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Abstract

Many tasks in machine learning depend on preferences where we aggregate prefer-
ence data – from recommending products to improving the helpfulness of responses
from a large language model. In such tasks, individuals express their preferences
over a set of items as votes, ratings, or rankings. Given a dataset of ordinal pref-
erences from a group of individuals, we aggregate them into a single ranking
that summarizes the collective preferences as a group. When individuals express
conflicting preferences between items, standard methods are designed to arbitrate
this dissent to rank one item over another. In this work, we introduce a paradigm
for selective aggregation in which we abstain rather than arbitrate dissent. Given a
dataset of ordinal preferences from a group of users, we aggregate their preferences
into a selective ranking – i.e., a partial order over items where every comparison
is aligned with at least 1 − τ% of users. We develop an algorithm to construct
selective rankings that achieve all possible trade-offs between comparability and
disagreement.

1 Introduction

The study of collective preference aggregation has a long history, with formal developments dating
back to the 18th century. The Marquis de Condorcet was among the first to formalize the issue of
cyclic preferences, now known as Condorcet’s Paradox, where group preferences can be inconsistent
[9, 11]. Kenneth Arrow extended these ideas in Arrow’s Impossibility Theorem [5, 6], which
demonstrates that no rank-order voting system can satisfy all fairness criteria simultaneously when
aggregating individual preferences.

Rank aggregation was traditionally used in voting to determine a single winner, but modern ap-
plications —such as product recommendations, resource allocation, and machine learning—often
require consideration of the entire preference order. In these contexts, the goal is to incorporate
dissent rather than resolve conflicts, as overruling preferences can reduce the value of collective
input. We introduce SPA, a method that creates orderings while preserving dissent by determining
non-conflicting aggregate pairwise comparisons. This approach avoids overruling individuals and
ensures that the collective preferences reflect differing inputs, preventing the information loss caused
by traditional methods, as shown in Fig. 1.

Our main contributions include:
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Figure 1: Comparison of collective preferences in a task with 3 users and 3 items, contrasting standard
aggregation (top) with selective aggregation at τ = 0 (middle) and τ = 1

3
(bottom). At τ = 0, dissent is

revealed between top items A and B, while τ = 1
3

allows all comparisons by overruling 1
3

of judges.

1. We introduce a new paradigm to aggregate ordinal preference data such as votes, labels, rank-
ings, and ratings into a selective ranking that captures collective preferences without arbitrating
disagreement.

2. We develop a fast and scalable algorithm to construct selective rankings that balance comparability
and disagreement.

3. We evaluate SPA on a real-world dataset, demonstrating its ability to reduce aggregation error
while reflecting diverse user preferences in pluralistic AI systems.

4. We provide an open-source Python library for selective rank aggregation at repository.

Related Work Our work intersects with social choice theory, rank aggregation, partial orders,
and machine learning applications involving conflicting preferences. In social choice, much of
the focus has been on resolving individual preferences through voting rules, with less attention to
abstention or partial orders—especially in contexts requiring total rankings, such as elections [6, 8].
Similarly, rank aggregation methods typically aim to create a single ranking [2, 12], while our
approach addresses cases where preferences contain ties and emphasizes handling dissent without
enforcing total order [13].

In contrast, methods that use partial orders or "bucket orderings" [1, 16] offer a framework for
expressing collective preferences but often lack the flexibility to handle dissent directly. Our selective
ranking approach manages this by grouping items to maximize agreement while limiting dissent
to a predefined threshold, balancing comparability and disagreement [15, 18]. This is particularly
useful for applications like toxicity detection and personalization, where differing annotations reflect
subjective variance rather than factual errors [3, 19]. Unlike existing methods, our algorithm predicts
labels that respect diversity in judgments without forcing a consensus.

2 Algorithm

We consider a standard preference aggregation task where we wish to order n items in a way that
reflects the collective preferences from p judges. We assume that we are given a dataset where each
point represents the pairwise preference of a judge between a pair of items.

