

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 POLICY TRANSFER ENSURES FAST LEARNING FOR CONTINUOUS-TIME LQR WITH ENTROPY REGULAR- IZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Reinforcement Learning (RL) enables agents to learn optimal decision-making strategies through interaction with an environment, yet training from scratch on complex tasks can be highly inefficient. Transfer learning (TL), widely successful in large language models (LLMs), offers a promising direction for enhancing RL efficiency by leveraging pre-trained models.

This paper investigates policy transfer, a TL approach that initializes learning in a target RL task using a policy from a related source task, in the context of continuous-time linear quadratic regulators (LQRs) with entropy regularization. We provide the first theoretical proof of policy transfer for continuous-time RL, proving that a policy optimal for one LQR serves as a near-optimal initialization for closely related LQRs, while preserving the original algorithm's convergence rate. Furthermore, we introduce a novel policy learning algorithm for continuous-time LQRs that achieves global linear and local super-linear convergence. Our results demonstrate both theoretical guarantees and algorithmic benefits of transfer learning in continuous-time RL, addressing a gap in existing literature and extending prior work from discrete to continuous time settings.

As a byproduct of our analysis, we derive the stability of a class of continuous-time score-based diffusion models via their connection with LQRs.

1 INTRODUCTION

Transfer learning. Transfer learning is a machine learning technique that leverages expertise gained from one domain to enhance the learning process in another related task. It is one of the most influential techniques that underpin the capabilities of large language models (LLMs). In the context of LLMs, transfer learning involves using pre-trained models, such as those from the GPT, BERT, or similar families, that were initially trained for specific tasks. Transfer learning repurposes these models for new and related applications, often involving domain-specific variations of the original problems. See *e.g.* Howard & Ruder (2018), Devlin et al. (2019), Raffel et al. (2020), Brown et al. (2020), Liu et al. (2019). Beyond LLMs, transfer learning has also gained a significant traction in other domains, particularly for improving learning efficiency when data and computational resources are limited. See *e.g.* Kraus & Feuerriegel (2017), Amodei et al. (2016), Tang et al. (2022).

Reinforcement learning and transfer learning. Reinforcement learning (RL) is one of the fundamental machine learning paradigms, where an agent learns to make a sequence of decisions by interacting with an environment and possibly with other agents. In a typical RL setup, an agent learns a policy/strategy for choosing actions in a given system state through trial and error to maximize a cumulative reward over time. However, training an agent for a complex RL task from the ground up can be extremely inefficient.

Given the exponentially growing demand for complex RL tasks, and the increasing number of pre-trained RL models for various learning tasks, it is natural to incorporate TL into RL to leverage knowledge from a pre-trained RL model to reduce both training time and computational costs, especially when there is a limited amount of data for new RL models.

054 Policy transfer is one of the most direct methods to leverage knowledge from one RL task to another.
 055 The basic idea of policy transfer is to use the policy learned from the source task to initialize the pol-
 056 icy for the target task. If two RL tasks are similar, exploring the pre-trained policy as a starting point
 057 hopefully allows the agent to begin with a near-optimal strategy, with subsequent minor adjustments.
 058 This is intuitively clear and simple, and has been analyzed in a discrete-time LQ framework by Guo
 059 et al. (2023). Their work, as the first known theoretical studies for incorporating transfer learning
 060 into reinforcement learning, demonstrates the advantage in algorithmic performance improvement
 061 with TL technique for RL.

062 A natural question is, if the same benefit of transfer learning can be achieved for RL via appropriate
 063 policy transfer? Indeed, reinforcement learning, though primarily developed for discrete environ-
 064 ment, is intrinsically continuous and complex, especially in robotics control, automatic driving, and
 065 portfolio optimization. However, analyzing transfer learning in the continuous-time RL framework
 066 remains uncharted and presents significantly greater technical challenges, as the knowledge to be
 067 transferred involves controlled stochastic processes and infinite-dimensional functional spaces.

068
 069 **Our work.** This paper presents a theoretical analysis of policy transfer between continuous-time
 070 linear quadratic regulators with entropy regulation (LQRs). We demonstrate that an optimal policy
 071 learned for one LQR can serve as a near-optimal policy for any closely-related LQR, while preserv-
 072 ing at least the same convergence rate as the original learning algorithm. In addition, we propose a
 073 novel policy learning algorithm for continuous-time LQRs, which achieves a global linear conver-
 074 gence rate and a local super-linear convergence rate. This implies that any closely related LQR is
 075 guaranteed with a super-linear convergent learning algorithm.

076 Our analysis fully exploits the Gaussian structure of the optimal policy for LQRs, as well as the
 077 robustness of the associated Riccati equation. As a byproduct of our analysis, we derive the stability
 078 of a class of continuous-time score-based diffusion models via their connection with LQRs.

079
 080 **Related work.** The existing literature on policy learning for linear-quadratic (LQ) problems is ex-
 081 tensive. For example, several studies focus on gradient-based algorithms for discrete-time LQRs.
 082 These algorithms, notably those proposed by Fazel et al. (2018) and Hambly et al. (2021), are able
 083 to achieve a global linear convergence rate in learning the parameters of the optimal feedback policy.
 084 Similarly, Giegrich et al. (2022) extends this approach to continuous-time LQRs, also demon-
 085 strating a global linear convergence rate. Beyond these gradient-based methods, other research explores
 086 different aspects of LQRs. For instance, Dean et al. (2020) develops a multistage procedure for
 087 designing a robust controller of discrete-time LQRs when the system dynamics are not fully known,
 088 while Huang et al. (2024) introduces a model-free algorithm that directly learns the optimal policy
 089 of continuous-time LQRs, providing a theoretical guarantee with a sublinear regret bound. Further-
 090 more, Krauth et al. (2019) provides a theoretical analysis of the sample complexity of approximate
 091 policy iteration for learning discrete-time LQRs. For a more comprehensive background, interested
 092 readers are referred to the standard references by Kwakernaak & Sivan (1972) and Bertsekas (2019).
 093 Another closely related concept is the meta-learning for LQRs. For example, Toso et al. (2024)
 094 proves the first stability and convergence results of the *model-agnostic meta-learning* (MAML) in
 095 *discrete-time* LQRs.

096 The TL between MDPs is also well studied. For instance, Fu et al. (2023) investigates model transfer
 097 and policy transfer between *hidden-parameter MDPs* (HiP-MDPs), bounding the performance loss
 098 incurred by TL with the error in the estimation of hidden parameters. Lazaric & Restelli (2011)
 099 proposes sample-transfer algorithms and conducts the corresponding finite-sample analysis. Asadi
 100 et al. (2018) proves that, within the class of Lipschitz continuous MDPs, small perturbations in the
 101 dynamics only lead to a small change in the value function.

102 Our work of RL with TL is in *continuous time and state spaces*. The closest to our work is Guo et al.
 103 (2023), where a super-linear local convergent algorithm called IPO is proposed for *discrete-time*
 104 exploratory LQRs. In comparison, the analysis of policy transfer between continuous-time LQRs
 105 is technically more challenging and is on infinite-dimensional functional spaces. More importantly,
 106 we establish general results on policy transfer between any two closely related LQRs. The particular
 107 algorithm of IPO illustrates the benefit of policy transfer in such a context.

108 On the stability of continuous-time score-based diffusion models, Tang & Zhao (2024) has obtained
 109 a fairly general result under appropriate technical assumptions. Here we derive, via connecting

108 score-based diffusion models with LQRs, a class of models where these assumptions and hence the
 109 stability results hold.
 110

111 Finally, the connection between score-based diffusion models and LQRs is well known. For ex-
 112 ample, Zhang & Katsoulakis (2023) shows that a large class of generative models, including nor-
 113 malizing flows, score-based diffusion models, and Wasserstein gradient flows, can be viewed as the
 114 solutions to certain mean-field games (MFGs). We note that LQRs can be viewed as the degenerate
 115 case of LQMFGs. Moreover, Gu et al. (2024) and Zhang et al. (2024) research the relationship
 116 between MFGs, Wasserstein proximals and score-based diffusion models.
 117

118 **Notations.** For any smooth function $f : \mathbb{R}^n \rightarrow \mathbb{R}$, we use $\nabla f(x) \in \mathbb{R}^n$ to denote its gradient, and
 119 $\Delta f(x) \in \mathbb{R}^{n \times n}$ to denote its Hessian matrix. In addition, we use \cdot to indicate the usual vector-vector
 120 and matrix-matrix inner products, depending on the context, and we use $S_{\geq 0}^n$ (resp. $S_{> 0}^n$) to denote
 121 the space of $n \times n$ real positive semi-definite (resp. positive definite) matrices.
 122

2 MATHEMATICAL FORMULATION

124 Let us now set up the mathematical framework under which entropy-regularized continuous-time
 125 linear quadratic regulators (LQRs) are defined over a finite time interval $[0, T]$.
 126

127 Specifically, following the setup of Wang et al. (2018), we assume that the state process $x_t \in \mathbb{R}^n$ of
 128 the agent follows the linear SDE:
 129

$$dx_t = [A_t x_t + B_t \mathbb{E}(u_t | x_t)] dt + \sigma_t dW_t, \quad x_0 \sim \mathcal{D}_0, \quad (1)$$

130 where $\mathbb{E}[u_t | x_t] \sim \pi_t(\cdot | x_t) \in \mathcal{P}(\mathbb{R}^k)$ represents the randomized policy of the agent conditioned on
 131 x_t , $(W_t)_{t \in [0, T]}$ denotes the d -dimensional standard Brownian motion (d -BM for short), \mathcal{D}_0 denotes
 132 the initial distribution, and $(A_t, B_t, \sigma_t)_{t \in [0, T]}$ are appropriate deterministic matrix-valued processes
 133 to be specified later.
 134

135 The agent minimizes the following entropy-regularized cost function:
 136

$$\inf_{\pi \in \mathcal{A}} J_\pi(0, \mathcal{D}_0) \\ := \mathbb{E}_{u_t \sim \pi_t(\cdot | x_t)} \left[\int_0^T x_t^\top Q_t x_t + u_t^\top R_t u_t + \tau \log h_t(u_t | x_t) dt + x_T^\top Q' x_T \mid x_0 \sim \mathcal{D}_0 \right], \quad (2)$$

