2025b; Duan et al., 2025); and (iii)
generation-time reasoning, which introduces self-checking or iterative refinement during synthesis
to enforce consistency with requirements (Guo et al., 2025; Pan et al., 2025). Nevertheless, these
approaches are predominantly built on the assumption of a single, flattened canvas and thus lack
layer-aware reasoning about hierarchical structure, inter-layer dependencies, and document-level
constraints (e.g., text fidelity, non-occluding layout). As a result, even when instructions are correctly
interpreted, edits often fail to account for relevant layers or disrupt spatial organization. We introduce
MiLDEAgent, which formalizes multi-layer document editing as a reasoning task and ensures
consistency via layer selection, layer-wise editing instruction generation, and layer editing.

3 MILDEBENCH

3.1 PRELIMINARIES

We define multi-layer document editing as a two-stage process consisting of reasoning and editing.
A document D is represented as an ordered set of transparent layers L = {Li ∈ RH×W×C}ni=1,
rendered by alpha compositing D = L1 ⊕ · · · ⊕ Ln. Given a document-level instruction ID, the
reasoning stage is performed by a VLM-based reasoner Rϕ(D, ID) 7→ Î = {Îi}ni=1, which predicts
layer-specific instructions where each Îi either specifies an edit for layer Li or is a no-op indicating
that the layer should remain unchanged. The editing stage is handled by an image-generation editor
E(L, ID, Î) 7→ D′, which updates the document by applying L′

i = E(Li, Îi) if Îi ̸= no-op,
and L′

i = Li otherwise. The final edited document is then reconstructed in the original order as
D′ = L′

1 ⊕ · · · ⊕ L′
n. A valid solution must satisfy instruction compliance (the output follows

the semantics, text, and attributes of ID), structural fidelity (the global layout and all non-target
content remain intact), and layer awareness (all and only the layers in S⋆ are modified).For diagnostic
evaluation, the benchmark provides gold supervision in the form of S⋆ and I , enabling measurement
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of both document-level success (instruction following and fidelity) and decision quality (correctness
of layer selection and alignment). Each benchmark instance is therefore specified by five components:
the rendered document D, its layer decomposition L, the document-level instruction ID, the gold
relevant-layer set S⋆, and the layer-wise instructions I.

Since current open- and closed-source1 models do not support multi-image (multi-layer) editing
interfaces, we design a practical evaluation protocol that treats each method as a black-box editor.

Table 1: Statistics of MiLDEBench.

Aspect Train Test

Number of design documents 17.7k 1.9k
Avg. #layers per doc 4.45 4.44
Avg. #layers needing edit per doc 1.66 1.66
Avg. len of doc-level instruction 15.56 15.53
Avg. len of layer-wise instruction 24.50 24.48

Specifically, the model only consumes the ren-
dered document D and instruction ID, and pro-
duces an edited output D′; layer-wise inputs
or edits are not required. Even under this sim-
plified setting, existing models fail to reliably
follow instructions, preserve layout, or render
texts (Table 2), underscoring the importance and
difficulty of the proposed task: no previous work
can fully complete it. Finally, Table 1 summa-
rizes the dataset statistics. We also show the
distribution of layers per document and prompt lengths in Figure 5 and Figure 6 in the Appendix.

3.2 DATASET CONSTRUCTION PIPELINE

Algorithm 1: Data Construction Pipeline
Input :Design document D with layers L
Output :Validated document-level instruction ID , layer-wise

instructions I = {Ii}, edited layers S⋆

Part A: Document-level Instruction Generation
1. Generate candidate instructions {Ij

D} from D via personas
pj ∼ PersonaHub;

2. Rank and filter {Ij
D} by clarity, realism, and consistency;

3. Human validation ⇒ finalize ID .

Part B: Layer-wise Instruction Generation
1. Decompose ID into step-wise edits A = {aj};
2. Match each aj to candidate layers Lk ∈ L using content-aware

alignment;
3. Form preliminary instructions Ik and filter by clarity, feasibility,

and consistency;
4. Human validation ⇒ finalize I and relevant-layer set S⋆.

Alg. 1 illustrates the overall data creation
pipeline, including both document-level and
layer-wise instruction generation.