We define the individual preference function πk
i,j for judge k and the aggregate preference function

πi,j(T ) for a set of tiers T as follows, where i and j denote items:

πk
i,j =


1 i

k
≻ j,

0 i
k∼ j,

−1 i
k
≺ j

πi,j(T ) =


1 if i ∈ Tl, j ∈ Tl′ where l < l′,

−1 if i ∈ Tl, j ∈ Tl′ where l > l′,

⊥ if i, j ∈ Tl for any l
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To summarize collective preferences, we construct a weight matrix wi,j , which counts the number of
judges who prefer item i over j, defined as:

wi,j =
∑
k∈[p]

I
[
πk
i,j ≥ 0

]

If πk
i,j = 0, we increment both wi,j and wj,i by 1.

Given a dissent parameter τ ∈ [0, 0.5), the selective ranking is constructed:

max
T∈T

Comparisons(T ) s.t. Disagreements(T ) ≤ τp (1)

Increasing τ allows for more granular tiers and higher tolerance for conflicting preferences, preserving
more disagreements in the ranking.

Where:

• Comparisons(T ) :=
∑

i,j∈[n] I [πi,j(T ) ̸= ⊥] counts the number of valid comparisons in a tiered
ranking T .

• Disagreements(T ) := maxi,j∈[n]

∑
k∈[p] I

[
πk
i,j ̸= 1

]
I [πi,j(T ) = 1] measures the maximum pro-

portion of preferences overruled by any valid comparison in T .

Algorithm 1 Selective Preference Aggregation

Input: pairwise preferences {πk
i,j}i,j∈[n],k∈[p], dissent parameter τ ∈ [0, 0.5)

Construct Selective Preference Graph
1: V ← {1, . . . , n} ▷ vertices are items
2: A← {} ▷ arcs are collective preferences
3: for each pair of items i, j ∈ [n] do
4: wi,j ←

∑
k∈[p] I

[
πk
i,j ≥ 0

]
5: if wi,j ≥ τp then ▷ add arcs for comparisons with support ≥ τ
6: A← A ∪ (i→ j)
7: end if
8: end for

Group Vertices by Disagreement
9: repeat

10: Condense strongly connected components ▷ Group items into tiers based on disagreement
11: until No supervertices are strongly connected ▷ Directed Acyclic Graph

Convert Condensed Graph to selective ranking
12: Order supervertices from “root/source" to “leaf/sink" ▷ Topological Sort
13: Convert ordered supervertices into a selective ranking: Tl ← Sl for each supervertex l

Output: Selective ranking that allows for maximal comparisons without violating
Disagreements(T ) ≤ τp.

3 Learning by Agreeing to Disagree

Some of the most salient applications of preference aggregation arise in safety and alignment—e.g.,
improving the helpfulness or harmlessness of LLM responses [21]. Models are often trained or fine-
tuned using labels that encode qualitative characteristics of machine-generated responses. These labels
are produced by aggregating judgments from human annotators. In practice, the annotations may
exhibit conflict due to noise [22], ambiguity [24], hidden context [21], or subjective disagreement [14,
17]. In some tasks – e.g., toxicity detection – there is no “ground truth," and standard techniques to
aggregate labels will return a model that predicts the preferences of the majority [10, 23]. We present
an alternative approach in which we aggreate the training labels using selective aggregation. This
approach allows us to aggregate in a way that is responsive to dissent, and that can learn models that
reflect the preferences of all annotators.
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Setup We consider a binary classification task to predict the harmfulness of chatbot responses
from the Diversity In Conversational AI Evaluation for Safety dataset [4]. We work with dices350,
which contains harmfulness annotations for n = 350 chatbot conversations from p = 123 annotators.
Each conversation is paired with a set of labels yki = 1 if annotator k rates conversation i as toxic.
We define a labeled example (xi, yi) for each conversation, where each xi is a feature vector of text
embeddings and yi is one of several training labels:

1. yMaj
i = I

(∑mi

k=1 y
k
i > mi

2

)
: the majority vote among annotators [see e.g., 20].

