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ABSTRACT

Reinforcement Learning (RL) enables agents to learn optimal decision-making
strategies through interaction with an environment, yet training from scratch on
complex tasks can be highly inefficient. Transfer learning (TL), widely successful
in large language models (LLMs), offers a promising direction for enhancing RL
efficiency by leveraging pre-trained models.
This paper investigates policy transfer, a TL approach that initializes learning
in a target RL task using a policy from a related source task, in the context of
continuous-time linear quadratic regulators (LQRs) with entropy regularization.
We provide the first theoretical proof of policy transfer for continuous-time RL,
proving that a policy optimal for one LQR serves as a near-optimal initialization
for closely related LQRs, while preserving the original algorithm’s convergence
rate. Furthermore, we introduce a novel policy learning algorithm for continuous-
time LQRs that achieves global linear and local super-linear convergence. Our
results demonstrate both theoretical guarantees and algorithmic benefits of trans-
fer learning in continuous-time RL, addressing a gap in existing literature and
extending prior work from discrete to continuous time settings.
As a byproduct of our analysis, we derive the stability of a class of continuous-
time score-based diffusion models via their connection with LQRs.

1 INTRODUCTION

Transfer learning. Transfer learning is a machine learning technique that leverages expertise
gained from one domain to enhance the learning process in another related task. It is one of the
most influential techniques that underpin the capabilities of large language models (LLMs). In the
context of LLMs, transfer learning involves using pre-trained models, such as those from the GPT,
BERT, or similar families, that were initially trained for specific tasks. Transfer learning repur-
poses these models for new and related applications, often involving domain-specific variations of
the original problems. See e.g. Howard & Ruder (2018), Devlin et al. (2019), Raffel et al. (2020),
Brown et al. (2020), Liu et al. (2019). Beyond LLMs, transfer learning has also gained a significant
traction in other domains, particularly for improving learning efficiency when data and computa-
tional resources are limited. See e.g. Kraus & Feuerriegel (2017), Amodei et al. (2016), Tang et al.
(2022).

Reinforcement learning and transfer learning. Reinforcement learning (RL) is one of the fun-
damental machine learning paradigms, where an agent learns to make a sequence of decisions by
interacting with an environment and possibly with other agents. In a typical RL setup, an agent
learns a policy/strategy for choosing actions in a given system state through trial and error to max-
imize a cumulative reward over time. However, training an agent for a complex RL task from the
ground up can be extremely inefficient.

Given the exponentially growing demand for complex RL tasks, and the increasing number of pre-
trained RL models for various learning tasks, it is natural to incorporate TL into RL to leverage
knowledge from a pre-trained RL model to reduce both training time and computational costs, es-
pecially when there is a limited amount of data for new RL models.
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Policy transfer is one of the most direct methods to leverage knowledge from one RL task to another.
The basic idea of policy transfer is to use the policy learned from the source task to initialize the pol-
icy for the target task. If two RL tasks are similar, exploring the pre-trained policy as a starting point
hopefully allows the agent to begin with a near-optimal strategy, with subsequent minor adjustments.
This is intuitively clear and simple, and has been analyzed in a discrete-time LQ framework by Guo
et al. (2023). Their work, as the first known theoretical studies for incorporating transfer learning
into reinforcement learning, demonstrates the advantage in algorithmic performance improvement
with TL technique for RL.

A natural question is, if the same benefit of transfer learning can be achieved for RL via appropriate
policy transfer? Indeed, reinforcement learning, though primarily developed for discrete environ-
ment, is intrinsically continuous and complex, especially in robotics control, automatic driving, and
portfolio optimization. However, analyzing transfer learning in the continuous-time RL framework
remains uncharted and presents significantly greater technical challenges, as the knowledge to be
transferred involves controlled stochastic processes and infinite-dimensional functional spaces.

Our work. This paper presents a theoretical analysis of policy transfer between continuous-time
linear quadratic regulators with entropy regulation (LQRs). We demonstrate that an optimal policy
learned for one LQR can serve as a near-optimal policy for any closely-related LQR, while preserv-
ing at least the same convergence rate as the original learning algorithm. In addition, we propose a
novel policy learning algorithm for continuous-time LQRs, which achieves a global linear conver-
gence rate and a local super-linear convergence rate. This implies that any closely related LQR is
guaranteed with a super-linear convergent learning algorithm.

Our analysis fully exploits the Gaussian structure of the optimal policy for LQRs, as well as the
robustness of the associated Riccati equation. As a byproduct of our analysis, we derive the stability
of a class of continuous-time score-based diffusion models via their connection with LQRs.

Related work. The existing literature on policy learning for linear-quadratic (LQ) problems is ex-
tensive. For example, several studies focus on gradient-based algorithms for discrete-time LQRs.
These algorithms, notably those proposed by Fazel et al. (2018) and Hambly et al. (2021), are able
to achieve a global linear convergence rate in learning the parameters of the optimal feedback policy.
Similarly, Giegrich et al. (2022) extends this approach to continuous-time LQRs, also demonstrat-
ing a global linear convergence rate. Beyond these gradient-based methods, other research explores
different aspects of LQRs. For instance, Dean et al. (2020) develops a multistage procedure for
designing a robust controller of discrete-time LQRs when the system dynamics are not fully known,
while Huang et al. (2024) introduces a model-free algorithm that directly learns the optimal policy
of continuous-time LQRs, providing a theoretical guarantee with a sublinear regret bound. Further-
more, Krauth et al. (2019) provides a theoretical analysis of the sample complexity of approximate
policy iteration for learning discrete-time LQRs. For a more comprehensive background, interested
readers are referred to the standard references by Kwakernaak & Sivan (1972) and Bertsekas (2019).
Another closely related concept is the meta-learning for LQRs. For example, Toso et al. (2024)
proves the first stability and convergence results of the model-agnostic meta-learning (MAML) in
discrete-time LQRs.

The TL between MDPs is also well studied. For instance, Fu et al. (2023) investigates model transfer
and policy transfer between hidden-parameter MDPs (HiP-MDPs), bounding the performance loss
incurred by TL with the error in the estimation of hidden parameters. Lazaric & Restelli (2011)
proposes sample-transfer algorithms and conducts the corresponding finite-sample analysis. Asadi
et al. (2018) proves that, within the class of Lipschitz continuous MDPs, small perturbations in the
dynamics only lead to a small change in the value function.

Our work of RL with TL is in continuous time and state spaces. The closest to our work is Guo et al.
(2023), where a super-linear local convergent algorithm called IPO is proposed for discrete-time
exploratory LQRs. In comparison, the analysis of policy transfer between continuous-time LQRs
is technically more challenging and is on infinite-dimensional functional spaces. More importantly,
we establish general results on policy transfer between any two closely related LQRs. The particular
algorithm of IPO illustrates the benefit of policy transfer in such a context.

On the stability of continuous-time score-based diffusion models, Tang & Zhao (2024) has obtained
a fairly general result under appropriate technical assumptions. Here we derive, via connecting
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score-based diffusion models with LQRs, a class of models where these assumptions and hence the
stability results hold.