Design document collection and layer consol-
idation. We build our corpus from the public
Crello dataset (Yamaguchi, 2021), which pro-
vides transparent-background, multi-layer de-
sign documents represented as (D,L), where
D is the rendered document and L = {Li}ni=1
is its layer decomposition. Crello is chosen be-
cause (i) our benchmark targets real-world de-
sign workflows with non-expert users, so we
exclude datasets with synthetically generated
layers (e.g., Magick (Burgert et al., 2024), Prism-
Layers (Chen et al., 2025a)); and (ii) our focus is on scenarios where text, decorative elements, and
imagery interact, so we omit multi-layer resources derived from natural images (e.g., MuLAn (Tu-
dosiu et al., 2024), MLCID (Huang et al., 2024)). Although ART (Pu et al., 2025) introduces a
large-scale design corpus, it is not publicly available and thus excluded. To make L tractable, we
apply a structure-preserving consolidation procedure C(L) 7→ L′: an MLLM (InternVL3-38B (Zhu
et al., 2025)) classifies layers into text, decoration, or image, and non-overlapping layers within each
category are merged using layout metadata while preserving z-order and alpha boundaries. This
reduces |L| (originally 2–50) to a semantically coherent L′ without discarding content.

Document-level instruction generation. Given a consolidated design document (D,L), we generate
a document-level instruction ID capturing both content and layout edits. For content, we adopt a
two-stream pipeline that balances diversity and realism. (i) Persona-based stream: six personas
pj ∼ PersonaHub are sampled, and InternVL3-38B generates candidate instructions I(j)D by adapting
D to each persona’s domain while preserving its design intent (e.g., “concert poster” → “historical
exhibition poster”). (ii) Document-based stream: the model proposes semantically proximal domain
transfers grounded in D itself (e.g., “summer camp” → “winter camp”). The combined candidate
pool I(j)D is then ranked by clarity, specificity, and realism, with low-quality cases removed through
lightweight automatic filtering and regeneration until criteria are met. Finally, a human-in-the-loop
validation stage ensures applicability and removes instructions that are infeasible or brand-violating,
yielding the final ID. For layout, InternVL3-38B generates six candidates spanning move, swap,

1We verified that GPT-o3 could complete the task in manual trials, but the model was discontinued before
our benchmark was finalized, preventing systematic evaluation.
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scale, and rotate; the two most substantive are selected through the same automatic filtering followed
by human-in-the-loop review.

Layer-wise instruction generation. For each benchmark instance (D, ID,L), we provide a set of
layer-aligned editing instructions I = Ii specifying how each relevant layer should be modified to
realize the document-level intent. For content editing, during document-level instruction synthesis, the
InternVL3-38B is simultaneously prompted to produce step-wise edits as a program that decomposes
ID into atomic actions (e.g., “replace text "piano concert" with "historical exhibition"”, “swap
the main image to a museum scene”). We then align steps to layers using a novel MLLM-based
content-aware matcher to produce layer-wise instructions Ii. The matching algorithm is detailed
in App. A.1.1. For layout editing, we introduce the details in App. A.1.2. Finally, automatically
generated instructions are filtered by rule-based validators and refined through human-in-the-loop
expert review, ensuring clarity, feasibility, and faithfulness to real design workflows. The resulting
edited layers S⋆ and aligned instructions I thus combine automated alignment with human refinement
to provide reliable gold supervision.

4 BENCHMARKING WITH MILDEBENCH

4.1 MILDEEVAL

For comprehensive evaluation on our benchmark, we propose MiLDEEval. For content editing, we
propose four evaluation criteria: instruction following, layout consistency, aesthetics, text rendering
and layer decision accuracy. For layout editing, we propose two evaluation criteria: instruction
following and content consistency. We will introduce content editing evaluation in this section and
layout editing evaluation in Appendix B.2.

Instruction Following. To assess whether the model faithfully executes an editing instruction ID,
we design a VQA-style evaluation metric. Given the document D, the target layer S⋆, and its
layer-specific prompt I, InternVL3-38B is prompted to generate a question–answer pair for each
edited layer. Each question explicitly grounds the edit in spatial, textual, or entity-level detail (e.g.,

“Has the main image be changed to a museum scene?”), with a binary answer of “yes” or “no.” The
instruction-following score is defined as the proportion of edits judged correct across all layers.

Layout Consistency. To evaluate structural fidelity, we measure layout consistency between original
and edited documents using mask-level representations. We extract spatial masks M = {Mi}
and M′ = {M ′

j} using Adopd Doc2Mask model (Gu et al., 2024) from the original document
D and edited document D′, then we design a new matching algorithm to match the two sets of
spatial masks. For matched pairs, we assess position consistency (normalized centroid displacement),
shape consistency (IoU), and area consistency (size ratio). Unmatched layers incur area-proportional
penalties, with deleted layers penalized more heavily than newly created ones. The final score
combines matching rate, average consistency scores, and penalty deductions with empirically tuned
weights, providing a comprehensive measure of layout preservation robust to structural variations.
The detailed calculation function is shown in App. B.1.1.