137 where \dagger denotes the transpose operator, \mathcal{A} denotes the set of admissible randomized policies,
 138 $h_t(\cdot | x_t)$ denotes the conditional probability distribution function of $\pi_t(\cdot | x_t)$, and $(Q_t, R_t)_{t \in [0, T]}$
 139 (resp. Q') are appropriate deterministic matrix-valued processes (resp. matrix) to be specified later.
 140

141 Note that the exploratory SDEs adopted here are first proposed by Wang et al. (2018), where an
 142 entropy-regularization term is added to the cost function to encourage agent exploration.
 143

144 Next, we present the technical assumptions to ensure that the above formulation (1) – (2) is well
 145 defined. In particular, our goal is to ensure that (1) admits a unique strong solution (see e.g. (Ok-
 146 sendal, 2013, Theorem 5.2.1)) and that (2) has a finite integrand. See (Guo et al., 2022, Section 2)
 147 for a similar setup.
 148

149 **Assumption 1** (Probability space). *We assume a filtered probability space $(\Omega, \mathcal{F}, \mathbb{P}; (\mathcal{F}_t)_{t \in [0, T]})$
 150 where the filtration $(\mathcal{F}_t)_{t \in [0, T]}$ 1) is rich enough to support some d -BM $(W_t)_{t \in [0, T]}$, the random
 151 action $(u_t)_{t \in [0, T]}$ of the agent, and the initial distribution \mathcal{D}_0 , which are assumed to be indepen-
 152 dent; 2) satisfies the usual conditions (i.e., \mathcal{F}_0 contains all the \mathbb{P} -null sets and $(\mathcal{F}_t)_{t \in [0, T]}$ is right-
 153 continuous).*
 154

155 **Assumption 2** (Admissible policies). *The set \mathcal{A} of admissible policies consists of Markovian ran-
 156 domized policies, i.e., the following conditions hold for any $\pi \in \mathcal{A}$:*
 157

- 158 1) for any $t \in [0, T]$ and $x \in \mathbb{R}^n$, $\pi_t(\cdot | x)$ is absolutely continuous w.r.t. the Lebesgue
 159 measure on \mathbb{R}^k and has a finite expectation and a finite entropy;
- 160 2) $\mathbb{E}(u_t | x)$, when viewed as a function of $(t, x) \in [0, T] \times \mathbb{R}^n$, has a linear growth w.r.t. x
 161 and is Lipschitz continuous in x .

162 **Assumption 3** (Regularity conditions). \mathcal{D}_0 is assumed to be square integrable, and
 163

$$164 \quad A, Q \in L^\infty([0, T], \mathbb{R}^{n \times n}), \quad B \in L^\infty([0, T], \mathbb{R}^{n \times k}),$$

$$165 \quad R \in L^\infty([0, T], \mathbb{R}^{k \times k}), \quad \sigma \in L^2([0, T], \mathbb{R}^{n \times d}).$$

166 In addition, we assume $Q_t \succeq 0$ a.e. for $t \in [0, T]$, $\tau > 0$, $Q' \succeq 0$, and that there exists $\delta > 0$ such
 167 that $R_t - \delta I \succeq 0$ a.e. for $t \in [0, T]$.
 168

169 3 TRANSFER LEARNING BETWEEN LQRs 170

171 In this section, we consider transfer learning between continuous-time linear quadratic regulators
 172 with entropy regulation (LQRs).
 173

174 More specifically, suppose that there are two LQRs whose system parameters are $(\theta_t)_{t \in [0, T]}$ and
 175 $(\tilde{\theta}_t)_{t \in [0, T]}$, respectively. Without loss of generality, let us assume that the first LQR is more accessible and easier to learn, and let us denote by $(K_t^*)_{t \in [0, T]}$ the parameter of its optimal policy. We
 176 will show that if $(\theta_t)_{t \in [0, T]}$ and $(\tilde{\theta}_t)_{t \in [0, T]}$ are sufficiently close, then $(K_t^*)_{t \in [0, T]}$ may be used as
 177 an initialization to efficiently learn the optimal policy of the second LQR. Here in our framework
 178 the parameters $\theta = (A, Q, B, R, Q')$.
 179

180 **Theorem 1** (Transfer learning of LQRs). *Given an LQR represented by model parameters θ , for
 181 which there exists an optimal policy π^* and an associated learning algorithm. Now, suppose there
 182 is a new LQR represented by model parameters $\tilde{\theta}$. Then, there exists $\epsilon > 0$, such that with an
 183 appropriate initialization $\pi^{(\tilde{\theta})}$, this learning algorithm has the same convergence rate and finds a
 184 near-optimal policy of the new LQR, provided that*

$$185 \quad d(\pi^{(0)}, \pi^*) + d(\tilde{\theta}, \theta) < \epsilon.$$

186 Here d denotes an appropriately chosen distance on the corresponding metric space.
 187

188 This result is based on the following two lemmas.

189 First, we see that the optimal randomized policy of the LQR defined by (1) – (2) can be derived via
 190 the dynamic programming principle (DPP) and by following a similar calculation from the earlier
 191 work Wang et al. (2018) and Guo et al. (2022).

192 **Lemma 2.** *The optimal randomized policy of the LQR (1) – (2) is:*

$$193 \quad \pi_t^*(\cdot | x) = \mathcal{N} \left(-R_t^{-1} B_t^\dagger P_t x, \frac{\tau}{2} R_t^{-1} \right), \quad (3)$$

194 where P_t solves the following Riccati equation:

$$195 \quad \frac{dP_t}{dt} + A_t^\dagger P_t + P_t A_t + Q_t - P_t B_t R_t^{-1} B_t^\dagger P_t = 0, \quad P_T = Q'. \quad (4)$$

196 **Remark 1.** *The Gaussian form of π^* originates from the entropy-regularization term in the cost
 197 function (2). The mean of π^* appears in a mean-reverting fashion, pushing the agent to 0. Mean-
 198 while, the covariance of π^* is driven by the regularization coefficient $\tau > 0$. The larger the value of
 199 τ , the more the agent would explore. In the case where $\tau \rightarrow 0^+$, π^* would converge to a determin-
 200 istic policy as one should expect (see (Wang et al., 2018, Section 5.4) for a formal discussion on the
 201 convergence of π^*).*

202 **Lemma 3** (Key lemma). *Under Assumption 3, denote by \mathcal{R} the solution map of the Riccati equation
 203 (4), i.e.,*

$$204 \quad \mathcal{R} : L^\infty([0, T], \mathbb{R}^{n \times n}) \times L^\infty([0, T], S_{\geq 0}^n) \times L^\infty([0, T], \mathbb{R}^{n \times k}) \times L^\infty([0, T], S_{> 0}^k) \times S_{\geq 0}^n \rightarrow C([0, T], S_{\geq 0}^n)$$

$$205 \quad (A_{t \in [0, T]}, Q_{t \in [0, T]}, B_{t \in [0, T]}, R_{t \in [0, T]}, Q') \mapsto \mathcal{R}(A, Q, B, R, Q') := (P_t)_{t \in [0, T]}.$$

206 Then, \mathcal{R} is continuous, where the L^∞ (resp. $S_{\geq 0}^n$) space is equipped with the functional $\|\cdot\|_{\infty; [0, T]}$
 207 norm (resp. matrix 2-norm).

208 Now, Theorem 1 follows immediately from Lemma 3. Indeed, by Lemma 3, the optimal policy is a
 209 continuous function in the LQR’s model parameters. As a result, when the distance between $\tilde{\theta}$ and
 210 θ is small enough, the optimal policies of the two LQRs can be made arbitrarily close to each other.
 211 This implies the desired near-optimality.

216 4 IPO AND ITS SUPER-LINEAR CONVERGENCE FOR LQRs

218 Now we design an Iterative Policy Optimization (IPO) learning algorithm for LQRs. We will first
 219 establish its global linear convergence, and then show its super-linear convergence when the initial
 220 policy lies in a certain neighborhood of the optimal policy. As a corollary, in the context of transfer
 221 learning, we will see that such an algorithm yields an optimal policy for any closely related LQR with
 222 an appropriate initialization (*i.e.*, policy transfer). Our algorithm is analogous to the IPO algorithm
 223 developed for discrete-time LQRs in Guo et al. (2023), hence the adopted name IPO.

224 The algorithm and the analysis rely crucially on the Gaussian form of the LQR’s optimal policy.
 225 Indeed, given the special form of (3), it suffices to optimize only within the following class of
 226 Gaussian policies:

$$227 \pi_t(\cdot | x) = \mathcal{N}(-K_t x, \Sigma_t), \quad (5)$$

228 where K_t and Σ_t are of appropriate shapes, and there exists $\delta_1 > 0$ such that $\Sigma_t - \delta_1 I \succeq 0$ for any
 229 $t \in [0, T]$. By (3), we observe that

$$230 \quad 231 K_t^* = R_t^{-1} B_t^\dagger P_t, \quad \Sigma_t^* = \frac{\tau}{2} R_t^{-1} \quad (6)$$

232 under the optimal policy of the LQR (1) – (2). First, we have

234 **DPP for the class of Gaussian policies.** Denote by $J^{K, \Sigma}$ the cost function associated with (5),
 235 with

$$237 J^{K, \Sigma}(t, x)$$

$$238 \quad 239 := \mathbb{E}_{u_s \sim \pi_s(\cdot | x_s)} \left[\int_t^T x_s^\dagger Q_s x_s + u_s^\dagger R_s u_s + \tau \log h_s(u_s | x_s) ds + x_T^\dagger Q' x_T \middle| x_t = x \right].$$

241 Next, by DPP, $J^{K, \Sigma}$ satisfies the following Bellman equation:

$$243 \quad 244 \frac{\partial J^{K, \Sigma}}{\partial t} + [(A_t - B_t K_t)x] \cdot \nabla J^{K, \Sigma} + \frac{1}{2}(\sigma_t \sigma_t^\dagger) \cdot \Delta J^{K, \Sigma} \\ 245 \quad 246 + x^\dagger (Q_t + K_t^\dagger R_t K_t)x + \text{tr}(\Sigma_t R_t) - \frac{\tau}{2} [k + \log((2\pi)^k |\Sigma_t|)] = 0, \quad (7)$$

247 with the terminal condition $J^{K, \Sigma}(T, x) = x^\dagger Q' x$. By plugging in the ansatz

$$248 \quad 249 J^{K, \Sigma}(t, x) = x^\dagger P_t^K x + r_t^{K, \Sigma},$$

250 we obtain the coupled Riccati equations:

$$252 \quad 253 \frac{dP_t^K}{dt} + (A_t - B_t K_t)^\dagger P_t^K + P_t^K (A_t - B_t K_t) + Q_t + K_t^\dagger R_t K_t = 0, \quad P_T^K = Q', \quad (8)$$

$$254 \quad 255 \frac{dr_t^{K, \Sigma}}{dt} + \text{tr}(\sigma_t^\dagger P_t^K \sigma_t + \Sigma_t R_t) - \frac{\tau}{2} [k + \log((2\pi)^k |\Sigma_t|)] = 0, \quad r_T^{K, \Sigma} = 0. \quad (9)$$

256 Note that P_t^K only depends on K_t , and $r_t^{K, \Sigma}$ depends on (K_t, Σ_t) . Recall that Assumption 3 is
 257 sufficient for (8) to admit a unique C^1 solution taking values in $S_{\geq 0}^n$ (*cf.* (Yong & Zhou, 2012,
 258 Corollary 2.10)).