Finally, the connection between score-based diffusion models and LQRs is well known. For ex-
ample, Zhang & Katsoulakis (2023) shows that a large class of generative models, including nor-
malizing flows, score-based diffusion models, and Wasserstein gradient flows, can be viewed as the
solutions to certain mean-field games (MFGs). We note that LQRs can be viewed as the degenerate
case of LQMFGs. Moreover, Gu et al. (2024) and Zhang et al. (2024) research the relationship
between MFGs, Wasserstein proximals and score-based diffusion models.

Notations. For any smooth function f : Rn → R, we use∇f(x) ∈ Rn to denote its gradient, and
∆f(x) ∈ Rn×n to denote its Hessian matrix. In addition, we use · to indicate the usual vector-vector
and matrix-matrix inner products, depending on the context, and we use Sn

≥0 (resp. Sn
>0) to denote

the space of n× n real positive semi-definite (resp. positive definite) matrices.

2 MATHEMATICAL FORMULATION

Let us now set up the mathematical framework under which entropy-regularized continuous-time
linear quadratic regulators (LQRs) are defined over a finite time interval [0, T ].

Specifically, following the setup of Wang et al. (2018), we assume that the state process xt ∈ Rn of
the agent follows the linear SDE:

dxt =
[
Atxt +BtE(ut |xt)

]
dt+ σtdWt, x0 ∼ D0, (1)

where E[ut |xt] ∼ πt(· |xt) ∈ P(Rk) represents the randomized policy of the agent conditioned on
xt, (Wt)t∈[0,T ] denotes the d-dimensional standard Brownian motion (d-BM for short), D0 denotes
the initial distribution, and (At, Bt, σt)t∈[0,T ] are appropriate deterministic matrix-valued processes
to be specified later.

The agent minimizes the following entropy-regularized cost function:

inf
π∈A

Jπ(0,D0)

:= Eut∼πt(· | xt)

[∫ T

0

x†
tQtxt + u†

tRtut + τ log ht(ut |xt)dt+ x†
TQ

′xT

∣∣∣∣∣x0 ∼ D0

]
, (2)

where † denotes the transpose operator, A denotes the set of admissible randomized policies,
ht(· |xt) denotes the conditional probability distribution function of πt(· |xt), and (Qt, Rt)t∈[0,T ]

(resp. Q′) are appropriate deterministic matrix-valued processes (resp. matrix) to be specified later.

Note that the exploratory SDEs adopted here are first proposed by Wang et al. (2018), where an
entropy-regularization term is added to the cost function to encourage agent exploration.

Next, we present the technical assumptions to ensure that the above formulation (1) – (2) is well
defined. In particular, our goal is to ensure that (1) admits a unique strong solution (see e.g. (Ok-
sendal, 2013, Theorem 5.2.1)) and that (2) has a finite integrand. See (Guo et al., 2022, Section 2)
for a similar setup.
Assumption 1 (Probability space). We assume a filtered probability space

(
Ω,F ,P; (Ft)t∈[0,T ]

)
where the filtration (Ft)t∈[0,T ] 1) is rich enough to support some d-BM (Wt)t∈[0,T ], the random
action (ut)t∈[0,T ] of the agent, and the initial distribution D0, which are assumed to be indepen-
dent; 2) satisfies the usual conditions (i.e., F0 contains all the P-null sets and (Ft)t∈[0,T ] is right-
continuous).
Assumption 2 (Admissible policies). The set A of admissible policies consists of Markovian ran-
domized policies, i.e., the following conditions hold for any π ∈ A:

1) for any t ∈ [0, T ] and x ∈ Rn, πt(· |x) is absolutely continuous w.r.t. the Lebesgue
measure on Rk and has a finite expectation and a finite entropy;

2) E(ut |x), when viewed as a function of (t, x) ∈ [0, T ] × Rn, has a linear growth w.r.t. x
and is Lipchitz continuous in x.
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Assumption 3 (Regularity conditions). D0 is assumed to be square integrable, and

A,Q ∈ L∞([0, T ],Rn×n), B ∈ L∞([0, T ],Rn×k),

R ∈ L∞([0, T ],Rk×k), σ ∈ L2([0, T ],Rn×d).

In addition, we assume Qt ⪰ 0 a.e. for t ∈ [0, T ], τ > 0, Q′ ⪰ 0, and that there exists δ > 0 such
that Rt − δI ⪰ 0 a.e. for t ∈ [0, T ].

3 TRANSFER LEARNING BETWEEN LQRS

In this section, we consider transfer learning between continuous-time linear quadratic regulators
with entropy regulation (LQRs).

More specifically, suppose that there are two LQRs whose system parameters are (θt)t∈[0,T ] and
(θ̃t)t∈[0,T ], respectively. Without loss of generality, let us assume that the first LQR is more acces-
sible and easier to learn, and let us denote by (K∗

t )t∈[0,T ] the parameter of its optimal policy. We
will show that if (θt)t∈[0,T ] and (θ̃t)t∈[0,T ] are sufficiently close, then (K∗

t )t∈[0,T ] may be used as
an initialization to efficiently learn the optimal policy of the second LQR. Here in our framework
the parameters θ = (A,Q,B,R,Q′).
Theorem 1 (Transfer learning of LQRs). Given an LQR represented by model parameters θ, for
which there exists an optimal policy π∗ and an associated learning algorithm. Now, suppose there
is a new LQR represented by model parameters θ̃. Then, there exists ϵ > 0, such that with an
appropriate initialization π(0), this learning algorithm has the same convergence rate and finds a
near-optimal policy of the new LQR, provided that

d(π(0), π∗) + d(θ̃, θ) < ϵ.

Here d denotes an appropriately chosen distance on the corresponding metric space.

This result is based on the following two lemmas.

First, we see that the optimal randomized policy of the LQR defined by (1) – (2) can be derived via
the dynamic programming principle (DPP) and by following a similar calculation from the earlier
work Wang et al. (2018) and Guo et al. (2022).
Lemma 2. The optimal randomized policy of the LQR (1) – (2) is:

π∗
t (· |x) = N

(
−R−1

t B†
tPtx,

τ

2
R−1

t

)
, (3)

where Pt solves the following Riccati equation:
dPt

dt
+A†

tPt + PtAt +Qt − PtBtR
−1
t B†

tPt = 0, PT = Q′. (4)

Remark 1. The Gaussian form of π∗ originates from the entropy-regularization term in the cost
function (2). The mean of π∗ appears in a mean-reverting fashion, pushing the agent to 0. Mean-
while, the covariance of π∗ is driven by the regularization coefficient τ > 0. The larger the value of
τ , the more the agent would explore. In the case where τ → 0+, π∗ would converge to a determin-
istic policy as one should expect (see (Wang et al., 2018, Section 5.4) for a formal discussion on the
convergence of π∗).
Lemma 3 (Key lemma). Under Assumption 3, denote byR the solution map of the Riccati equation
(4), i.e.,
R : L∞([0, T ],Rn×n)× L∞([0, T ], Sn

≥0)× L∞([0, T ],Rn×k)× L∞([0, T ], Sk
>0)× Sn

≥0

−→ C([0, T ], Sn
≥0)

(At∈[0,T ], Qt∈[0,T ], Bt∈[0,T ], Rt∈[0,T ], Q
′) 7−→ R(A,Q,B,R,Q′) := (Pt)t∈[0,T ].