Aesthetics. We assess whether edits preserve or improve overall visual appeal using a frozen
aesthetics predictor (Aesthetic Predictor V2.5 (aes)). We directly utilize the score as final evaluation.

Text Rendering. We evaluate the faithfulness of edited text with an OCR–VQA pipeline. Specifically,
we first apply the Adopd Doc2BBox model (Gu et al., 2024) to detect text regions in the edited
image L′

j , and then use an MLLM to extract the corresponding text t′. Given the instruction ID, we
prompt the MLLM to verify whether t′ satisfies the required edit, producing a score in {0, 0.5, 1}.
Unlike conventional text-alignment metrics (e.g., SentenceBERT (Reimers & Gurevych, 2019)), our
approach does not assume a unique ground truth: multiple valid edits may satisfy ID, and thus a
judgment-based evaluation better captures instruction faithfulness.

4.2 EVALUATION AND ANALYSIS

To conduct evaluation on MiLDEBench, we conduct comprehensive evaluation on 14 open-source
models, with 12 reasoning-free models and 2 reasoning-enhanced models, and 2 closed-source
models. Note that in these experiments, we only take design document D and document-level editing
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Table 2: Evaluation results of different models on content and layout editing tasks. For all scores,
higher values indicates better performance. The highest score for closed-source and open-source
text-to-image models are marked in red and blue respectively, and underline represents the second in
open-source models.

# Model
Content Editing Layout Editing

Instruction
Following

Layout
Consistency Aesthetics Text

Rendering
Instruction
Following

Content
Consistency

Open-source Models

1 Instruct-Pix2Pix (Brooks et al., 2023) 2.30 93.46 4.23 17.16 41.07 59.04
2 MagicBrush (Zhang et al., 2023a) 7.37 72.08 3.68 16.60 50.50 31.37
3 UniWorld-v1 (Lin et al., 2025) 5.75 61.59 3.91 22.04 48.59 56.61
4 ICEdit (Zhang et al., 2025c) 2.28 64.60 3.42 18.25 18.21 10.13
5 UltraEdit (Zhao et al., 2024) 12.41 85.31 3.54 11.39 44.37 61.64
6 AnyEdit (Yu et al., 2025a) 6.51 56.73 3.96 21.83 49.72 56.24
7 OmniGen (Xiao et al., 2025a) 3.83 85.96 3.90 19.76 51.10 57.30
8 Qwen-Image-Edit (Wu et al., 2025a) 10.09 74.20 4.12 24.32 59.25 71.35
9 Flux1-Kontext (Batifol et al., 2025) 12.49 48.32 3.94 19.31 60.84 64.31
10 VAREdit (Mao et al., 2025) 6.60 68.10 3.18 9.49 65.49 58.19
11 Step1X-Edit (Liu et al., 2025) 6.56 84.09 3.98 18.70 52.06 62.11
12 Bagel (Deng et al., 2025) 14.23 48.59 3.54 13.49 78.04 67.19

Reasoning-enhanced Models

13 Step1X-Edit w/ Thinking 10.48 82.16 4.11 28.67 64.33 67.43
14 Bagel w/ Thinking 13.60 60.91 3.65 14.51 66.64 69.93

Closed-source Models

15 GPT-Image-1 (OpenAI, 2025) 25.46 36.24 4.66 39.67 81.52 83.70

16 Nano Banana (DeepMind, 2025) 24.04 58.42 4.52 40.32 71.10 79.72

instruction ID as input, because current models cannot conduct multiple layer editing sinmutaneously.
Specifically, the task here is E(D, ID) → D′. The primary results are presented in Table 2. Please
refer to Appendix C for detailed model setup.

Finding 1: Current image editing models struggle with design document editing. Our evaluation
reveals that both open-source and closed-source models exhibit certain limitations in instruction
following and text rendering. For open-source models (#1-#14), the average instruction-following
accuracy is only about 10%, meaning that in nearly 90% of cases the specified edits are not correctly
executed. Even the strongest closed-source baseline, GPT-Image-1 (#15), achieves only 25.46%
instruction following accuracy, underscoring the substantial gap between current image editing
capabilities and the demands of multi-layer document editing in realistic scenarios.