259 Now we can derive an IPO algorithm for updating the parameters in the Gaussian policy (5), namely
 260 K_t and Σ_t , with the goal of learning the parameters of the optimal randomized policy, which are
 261 denoted by K_t^* and Σ_t^* (*cf.* (6)).

263 **Iterative policy optimization (IPO) derivation.** For any $\Delta t > 0$, $J^{K, \Sigma}(t, x)$ satisfies the Bell-
 264 man equation:

$$266 \quad 267 J^{K, \Sigma}(t, x) = \mathbb{E}_{u \sim \pi_{K, \Sigma}} \left[\int_t^{t+\Delta t} x_s^\dagger Q_s x_s + u_s^\dagger R_s u_s + \tau \log h_s(u_s | x_s) ds \right. \\ 268 \quad 269 \left. + J^{K, \Sigma}(t + \Delta t, x_{t+\Delta t}) \middle| x_t = x \right]. \quad (10)$$

270 We define the *preliminary IPO algorithm* of (K_t, Σ_t) by:
 271

$$272 \quad K_t^{\text{prelim}}, \Sigma_t^{\text{prelim}} \\ 273 \quad := \underset{\tilde{K}, \tilde{\Sigma}}{\operatorname{argmin}} \mathbb{E}_{u \sim \pi_{\tilde{K}, \tilde{\Sigma}}} \left[\int_t^{t+\Delta t} x_s^\dagger Q_s x_s + u_s^\dagger R_s u_s + \tau \log h_s(u_s | x_s) ds \right. \\ 274 \quad \left. + J^{K, \Sigma}(t + \Delta t, x_{t+\Delta t}) \mid x_t = x \right], \\ 275$$

276 which depends on the value of Δt and is equivalent to:
 277

$$278 \quad K_t^{\text{prelim}}, \Sigma_t^{\text{prelim}} \\ 279 \quad := \underset{\tilde{K}, \tilde{\Sigma}}{\operatorname{argmin}} \mathbb{E}_{u \sim \pi_{\tilde{K}, \tilde{\Sigma}}} \left[\frac{1}{\Delta t} \int_t^{t+\Delta t} x_s^\dagger Q_s x_s + u_s^\dagger R_s u_s + \tau \log h_s(u_s | x_s) ds \right. \\ 280 \quad \left. + \frac{1}{\Delta t} [J^{K, \Sigma}(t + \Delta t, x_{t+\Delta t}) - J^{K, \Sigma}(t, x)] \mid x_t = x \right]. \quad (11) \\ 281$$

282 Our *IPO algorithm* is then defined by the limit of the above preliminary algorithm, that is, on the
 283 RHS of (11), we set $\Delta t \rightarrow 0^+$ and exchange the limit with argmin to obtain (*i.e.*, minimizing the
 284 first-order derivative of the RHS of (10) at $\Delta t = 0$):
 285

$$286 \quad K_t^{\text{IPO}}, \Sigma_t^{\text{IPO}} := \underset{\tilde{K}, \tilde{\Sigma}}{\operatorname{argmin}} \left\{ x^\dagger (\tilde{K}_t^\dagger R_t \tilde{K}_t - 2\tilde{K}_t^\dagger B_t^\dagger P_t^K) x + \operatorname{tr}(\tilde{\Sigma}_t R_t) - \frac{\tau}{2} \log |\tilde{\Sigma}_t| \right\}, \\ 287$$

288 which admits the following analytical solution:
 289

$$290 \quad K_t^{\text{IPO}} = R_t^{-1} B_t^\dagger P_t^K, \quad (\text{IPO: } K) \\ 291 \quad \Sigma_t^{\text{IPO}} = \frac{\tau}{2} R_t^{-1}. \quad (\text{IPO: } \Sigma) \\ 292$$

293 where P_t^K is the solution to (8). Notice that Σ_t^{IPO} reaches the covariance of the optimal Gaussian
 294 policy after a single iteration (*cf.* (6)). We present below the IPO algorithm for updating K_t .
 295

296 **Algorithm 1** IPO algorithm for learning $(K_t^*)_{t \in [0, T]}$

300 **Require:** Initial value $(K_t^{(0)})_{t \in [0, T]}$
 301 1: $i \leftarrow 0$
 302 2: **while** not stop_flag **do**
 303 3: Solve (8) to obtain $(P_t^{K^{(i)}})_{t \in [0, T]}$
 304 4: $K_t^{(i+1)} \leftarrow R_t^{-1} B_t^\dagger P_t^{K^{(i)}}, t \in [0, T]$
 305 5: $i \leftarrow i + 1$
 306 6: **end while**
 307 7: **return** $(K_t^{(i)})_{t \in [0, T]}$

310
 311 **Convergence of IPO.** Now we present the convergence results of the IPO algorithm defined by
 312 (IPO: K) – (IPO: Σ). We will show that with an additional assumption stated in Assumption 4 ,
 313 the IPO algorithm has a global linear convergence rate. Since $(\Sigma_t^{\text{IPO}})_{t \in [0, T]}$ always reaches the
 314 covariance of the optimal Gaussian policy after a single iteration, we only discuss the convergence
 315 of $(K_t^{\text{IPO}})_{t \in [0, T]}$.

316 For any given parameters $(K_t, \Sigma_t)_{t \in [0, T]}$, we use the cost function value to measure their goodness
 317 (with an abuse of notation):

$$318 \quad C(K, \Sigma) := J_{\pi_{K, \Sigma}}(0, \mathcal{D}_0) \quad (12) \\ 319 \quad = \mathbb{E} \left(x^\dagger P_0^K x + r_0^{K, \Sigma} \mid x \sim \mathcal{D}_0 \right), \\ 320$$

321 where $(P_t^K, r_t^{K, \Sigma})_{t \in [0, T]}$ solves the coupled Riccati equations (8) – (9). Note that $C(K, \Sigma)$ is mini-
 322 mized at $(K_t^*, \Sigma_t^*)_{t \in [0, T]}$ (*resp.* at $(K_t^*)_{t \in [0, T]}$ when viewed only as a functional in K). See (6) for
 323 the values of $(K_t^*, \Sigma_t^*)_{t \in [0, T]}$.

324 **Assumption 4.** $\mathbb{E}(x_0 x_0^\dagger \mid x_0 \sim \mathcal{D}_0) \succ 0$.

325
 326 **Theorem 4** (Global linear convergence of IPO). *Under Assumptions 1 – 4, suppose that*
 327 *$\{(K_t^{(i)}, \Sigma_t)_{t \in [0, T]}\}_{i \geq 0}$ is a sequence of parameters following the algorithm (IPO: K). Then, there*
 328 *exist constants $\mathcal{C}_1^K > 0$ and $0 \leq \mathcal{C}_1 < 1$, which depend on $K^{(0)}$ and the data of the LQR (1) – (2),*
 329 *such that:*

$$330 \quad \forall i \geq 0, \quad \mathcal{C}_1^K \int_0^T \left\| K_t^{(i+1)} - K_t^* \right\|_2^2 dt \leq C(K^{(i+1)}, \Sigma) - C(K^*, \Sigma) \\ 331 \quad \leq \mathcal{C}_1 \left[C(K^{(i)}, \Sigma) - C(K^*, \Sigma) \right].$$

332
 333 One can further establish a super-linear convergence rate for the IPO algorithm, with an appropriate
 334 initialization.

335 **Theorem 5** (Local super-linear convergence of IPO). *Under Assumptions 1 – 4, there exist constants*
 336 *$(\epsilon, \mathcal{C}_2) > 0$, which depend on the data of the LQR (1) – (2), such that for any sequence of parameters*
 337 *$\{(K_t^{(i)}, \Sigma_t)_{t \in [0, T]}\}_{i \geq 0}$ following the algorithm (IPO: K) and satisfying:*

$$341 \quad \int_0^T \left\| K_t^{(0)} - K_t^* \right\|_2^2 dt \leq \epsilon,$$

342
 343 the following local super-linear convergence holds:

$$344 \quad \forall i \geq 0, \quad C(K^{(i+1)}, \Sigma) - C(K^*, \Sigma) \leq \mathcal{C}_2 \left[C(K^{(i)}, \Sigma) - C(K^*, \Sigma) \right]^{\frac{3}{2}}.$$

345
 346 **Remark 2.** Assumption 4 is critical in proving that the minimum eigenvalue of $\mathbb{E}(x_t x_t^\dagger)$ is uniformly
 347 bounded away from 0 (cf. Lemma 11). This uniform lower bound then leads to the uniform con-
 348 traction of the IPO algorithm. In the discrete-time setting (cf. Guo et al. (2023)), the counter-
 349 part of Assumption 4 is also imposed to guarantee the global linear convergence of the algorithms (cf.
 350 (Guo et al., 2023, Lemma 5.2)).