Then,R is continuous, where the L∞ (resp. Sn
≥0) space is equipped with the functional || · ||∞;[0,T ]

norm (resp. matrix 2-norm).

Now, Theorem 1 follows immediately from Lemma 3. Indeed, by Lemma 3, the optimal policy is a
continuous function in the LQR’s model parameters. As a result, when the distance between θ̃ and
θ is small enough, the optimal policies of the two LQRs can be made arbitrarily close to each other.
This implies the desired near-optimality.
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4 IPO AND ITS SUPER-LINEAR CONVERGENCE FOR LQRS

Now we design an Iterative Policy Optimization (IPO) learning algorithm for LQRs. We will first
establish its global linear convergence, and then show its super-linear convergence when the initial
policy lies in a certain neighborhood of the optimal policy. As a corollary, in the context of transfer
learning, we will see that such an algorithm yields an optimal policy for any closely related LQR with
an appropriate initialization (i.e., policy transfer). Our algorithm is analogous to the IPO algorithm
developed for discrete-time LQRs in Guo et al. (2023), hence the adopted name IPO.

The algorithm and the analysis rely crucially on the Gaussian form of the LQR’s optimal policy.
Indeed, given the special form of (3), it suffices to optimize only within the following class of
Gaussian policies:

πt(· |x) = N (−Ktx, Σt), (5)
where Kt and Σt are of appropriate shapes, and there exists δ1 > 0 such that Σt − δ1I ⪰ 0 for any
t ∈ [0, T ]. By (3), we observe that

K∗
t = R−1

t B†
tPt, Σ∗

t =
τ

2
R−1

t (6)

under the optimal policy of the LQR (1) – (2). First, we have

DPP for the class of Gaussian policies. Denote by JK,Σ the cost function associated with (5),
with

JK,Σ(t, x)

:= Eus∼πs(· | xs)

[∫ T

t

x†
sQsxs + u†

sRsus + τ log hs(us |xs)ds+ x†
TQ

′xT

∣∣∣∣∣xt = x

]
.

Next, by DPP, JK,Σ satisfies the following Bellman equation:

∂JK,Σ

∂t
+
[
(At −BtKt)x

]
· ∇JK,Σ +

1

2
(σtσ

†
t ) ·∆JK,Σ

+ x†(Qt +K†
tRtKt)x+ tr(ΣtRt)−

τ

2

[
k + log

(
(2π)k|Σt|

)]
= 0, (7)

with the terminal condition JK,Σ(T, x) = x†Q′x. By plugging in the ansatz

JK,Σ(t, x) = x†PK
t x+ rK,Σ

t ,

we obtain the coupled Riccati equations:

dPK
t

dt
+ (At −BtKt)

†PK
t + PK

t (At −BtKt) +Qt +K†
tRtKt = 0, PK

T = Q′, (8)

drK,Σ
t

dt
+ tr(σ†

tP
K
t σt +ΣtRt)−

τ

2

[
k + log

(
(2π)k|Σt|

)]
= 0, rK,Σ

T = 0. (9)

Note that PK
t only depends on Kt, and rK,Σ

t depends on (Kt,Σt). Recall that Assumption 3 is
sufficient for (8) to admit a unique C1 solution taking values in Sn

≥0 (cf. (Yong & Zhou, 2012,
Corollary 2.10)).

Now we can derive an IPO algorithm for updating the parameters in the Gaussian policy (5), namely
Kt and Σt, with the goal of learning the parameters of the optimal randomized policy, which are
denoted by K∗

t and Σ∗
t (cf. (6)).

Iterative policy optimization (IPO) derivation. For any ∆t > 0, JK,Σ(t, x) satisfies the Bell-
man equation:

JK,Σ(t, x) = Eu∼πK,Σ

[ ∫ t+∆t

t

x†
sQsxs + u†

sRsus + τ log hs(us |xs)ds

+ JK,Σ(t+∆t, xt+∆t)
∣∣∣xt = x

]
. (10)

5
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We define the preliminary IPO algorithm of (Kt,Σt) by:

Kprelim
t ,Σprelim

t

:= argmin
K̃,Σ̃

Eu∼π
K̃,Σ̃

[ ∫ t+∆t

t

x†
sQsxs + u†

sRsus + τ log hs(us|xs)ds

+ JK,Σ(t+∆t, xt+∆t)
∣∣∣xt = x

]
,

which depends on the value of ∆t and is equivalent to:

Kprelim
t ,Σprelim

t

:= argmin
K̃,Σ̃

Eu∼π
K̃,Σ̃

[
1

∆t

∫ t+∆t

t

x†
sQsxs + u†

sRsus + τ log hs(us |xs)ds

+
1

∆t

[
JK,Σ(t+∆t, xt+∆t)− JK,Σ(t, x)

] ∣∣∣xt = x

]
. (11)

Our IPO algorithm is then defined by the limit of the above preliminary algorithm, that is, on the
RHS of (11), we set ∆t → 0+ and exchange the limit with argmin to obtain (i.e., minimizing the
first-order derivative of the RHS of (10) at ∆t = 0):

KIPO
t ,ΣIPO

t := argmin
K̃t,Σ̃t

{
x†(K̃†

tRtK̃t − 2K̃†
tB

†
tP

K
t )x+ tr(Σ̃tRt)−

τ

2
log |Σ̃t|

}
,

which admits the following analytical solution:

KIPO
t = R−1

t B†
tP

K
t , (IPO: K)

ΣIPO
t =

τ

2
R−1

t . (IPO: Σ)

where PK
t is the solution to (8). Notice that ΣIPO

t reaches the covariance of the optimal Gaussian
policy after a single iteration (cf. (6)). We present below the IPO algorithm for updating Kt.

Algorithm 1 IPO algorithm for learning (K∗
t )t∈[0,T ]

Require: Initial value (K
(0)
t )t∈[0,T ]

1: i← 0
2: while not stop flag do
3: Solve (8) to obtain (PK(i)

t )t∈[0,T ]

4: K
(i+1)
t ← R−1

t B†
tP

K(i)

t , t ∈ [0, T ]
5: i← i+ 1
6: end while
7: return (K

(i)
t )t∈[0,T ]

Convergence of IPO. Now we present the convergence results of the IPO algorithm defined by
(IPO: K) – (IPO: Σ). We will show that with an additional assumption stated in Assumption 4 ,
the IPO algorithm has a global linear convergence rate. Since (ΣIPO

t )t∈[0,T ] always reaches the
covariance of the optimal Gaussian policy after a single iteration, we only discuss the convergence
of (KIPO

t )t∈[0,T ].