2. yExpert
i : a harmfulness label from an in-house expert.

3. yBorda
i : aggregate labels produced by applying Borda count [7].

4. ySPA
i : aggregate labels derived from selective rank aggregation. We report results for SPA49,

which allows the most dissent and clearest distinctions in output rankings.

We convert these labels into binary by testing each rank as a potential cutoff, calculating the AUC
relative to yExpert with ’Benign’ as the threshold, and selecting the rank that achieves the highest AUC
as the optimal cutoff.

Results In Fig. 2, we summarize how well each approach can aggregate labels and predict toxicity
for all individual annotators through the following measures:

• LabelError(yM) :=
∑

k∈[p]

∑
i∈[n] I

[
yki ̸= yM

i,t

]
, where yki = 1 if user k states that conversation i

is toxic, and yM
i,t if the label has a toxicity level that exceeds tx.

• PredictionError(fM) =
∑

k∈[p]

∑
i∈[n] I

[
yki ̸= fM(xi)

]
where fM is a classifier trained on yM.

Borda

Expert

Majority

SPA

0% 10% 20% 30% 40%
Collective Error Rate

Type

Label
Prediction

Figure 2: Label and Prediction Error for SPA49 are
significantly lower than baseline methods

Our results show that SPA49 exhibits substan-
tially lower disagreement compared to expert an-
notations prior to training. For PredictionError,
baseline methods yMaj and yBorda show high la-
bel errors, each above 40%. In contrast, SPA49

has a label error of 18.4%.

For PredictionError, baseline methods like fMaj,
fExpert, and fBorda retain high levels of dis-
agreement, ranging from 39.5% to 42%. In
comparison, SPA49 showed significantly lower
PredictionError, at 19.3 %.

These results highlight how SPA consistently
outperforms baseline methods in both labeling
and prediction accuracy. With τ , SPA offers a
customizable balance between minimizing error
and enhancing comparability where needed.

4 Concluding Remarks

This work introduces SPA, a new approach to
preference aggregation that prioritizes preserving dissent over enforcing consensus. Traditional
methods impose strict orders to resolve conflicting preferences, often overruling individual inputs
and reducing accuracy. In contrast, SPA effectively aggregates preferences from ties, ratings, and
rankings, accommodates non-transitive preferences, and allows for ties, offering practical advantages
over other rank aggregation algorithms [8].

One limitation is the conservative handling of incomplete preferences, which may reduce flexibility
in certain contexts. Future work could build on existing research by incorporating probabilistic
assumptions, as in [1], to enhance robustness when faced with missing or uncertain data.

In many Machine Learning applications, disagreement should be viewed as a "signal not noise" [3].
SPA capitalizes on this by identifying and leveraging these signals. Our approach provides a practical
tool for more inclusive decision-making [10, 23].
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A Omitted Proofs

Theorem 1. Given a preference rank aggregation task with n items and p users, Algorithm 1 returns
the optimal solution to SPAτ for any dissent parameter τ ∈ [0, 1

2 ).

We will use the following Lemma:
Lemma 2. Consider the graph before running condensation or topological sort, but after pruning edges
with weight below τ . Items can be placed in separate tiers without violating Disagreements(T ) ≤ τp
if and only if there is no cycle in the graph involving those items.

Proof of Lemma 2. We start by connecting the edges in a graph to conditions on the items in a tiered
ranking and eventually expand that connection to show the one-to-one correspondence between
cycles and tiers.

First note that for any items i, j: wi,j > τ ⇐⇒
∑p

k=1 1
[
πk
i,j ̸= 1

]
> τp This follows trivially

from the definition of wi,j as
∑p

k=1 1
[
πk
i,j ̸= 1

]
. From this, we know that if and only if there exists

an arc (i, j) that is not pruned before condensation, we cannot have a tiered ranking with πT
i,j = −1

without violating Disagreements(T ) ≥ τp.