351 **Remark 3.** In fact, one can replace \mathcal{D}_0 with any square-integrable distribution in the definition
 352 of $C(\cdot, \cdot)$ (cf. (12)) and all the above convergence results still hold. This is because the initial
 353 distribution of the LQR (1) – (2) is irrelevant to the definition of the IPO algorithm. In this case,
 354 one only needs to change the statement of Assumption 4 to guarantee the corresponding positive-
 355 definiteness.

356
 357 **Transfer learning with IPO.** Now combining Theorem 1 and Theorem 5, we have immediately
 358 the super-fast learning via appropriate policy transfer between LQRs. We mention that in Theorem 5,
 359 ϵ admits a lower bound which only depends on the norms of the LQR’s model parameters.

360 **Corollary 6** (Transfer learning of LQRs with IPO). *Under Assumptions 1 – 4, denote*
 361 *by $(K_t^*)_{t \in [0, T]}$ the parameter of the optimal Gaussian policy of the LQR represented by*
 362 *$(A_{t \in [0, T]}, Q_{t \in [0, T]}, B_{t \in [0, T]}, R_{t \in [0, T]}, Q')$. Then, there exists $\epsilon > 0$, such that any initialization*
 363 *$(K_t^{(0)})_{t \in [0, T]}$ converges with a super-linear convergence rate to the optimal Gaussian policy of any*
 364 *LQR represented by $(\tilde{A}_{t \in [0, T]}, \tilde{Q}_{t \in [0, T]}, \tilde{B}_{t \in [0, T]}, \tilde{R}_{t \in [0, T]}, \tilde{Q}')$, provided that*

$$365 \quad \|K^{(0)} - K^*\|_{2;[0,T]} + \|\tilde{A} - A\|_{\infty;[0,T]} + \|\tilde{Q} - Q\|_{\infty;[0,T]} \\ 366 \quad + \|\tilde{B} - B\|_{\infty;[0,T]} + \|\tilde{R} - R\|_{\infty;[0,T]} + \|\tilde{Q}' - Q'\|_2 < \epsilon,$$

367
 368 where $\|\cdot\|_{\infty;[0,T]}$ (resp. $\|\cdot\|_{2;[0,T]}$, $\|\cdot\|_2$) denotes the functional L^∞ norm (resp. functional L^2
 369 norm, matrix 2-norm).

370 5 APPLICATION: STABILITY OF SCORE-BASED DIFFUSION MODELS

371 In this section, we will show that our analysis of LQRs, especially the key Lemma 3 can be applied
 372 to obtain the stability of score-based diffusion models. The critical observation is that the probability
 373 density function of (a certain class of) score-based diffusion models can be found in the LQRs under

378 the optimal randomized policy. This allows us to consider a class of score matching functions and
 379 to bound the distance between the generated distribution and the target distribution.
 380

381 In the rest of this section, we always impose the following assumption on the LQR (1) – (2).
 382

383 **Assumption 5.** *We assume*

$$384 \text{tr}(A_t) = -\frac{\tau}{4} \log \frac{|R_t|}{(\tau\pi)^k}, \quad B_t R_t^{-1} B_t^\dagger = \sigma_t \sigma_t^\dagger, \quad Q_t = 0 \\ 385$$

386 for any $t \in [0, T]$, and $Q' \succ 0$.
 387

388 **Mechanism of score-based diffusion models.** Score-based diffusion models have become the
 389 SOTA solution to various tasks in different areas. For completeness, we first recall their basic mech-
 390 anism briefly. (See *e.g.* Tang & Zhao (2024) for a comprehensive review).
 391

392 Suppose p_0^{data} is the distribution that one aims to generate. Diffusion model starts by defining a
 393 forward SDE (*e.g.* an OU process) over $[0, T]$ with the initial distribution p_0^{data} . Denote by s and
 394 p_T^{data} the score function and the terminal distribution of the forward SDE, respectively. Then, in
 395 the sampling stage, a backward SDE, whose dynamics depend on s and whose initial distribution is
 396 p_T^{data} , is simulated. (Figure 1 summarizes the basic mechanism of score-based diffusion models).
 397

398 Theoretically, it can be shown that the terminal distribution of the backward SDE is equal to p_0^{data} .
 399 In practice, however, s and p_T^{data} are typically not accessible, and a score matching function s_β and
 400 a noise distribution p^{noise} are adopted as their approximations, respectively. Denote by $p_{\approx}^{\text{data}}$ the
 401 terminal distribution of the backward SDE (under s_β and p^{noise}).
 402

410 **Figure 1:** Basic mechanism of score-based diffusion models.
 411
 412

413 **Connection with LQRs.** Next, we recall the connection between score-based diffusion models
 414 and LQRs. Our Lemma 7 can be viewed as a special case of (Zhang & Katsoulakis, 2023, Theo-
 415 rem 7). The key ingredient is the Cole-Hopf transformation for the HJB equation that characterizes
 416 the optimal policy of the LQR (*cf.* (HJB) in our case).
 417

418 **Lemma 7.** *Under Assumptions 1 – 3 and 5, the probability density function, which is denoted by
 419 $\hat{p}(t, x)$, of the following diffusion process on $[0, T]$:*

$$420 \text{d}\hat{X}_t = -A_{T-t}\hat{X}_t \text{d}t + \sigma_{T-t} \text{d}W_t, \quad \hat{X}_0 \sim \mathcal{N}(0, (Q')^{-1}) \quad (13) \\ 421$$

422 can be expressed by:

$$423 \hat{p}(t, x) = (2\pi)^{-\frac{n}{2}} |Q'|^{\frac{1}{2}} \exp \left[-\frac{1}{2} J(T-t, x) \right], \\ 424$$

425 where $J(t, x) = x^\dagger P_t x + r_t$ with (P_t, r_t) solving the coupled Riccati equations (4) – (17).
 426

427 We note that (13) specifies a diffusion model where the data distribution \hat{X}_0 (*i.e.*, the distribution
 428 one aims to generate) is Gaussian, and the forward SDE is an OU process. By Lemma 7, $\hat{p}(t, x)$
 429 is determined by P_{T-t} and r_{T-t} . In fact, $\hat{p}(t, x)$ is determined solely by P_{T-t} since the spacial
 430 integral of $\hat{p}(t, x)$ must be 1. As a result, the score function of (13) (*i.e.*, the gradient of $\log \hat{p}(t, x)$)
 431 is determined by P_{T-t} .
 432

432 **A class of score matching functions and the stability.** Now, the backward SDE of (13) is:
 433

$$434 \quad d\hat{Y}_t = \left[A_t \hat{Y}_t + \sigma_t \sigma_t^\dagger \nabla \log \hat{p}^{Q'}(T-t, \hat{Y}_t) \right] dt + \sigma_t dW_t, \quad \hat{Y}_0 \sim \hat{p}^{Q'}(T, \cdot), \quad (14)$$

436 where we use $\hat{p}^{Q'}$ to indicate the dependence of \hat{p} on Q' .
 437

438 In practice, when $\hat{p}^{Q'}$ is not explicitly known, a score matching function s is used as an approximator
 439 of $\nabla \log \hat{p}^{Q'}$, and the initial distribution is approximated by some noise distribution p^{noise} , *i.e.*,
 440

$$441 \quad dY_t = \left[A_t Y_t + \sigma_t \sigma_t^\dagger s(T-t, Y_t) \right] dt + \sigma_t dW_t, \quad Y_0 \sim p^{\text{noise}}. \quad (15)$$

443 We will show that $Y_T \approx \hat{Y}_T \stackrel{d}{=} \hat{X}_0$ when $s \approx \nabla \log \hat{p}^{Q'}$ and $p^{\text{noise}} \approx \hat{p}^{Q'}(T, \cdot)$: this follows from the
 444 stability of the Riccati equation (4) (*cf.* Lemma 3), such that $s = \nabla \log \hat{p}^M$ serves as a good score
 445 matching function as long as $M \approx Q'$.
 446

447 **Theorem 8** (Error bound analysis). *Under Assumptions 1 – 3 and 5, there exist constants*
 448 *$(C_1, C_2, C_3) > 0$, which depend on the data of the LQR (1) – (2), such that for any $\epsilon > 0$, there*
 449 *exists $\delta_0 > 0$, such that $\|M - Q'\| < \delta_0$ implies*

$$450 \quad d_{\text{TV}}(Y_T, \hat{Y}_T) \leq d_{\text{TV}}(p^{\text{noise}}, \hat{p}^{Q'}(T, \cdot)) + C_1 \epsilon,$$

452 and

$$454 \quad W_2(Y_T, \hat{Y}_T) \leq \sqrt{C_2 W_2^2(p^{\text{noise}}, \hat{p}^{Q'}(T, \cdot)) + C_3 \epsilon^2},$$

455 where Y_t satisfies (15) with $s = \nabla \log \hat{p}^M$, and \hat{Y}_t satisfies (14). Here d_{TV} and W_2 to denote the
 456 total variation distance and 2-Wasserstein distance, respectively.
 457

459 *Proof.* Our proof utilizes the results in (Tang & Zhao, 2024, Section 5). We first prove the total
 460 variation bound. By Lemma 3, for any fixed $x \in \mathbb{R}^n$, we have:
 461

$$462 \quad \nabla \log q^M(\cdot, x) \rightarrow \nabla \log q^{Q'}(\cdot, x) \text{ in } C([0, T], \mathbb{R}^n)$$

464 as $M \rightarrow Q'$. Then, by probability theory, we have:

$$466 \quad \forall t \in [0, T], \quad \mathbb{E}_{\hat{X}_t \sim q(t, \cdot)} \left\| \nabla \log q^M(t, \hat{X}_t) - \nabla \log q^{Q'}(t, \hat{X}_t) \right\|^2 \rightarrow 0$$

468 as $M \rightarrow Q'$. The total variation bound is then proved by invoking (Tang & Zhao, 2024, The-
 469orem 5.2). Similarly, the 2-Wasserstein bound can be proved by invoking (Tang & Zhao, 2024,
 470 Theorem 5.5 and Eqn. (5.13)). \square

472 6 NUMERICAL EXPERIMENTS

474 In this section, we conduct a toy numerical experiment to illustrate our main convergence results
 475 Theorem 4 (*i.e.*, global linear convergence) and Theorem 5 (*i.e.*, local super-linear convergence) of
 476 the IPO algorithm 1. We assume that the values of $(A_{t \in [0, T]}, B_{t \in [0, T]}, Q_{t \in [0, T]}, R_{t \in [0, T]}, Q')$ in (1)
 477 – (2) are known.
 478

479 **Choice of model parameters.** For simplicity, we only consider the case where the matrix-valued
 480 processes $(A_{t \in [0, T]}, B_{t \in [0, T]}, Q_{t \in [0, T]}, R_{t \in [0, T]})$ are constant in t . We choose $T = 1$, $(n, k) =$
 481 $(3, 2)$, and the values of the model parameters are sampled independently from the standard normal
 482 distribution $\mathcal{N}(0, 1)$ ¹. At each time step t , the parameter $K_t^{(0)}$ of the initial policy is also sampled
 483 independently from $\mathcal{N}(0, 1)$. Note that we do not require $(K_t^{(0)})_{t \in [0, T]}$ to be constant in t .
 484

485 ¹To sample a PSD matrix, we first sample a random matrix and then multiply it with its transpose.