For any given parameters (Kt,Σt)t∈[0,T ], we use the cost function value to measure their goodness
(with an abuse of notation):

C(K,Σ) := JπK,Σ
(0,D0) (12)

= E
(
x†PK

0 x+ rK,Σ
0

∣∣∣x ∼ D0

)
,

where (PK
t , rK,Σ

t )t∈[0,T ] solves the coupled Riccati equations (8) – (9). Note that C(K,Σ) is mini-
mized at (K∗

t ,Σ
∗
t )t∈[0,T ] (resp. at (K∗

t )t∈[0,T ] when viewed only as a functional in K). See (6) for
the values of (K∗

t ,Σ
∗
t )t∈[0,T ].

6
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Assumption 4. E
(
x0x

†
0

∣∣x0 ∼ D0

)
≻ 0.

Theorem 4 (Global linear convergence of IPO). Under Assumptions 1 – 4, suppose that
{(K(i)

t ,Σt)t∈[0,T ]}i≥0 is a sequence of parameters following the algorithm (IPO: K). Then, there
exist constants CK1 > 0 and 0 ≤ C1 < 1, which depend on K(0) and the data of the LQR (1) – (2),
such that:

∀i ≥ 0, CK1
∫ T

0

∣∣∣∣∣∣K(i+1)
t −K∗

t

∣∣∣∣∣∣2
2
dt ≤ C(K(i+1),Σ)− C(K∗,Σ)

≤ C1
[
C(K(i),Σ)− C(K∗,Σ)

]
.

One can further establish a super-linear convergence rate for the IPO algorithm, with an appropriate
initialization.
Theorem 5 (Local super-linear convergence of IPO). Under Assumptions 1 – 4, there exist constants
(ϵ, C2) > 0, which depend on the data of the LQR (1) – (2), such that for any sequence of parameters
{(K(i)

t ,Σt)t∈[0,T ]}i≥0 following the algorithm (IPO: K) and satisfying:∫ T

0

∣∣∣∣∣∣K(0)
t −K∗

t

∣∣∣∣∣∣2
2
dt ≤ ϵ,

the following local super-linear convergence holds:

∀i ≥ 0, C(K(i+1),Σ)− C(K∗,Σ) ≤ C2
[
C(K(i),Σ)− C(K∗,Σ)

] 3
2

.

Remark 2. Assumption 4 is critical in proving that the minimum eigenvalue of E(xtx
†
t) is uniformly

bounded away from 0 (cf. Lemma 11). This uniform lower bound then leads to the uniform con-
traction of the IPO algorithm. In the discrete-time setting (cf. Guo et al. (2023)), the counterpart
of Assumption 4 is also imposed to guarantee the global linear convergence of the algorithms (cf.
(Guo et al., 2023, Lemma 5.2)).
Remark 3. In fact, one can replace D0 with any square-integrable distribution in the definition
of C(·, ·) (cf. (12)) and all the above convergence results still hold. This is because the initial
distribution of the LQR (1) – (2) is irrelevant to the definition of the IPO algorithm. In this case,
one only needs to change the statement of Assumption 4 to guarantee the corresponding positive-
definiteness.

Transfer learning with IPO. Now combining Theorem 1 and Theorem 5, we have immediately
the super-fast learning via appropriate policy transfer between LQRs. We mention that in Theorem 5,
ϵ admits a lower bound which only depends on the norms of the LQR’s model parameters.
Corollary 6 (Transfer learning of LQRs with IPO). Under Assumptions 1 – 4, denote
by (K∗

t )t∈[0,T ] the parameter of the optimal Gaussian policy of the LQR represented by
(At∈[0,T ], Qt∈[0,T ], Bt∈[0,T ], Rt∈[0,T ], Q

′). Then, there exists ϵ > 0, such that any initialization

(K
(0)
t )t∈[0,T ] converges with a super-linear convergence rate to the optimal Gaussian policy of any

LQR represented by (Ãt∈[0,T ], Q̃t∈[0,T ], B̃t∈[0,T ], R̃t∈[0,T ], Q̃′), provided that

||K(0) −K∗||2;[0,T ] + ||Ã−A||∞;[0,T ] + ||Q̃−Q||∞;[0,T ]

+ ||B̃ −B||∞;[0,T ] + ||R̃−R||∞;[0,T ] + ||Q̃′ −Q′||2 < ϵ,

where || · ||∞;[0,T ] (resp. || · ||2;[0,T ], || · ||2) denotes the functional L∞ norm (resp. functional L2

norm, matrix 2-norm).

5 APPLICATION: STABILITY OF SCORE-BASED DIFFUSION MODELS

In this section, we will show that our analysis of LQRs, especially the key Lemma 3 can be applied
to obtain the stability of score-based diffusion models. The critical observation is that the probability
density function of (a certain class of) score-based diffusion models can be found in the LQRs under
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the optimal randomized policy. This allows us to consider a class of score matching functions and
to bound the distance between the generated distribution and the target distribution.

In the rest of this section, we always impose the following assumption on the LQR (1) – (2).

Assumption 5. We assume

tr(At) = −
τ

4
log
|Rt|
(τπ)k

, BtR
−1
t B†

t = σtσ
†
t , Qt = 0

for any t ∈ [0, T ], and Q′ ≻ 0.

Mechanism of score-based diffusion models. Score-based diffusion models have become the
SOTA solution to various tasks in different areas. For completeness, we first recall their basic mech-
anism briefly. (See e.g. Tang & Zhao (2024) for a comprehensive review).

Suppose pdata0 is the distribution that one aims to generate. Diffusion model starts by defining a
forward SDE (e.g. an OU process) over [0, T ] with the initial distribution pdata0 . Denote by s and
pdataT the score function and the terminal distribution of the forward SDE, respectively. Then, in
the sampling stage, a backward SDE, whose dynamics depend on s and whose initial distribution is
pdataT , is simulated. (Figure 1 summarizes the basic mechanism of score-based diffusion models).

Theoretically, it can be shown that the terminal distribution of the backward SDE is equal to pdata0 .
In practice, however, s and pdataT are typically not accessible, and a score matching function sβ and
a noise distribution pnoise are adopted as their approximations, respectively. Denote by pdata≈ the
terminal distribution of the backward SDE (under sβ and pnoise).

(4) pdata≈ (3) pnoise

(1) pdata0 (2) pdataT

e2 := d(sβ , s)

Backward SDE

Forward SDE

e1 := d
(
pnoise, pdataT

)
e3 ∈ O(e1 + e2)

Figure 1: Basic mechanism of score-based diffusion models.

Connection with LQRs. Next, we recall the connection between score-based diffusion models
and LQRs. Our Lemma 7 can be viewed as a special case of (Zhang & Katsoulakis, 2023, Theo-
rem 7). The key ingredient is the Cole-Hopf transformation for the HJB equation that characterizes
the optimal policy of the LQR (cf. (HJB) in our case).

Lemma 7. Under Assumptions 1 – 3 and 5, the probability density function, which is denoted by
p̂(t, x), of the following diffusion process on [0, T ]:

dX̂t = −AT−tX̂tdt+ σT−tdWt, X̂0 ∼ N
(
0, (Q′)−1

)
(13)

can be expressed by:

p̂(t, x) = (2π)−
n
2 |Q′| 12 exp

[
−1

2
J(T − t, x)

]
,

where J(t, x) = x†Ptx+ rt with (Pt, rt) solving the coupled Riccati equations (4) – (17).