Finding 2: Closed-source models achieve stronger instruction following but sacrifice format con-
sistency. Closed-source models substantially outperform open-source ones in instruction following,
text rendering, and aesthetics. For example, in terms of instruction-following accuracy for content
editing, GPT-Image-1 (#15) surpasses the best-performing open-source model Bagel (#12) by 78%
(25.46% vs. 14.23%). For text-rendering score in content editing, Nano Banana (#16) exceeds the
best-performing open-source model Step1X-Edit w/ Thinking (#13) by 40.6% (40.32% vs. 28.67%).
However, these gains come at the expense of layout-consistency. In particular, GPT-Image-1 (#15)
achieves the lowest score in layout-consistency, and Nano Banana (#16) performs only on par with
the open-source average. For more examples, please refer to Appendix C. Notably, the comparably
high layout-consistency scores in open-source models often stem from trivial artifacts, such as
outputting the unedited document, which preserves layout without satisfying the instruction. This
highlights a critical trade-off: closed-source models follow instructions more reliably, but they lack
the ability to maintain structural fidelity in design documents, which is a limitation with significant
consequences for real-world editing workflows.

Finding 3: Reasoning-enhanced models provide only marginal gains for document editing.
Augmenting open-source editors with explicit reasoning mechanisms (“w/ Thinking”) yields limited
improvements. Step1X-Edit w/ Thinking (#13 vs. #11) improves instruction-following accuracy
from 6.56% to 10.48% and achieves the highest text-rendering score (28.67%), suggesting that
reasoning can help decompose instructions into more precise edits. However, Bagel w/ Thinking

6
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Figure 2: (a) Evaluation metrics with editing type. (b) Instruction following score with number of
edited layers. (c) Instruction following score with model size.

(#14 vs. #12) decreases instruction-following accuracy from 14.23% to 13.60% and provides no
substantial gains in other metrics. Overall, the benefits remain modest relative to the difficulty of the
task. Current reasoning modules primarily capture textual intent but struggle to ground edits within
multi-layer document structures, especially when document-level editing prompts usually represents
editing text and image sinmutaneously. This underscores the need for deeper multimodal reasoning
integration, rather than shallow textual planning, to advance design document editing.

Finding 4: Complex reasoning paths exacerbate editing errors. Model performance degrades
markedly as editing complexity increases. First, we sampled 150 cases from test set and classify them
into three types based on the editing domain: text-only, image-only, and text+image editing. We report
the average content editing score of three open-source models (Qwen-Image-edit, Flux1-Kontext,
and Bagel). As shown in Figure 2 (a), instruction-following drops from 13.7% (text-only) and 11.5%
(image-only) to 7.6% (text+image), with parallel declines in text rendering, aesthetics, and format
consistency. Figure 2 (b) further reveals a strong effect of layer depth: Bagel falls from 20.1% (one
layer) to 10.6% (three layers), Flux1-Kontext from 17.3% to 9.5%, and Qwen-Image-Edit from 15.1%
to 3.1%; even GPT-Image-1 drops from 30.1% to 24.5%. Finally, Figure 2 (c) shows that larger
model size does not consistently improve performance. In summary, performance degrades as editing
complexity increases—both across modalities and with deeper layer structures—highlighting that
current models struggle to reason over complex editing intents. Moreover, scaling model size does
not consistently yield improvements, suggesting that advancing multimodal reasoning capability is
crucial for progress in design document editing.

5 THE MILDEAGENT FRAMEWORK

Recognizing the reasoning inaccuracies, layout consistency issue and the fundamental problem that
current image editing model cannot do multiple layer editng, we propose MiLDEAgent, consisting
of an RL-trained reasoner and a freezed editor. Specifically, our agent receives a design document D
with multiple transparent background layers L and a document-level instruction ID, and then produce
D′ by editing exactly the relevant layers and re-compositing them in the original z-order. Specifically,
the task here is Agent(D, ID,L) → (D′,L′). We introduce our agent in Section 5.1 and evaluate on
our benchmark on Section 5.2.
5.1 REASONING-GUIDED MULTI-LAYER DOCUMENT EDITING

Our MiLDEAgent is a two-stage framework for multi-layer document editing, where the reasoner
Rϕ performs instruction decomposition and the editor E performs layer-wise editing.

Reasoning. The reasoning stage is handled by a VLM-based reasoner Rϕ, which takes (D,Li, ID)
as input and outputs for each layer a binary decision yi ∈ {0, 1} and, if yi = 1, a layer-conditioned
prompt Ii. To train Rϕ, we adopt Group Relative Policy Optimization (GRPO) (Shao et al., 2024), a
RL method that evaluates groups of sampled responses, computes relative advantages by normalizing
their rewards, and applies a clipped KL-regularized objective. This design reduces variance in credit
assignment and encourages the model to distinguish between relatively better and worse responses,
which is particularly beneficial for structured reasoning tasks (see Appendix D.1 for details).