486 **Numerical results.** The convergence of our IPO algorithm is plotted in Figure 2. The x -axis
 487 shows the iteration and the y -axis shows the mean L^2 error, where $(K_t^{(i)})_{t \in [0, T]}$ denotes the Gaussian
 488 policy's parameter at the i -th iteration, and $(K_t^*)_{t \in [0, T]}$ denotes the parameter of the optimal
 489 Gaussian policy. As clearly shown, the algorithm admits linear convergence at the early stages and
 490 then super-linear convergence when the policy approaches the optimum, which empirically veri-
 491 fies our theoretical results Theorem 4 (*i.e.*, global linear convergence) and Theorem 5 (*i.e.*, local
 492 super-linear convergence).

512 **Figure 2:** Convergence of the IPO Algorithm 1.
 513
 514

515 **Conclusion.** Linear-quadratic (LQ) control problems are a cornerstone of classical control
 516 theory. Our analysis of transfer learning for LQRs benefits from its analytical tractability and gains
 517 critical insights for general continuous-time RL problems. In particular, it shows that transfer learn-
 518 ing will be valuable for leveraging existing RL algorithms beyond LQR framework. The precise
 519 mathematical analysis relies on studies of stability and continuity of optimal policy for stochastic
 520 control problems. The analysis on LQRs also leads to the stability results for a class of score-based
 521 continuous-time diffusion models.

522
 523 **REFERENCES**

524 Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Battenberg, Carl
 525 Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang Chen, et al. Deep speech 2: End-to-
 526 end speech recognition in english and mandarin. In *International conference on machine learning*,
 527 pp. 173–182. PMLR, 2016.

528
 529 Kavosh Asadi, Dipendra Misra, and Michael Littman. Lipschitz continuity in model-based rein-
 530 forcement learning. In *International conference on machine learning*, pp. 264–273. PMLR, 2018.

531
 532 Dimitri Bertsekas. *Reinforcement Learning and Optimal Control*, volume 1. Athena Scientific,
 533 2019.

534
 535 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 536 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 537 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

538
 539 Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. On the sample complex-
 540 ity of the linear quadratic regulator. *Foundations of Computational Mathematics*, 20(4):633–679,
 2020.

540 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 541 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of*
 542 *the North American chapter of the association for computational linguistics: human language*
 543 *technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

544 Maryam Fazel, Rong Ge, Sham Kakade, and Mehran Mesbahi. Global convergence of policy gradient
 545 methods for the linear quadratic regulator. In *International conference on machine learning*,
 546 pp. 1467–1476. PMLR, 2018.

547 Haotian Fu, Jiayu Yao, Omer Gottesman, Finale Doshi-Velez, and George Konidaris. Performance
 548 bounds for model and policy transfer in hidden-parameter mdps. In *The Eleventh International*
 549 *Conference on Learning Representations*, 2023.

550 Michael Giegrich, Christoph Reisinger, and Yufei Zhang. Convergence of policy gradient methods
 551 for finite-horizon stochastic linear-quadratic control problems. *arXiv preprint arXiv:2211.00617*,
 552 2022.

553 Hyemin Gu, Markos A Katsoulakis, Luc Rey-Bellet, and Benjamin J Zhang. Combining
 554 wasserstein-1 and wasserstein-2 proximals: robust manifold learning via well-posed generative
 555 flows. *arXiv preprint arXiv:2407.11901*, 2024.

556 Xin Guo, Renyuan Xu, and Thaleia Zariphopoulou. Entropy regularization for mean field games
 557 with learning. *Mathematics of Operations research*, 47(4):3239–3260, 2022.

558 Xin Guo, Xinyu Li, and Renyuan Xu. Fast policy learning for linear-quadratic control with entropy
 559 regularization. *SIAM Journal on Control and Optimization*, *arXiv preprint arXiv:2311.14168*,
 560 2023.

561 Ben Hambly, Renyuan Xu, and Huining Yang. Policy gradient methods for the noisy linear quadratic
 562 regulator over a finite horizon. *SIAM Journal on Control and Optimization*, 59(5):3359–3391,
 563 2021.

564 Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification.
 565 *arXiv preprint arXiv:1801.06146*, 2018.

566 Yilie Huang, Yanwei Jia, and Xun Yu Zhou. Sublinear regret for an actor-critic algorithm in
 567 continuous-time linear-quadratic reinforcement learning. *Available at SSRN 4904358*, 2024.

568 Mathias Kraus and Stefan Feuerriegel. Decision support from financial disclosures with deep neural
 569 networks and transfer learning. *Decision Support Systems*, 104:38–48, 2017.

570 Karl Krauth, Stephen Tu, and Benjamin Recht. Finite-time analysis of approximate policy iteration
 571 for the linear quadratic regulator. *Advances in Neural Information Processing Systems*, 32, 2019.

572 Huibert Kwakernaak and Raphael Sivan. *Linear Optimal Control Systems*, volume 1. Wiley-
 573 interscience New York, 1972.

574 Alessandro Lazaric and Marcello Restelli. Transfer from multiple mdps. *Advances in neural infor-*
 575 *mation processing systems*, 24, 2011.

576 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
 577 Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
 578 approach. *arXiv preprint arXiv:1907.11692*, 2019.

579 Bernt Oksendal. *Stochastic Differential Equations: An Introduction with Applications*. Springer
 580 Science & Business Media, 2013.

581 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 582 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 583 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.

584 Wenpin Tang and Hanyang Zhao. Score-based diffusion models via stochastic differential
 585 equations—a technical tutorial. *arXiv preprint arXiv:2402.07487*, 2024.

594 Yucheng Tang, Dong Yang, Wenqi Li, Holger R Roth, Bennett Landman, Daguang Xu, Vishwesh
595 Nath, and Ali Hatamizadeh. Self-supervised pre-training of swin transformers for 3d medical
596 image analysis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
597 *recognition*, pp. 20730–20740, 2022.

598 Leonardo Felipe Toso, Donglin Zhan, James Anderson, and Han Wang. Meta-learning linear
599 quadratic regulators: a policy gradient maml approach for model-free lqr. In *6th Annual Learning*
600 *for Dynamics & Control Conference*, pp. 902–915. PMLR, 2024.

602 Haoran Wang, Thaleia Zariphopoulou, and Xunyu Zhou. Exploration versus exploitation in rein-
603 forcement learning: A stochastic control approach. *arXiv preprint arXiv:1812.01552*, 2018.

604 Jiongmin Yong and Xun Yu Zhou. *Stochastic Controls: Hamiltonian Systems and HJB Equations*,
605 volume 43. Springer Science & Business Media, 2012.

607 Benjamin J Zhang and Markos A Katsoulakis. A mean-field games laboratory for generative mod-
608 eling. *arXiv preprint arXiv:2304.13534*, 2023.

609 Benjamin J Zhang, Siting Liu, Wuchen Li, Markos A Katsoulakis, and Stanley J Osher. Wasserstein
610 proximal operators describe score-based generative models and resolve memorization. *arXiv*
611 *preprint arXiv:2402.06162*, 2024.

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 7 APPENDIX
649650 7.1 PROOF OF LEMMA 2
651652 *Proof.* Define the following intermediate cost function:
653

654
$$J(t, x) := \inf_{\pi \in \mathcal{A}} \mathbb{E}_{u_s \sim \pi_s(\cdot | x_s)} \left[\int_t^T x_s^\dagger Q_s x_s + u_s^\dagger R_s u_s + \tau \log h_s(u_s | x_s) ds \right. \\ 655 \left. + x_T^\dagger Q' x_T \Big| x_t = x \right]. \quad (16)$$

656
657
658

659 Then, DPP produces the following HJB equation of the LQR (1) – (2):
660

661
$$-\frac{\partial J(t, x)}{\partial t} = \inf_{\pi \in \mathcal{A}} \mathbb{E}_{u_t \sim \pi_t} \left\{ (A_t x + B_t \bar{u}_t) \cdot \nabla J(t, x) + \frac{1}{2} (\sigma_t \sigma_t^\dagger) \cdot \Delta J(t, x) \right. \\ 662 \left. + x^\dagger Q_t x + u_t^\dagger R_t u_t + \tau \log h_t(u_t | x) \right\}, \quad J(T, x) = x^\dagger Q' x, \quad (\text{HJB})$$

663
664
665

666 where we use $\bar{\cdot}$ to imply the expectation of the underlying random variable/distribution, and $h_t(\cdot | x)$
667 denotes the (conditional) probability distribution function of the Markov randomized policy $\pi_t(\cdot | x)$.
668669 By (Guo et al., 2023, Lemma 2.2), the RHS of (HJB) is minimized by the following Gaussian policy:
670

671
$$\pi_t^*(\cdot | x) = \mathcal{N} \left(-\frac{1}{2} R_t^{-1} B_t^\dagger \nabla J(t, x), \frac{\tau}{2} R_t^{-1} \right).$$