We note that (13) specifies a diffusion model where the data distribution X̂0 (i.e., the distribution
one aims to generate) is Gaussian, and the forward SDE is an OU process. By Lemma 7, p̂(t, x)
is determined by PT−t and rT−t. In fact, p̂(t, x) is determined solely by PT−t since the spacial
integral of p̂(t, x) must be 1. As a result, the score function of (13) (i.e., the gradient of log p̂(t, x))
is determined by PT−t.

8
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A class of score matching functions and the stability. Now, the backward SDE of (13) is:

dŶt =
[
AtŶt + σtσ

†
t∇ log p̂Q

′
(T − t, Ŷt)

]
dt+ σtdWt, Ŷ0 ∼ p̂Q

′
(T, ·), (14)

where we use p̂Q
′

to indicate the dependence of p̂ on Q′.

In practice, when p̂Q
′

is not explicitly known, a score matching function s is used as an approximator
of∇ log p̂Q

′
, and the initial distribution is approximated by some noise distribution pnoise, i.e.,

dYt =
[
AtYt + σtσ

†
t s(T − t, Yt)

]
dt+ σtdWt, Y0 ∼ pnoise. (15)

We will show that YT ≈ ŶT
d
= X̂0 when s ≈ ∇ log p̂Q

′
and pnoise ≈ p̂Q

′
(T, ·): this follows from the

stability of the Riccati equation (4) (cf. Lemma 3), such that s = ∇ log p̂M serves as a good score
matching function as long as M ≈ Q′.

Theorem 8 (Error bound analysis). Under Assumptions 1 – 3 and 5, there exist constants
(C1, C2, C3) > 0, which depend on the data of the LQR (1) – (2), such that for any ϵ > 0, there
exists δ0 > 0, such that ||M −Q′|| < δ0 implies

dTV

(
YT , ŶT

)
≤ dTV

(
pnoise, p̂Q

′
(T, ·)

)
+ C1ϵ,

and

W2

(
YT , ŶT

)
≤
√
C2W 2

2 (pnoise, p̂Q′(T, ·)) + C3ϵ2,

where Yt satisfies (15) with s = ∇ log p̂M , and Ŷt satisfies (14). Here dTV and W2 to denote the
total variation distance and 2-Wasserstein distance, respectively.

Proof. Our proof utilizes the results in (Tang & Zhao, 2024, Section 5). We first prove the total
variation bound. By Lemma 3, for any fixed x ∈ Rn, we have:

∇ log qM (·, x)→ ∇ log qQ
′
(·, x) in C([0, T ],Rn)

as M → Q′. Then, by probability theory, we have:

∀t ∈ [0, T ], EX̂t∼q(t,·)

∣∣∣∣∣∣∇ log qM (t, X̂t)−∇ log qQ
′
(t, X̂t)

∣∣∣∣∣∣2 → 0

as M → Q′. The total variation bound is then proved by invoking (Tang & Zhao, 2024, The-
orem 5.2). Similarly, the 2-Wasserstein bound can be proved by invoking (Tang & Zhao, 2024,
Theorem 5.5 and Eqn. (5.13)).

6 NUMERICAL EXPERIMENTS

In this section, we conduct a toy numerical experiment to illustrate our main convergence results
Theorem 4 (i.e., global linear convergence) and Theorem 5 (i.e., local super-linear convergence) of
the IPO algorithm 1. We assume that the values of (At∈[0,T ], Bt∈[0,T ], Qt∈[0,T ], Rt∈[0,T ], Q

′) in (1)
– (2) are known.

Choice of model parameters. For simplicity, we only consider the case where the matrix-valued
processes (At∈[0,T ], Bt∈[0,T ], Qt∈[0,T ], Rt∈[0,T ]) are constant in t. We choose T = 1, (n, k) =
(3, 2), and the values of the model parameters are sampled independently from the standard normal
distribution N (0, 1) 1. At each time step t, the parameter K(0)

t of the initial policy is also sampled
independently from N (0, 1). Note that we do not require (K

(0)
t )t∈[0,T ] to be constant in t.

1To sample a PSD matrix, we first sample a random matrix and then multiply it with its transpose.
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Numerical results. The convergence of our IPO algorithm is plotted in Figure 2. The x-axis
shows the iteration and the y-axis shows the mean L2 error, where (K

(i)
t )t∈[0,T ] denotes the Gaus-

sian policy’s parameter at the i-th iteration, and (K∗
t )t∈[0,T ] denotes the parameter of the optimal

Gaussian policy. As clearly shown, the algorithm admits linear convergence at the early stages and
then super-linear convergence when the policy approaches the optimum, which empirically veri-
fies our theoretical results Theorem 4 (i.e., global linear convergence) and Theorem 5 (i.e., local
super-linear convergence).

Figure 2: Convergence of the IPO Algorithm 1.

Conclusion. Linear-quadratic (LQ) control problems are a cornerstone of classical control the-
ory. Our analysis of transfer learning for LQRs benefits from its analytical tractability and gains
critical insights for general continuous-time RL problems. In particular, it shows that transfer learn-
ing will be valuable for leveraging existing RL algorithms beyond LQR framework. The precise
mathematical analysis relies on studies of stability and continuity of optimal policy for stochastic
control problems. The analysis on LQRs also leads to the stability results for a class of score-based
continuous-time diffusion models.
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7 APPENDIX

7.1 PROOF OF LEMMA 2

Proof. Define the following intermediate cost function:

J(t, x) := inf
π∈A

Eus∼πs(· | xs)

[∫ T

t

x†
sQsxs + u†

sRsus + τ log hs(us |xs)ds

+ x†
TQ

′xT

∣∣∣∣∣xt = x

]
. (16)

Then, DPP produces the following HJB equation of the LQR (1) – (2):

− ∂J(t, x)

∂t
= inf

π∈A
Eut∼πt

{
(Atx+Btūt) · ∇J(t, x) +

1

2
(σtσ

†
t ) ·∆J(t, x)

+ x†Qtx+ u†
tRtut + τ log ht(ut |x)

}
, J(T, x) = x†Q′x, (HJB)

where we use ·̄ to imply the expectation of the underlying random variable/distribution, and ht(· |x)
denotes the (conditional) probability distribution function of the Markov randomized policy πt(· |x).
By (Guo et al., 2023, Lemma 2.2), the RHS of (HJB) is minimized by the following Gaussian policy:

π∗
t (· |x) = N

(
−1

2
R−1

t B†
t∇J(t, x),

τ

2
R−1

t

)
.

Observing the linear quadratic nature of LQRs, we introduce the following ansatz for J(t, x):

J(t, x) = x†Ptx+ rt.

After plugging the ansatz for J and the expression of π∗ into (HJB), we obtain the following coupled
Riccati equations for (Pt, rt):

dPt

dt
+A†

tPt + PtAt +Qt − PtBtR
−1
t B†

tPt = 0, PT = Q′, (4)

drt
dt

+ tr(σ†
tPtσt) +

τ

2
log
|Rt|
(τπ)k

= 0, rT = 0. (17)

Hence the lemma.