Following this paradigm, we design a task-specific per-layer reward to supervise Rϕ. The outputs of
the reasoner must follow a structured format:

<think> . . .</think> <decision> . . .</decision> <prompt> . . .</prompt> (1)
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🔥 Multi-Modal Large Language Model

<think>The general instruction asks to modify the poster to an ice cream shop, and the layer 1 contains an crab in the right up corner. I need
to change it to an ice cream icon.</think><decision>Need Edit</decision> <prompt>change the crab into an ice cream</prompt>

❄️ Image Editing Model

<think>...Layer 4 is a background without meaningful information</think><decision>Don’t Edit</decision> 

<think>...Layer 2 ......</think> <decision>Need...... <think>...Layer 3......</think> <decision>Need...... 

The General Editing Prompt is “Change the content to an ice cream shop”

Decide whether to edit the layer. If so, generate layer-specific editing prompt.

......

Step 1: Layer-wise Decision In Parallel

Four Layer Images forming the Original Poster

Design Doc.

Step 2: Layer-specific editing

Step 3: Layer Merging

Editing Prompt

Task Instruction

Edited Doc.

Alpha Compositing

Figure 3: The illustration of MiLDEAgent.

where the three segments denote hidden reasoning, the binary decision yi, and the layer-conditioned
prompt Ii, respectively. The per-layer reward Ri then consists of three components:

rf = ⊮[format is valid], rd = ⊮[yi = y⋆i ], rp = BLEU(Ii, I
⋆
i ) ∈ [0, 1]. (2)

The final per-layer reward is defined as

Ri =

{
(rf + rd + rp)/3, rd = 1,

(rf + rd)/2, rd = 0 .
(3)

where rf verifies syntactic correctness, rd measures decision accuracy against the gold label y⋆i =
⊮[Li ∈ S⋆], and rp evaluates prompt quality relative to the reference instruction I⋆i . The prompt
reward rp is only applied when the decision is correct (rd = 1).

Editing. The editing stage uses a frozen image-generation editor E for stability and modularity. For
each selected layer Li (yi = 1), a binary mask Mi is extracted from its alpha channel (optionally
refined with region cues), and the editor updates it as L′

i = E(Li, Ii,Mi). For non-selected layers
(yi = 0), no operation is applied and L′

i = Li. Transparency is preserved by restoring the original
alpha to unedited regions. The final document is reconstructed by alpha compositing D′ = L′

1 ⊕
L′
2 ⊕ · · · ⊕ L′

n, where ⊕ denotes standard alpha blending, ensuring global layout consistency while
fulfilling the document-level instruction ID.

5.2 EXPERIMENTAL RESULTS

Setup. We incorporate one of the SOTA MLLM, QwenVL2.5-3B/7B (Bai et al., 2025) as
our reasoner, and applied GRPO algorithm to train on content editing tasks, with a freezed
Flux-1-Kontext as editing model. The rollout number is set to 5 and the batch size to 512. All
experiments are conducted on 8 A100 GPUs. In this section, we only train and evaluate on content
editing setting which requires more reasoning capabilities due to the complex modality editing
requirements. We will incorporate layout editing into our agent for future version. For evaluation,
same as the four dimensions as introduced in Section 4.1, we add another dimension Layer Decision
Accuracy, which represents whether our agent can correctly choose which layer should be edited.

Quantitative Results. As shown in Figure 4 (a), our proposed MiLDEAgent significantly outper-
forms all baselines in the content editing regime (Table 2). Specifically, MiLDEAgent achieves 20.7%
in instruction following, representing a +50% improvement over the strongest open-source baseline
(Bagel, 14.2%) and narrowing the gap with closed-source systems while preserving editability. On
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(a) (b) (c)

EvaluationMetrics

Sc
or
e

Figure 4: (a) The performance on content editing evaluation set. (b) Layer decision accuracy with
model size. (c) The performance changes with different image editing models.

format consistency, MiLDEAgent maintains 93.2%, rivaling the best-performing diffusion-based
editors and exceeding closed-source models by over +30 points. Importantly, our agent exhibits
strong text rendering performance (36.8%), surpassing all open-source baselines (≤ 24.3%) and
approaching commercial systems (40%). This highlights the effectiveness of our reasoning-based
approach in handling multi-layer textual elements, a persistent weakness of prior methods. Finally,
on layer decision accuracy (80.5%), MiLDEAgent demonstrates robust layer-aware reasoning, an
ability entirely absent from existing baselines, thereby validating the necessity of reasoning-enhanced
frameworks for this task. Taken together, these results establish that multi-layer document editing
requires explicit reasoning mechanisms, rather than relying solely on generation or editing heuris-
tics. MiLDEAgent consistently balances instruction fidelity, fine-grained textual rendering, and
layer-aware decomposition, making it the first system to robustly address multi-layer editing at scale.