672 Observing the linear quadratic nature of LQRs, we introduce the following ansatz for $J(t, x)$:
673

674
$$J(t, x) = x^\dagger P_t x + r_t.$$

675 After plugging the ansatz for J and the expression of π^* into (HJB), we obtain the following coupled
676 Riccati equations for (P_t, r_t) :
677

678
$$\frac{dP_t}{dt} + A_t^\dagger P_t + P_t A_t + Q_t - P_t B_t R_t^{-1} B_t^\dagger P_t = 0, \quad P_T = Q', \quad (4)$$

679
$$\frac{dr_t}{dt} + \text{tr}(\sigma_t^\dagger P_t \sigma_t) + \frac{\tau}{2} \log \frac{|R_t|}{(\tau \pi)^k} = 0, \quad r_T = 0. \quad (17)$$

680

681 Hence the lemma. □
682683 7.2 APPENDIX B: PROOF OF LEMMA 3
684685 *Proof.* The well-definedness of \mathcal{R} is guaranteed by (Yong & Zhou, 2012, Corollary 2.10). For sim-
686 plicity, in the rest we only prove the continuity of \mathcal{R} with respect to $(A_t, B_t)_{t \in [0, T]}$. The continuity
687 with respect to the rest arguments can be proved by the same route.688 For any (A_t, B_t) (resp. $(\tilde{A}_t, \tilde{B}_t)$), we denote by P_t (resp. \tilde{P}_t) the solution of (4). Define $\Delta P_t :=$
689 $P_t - \tilde{P}_t$. It can be shown that ΔP_t satisfies the ODE:
690

691
$$\frac{d\Delta P_t}{dt} + A_t^\dagger \Delta P_t + (A_t - \tilde{A}_t)^\dagger \tilde{P}_t + \Delta P_t A_t + \tilde{P}_t (A_t - \tilde{A}_t) \\ 692 \quad - (P_t B_t R_t^{-1} B_t^\dagger P_t - \tilde{P}_t \tilde{B}_t R_t^{-1} \tilde{B}_t^\dagger \tilde{P}_t) = 0, \quad \Delta P_T = 0.$$

693

694 By integrating over $[t, T]$ and then taking the matrix 2-norm on both sides, we obtain:
695

696
$$\|\Delta P_t\|_2 \leq \int_t^T \left[2\|A_s\|_2 + \delta \|B_s\|_2^2 (\|P_s\|_2 + \|\tilde{P}_s\|_2) \right] \|\Delta P_s\|_2 ds \\ 697 \quad + 2\|A - \tilde{A}\|_{\infty; [0, T]} \int_t^T \|\tilde{P}_s\|_2 ds \\ 698 \quad + 2\delta \|B - \tilde{B}\|_{\infty; [0, T]} \int_t^T (\|B_s\|_2 \|P_s\|_2 + \|\tilde{B}_s\|_2 \|\tilde{P}_s\|_2) \|\tilde{P}_s\|_2 ds, \quad (18)$$

700
701

702 where $\delta > 0$ is defined in Assumption 3. Notice that $\|P\|_{\infty;[0,T]}$ (resp. $\|\tilde{P}\|_{\infty;[0,T]}$) can be controlled by $\|A\|_{\infty;[0,T]} + \|B\|_{\infty;[0,T]}$ (resp. $\|\tilde{A}\|_{\infty;[0,T]} + \|\tilde{B}\|_{\infty;[0,T]}$), applying Gronwall's inequality on (18) finishes the proof. \square

706 7.3 PROOF OF THEOREM 4

708 In the following, with an abuse of notation, we sometimes use $\langle \cdot, \cdot \rangle$ to indicate the usual matrix inner
709 product. In addition, for any matrix M , we use $\lambda_{\min}(M)$ (resp. $\|M\|_2$) to denote the square root of
710 the smallest (resp. largest) eigenvalue of $M^\dagger M$.

711 We first define the following matrix-valued functions.

$$713 \mathcal{G}(t, K', K) := P_t^K [B_t(K_t - K'_t)] + [B_t(K_t - K'_t)]^\dagger P_t^K + K'^\dagger R_t K'_t - K_t^\dagger R_t K_t,$$

$$714 G(t, K) := -\mathcal{G}(t, R^{-1} B^\dagger P^K, K) = P_t^K B_t R_t^{-1} B_t^\dagger P_t^K + K_t^\dagger R_t K_t - P_t^K B_t K_t - K_t^\dagger B_t^\dagger P_t^K.$$

716 Since $K_t^* = R_t^{-1} B_t^\dagger P_t^*$, we have $\mathcal{G}(t, K, K^*) = (K_t - K_t^*)^\dagger R_t (K_t - K_t^*) \succeq 0$. Also, it can be
717 verified by algebraic calculation that $G(t, K) \succeq 0$. In addition, for notational simplicity, in the rest
718 of this section, we define

$$719 y_t := \mathbb{E}(x_t x_t^\dagger), \quad (\dagger)$$

720 where x_t solves the state SDE (1) with u_t following the policy $\pi_t = \mathcal{N}(-K_t x, \Sigma_t)$. And we shall
721 use superscripts to indicate different policies. For instance, by y'_t we imply that $y'_t = \mathbb{E}(x'_t (x'_t)^\dagger)$
722 where x'_t solves the state SDE (1) with u_t following the policy $\pi_t = \mathcal{N}(-K'_t x, \Sigma_t)$.

724 The proof of the global linear convergence relies on the following lemmas.

725 **Lemma 9** (Cost difference). *Under Assumptions 1 – 3, the cost difference of two parametrized
726 Gaussian policies is given by:*

$$727 728 C(K', \Sigma) - C(K, \Sigma) = \int_0^T \langle y'_t, \mathcal{G}(t, K', K) \rangle dt,$$

730 where y'_t is defined by (\dagger) .

731 *Proof.* Under Assumptions 1 – 3, recall the definition of associated cost function from Section 4.
732 For notational simplicity, denote $J'(t, x) := J_{K', \Sigma}(t, x)$ and $J(t, x) := J_{K, \Sigma}(t, x)$. By subtracting
733 the two Bellman equations that $J'(t, x)$ and $J(t, x)$ satisfy (cf. (7)), we obtain:

$$735 \frac{\partial(J' - J)}{\partial t} + [(A_t - B_t K'_t)x] \cdot \nabla(J' - J) + \frac{1}{2}(\sigma_t \sigma_t^\dagger) \cdot \Delta(J' - J) + F(t, x) = 0,$$

737 where

$$738 F(t, x) = [B_t(K_t - K'_t)x] \cdot \nabla J + (K'_t x)^\dagger R(K'_t x) - (K x)^\dagger R(K x).$$

739 Define $u(t, x) := J'(t, x) - J(t, x)$. By Ito's formula:

$$740 741 \mathbb{E}[du(t, x'_t)] = \mathbb{E}[F(t, x'_t)] dt,$$

742 where x'_t solves the state SDE (1) with u_t following the policy $\pi'_t = \mathcal{N}(-K'_t x, \Sigma_t)$. Finally, by
743 integrating on $[0, T]$, we have:

$$744 745 C(K', \Sigma) - C(K, \Sigma) = -\mathbb{E} \left[\int_0^T du(t, x'_t) \right]$$

$$746 747 = \mathbb{E} \left[\int_0^T F(t, x'_t) dt \right].$$

749 A manipulation of the matrices finishes the proof. \square

751 **Lemma 10** (Contraction of IPO). *Under Assumptions 1 – 4, suppose K' is the one-step update of
752 K following the algorithm (IPO: K). Then,*

$$753 754 C(K', \Sigma) - C(K^*, \Sigma) \leq \left\{ 1 - \frac{\min_{t \in [0, T]} \lambda_{\min}(y'_t)}{\max_{t \in [0, T]} \|y_t^*\|_2} \right\} [C(K, \Sigma) - C(K^*, \Sigma)],$$

755 where K^* is the parameter of the optimal policy, and y'_t (resp. y_t^*) is defined by (\dagger) .

756 *Proof.* Under Assumptions 1 – 3, by Lemma 9, we have:
 757

$$758 \quad C(K, \Sigma) - C(K^*, \Sigma) = - \int_0^T \langle y_t^*, \mathcal{G}(t, K^*, K) \rangle dt. \quad (19)$$

760 Fixing $(y_t^*)_{t \in [0, T]}$ and $(K_t)_{t \in [0, T]}$, and viewing the RHS of (19) as a functional of $(K_t^*)_{t \in [0, T]}$, we
 761 see that

$$\begin{aligned} 762 \quad \text{RHS of (19)} &\leq \int_0^T \langle y_t^*, G(t, K) \rangle dt \\ 763 \\ 764 \\ 765 \\ 766 \\ 767 \\ 768 \\ 769 \end{aligned} \quad \begin{aligned} &\leq \int_0^T \|y_t^*\|_2 \text{tr}[G(t, K)] dt \\ &\leq \max_{t \in [0, T]} \|y_t^*\|_2 \int_0^T \text{tr}[G(t, K)] dt. \end{aligned}$$

770 By invoking Lemma 9 again, we obtain:

$$\begin{aligned} 771 \quad C(K', \Sigma) - C(K, \Sigma) &= - \int_0^T \langle y_t', G(t, K) \rangle dt \\ 772 \\ 773 \\ 774 \\ 775 \\ 776 \\ 777 \\ 778 \end{aligned} \quad \begin{aligned} &\leq - \min_{t \in [0, T]} \lambda_{\min}(y_t') \int_0^T \text{tr}[G(t, K)] dt \\ &\leq - \frac{\min_{t \in [0, T]} \lambda_{\min}(y_t')}{\max_{t \in [0, T]} \|y_t^*\|_2} [C(K, \Sigma) - C(K^*, \Sigma)]. \end{aligned} \quad (20)$$

779 Notice that $\max_{t \in [0, T]} \|y_t^*\|_2 > 0$ by assumption 4. Adding $C(K, \Sigma) - C(K^*, \Sigma)$ to both sides of
 780 (20) gives the desired result. \square

781 **Lemma 11** (Lower bound of λ_{\min}). *Under Assumptions 1 – 4, suppose $\{(K^{(i)}, \Sigma)\}_{i \geq 0}$ is a se-
 782 quence of parameters following the algorithm (IPO: K). Then, there exists $\underline{\mu} > 0$, which is affected
 783 by $K^{(0)}$, such that:*

$$784 \quad \forall i \geq 0, t \in [0, T], \quad \lambda_{\min}(y_t^{(i)}) \geq \underline{\mu},$$

785 where $y_t^{(i)}$ is defined by (4).