7.2 APPENDIX B: PROOF OF LEMMA 3

Proof. The well-definedness ofR is guaranteed by (Yong & Zhou, 2012, Corollary 2.10). For sim-
plicity, in the rest we only prove the continuity of R with respect to (At, Bt)t∈[0,T ]. The continuity
with respect to the rest arguments can be proved by the same route.

For any (At, Bt) (resp. (Ãt, B̃)), we denote by Pt (resp. P̃t) the solution of (4). Define ∆Pt :=

Pt − P̃t. It can be shown that ∆Pt satisfies the ODE:

d∆Pt

dt
+A†

t∆Pt + (At − Ãt)
†P̃t +∆PtAt + P̃t(At − Ãt)

− (PtBtR
−1
t B†

tPt − P̃tB̃tR
−1
t B̃†

t P̃t) = 0, ∆PT = 0.

By integrating over [t, T ] and then taking the matrix 2-norm on both sides, we obtain:

||∆Pt||2 ≤
∫ T

t

[
2||As||2 + δ||Bs||22(||Ps||2 + ||P̃s||2)

]
||∆Ps||2ds

+ 2||A− Ã||∞;[0,T ]

∫ T

t

||P̃s||2ds

+ 2δ||B − B̃||∞;[0,T ]

∫ T

t

(||Bs||2||Ps||2 + ||B̃s||2||P̃s||2)||P̃s||2ds, (18)
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where δ > 0 is defined in Assumption 3. Notice that ||P ||∞;[0,T ] (resp. ||P̃ ||∞;[0,T ]) can be con-
trolled by ||A||∞;[0,T ]+ ||B||∞;[0,T ] (resp. ||Ã||∞;[0,T ]+ ||B̃||∞;[0,T ]), applying Gronwall’s inequal-
ity on (18) finishes the proof.

7.3 PROOF OF THEOREM 4

In the following, with an abuse of notation, we sometimes use ⟨·, ·⟩ to indicate the usual matrix inner
product. In addition, for any matrix M , we use λmin(M) (resp. ||M ||2) to denote the square root of
the smallest (resp. largest) eigenvalue of M†M .

We first define the following matrix-valued functions.

G(t,K ′,K) := PK
t

[
Bt(Kt −K ′

t)
]
+
[
Bt(Kt −K ′

t)
]†
PK
t +K ′†

tRtK
′
t −K†

tRtKt,

G(t,K) := −G(t, R−1B†PK ,K) = PK
t BtR

−1
t B†

tP
K
t +K†

tRtKt − PK
t BtKt −K†

tB
†
tP

K
t .

Since K∗
t = R−1

t B†
tP

∗
t , we have G(t,K,K∗) = (Kt − K∗

t )
†Rt(Kt − K∗

t ) ⪰ 0. Also, it can be
verified by algebraic calculation that G(t,K) ⪰ 0. In addition, for notational simplicity, in the rest
of this section, we define

yt := E(xtx
†
t), (✡)

where xt solves the state SDE (1) with ut following the policy πt = N (−Ktx,Σt). And we shall
use superscripts to indicate different policies. For instance, by y′t we imply that y′t = E

(
x′
t(x

′
t)

†)
where x′

t solves the state SDE (1) with ut following the policy πt = N (−K ′
tx,Σt).

The proof of the global linear convergence relies on the following lemmas.
Lemma 9 (Cost difference). Under Assumptions 1 – 3, the cost difference of two parametrized
Gaussian policies is given by:

C(K ′,Σ)− C(K,Σ) =

∫ T

0

〈
y′t,G(t,K ′,K)

〉
dt,

where y′t is defined by (✡).

Proof. Under Assumptions 1 – 3, recall the definition of associated cost function from Section 4.
For notational simplicity, denote J ′(t, x) := JK′,Σ(t, x) and J(t, x) := JK,Σ(t, x). By subtracting
the two Bellman equations that J ′(t, x) and J(t, x) satisfy (cf. (7)), we obtain:

∂(J ′ − J)

∂t
+
[
(At −BtK

′
t)x
]
· ∇(J ′ − J) +

1

2
(σtσ

†
t ) ·∆(J ′ − J) + F (t, x) = 0,

where
F (t, x) =

[
Bt(Kt −K ′

t)x
]
· ∇J + (K ′x)†R(K ′x)− (Kx)†R(Kx).

Define u(t, x) := J ′(t, x)− J(t, x). By Ito’s formula:

E
[
du(t, x′

t)
]
= E

[
F (t, x′

t)
]
dt,

where x′
t solves the state SDE (1) with ut following the policy π′

t = N (−K ′
tx,Σt). Finally, by

integrating on [0, T ], we have:

C(K ′,Σ)− C(K,Σ) = −E

[∫ T

0

du(t, x′
t)

]

= E

[∫ T

0

F (t, x′
t)dt

]
.

A manipulation of the matrices finishes the proof.

Lemma 10 (Contraction of IPO). Under Assumptions 1 – 4, suppose K ′ is the one-step update of
K following the algorithm (IPO: K). Then,

C(K ′,Σ)− C(K∗,Σ) ≤
{
1−

mint∈[0,T ] λmin(y
′
t)

maxt∈[0,T ] ||y∗t ||2

}[
C(K,Σ)− C(K∗,Σ)

]
,

where K∗ is the parameter of the optimal policy, and y′t (resp. y∗t ) is defined by (✡).
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Proof. Under Assumptions 1 – 3, by Lemma 9, we have:

C(K,Σ)− C(K∗,Σ) = −
∫ T

0

〈
y∗t ,G(t,K∗,K)

〉
dt. (19)

Fixing (y∗t )t∈[0,T ] and (Kt)t∈[0,T ], and viewing the RHS of (19) as a functional of (K∗
t )t∈[0,T ], we

see that

RHS of (19) ≤
∫ T

0

〈
y∗t , G(t,K)

〉
dt

≤
∫ T

0

||y∗t ||2 tr
[
G(t,K)

]
dt

≤ max
t∈[0,T ]

||y∗t ||2
∫ T

0

tr
[
G(t,K)

]
dt.

By invoking Lemma 9 again, we obtain:

C(K ′,Σ)− C(K,Σ) = −
∫ T

0

〈
y′t, G(t,K)

〉
dt

≤ − min
t∈[0,T ]

λmin(y
′
t)

∫ T

0

tr
[
G(t,K)

]
dt

≤ −
mint∈[0,T ] λmin(y

′
t)

maxt∈[0,T ] ||y∗t ||2
[
C(K,Σ)− C(K∗,Σ)

]
. (20)

Notice that maxt∈[0,T ] ||y∗t ||2 > 0 by assumption 4. Adding C(K,Σ)− C(K∗,Σ) to both sides of
(20) gives the desired result.

Lemma 11 (Lower bound of λmin). Under Assumptions 1 – 4, suppose
{(

K(i),Σ
)}

i≥0
is a se-

quence of parameters following the algorithm (IPO: K). Then, there exists µ > 0, which is affected
by K(0), such that:

∀i ≥ 0, t ∈ [0, T ], λmin(y
(i)
t ) ≥ µ,

where y
(i)
t is defined by (✡).