If there exists a cycle in this graph, then we know the items in that cycle must be placed in the same
tier. To show this, consider some edge i, j in the cycle. We know item j cannot be in a lower tier than
i without violating the disagreements property, from the above. So item j must be in the same or a
higher tier. But item j has an arrow to another item, k, which must be in the same or a higher tier
than both j and i, and so on, until the cycle comes back to item i. This corresponds to the constraint
that all items must be in the same tier.

If a set of items is not in a cycle, then these items do not need to be placed in the same tier. If the
items are not in a cycle, then there exists a pair of items (i, j) such that there is no path from j to i.
Thus i can be placed in a higher tier than j without violating any disagreement constraints. Thus not
all items in this set need to be placed in the same tier.

Thus we have shown that for a graph pruned with a given value of τ , items can be placed in separate
tiers for a tiered ranking based on that same parameter τ , if and only if there is no cycle in the graph
involving all of these items.

We now use this result to prove the statement of Theorem 1.

Proof of Theorem 1. Consider that items in our solution are in the same tier if and only if they are
part of a cycle in the pruned graph (if and only if they are in the same strongly connected component).
So items are in the same tier if and only if they must be in the same tier for the solution to be feasible.
No other feasible tiered ranking could have any of these items in separate tiers. So no other tiered
ranking could have any more tiers, or any more comparisons - because to do so would require placing
some same-tier items in different tiers.

Thus our solution is maximal with respect to the number of tiers, and with respect to the number of
comparisons. Note that the ordering of tiers does not affect the number of comparisons.

A.1 On Uniqueness

We restrict τ ∈ [0, 0.5) so a selective ranking is aligned with a majority of collective preferences. In
this regime, SPAτ returns a unique ranking.
Theorem 3. The optimal solution to SPAτ is unique for τ ∈ [0, 0.5).

Proof of Theorem 3: The optimal solution to SPAτ is unique for τ ∈ [0, 0.5).

Proof of Theorem 3. Consider the optimal solution, and note that it is fully specified by the set of
items in each tier, and the relative orderings of the tiers.
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Now note that swapping the order of any tiers (or any items in different tiers) is guaranteed to violate
a constraint for τ ∈ [0, 0.5). To see this, consider any pair of items i, j such that prfijT = 1 before
the swap, but prfjiT = 1 after the swap. One such pair must exist for any swapping of tier orders,
because all tiers are non-empty.

Because we elicited complete preferences, we must have at least one of
∑p

k=1 1
[
πk
i,j ̸= 1

]
> τp or∑p

k=1 1
[
πk
j,i ̸= 1

]
> τp. In this case, we cannot have

∑p
k=1 1

[
πk
i,j ̸= 1

]
> τp because the original

optimal solution was valid. Thus, we must have that
∑p

k=1 1
[
πk
j,i ̸= 1

]
> τp, which implies that

Disagreements(T ) > τp for this tiered ranking and violates the constraint. Thus, swapping the order
of tiers violates constraints because τ < 0.5/

Now note that any separation of items from within the same tier is not possible without violating a
constraint. This follows from Lemma 2, which states that items that are part of a cycle in our graph
representation of the problem2, must be in the same tier for a solution to be valid. And, as specified
in our algorithm, we know our optimal solution has tiers only where there are cycles in the graph
representation of the problem. So any tiers in the optimal solution cannot be separated.

We can still merge two tiers together without violating constraints, but such an operation reduces
the number of comparisons and would no longer be optimal. And after merging two tiers, the only
valid separation operation would be simply to undo that merge (since any other partition of the
items in that merged tier, would correspond to separating items that were within the same tier in
the optimal solution). So we cannot use merges as part of an operation to reach a valid alternative
optimal solution.

So we know that for the optimal solution, we cannot separate out any items within the same tier, and
we cannot reorder any of the tiers. Merging, meanwhile, sacrifices optimality.