786 *Proof.* Under Assumptions 1 – 3, for any fixed Gaussian policy parameterized by (K, Σ) , y_t follows
 787 the ODE from Ito's formula:

$$788 \quad \frac{dy_t}{dt} = (A_t - B_t K_t) y_t + y_t (A_t - B_t K_t)^\dagger + \sigma_t \sigma_t^\dagger, \quad y_0 = \mathbb{E}(x_0 x_0^\dagger | x_0 \sim \mathcal{D}_0).$$

789 Noticing that $\sigma_t \sigma_t^\dagger \succeq 0$, by adapting the proof of (Giegrich et al., 2022, Lemma 3.7), we obtain:

$$790 \quad \min_{t \in [0, T]} \lambda_{\min}(y_t) \geq \lambda_{\min}(y_0) \exp \left(-2 \int_0^T \|A_t - B_t K_t\|_2 dt \right). \quad (21)$$

791 For the sequence of parameters $\{(K^{(i)}, \Sigma)\}_{i \geq 0}$ defined by (IPO: K), we define $\Delta P^{(i)} :=$
 792 $P^{K^{(i+1)}} - P^{K^{(i)}}$. It satisfies the Riccati equation (cf. (8)):

$$793 \quad \frac{d\Delta P^{(i)}}{dt} + (A_t - B_t K_t^{(i+1)})^\dagger \Delta P^{(i)} + \Delta P^{(i)} (A_t - B_t K_t^{(i+1)}) = G(t, K^{(i)}), \quad \Delta P_T^{(i)} = 0.$$

803 Since $G(t, K^{(i)}) \succeq 0$, it implies that $\Delta P^{(i)} \preceq 0$ (cf. the proof of (Giegrich et al., 2022, Proposition
 804 3.5(1))). Therefore, for any $i \geq 1$, $\|K_t^{(i)}\|_2 \leq \|R_t^{-1} B_t^\dagger\|_2 \|P_t^{K^{(0)}}\|_2$, i.e., the matrix 2-norm is
 805 bounded from above. Combining this upper bound with (21) yields the desired conclusion (note that
 806 $\lambda_{\min}(y_0) > 0$ by Assumption 4). \square

807 The following lemma is immediate from Lemma 9 and Lemma 11, and by observing that:

$$808 \quad \mathcal{G}(t, K, K^*) = (K_t - K_t^*)^\dagger R_t (K_t - K_t^*) \succeq 0.$$

810
811 **Lemma 12** (Upper bound of L^2 distance). *Under Assumptions 1 – 4, suppose $\{(K^{(i)}, \Sigma)\}_{i \geq 0}$ is a*
812 *sequence of parameters following the algorithm (IPO: K). Then,*

813
$$\forall i \geq 0, \quad C(K^{(i)}, \Sigma) - C(K^*, \Sigma) \geq \underline{\mu} \delta \int_0^T \|K_t^{(i)} - K_t^*\|_2^2 dt,$$

814
815

816 where $\underline{\mu} > 0$ is defined in Lemma 11, and $\delta > 0$ is defined in Assumption 3.

817 7.4 PROOF OF THEOREM 5

819 The proof of local super-linear convergence is built upon a series of lemmas.

820 **Lemma 13** (Contraction of IPO). *Under Assumptions 1 – 4, suppose $\{(K^{(i)}, \Sigma)\}_{i \geq 0}$ is a sequence*
821 *of parameters following the algorithm (IPO: K) and satisfying*

823
$$\forall i \geq 1, \quad \max_{t \in [0, T]} \|y_t^{(i)} - y_t^*\|_2 \leq \min_{t \in [0, T]} \lambda_{\min}(y_t^*).$$

824
825

826 *Then,*

827
$$C(K^{(i+1)}, \Sigma) - C(K^*, \Sigma) \leq \frac{\max_{t \in [0, T]} \|y_t^{(i+1)} - y_t^*\|_2}{\min_{t \in [0, T]} \lambda_{\min}(y_t^*)} [C(K^{(i)}, \Sigma) - C(K^*, \Sigma)].$$

828
829

830 *Proof.* Denote $K' := K^{(i+1)}$ and $K := K^{(i)}$ to simplify the notation. Under Assumptions 1 – 3,
831 by Lemma 9, we have:

833
$$\begin{aligned} C(K', \Sigma) - C(K, \Sigma) &= \int_0^T \langle y'_t, \mathcal{G}(t, K', K) \rangle dt \\ 834 &= - \int_0^T \langle y'_t, G(t, K) \rangle dt \\ 835 &= - \int_0^T \langle y_t^*, G(t, K) \rangle - \langle y'_t - y_t^*, G(t, K) \rangle dt. \end{aligned} \quad (22)$$

836
837
838
839
840

841 Notice that $\min_{t \in [0, T]} \lambda_{\min}(y_t^*) > 0$ by Lemma 11 under Assumptions 1 – 4. As a result,

842
$$\begin{aligned} \text{RHS of (22)} &\leq \left(-1 + \frac{\max_{t \in [0, T]} \|y'_t - y_t^*\|_2}{\min_{t \in [0, T]} \lambda_{\min}(y_t^*)} \right) \int_0^T \langle y_t^*, G(t, K) \rangle dt \\ 843 &\leq \left(-1 + \frac{\max_{t \in [0, T]} \|y'_t - y_t^*\|_2}{\min_{t \in [0, T]} \lambda_{\min}(y_t^*)} \right) [C(K, \Sigma) - C(K^*, \Sigma)]. \end{aligned}$$

844
845
846
847

848 Adding $C(K, \Sigma) - C(K^*, \Sigma)$ to both sides of the above inequality gives the desired result. \square

849 **Lemma 14** (Perturbation of y_t). *Let $\rho > 0$. Under Assumptions 1 – 3, suppose the two policies*
850 *$\{(K^i, \Sigma)\}_{i=1,2}$ satisfy:*

851
$$\max_{1 \leq i \leq 2} \int_0^T \|A_t - B_t K_t^i\|_2 dt \leq \rho.$$

852
853

854 *Then, there exists $\hat{c}_\rho > 0$ such that:*

855
$$\max_{t \in [0, T]} \|y_t^1 - y_t^2\|_2 \leq \hat{c}_\rho \int_0^T \|K_t^1 - K_t^2\|_2 dt.$$

856
857

858 *Proof.* We divide the proof into several steps.

859 Step 1: Calculate the perturbation of y_t .

860 Under Assumptions 1 – 3, by Ito's formula, y_t satisfies the ODE:

863
$$\frac{dy_t}{dt} = (A_t - B_t K_t) y_t + y_t (A_t - B_t K_t)^\dagger + \sigma_t \sigma_t^\dagger, \quad y_0 = \mathbb{E}(x_0 x_0^\dagger | x_0 \sim \mathcal{D}_0). \quad (23)$$

864 By subtracting the ODEs that y_t^1 and y_t^2 satisfy, we get:
 865

$$\begin{aligned} 866 \frac{d(y_t^1 - y_t^2)}{dt} &= (A_t - B_t K_t^1)(y_t^1 - y_t^2) + (y_t^1 - y_t^2)(A_t - B_t K_t^1)^\dagger \\ 867 &\quad - [B_t(K_t^1 - K_t^2)]y_t^2 - y_t^2[B_t(K_t^1 - K_t^2)]^\dagger, \quad y_0^1 - y_0^2 = 0. \quad (24) \\ 868 \\ 869 \end{aligned}$$

870 **Step 2: Bound the norm of y_t .**
 871

872 By integrating over $[0, t]$ and then taking norms on both sides of (23), we get:
 873

$$874 \quad \|y_t\|_2 \leq \|y_0\|_2 + 2 \int_0^t \|A_s - B_s K_s\|_2 \|y_s\|_2 + \|\sigma_s \sigma_s^\dagger\|_2 ds. \\ 875$$

876 By Gronwall's inequality, there exists $\tilde{c}_\rho > 0$ such that:
 877

$$878 \quad \max_{t \in [0, T]} \|y_t\|_2 \leq \tilde{c}_\rho. \\ 879$$

880 **Step 3: Bound the perturbation of y_t .**
 881

882 By integrating over $[0, t]$ and then taking norms on both sides of (24), we get:
 883

$$\begin{aligned} 883 \quad \|y_t^1 - y_t^2\|_2 &\leq 2 \int_0^t \|A_s - B_s K_s^1\|_2 \|y_s^1 - y_s^2\|_2 + \|B_s\|_2 \|K_s^1 - K_s^2\|_2 \|y_s^2\|_2 ds \\ 884 \\ 885 \quad &\leq 2 \int_0^t \|A_s - B_s K_s^1\|_2 \|y_s^1 - y_s^2\|_2 ds + 2\tilde{c}_\rho \max_{t \in [0, T]} \|B_t\|_2 \int_0^t \|K_s^1 - K_s^2\|_2 ds. \\ 886 \\ 887 \end{aligned}$$

888 Again, by Gronwall's inequality, there exists $\hat{c}_\rho > 0$ such that:
 889

$$890 \quad \max_{t \in [0, T]} \|y_t^1 - y_t^2\|_2 \leq \hat{c}_\rho \int_0^T \|K_t^1 - K_t^2\|_2 dt. \\ 891$$

892 \square

893 **Lemma 15** (Bound the one-step update of y_t). *Under Assumptions 1 – 3, let $\rho > 0$ be such that*
 894

$$895 \quad \int_0^T \|A_t - B_t K_t^*\|_2 dt \leq \rho. \\ 896$$

897 Suppose $\{(K^{(i)}, \Sigma)\}_{i \geq 0}$ is a sequence of parameters following the algorithm (IPO: K) and satisfying:
 898

$$899 \quad \sup_{i \geq 0} \int_0^T \|A_t - B_t K_t^{(i)}\|_2 dt \leq \rho. \\ 900$$