Proof. Under Assumptions 1 – 3, for any fixed Gaussian policy parameterized by (K,Σ), yt follows
the ODE from Ito’s formula:

dyt
dt

= (At −BtKt)yt + yt(At −BtKt)
† + σtσ

†
t , y0 = E(x0x

†
0 |x0 ∼ D0).

Noticing that σtσ
†
t ⪰ 0, by adapting the proof of (Giegrich et al., 2022, Lemma 3.7), we obtain:

min
t∈[0,T ]

λmin(yt) ≥ λmin(y0) exp

(
−2
∫ T

0

||At −BtKt||2dt

)
. (21)

For the sequence of parameters
{(

K(i),Σ
)}

i≥0
defined by (IPO: K), we define ∆P (i) :=

PK(i+1) − PK(i)

. It satisfies the Riccati equation (cf. (8)):

d∆P (i)

dt
+ (At −BtK

(i+1)
t )†∆P (i) +∆P (i)(At −BtK

(i+1)
t ) = G(t,K(i)), ∆P

(i)
T = 0.

Since G(t,K(i)) ⪰ 0, it implies that ∆P (i) ⪯ 0 (cf. the proof of (Giegrich et al., 2022, Proposition
3.5(1))). Therefore, for any i ≥ 1, ||K(i)

t ||2 ≤ ||R−1
t B†

t ||2||PK(0)

t ||2, i.e., the matrix 2-norm is
bounded from above. Combining this upper bound with (21) yields the desired conclusion (note that
λmin(y0) > 0 by Assumption 4).

The following lemma is immediate from Lemma 9 and Lemma 11, and by observing that:

G(t,K,K∗) = (Kt −K∗
t )

†Rt(Kt −K∗
t ) ⪰ 0.
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Lemma 12 (Upper bound of L2 distance). Under Assumptions 1 – 4, suppose
{(

K(i),Σ
)}

i≥0
is a

sequence of parameters following the algorithm (IPO: K). Then,

∀i ≥ 0, C(K(i),Σ)− C(K∗,Σ) ≥ µδ

∫ T

0

||K(i)
t −K∗

t ||22dt,

where µ > 0 is defined in Lemma 11, and δ > 0 is defined in Assumption 3.

7.4 PROOF OF THEOREM 5

The proof of local super-linear convergence is built upon a series of lemmas.

Lemma 13 (Contraction of IPO). Under Assumptions 1 – 4, suppose
{(

K(i),Σ
)}

i≥0
is a sequence

of parameters following the algorithm (IPO: K) and satisfying

∀i ≥ 1, max
t∈[0,T ]

||y(i)t − y∗t ||2 ≤ min
t∈[0,T ]

λmin(y
∗
t ).

Then,

C(K(i+1),Σ)− C(K∗,Σ) ≤
maxt∈[0,T ] ||y

(i+1)
t − y∗t ||2

mint∈[0,T ] λmin(y∗t )

[
C(K(i),Σ)− C(K∗,Σ)

]
.

Proof. Denote K ′ := K(i+1) and K := K(i) to simplify the notation. Under Assumptions 1 – 3,
by Lemma 9, we have:

C(K ′,Σ)− C(K,Σ) =

∫ T

0

〈
y′t,G(t,K ′,K)

〉
dt

= −
∫ T

0

〈
y′t, G(t,K)

〉
dt

= −
∫ T

0

〈
y∗t , G(t,K)

〉
−
〈
y′t − y∗t , G(t,K)

〉
dt. (22)

Notice that mint∈[0,T ] λmin(y
∗
t ) > 0 by Lemma 11 under Assumptions 1 – 4. As a result,

RHS of (22) ≤
(
−1 +

maxt∈[0,T ] ||y′t − y∗t ||2
mint∈[0,T ] λmin(y∗t )

)∫ T

0

〈
y∗t , G(t,K)

〉
dt

≤
(
−1 +

maxt∈[0,T ] ||y′t − y∗t ||2
mint∈[0,T ] λmin(y∗t )

)[
C(K,Σ)− C(K∗,Σ)

]
.

Adding C(K,Σ)− C(K∗,Σ) to both sides of the above inequality gives the desired result.

Lemma 14 (Perturbation of yt). Let ρ > 0. Under Assumptions 1 – 3, suppose the two policies{(
Ki,Σ

)}
i=1,2

satisfy:

max
1≤i≤2

∫ T

0

∣∣∣∣At −BtK
i
t

∣∣∣∣
2
dt ≤ ρ.

Then, there exists ĉρ > 0 such that:

max
t∈[0,T ]

∣∣∣∣y1t − y2t
∣∣∣∣
2
≤ ĉρ

∫ T

0

∣∣∣∣K1
t −K2

t

∣∣∣∣
2
dt.

Proof. We divide the proof into several steps.

Step 1: Calculate the perturbation of yt.

Under Assumptions 1 – 3, by Ito’s formula, yt satisfies the ODE:

dyt
dt

= (At −BtKt)yt + yt(At −BtKt)
† + σtσ

†
t , y0 = E(x0x

†
0 |x0 ∼ D0). (23)
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By subtracting the ODEs that y1t and y2t satisfy, we get:

d(y1t − y2t )

dt
= (At −BtK

1
t )(y

1
t − y2t ) + (y1t − y2t )(At −BtK

1
t )

†

−
[
Bt(K

1
t −K2

t )
]
y2t − y2t

[
Bt(K

1
t −K2

t )
]†
, y10 − y20 = 0. (24)

Step 2: Bound the norm of yt.

By integrating over [0, t] and then taking norms on both sides of (23), we get:

||yt||2 ≤ ||y0||2 + 2

∫ t

0

||As −BsKs||2||ys||2 + ||σsσ
†
s||2ds.

By Gronwall’s inequality, there exists c̃ρ > 0 such that:

max
t∈[0,T ]

||yt||2 ≤ c̃ρ.

Step 3: Bound the perturbation of yt.

By integrating over [0, t] and then taking norms on both sides of (24), we get:

||y1t − y2t ||2 ≤ 2

∫ t

0

||As −BsK
1
s ||2||y1s − y2s ||2 + ||Bs||2||K1

s −K2
s ||2||y2s ||2ds

≤ 2

∫ t

0

||As −BsK
1
s ||2||y1s − y2s ||2ds+ 2c̃ρ max

t∈[0,T ]
||Bt||2

∫ t

0

||K1
s −K2

s ||2ds.

Again, by Gronwall’s inequality, there exists ĉρ > 0 such that:

max
t∈[0,T ]

||y1t − y2t ||2 ≤ ĉρ

∫ T

0

||K1
t −K2

t ||2dt.

Lemma 15 (Bound the one-step update of yt). Under Assumptions 1 – 3, let ρ > 0 be such that∫ T

0

||At −BtK
∗
t ||2dt ≤ ρ.

Suppose
{(

K(i),Σ
)}

i≥0
is a sequence of parameters following the algorithm (IPO: K) and satis-

fying:

sup
i≥0

∫ T

0

||At −BtK
(i)
t ||2dt ≤ ρ.