Thus the original optimal solution is unique.

A.2 Stability with Respect to New Items

We start with a simple counterexample to show that selective rankings do not satisfy the “independence
of irrelevant alternatives" axiom.
Example 4 (Selective Rankings do not Satisfy IIA). Consider a preference aggregation task where
we have pairwise preferences from 2 users for 2 items A and B where both users agree that A ≻ B.

User 1 : A ≻ B

User 2 : A ≻ B

in this case, every τ -selective ranking would πA,B(T ) = 1 for any τ ∈ [0, 0.5).

Suppose we elicit pairwise preferences for a third item C and discover that each user asserts that C is
equivalent to a different item.

User 1 : A ∼ C ≻ B ←→ A ≻ B C ≻ B A ∼ C

User 2 : A ≻ B ∼ C ←→ A ≻ B B ∼ C A ≻ C

In this case, every τ -selective ranking would place A and B for all τ ∈ [0, 1
2 ).

Theorem 5. Consider a selective rank aggregation task where we construct a tiered ranking using a
dataset of complete pairwise preferences from p users over n in the itemset In. Say we elicit pairwise
preferences from all p users with respect to a new item in+1 ̸∈ In and constructing a tiered ranking
over the new itemset In+1 := In ∪ {in+1}. Let Tn and Tn+1 denote tiered rankings for In and
In+1 that we obtain by solving SPAτ for the same dissent parameter τ ∈ [0, 1

2 ). Given any two items
A,B ∈ In, we have that (πA,B(T

n+1) = πA,B(T
n)) ∨ (πA,B(T

n+1) = 0).

Proof.

2(after pruning edges of weight below τ
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A.3 On the Composition of the Top Tier

Theorem 6. Consider a prefrence aggregation task where at most α < 1
2 of users strictly prefer one

item over all other items. Given any τ ∈ [0, 1
2 , the tiered ranking from SPAτ will include at least two

items in its top tier.

Proof. We show the contrapositive: having > (1− τ) users rank an item first guarantees having only
one item in the top tier. With loss of generality, call an item with > (1− τ) users rating a specific
item first A. Consider WLOG any other item B. No more than τ users believe either of B ≻ A or
B ∼ A, because we know > (1 − τ) users believe A ≻ B. So for any tiered ranking that places
some other item B in the same tier as A, we could instead place A above all other items in that tier,
and have one more item. Since the result of our algorithm must have the maximal number of tiers,
we cannot have a case where A is in the same tier as any other item.

Lemma 7. Consider a selective rank aggregation task where a majority of users strictly prefer an
item i0 over all items i ̸= i0. There exists some threshold dissent τ0 ∈ [0, 1

2 ) such that for all τ > τ0,
every tiered ranking we obtain by solving SPAτ will place i0 as the sole item in its top tier.

Proof. Let α denote the fraction of users who strictly prefer i0 over all items. Since α > 1
2 , we

observe that at most 1−α < 1− 1
2 users can express a conflicting preference. Given any item i ̸= i0,

let τ0 = 1− α denote the fraction who users who believe either of i ≻ i0 or i ∼ i0. For any tiered
ranking that places i0 and i in the same tier, we could instead place i above all other items in that tier,
and have one more tier. Since our algorithm returns a tiered ranking with the maximal number of
tiers, we cannot have a case where i is in the same tier as any other item.

Correctness We include a proof of correctness in Theorem 1, and a proof of uniqueness in
Appendix A.1. The intuition of the proofs are as follows:

1. The edges with weight > τp corresponds to the complete set of constraints to satisfy our disagree-
ment property for any valid tiered ordering. We cannot put an outvertex for such an edge above an
invertex.

2. The condensation operation of our algorithm makes the minimum adjustments to the graph to
make these constraints satisfiable - it yields the maximal set of tiers and the maximal number of
comparisons.

3. For τ ∈ [0, 0.5), there are guaranteed to be enough constraints to force a unique output of
condensation, and a unique ordering of the condensed vertices.