Ablation 1: GRPO-trained reasoner outperforms all zero-shot models in layer decision accuracy.
Reasoner is the key of MiLDEAgent, therefore, we conduct ablation study on the RL-trained reasoner
with other larger open-/closed-source MLLMs on layer decision accuracy metrics. As shown in
Figure 4 (b), we observe that models equipped with a GRPO-trained reasoner consistently surpass
their zero-shot counterparts across all tested scales. For instance, QwenVL2.5-7B with GRPO
achieves 80.5% accuracy, compared to only 20.7% for its zero-shot variant, a nearly 4× improvement.
Similarly, QwenVL2.5-3B with GRPO improves from 13.4% to 42.9%, highlighting that structured
reinforcement-style reasoning is beneficial even at smaller scales. Strikingly, the 7B GRPO-trained
model not only outperforms all zero-shot baselines—including much larger 32B and 78B models—but
also slightly outperforms GPT-4. These results underscore that reasoning-oriented training, rather
than model scaling alone, is the dominant factor for reliable layer decision making, establishing
GRPO as a crucial ingredient for advancing multi-layer document editing.

Ablation 2: Image editing model also influence the final performance. In this experiment, we
randomly select 100 samples from content editing test set and utilize the GRPO-trained QwenVL2.5-
7B model as reasoner to test different image editing models. As shown in Figure 4, although all models
achieve broadly comparable scores, systematic differences emerge across evaluation dimensions.
GPT-Image-1 consistently achieves the best overall results, with 19.7% in instruction following,
4.4% in aesthetics, and 30.6% in text rendering, outperforming the best open-source alternatives by a
clear margin. Among open-source models, Qwen-Image-Edit exhibits relatively stronger instruction
following and text rendering, while Bagel and Flux1-Kontext are more balanced but weaker in fidelity
and reasoning. These results indicate that even with the same reasoning mechanism, the fidelity
and controllability of the editing backbone strongly shape the final quality of document editing.
Consequently, improvements in low-level editing architectures are complementary to reasoning-based
approaches, and both are required to achieve robust performance in multi-layer editing.

6 CONCLUSION

In this work, we introduced MiLDEBench, the first benchmark for reasoning-based multi-layer
poster editing, together with a novel evaluation metrics. Through comprehensive experiments, we
demonstrated that existing methods struggle to accurately edit posters based on general simple
editing prompt. To address these limitations, we proposed MiLDEAgent, which leverages a GRPO-
trained reasoner for layer selection and prompt generation, coupled with a open-source image editor,
significantly improving reasoning ability and editing quality.
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ETHICS STATEMENT

This work introduces both a benchmark (MiLDEBench) and a reasoning-based editing agent
(MiLDEAgent). The MiLDEBench is derived from the publicly available Crello dataset (Yam-
aguchi, 2021), and processed in compliance with their licenses. We did not create new visual content,
instead, we extended the original Crello documents with general edit instructions and layer-wise edit
instructions. No personally identifiable information or private user data is included in the benchmark.
The MiLDEAgent is built entirely upon public models. We did not train any image editing model,
but instead used existing open-source image editing models in a zero-shot manner. The only trained
component is a reasoning model that outputs edit decisions and layer-specific instructions. Our
contribution is intended solely to advance research on multi-layer document editing, and we do not
anticipate direct misuse given the neutral and design-oriented nature of the data.

REPRODUCIBILITY STATEMENT

Our work consists of two main contribution, a novel benchmark and an agent-based solution. For
data generation part, we utilize open-source public dataset and model, which is easy to be reproduced.
For agent-based solution, we introduce the detailed reward design, algorithm choice and training
parameters. We will also release our code in a short future.