Then, there exists c∗ρ > 0 which is affected by K(0), such that for any i ≥ 0, we have:

∀i ≥ 0, max
t∈[0,T ]

||y(i+1)
t − y∗t ||2 ≤ c∗ρ

∫ T

0

||K(i)
t −K∗

t ||2dt.

Proof. Denote K ′ := K(i+1) and K := K(i). By definition,

||K ′
t −K∗

t ||2 = ||R−1
t B†

t (P
K
t − PK∗

t )||2

≤ ||Bt||2
λmin(Rt)

||PK
t − PK∗

t ||2,

where λmin(Rt) ≥ δ > 0 for any t ∈ [0, T ] by Assumption 3.

Notice that PK
t − PK∗

t satisfies the ODE:

d(PK
t − PK∗

t )

dt
= (At −BtKt)

†(PK
t − PK∗

t ) + (PK
t − PK∗

t )(At −BtKt) +K†
tRtKt

−
[
Bt(Kt −K∗

t )
]†
PK∗

t − PK∗

t

[
Bt(Kt −K∗

t )
]
− (K∗

t )
†RtK

∗
t , PK

T − PK∗

T = 0.
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By integrating over [t, T ] and taking norms on both sides, we get:

||PK
t − PK∗

t ||2 ≤ 2

∫ T

t

||As −BsKs||2||PK
s − PK∗

s ||2ds

+ 2 max
s∈[0,T ]

||B†
sP

K∗

s ||2
∫ T

t

||Ks −K∗
s ||2ds

+ max
s∈[0,T ]

||Rs||2
∫ T

t

(
||Ks||2 + ||K∗

s ||2
)
||Ks −K∗

s ||2ds.

Recall from the proof of Lemma 11 that
∣∣∣∣Ks

∣∣∣∣
2
≤
∣∣∣∣R−1

s B†
s

∣∣∣∣
2

∣∣∣∣PK(0)

s

∣∣∣∣
2
, which only requires

Assumptions 1 – 3. As a result,

||PK
t − PK∗

t ||2 ≤ 2

∫ T

t

||As −BsKs||2||PK
s − PK∗

s ||2ds

+

[
2 max
s∈[0,T ]

||B†
sP

K∗

s ||2 + max
s∈[0,T ]

||Rs||2
(

max
s∈[0,T ]

∣∣∣∣R−1
s B†

s

∣∣∣∣
2

∣∣∣∣PK(0)

s

∣∣∣∣
2

+ max
s∈[0,T ]

||K∗
s ||2
)]∫ T

t

||Ks −K∗
s ||2ds.

Therefore, by Gronwall’s inequality, there exists c̄ρ > 0, which is affected by K(0), such that:

max
t∈[0,T ]

||PK
t − PK∗

t ||2 ≤ c̄ρ

∫ T

0

||Kt −K∗
t ||2dt,

and moreover,

max
t∈[0,T ]

||K ′
t −K∗

t ||2 ≤ c̄ρ max
t∈[0,T ]

||Bt||2
λmin(Rt)

∫ T

0

||Kt −K∗
t ||2dt.

Finally, noticing that
∫ T

0
||At−BtK

∗
t ||2dt ≤ ρ, an application of Lemma 14 finishes the proof.

Proof of Theorem 5. To show the existence of ϵ, denote r :=
∫ T

0
||K(0)

t − K∗
t ||22dt. Recall from

the proof of Lemma 11 that ||K(i)
t ||2 ≤ ||R−1

t B†
t ||2||PK(0)

t ||2 for any i ≥ 1, which only requires
Assumptions 1 – 3. By applying Gronwall’s inequality on (8), maxt∈[0,T ] ||PK(0)

t ||2 is bounded
from above, and the bound only depends on the value of r (as an increasing function in r) and the
data of the LQR. As a result, there exists ρr > 0, which only depends on the value of r (as an
increasing function in r) and the data of the LQR, such that

max

{∫ T

0

||At −BtK
∗
t ||2dt, sup

i≥0

∫ T

0

||At −BtK
(i)
t ||2dt

}
≤ ρr.

Under Assumptions 1 – 4, by Lemma 11 and Lemma 12, there exists µ
r
> 0, which only depends

on the value of r (as a decreasing function in r) and the data of the LQR, such that

∀i ≥ 0, µ
r
δ

∫ T

0

||K(i)
t −K∗

t ||22dt ≤ C(K(i),Σ)− C(K∗,Σ).

Meanwhile, by applying Gronwall’s inequality on (23), there exists µ̄r > 0, which only depends on
the value of r (as an increasing function in r) and the data of the LQR, such that

∀i ≥ 0, max
t∈[0,T ]

||y(i)t ||2 ≤ µ̄r.

As a result, by Lemma 9,

∀i ≥ 0, C(K(i),Σ)− C(K∗,Σ) ≤ µ̄r max
t∈[0,T ]

||Rt||2
∫ T

0

||K(i)
t −K∗

t ||22dt.
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By Lemma 15, there exists c∗r > 0, which only depends on the value of r (as an increasing function
in r) and the data of the LQR, such that:

∀i ≥ 0, max
t∈[0,T ]

||y(i+1)
t − y∗t ||2 ≤ c∗r

∫ T

0

||K(i)
t −K∗

t ||2dt.

Putting everything together, for any i ≥ 0, we have:

max
t∈[0,T ]

||y(i+1)
t − y∗t ||2 ≤ c∗r

∫ T

0

||K(i)
t −K∗

t ||2dt

≤ c∗r
√
T

√∫ T

0

||K(i)
t −K∗

t ||22dt

≤ c∗r

√
T

µ
r
δ

√
C(K(0),Σ)− C(K∗,Σ)

≤ c∗r

√
T µ̄r maxt∈[0,T ] ||Rt||2

µ
r
δ

√
r, (25)

where δ > 0 is defined in Assumption 3. Since the RHS of (25) is an increasing function in r and
tends to 0 as r → 0+, there exists ϵ > 0, such that r < ϵ implies

∀i ≥ 1, max
t∈[0,T ]

||y(i)t − y∗t ||2 ≤ min
t∈[0,T ]

λmin(y
∗
t ).

This proves the existence of ϵ.

Finally, to calculate the corresponding C2, by Lemma 13,

∀i ≥ 0, C(K(i+1),Σ)− C(K∗,Σ)

≤
maxt∈[0,T ] ||y

(i+1)
t − y∗t ||2

mint∈[0,T ] λmin(y∗t )

[
C(K(i),Σ)− C(K∗,Σ)

]
≤ c∗r

√
T

mint∈[0,T ] λmin(y∗t )

√∫ T

0

||K(i)
t −K∗

t ||22dt
[
C(K(i),Σ)− C(K∗,Σ)

]
≤ c∗r

mint∈[0,T ] λmin(y∗t )

√
T

µ
r
δ

[
C(K(i),Σ)− C(K∗,Σ)

] 3
2

,

i.e., C2 =
c∗r

mint∈[0,T ] λmin(y∗
t )

√
T
µ
r
δ .
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