B Supplementary Material for Experiments

B.1 Experimental Results

B.2 Case Study on the NBA Coach of the Year Award

We explore the application of the SPA algorithm to the 2020-2021 NBA Coach of the Year Award,
aiming to illustrate the limitations of the existing system and how slight alterations in the scoring
methodology can significantly impact the outcome. Our analysis highlights that these outcomes are
heavily influenced by the minute details of each system; SPA can capture consensus while resisting
changes due to arbitrary changes in scoring criteria.

Background In NBA award voting, rankings are obtained from prominent sports journalists and
broadcasters to identify the season’s top performers. The traditional point-based system employed by
the NBA to determine the Coach of the Year awards points is based upon weighted rankings, where
voters express multiple preferences. This system, while prevalent across various awards in sports and
other domains, often fails to capture the nuanced opinions of voters, particularly in scenarios where
preferences between candidates are narrowly divided.

9



Dataset Metrics Borda

Abstentions
Minimum Disagreement per Judge

Med Disagreement per Judge
Maximum Disagreement per Judge

Number of Items with Ties
Number of Tiers

100.0%
0.0%
0.0%
0.0%

1
1/7

100.0%
0.0%
0.0%
0.0%

1
1/7

42.9%
4.8%
0.0%

19.0%
2

2/7

9.5%
4.8%
9.5%

23.8%
2

5/7

0.0%
4.8%
9.5%

33.3%
0

7/7

0.0%
4.8%
9.5%

33.3%
0

7/7

9.5%
4.8%
9.5%

23.8%
2

7/7

0.0%
4.8%
9.5%

33.3%
0

7/7

Abstentions
Minimum Disagreement per Judge

Med Disagreement per Judge
Maximum Disagreement per Judge

Number of Items with Ties
Number of Tiers

100.0%
0.0%
0.0%
0.0%

1
1/40

48.8%
0.1%
1.3%
8.3%

2
3/40

48.8%
0.1%
1.3%
8.3%

2
3/40

3.5%
0.4%
7.8%

22.4%
4

28/40

0.0%
3.1%
9.9%

22.3%
0

40/40

0.0%
1.4%
9.1%

24.7%
0

40/40

85.4%
0.1%
0.6%
3.1%

1
4/40

0.1%
3.1%
9.7%

22.3%
1

40/40

Abstentions
Minimum Disagreement per Judge

Med Disagreement per Judge
Maximum Disagreement per Judge

Number of Items with Ties
Number of Tiers

100.0%
0.0%
0.0%
0.0%

1
1/26

41.2%
3.4%
1.5%
4.3%

3
3/26

41.2%
3.4%
1.5%
4.3%

3
3/26

8.0%
2.5%
8.6%

15.1%
3

16/26

0.0%
3.4%

11.7%
19.4%

0
26/26

0.0%
3.7%

11.1%
19.4%

0
26/26

59.1%
0.6%
4.0%
8.0%

3
7/26

0.6%
3.1%

11.4%
19.4%

2
26/26

Abstentions
Minimum Disagreement per Judge

Med Disagreement per Judge
Maximum Disagreement per Judge

Number of Items with Ties
Number of Tiers

100.0%
0.0%
0.0%
0.0%

1
1/10

100.0%
0.0%
0.0%
0.0%

1
1/10

80.0%
2.2%
2.2%
8.9%

1
2/10

6.7%
17.8%
31.1%
44.4%

1
8/10

0.0%
20.0%
33.3%
48.9%

0
10/10

0.0%
22.2%
33.3%
51.1%

0
10/10

0.0%
22.2%
33.3%
51.1%

0
10/10

0.0%
20.0%
33.3%
48.9%

0
10/10

Abstentions
Minimum Disagreement per Judge

Med Disagreement per Judge
Maximum Disagreement per Judge

Number of Items with Ties
Number of Tiers

100.0%
0.0%
0.0%
0.0%

1
1/10

100.0%
0.0%
0.0%
0.0%

1
1/10

46.7%
8.9%

24.4%
42.2%

1
4/10

46.7%
8.9%

24.4%
42.2%

1
4/10

0.0%
22.2%
46.7%
68.9%

0
10/10

0.0%
26.7%
46.7%
68.9%

0
10/10

4.4%
20.0%
44.4%
68.9%

2
10/10

0.0%
22.2%
46.7%
68.9%

0
10/10

Table 1: Overview of all methods on all datasets.