901 Then, there exists $c_\rho^* > 0$ which is affected by $K^{(0)}$, such that for any $i \geq 0$, we have:
 902

$$903 \quad \forall i \geq 0, \quad \max_{t \in [0, T]} \|y_t^{(i+1)} - y_t^*\|_2 \leq c_\rho^* \int_0^T \|K_t^{(i)} - K_t^*\|_2 dt. \\ 904$$

905 *Proof.* Denote $K' := K^{(i+1)}$ and $K := K^{(i)}$. By definition,
 906

$$\begin{aligned} 907 \quad \|K'_t - K_t^*\|_2 &= \|R_t^{-1} B_t^\dagger (P_t^K - P_t^{K^*})\|_2 \\ 908 \\ 909 \quad &\leq \frac{\|B_t\|_2}{\lambda_{\min}(R_t)} \|P_t^K - P_t^{K^*}\|_2, \\ 910 \\ 911 \end{aligned}$$

912 where $\lambda_{\min}(R_t) \geq \delta > 0$ for any $t \in [0, T]$ by Assumption 3.
 913

914 Notice that $P_t^K - P_t^{K^*}$ satisfies the ODE:
 915

$$\begin{aligned} 916 \quad \frac{d(P_t^K - P_t^{K^*})}{dt} &= (A_t - B_t K_t)^\dagger (P_t^K - P_t^{K^*}) + (P_t^K - P_t^{K^*})(A_t - B_t K_t) + K_t^\dagger R_t K_t \\ 917 &\quad - [B_t(K_t - K_t^*)]^\dagger P_t^{K^*} - P_t^{K^*}[B_t(K_t - K_t^*)] - (K_t^*)^\dagger R_t K_t^*, \quad P_T^K - P_T^{K^*} = 0. \\ 918 \end{aligned}$$

918 By integrating over $[t, T]$ and taking norms on both sides, we get:
919

$$\begin{aligned}
920 \quad \|P_t^K - P_t^{K^*}\|_2 &\leq 2 \int_t^T \|A_s - B_s K_s\|_2 \|P_s^K - P_s^{K^*}\|_2 ds \\
921 \\
922 \quad &+ 2 \max_{s \in [0, T]} \|B_s^\dagger P_s^{K^*}\|_2 \int_t^T \|K_s - K_s^*\|_2 ds \\
923 \\
924 \quad &+ \max_{s \in [0, T]} \|R_s\|_2 \int_t^T (\|K_s\|_2 + \|K_s^*\|_2) \|K_s - K_s^*\|_2 ds.
\end{aligned}$$

925 Recall from the proof of Lemma 11 that $\|K_s\|_2 \leq \|R_s^{-1} B_s^\dagger\|_2 \|P_s^{K^{(0)}}\|_2$, which only requires
926 Assumptions 1 – 3. As a result,
927

$$\begin{aligned}
931 \quad \|P_t^K - P_t^{K^*}\|_2 &\leq 2 \int_t^T \|A_s - B_s K_s\|_2 \|P_s^K - P_s^{K^*}\|_2 ds \\
932 \\
933 \quad &+ \left[2 \max_{s \in [0, T]} \|B_s^\dagger P_s^{K^*}\|_2 + \max_{s \in [0, T]} \|R_s\|_2 \left(\max_{s \in [0, T]} \|R_s^{-1} B_s^\dagger\|_2 \|P_s^{K^{(0)}}\|_2 \right. \right. \\
934 \\
935 \quad &\quad \left. \left. + \max_{s \in [0, T]} \|K_s^*\|_2 \right) \right] \int_t^T \|K_s - K_s^*\|_2 ds.
\end{aligned}$$

936 Therefore, by Gronwall's inequality, there exists $\bar{c}_\rho > 0$, which is affected by $K^{(0)}$, such that:
937

$$940 \quad \max_{t \in [0, T]} \|P_t^K - P_t^{K^*}\|_2 \leq \bar{c}_\rho \int_0^T \|K_t - K_t^*\|_2 dt,$$

942 and moreover,
943

$$944 \quad \max_{t \in [0, T]} \|K_t' - K_t^*\|_2 \leq \bar{c}_\rho \max_{t \in [0, T]} \frac{\|B_t\|_2}{\lambda_{\min}(R_t)} \int_0^T \|K_t - K_t^*\|_2 dt.$$

947 Finally, noticing that $\int_0^T \|A_t - B_t K_t^*\|_2 dt \leq \rho$, an application of Lemma 14 finishes the proof. \square
948

949 *Proof of Theorem 5.* To show the existence of ϵ , denote $r := \int_0^T \|K_t^{(0)} - K_t^*\|_2^2 dt$. Recall from
950 the proof of Lemma 11 that $\|K_t^{(i)}\|_2 \leq \|R_t^{-1} B_t^\dagger\|_2 \|P_t^{K^{(0)}}\|_2$ for any $i \geq 1$, which only requires
951 Assumptions 1 – 3. By applying Gronwall's inequality on (8), $\max_{t \in [0, T]} \|P_t^{K^{(0)}}\|_2$ is bounded
952 from above, and the bound only depends on the value of r (as an increasing function in r) and the
953 data of the LQR. As a result, there exists $\rho_r > 0$, which only depends on the value of r (as an
954 increasing function in r) and the data of the LQR, such that
955

$$956 \quad \max \left\{ \int_0^T \|A_t - B_t K_t^*\|_2 dt, \sup_{i \geq 0} \int_0^T \|A_t - B_t K_t^{(i)}\|_2 dt \right\} \leq \rho_r.$$

957 Under Assumptions 1 – 4, by Lemma 11 and Lemma 12, there exists $\underline{\mu}_r > 0$, which only depends
958 on the value of r (as a decreasing function in r) and the data of the LQR, such that
959

$$960 \quad \forall i \geq 0, \quad \underline{\mu}_r \delta \int_0^T \|K_t^{(i)} - K_t^*\|_2^2 dt \leq C(K^{(i)}, \Sigma) - C(K^*, \Sigma).$$

961 Meanwhile, by applying Gronwall's inequality on (23), there exists $\bar{\mu}_r > 0$, which only depends on
962 the value of r (as an increasing function in r) and the data of the LQR, such that
963

$$964 \quad \forall i \geq 0, \quad \max_{t \in [0, T]} \|y_t^{(i)}\|_2 \leq \bar{\mu}_r.$$

965 As a result, by Lemma 9,
966

$$967 \quad \forall i \geq 0, \quad C(K^{(i)}, \Sigma) - C(K^*, \Sigma) \leq \bar{\mu}_r \max_{t \in [0, T]} \|R_t\|_2 \int_0^T \|K_t^{(i)} - K_t^*\|_2^2 dt.$$

972 By Lemma 15, there exists $c_r^* > 0$, which only depends on the value of r (as an increasing function
 973 in r) and the data of the LQR, such that:
 974

$$975 \quad \forall i \geq 0, \quad \max_{t \in [0, T]} \|y_t^{(i+1)} - y_t^*\|_2 \leq c_r^* \int_0^T \|K_t^{(i)} - K_t^*\|_2 dt.$$

977 Putting everything together, for any $i \geq 0$, we have:
 978

$$\begin{aligned} 979 \quad \max_{t \in [0, T]} \|y_t^{(i+1)} - y_t^*\|_2 &\leq c_r^* \int_0^T \|K_t^{(i)} - K_t^*\|_2 dt \\ 980 \quad &\leq c_r^* \sqrt{T} \sqrt{\int_0^T \|K_t^{(i)} - K_t^*\|_2^2 dt} \\ 981 \quad &\leq c_r^* \sqrt{\frac{T}{\underline{\mu}_r \delta}} \sqrt{C(K^{(0)}, \Sigma) - C(K^*, \Sigma)} \\ 982 \quad &\leq c_r^* \sqrt{\frac{T \bar{\mu}_r \max_{t \in [0, T]} \|R_t\|_2}{\underline{\mu}_r \delta}} \sqrt{r}, \end{aligned} \quad (25)$$

990 where $\delta > 0$ is defined in Assumption 3. Since the RHS of (25) is an increasing function in r and
 991 tends to 0 as $r \rightarrow 0^+$, there exists $\epsilon > 0$, such that $r < \epsilon$ implies
 992

$$993 \quad \forall i \geq 1, \quad \max_{t \in [0, T]} \|y_t^{(i)} - y_t^*\|_2 \leq \min_{t \in [0, T]} \lambda_{\min}(y_t^*).$$

994 This proves the existence of ϵ .
 995

996 Finally, to calculate the corresponding \mathcal{C}_2 , by Lemma 13,
 997

$$\begin{aligned} 998 \quad \forall i \geq 0, \quad C(K^{(i+1)}, \Sigma) - C(K^*, \Sigma) \\ 999 \quad &\leq \frac{\max_{t \in [0, T]} \|y_t^{(i+1)} - y_t^*\|_2}{\min_{t \in [0, T]} \lambda_{\min}(y_t^*)} [C(K^{(i)}, \Sigma) - C(K^*, \Sigma)] \\ 1000 \quad &\leq \frac{c_r^* \sqrt{T}}{\min_{t \in [0, T]} \lambda_{\min}(y_t^*)} \sqrt{\int_0^T \|K_t^{(i)} - K_t^*\|_2^2 dt} [C(K^{(i)}, \Sigma) - C(K^*, \Sigma)] \\ 1001 \quad &\leq \frac{c_r^*}{\min_{t \in [0, T]} \lambda_{\min}(y_t^*)} \sqrt{\frac{T}{\underline{\mu}_r \delta}} [C(K^{(i)}, \Sigma) - C(K^*, \Sigma)]^{\frac{3}{2}}, \end{aligned}$$

$$1002 \quad i.e., \mathcal{C}_2 = \frac{c_r^*}{\min_{t \in [0, T]} \lambda_{\min}(y_t^*)} \sqrt{\frac{T}{\underline{\mu}_r \delta}}.$$

□

1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025