THE USE OF LLMS

We use InternVL3-38B to generate and filter editing instructions as an extension of Crello documents,
allowing precise, context-sensitive modifications across layers. To ensure clarity and fluency in
textual content, we employ ChatGPT to polish writing.
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Figure 5: Distributions of the total number of layers per document and the number of layers requiring
edits per document in the MiLDEBench.
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Figure 6: Distributions of general prompt lengths and the editing prompt lengths in the MiLDEBench.
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A DATA GENERATION PIPELINE

A.1 LAYER-WISE INSTRUCTION GENERATION

A.1.1 CONTENT EDITING

In this section, we describe the matcher used to align step-wise editing prompts with document layers.
Given a set of step-wise prompts Ik and the layer set Sj with known types (textual or visual), we first
classify each prompt Ik using InternVL3-38B into either a text-editing or an image-editing category.
A prompt is considered eligible only for layers of the corresponding type (i.e., text prompts for textual
layers, image prompts for visual layers). Within each category, we process prompts sequentially: for
each Ik, we traverse the candidate layers in z-order and query InternVL3-38B to assess whether Ik
semantically applies to Sj . Upon a positive match, Ik is assigned to Sj , and the procedure advances
to the next prompt. This iterative matching continues until all prompts have been assigned or no valid
layer remains.
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A.1.2 LAYOUT EDITING

For Layout edits, given ID and the set of relevant layers L, we derive geometric targets by conditioning
the MLLM on each layer crop, its current bounding box, and neighboring context. The model predicts
proposed boxes or transforms (move/scale/rotate/swap). To preserve global structure, we run an
iterative conflict-resolution loop: when proposed boxes overlap or violate margin constraints, a
deterministic geometric solver computes candidate displacements, and the MLLM is re-queried (with
updated context) to select admissible adjustments for the least salient/more movable elements. The
process terminates upon feasibility or at a fixed iteration cap.

B MILDEEVAL

B.1 CONTENT EDITING EVALUATION

B.1.1 LAYOUT CONSISTENCY

Layout Consistency Evaluation To assess the structural fidelity requirement—specifically whether
the edited document D′ preserves the spatial arrangement and geometric relationships of elements—
we introduce a comprehensive layout consistency metric that operates on mask-level representations
of document layers. Given the inherent challenges of multi-layer editing where the number of layers
may change (|L′| ≠ |L|) and layer correspondences may be disrupted due to editing operations,
our evaluation framework employs a principled matching strategy followed by multi-dimensional
consistency assessment.

Mask Extraction and Matching. For both the original document D and edited document D′, we
extract layer-wise masks M = {Mi}|L|

i=1 and M′ = {M ′
j}

|L′|
j=1 respectively using Adopd Doc2Mask

model Gu et al. (2024), where each mask Mi ∈ [0, 1]H×W represents the spatial footprint of
layer Li. To establish correspondences between original and edited layers, we formulate mask
matching as a bipartite graph optimization problem: we compute a pairwise IoU similarity matrix
S ∈ R|L|×|L′| where Sij = IoU(Mi,M

′
j), then apply the Hungarian algorithm to find the optimal

matching P∗ = argmaxP
∑

(i,j)∈P Sij subject to IoU threshold filtering (Sij ≥ τIoU).

Multi-Dimensional Consistency Assessment. For each matched pair (Mi,M
′
j) ∈ P∗, we evaluate

three complementary aspects of layout preservation: (1) Position consistency measures centroid dis-
placement normalized by image diagonal: cpos(Mi,M

′
j) = 1− ∥centroid(Mi)−centroid(M ′

j)∥2√
H2+W 2

; (2) Shape
consistency directly uses the IoU between masks: cshape(Mi,M

′
j) = IoU(Mi,M

′
j); (3) Area consis-

tency computes the ratio of smaller to larger mask areas: carea(Mi,M
′
j) =

min(area(Mi),area(M ′
j))

max(area(Mi),area(M ′
j))

.

Unmatched Layer Penalty. To account for layers that appear or disappear during editing, we
introduce a penalty mechanism that distinguishes between disappeared layers (present in L but
unmatched in L′) and newly created layers (present in L′ but unmatched in L). The penalty for each
unmatched layer is proportional to its normalized area, with disappeared layers receiving full penalty
and new layers receiving a reduced penalty (coefficient 0.7) to reflect that layer creation may be
intentional: pdisappeared =

∑
i∈Uorig

area(Mi) and pnew = 0.7
∑

j∈Uedit
area(M ′

j), where Uorig and Uedit

denote unmatched layer indices.