Votes Score
Candidate 1st 2nd 3rd NBA
Monty Williams 45 32 19 340 353
Tom Thibodeau 43 42 10 351 352
Quin Snyder 10 23 42 161 148
Doc Rivers 2 2 8 24 24
Nate McMillan 0 0 12 12 12
Steve Nash 0 1 4 7 6
Michael Malone 0 0 5 5 5

Table 2: Tally of votes and scores for the 2020-21 NBA Coach of the Year. We show scores for the original
scoring rule (NBA), which awards 5/3/1 points for each 1st/2nd/3rd place vote.

Results

• Impact of Score Function Variability: The NBA’s weighted voting mechanism for the Coach
of the Year (COTY) determines outcomes by assigning points: 5 points for a first-place vote, 3
points for a second, and 1 point for a third. This system can lead to a coach with fewer first-place
votes but a higher overall ranking across more ballots emerging as the winner. For instance, despite
Monty Williams receiving more first-place votes, Tom Thibodeau was declared the winner under
the traditional 5-3-1 system. Let us consider an alternative point system of 6,2,1, a subtle yet
impactful adjustment from the traditional system. Despite being a relatively minor change, the
recalculated total points under the new system led to a dramatic shift in the outcome, with Monty
Williams now accumulating 353 points and surpassing Tom Thibodeau, who has 352 points. SPA
withstands fluctuations inherent to traditional scoring methods since SPA is based on patterns of
consensus across the entire set of rankings, rather than merely tallying points based on position.

• Limitations in Capturing users’ Preferences: The current point-based system’s inability to
accommodate ties or express nuanced preferences is a notable limitation. When we consider a
hypothetical scenario allowing users to assign tied first-place votes (with each receiving 4 points),
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Thibodeau’s lead paradoxically increases, despite a scenario suggesting a narrowing preference
gap between Williams and Thibodeau. This is because, under the existing system, users who
view multiple candidates as equally deserving must still rank them, implicitly suggesting a clear
preference hierarchy that may not accurately reflect their views. Introducing the ability to express
equivalent preferences for top candidates like Williams and Thibodeau reveals this rigidity, as it
leads to an increase in points for Thibodeau.

• Equivalence Consider a scenario where users’ preferences for Monty Williams and Tom Thibodeau
challenge the system’s flexibility. Imagine that among the users who originally ranked Williams
and Thibodeau as their top 2, 1/3 of them now assign equivalent first-place votes to both coaches,
where tied first-place votes are given 4 points each. Including equivalence paradoxically increases
the gap between the top 2 increasing Thibodeau’s total to 381 points, despite more users showing
equal preference for both. This highlights a key flaw: outcomes can significantly shift without any
genuine change in opinion or preference among the users.

Our Solution:

• SPA outputs a different ranking than the original, highlighting the variability under different
scoring systems. By adjusting the dissent τ , we clarify the preference hierarchy, placing Monty
Williams as the clear favorite at a dissent value of 0.499, which aligns with his broader support
among voters.

• Our ranking explicitly shows the degree of support and opposition for each coach, which are not
evident through the traditional voting system. It enables a detailed examination of voter sentiment
and produces outcomes that align more closely with the actual consensus.

• This approach is versatile and can be adapted for various decision-making contexts that require an
understanding of group preferences. It is designed to handle complex scenarios, such as ties and
equal rankings, facilitating more accurate and fair decision outcomes.
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