Final Score Computation. The overall layout consistency score aggregates matched-layer perfor-
mance with unmatched-layer penalties:

LayoutConsistency = max

(
0,ωmatch · rmatch + ωpos · c̄pos + ωshape · c̄shape

+ ωarea · c̄area − ωpenalty · (pdisappeared + pnew)

)
, (4)

where rmatch = |P∗|
max(|L|,|L′|) is the matching rate, c̄· denotes average consistency scores across

matched pairs, and {ω·} are empirically set weights (0.25, 0.2, 0.2, 0.2, 0.15 respectively). This
metric provides a comprehensive assessment of layout preservation that is robust to layer count
variations and sensitive to both geometric distortions and structural changes.
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B.2 LAYOUT EDITING EVALUATION

For layout editing evaluation, we also evaluate from two aspects: instruction following and content
editing. Here, we also utilize a VQA-based metrics to ask an MLLM evaluator whether the edited
document follows the editing instruction, or whether the edited document remains the content as
the same. We use a binary "yes/no" as the final score. We acknowledge that such a VQA-based
evaluation metrics is not quite reliable. We will propose a more comprehensive evaluation method in
our future version.

C EXPERIMENTS

Baseline Open-source Models We evaluate on 14 open-source models covering auto regressive and
diffusion-based framework. The model size ranges from 1B to 20B. In Table 3.

D MILDEAGENT

D.1 PRELIMINARY OF GRPO ALGORITHM

Group Relative Policy Optimization (GRPO) (Shao et al., 2024) has been proved to be helpful for
improving reasoning capabilities for LLM (Shao et al., 2024), Multi-modal understanding (Huang
et al., 2025) and even image generation (Zhang et al., 2025b; Jiang et al., 2025). GRPO computes
advantages from a group of responses. Given each question-anwer pair (q, a), old policy πθold

randomly samples G responses, denoted as {oi}Gi=1. Each response oi is then fed into a reward
model to obtain a reward Ri. Then, the advantage of the i-th response is obtained by normalizing the
rewards of the group:

Ai =
R− mean({Ri}Gi=1)

std({Ri}Gi=1)
(5)

GRPO applies a clipped objective similar to PPO with a KL penalty term:

JGRPO(θ) = E(q,a)∼D,{oi}G
i=1∼πθold (·|q) 1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

(
min

(
ri,t(θ)Âi, clip (ri,t(θ), 1− ε, 1 + ε) Âi

)
− βDKL (πθ||πref)

),
(6)

where ri,t(θ) is the important weight for each token t:

ri,j(θ) =
πθ (oi,j | q, oi,<j)

πθold (oi,t | q, oi,<j)
. (7)

Usually in the reasoning task with only textual output, the model is asked to generate responses
following a structured format. The total rewards consists of two rule-based rewards: (1) format
reward and the accuracy of the specific downstream task.

D.2 MILDEAGENT

Failure cases of MiLDEAgent. Our agent is not without failure modes. First, since layer decisions
are made independently, multiple layers may occasionally be edited simultaneously, leading to
unintended overlaps or conflicts that degrade final quality. Second, as shown in Figure 4(a), even
when layer decision accuracy is high (e.g., with the 7B model), the overall instruction-following
score remains low. This discrepancy can arise from two factors: (i) ambiguous or underspecified
layer-wise editing prompts, and (ii) the inherent limitations of the underlying image editing model. A
promising direction to mitigate these issues is to incorporate a self-checking mechanism that verifies
the merged edited document and triggers regeneration when inconsistencies are detected. We leave
such improvements for future work.
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Table 3: Evaluation results for different models on content and layout editing tasks

Model Size Type Reasoning-Enhanced

Instruct-Pix2Pix Brooks et al. (2023) 1B Diffusion ✗
MagicBrush Zhang et al. (2023a) 1B Diffusion ✗
UniWorld-v1 Lin et al. (2025) 20B Diffusion ✗
ICEdit Zhang et al. (2025c) 12B Diffusion ✗
UltraEdit Zhao et al. (2024) 1B Diffusion ✗
AnyEdit Yu et al. (2025a) 1B Diffusion ✗
OmniGen Xiao et al. (2025a) 3.8B Diffusion ✗
Step1X-Edit Liu et al. (2025) 19B Diffusion ✗
Qwen-Image-Edit Wu et al. (2025a) 20B Diffusion ✗
Flux1-Kontext Batifol et al. (2025) 12B Diffusion ✗
Bagel w/o Think Deng et al. (2025) 14B Diffusion ✗
Bagel w/ Think Deng et al. (2025) 14B Diffusion ✓
VAREdit Mao et al. (2025) 8.4B AR ✗
DIM-Edit Zeng et al. (2025) 4.6B Diffusion ✗
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