This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Recurrent Network Expansion for Class
Incremental Learning

Kai Jiang", Xueru Bai", Senior Member, IEEE, and Feng Zhou", Member, IEEE

Abstract—Class incremental learning (CIL) is the key to
achieving adaptive vision intelligence, and one of the main
streams for CIL is network expansion (NE). However, state-of-
the-art (SOTA) methods usually suffer from feature diffusion,
growing parameters, feature confusion, and classifier bias. In
view of this, a novel dynamic structure dubbed as recurrent
NE (RNE) is proposed by establishing connections among task
experts. Specifically, the previous task experts transfer features
sequentially through a shared module and the new task expert
makes adjustments based on received features rather than
reextracted ones, thereby focusing more on the key area and
avoiding feature diffusion. Furthermore, the RNE is compressed
by replacing additional task experts with lightened ones, in
order to significantly reduce the number of parameters while
keeping the performance almost unaltered. In addition, feature
confusion is alleviated by a decoupled classifier and classifier bias
is corrected by pseudo-feature generation. Extensive experiments
on four widely adopted benchmark datasets, i.e., CIFAR-100,
ImageNet-100, Food-101, and ImageNet-1K, have demonstrated
that RNE achieves SOTA performance in both ordinary and
challenging CIL settings.

Index Terms—Bias correction, class incremental learning
(CIL), decoupled classifier, recurrent structure.

I. INTRODUCTION

NLIKE human beings that can learn new concepts con-

sistently without forgetting, existing Al systems lack
continual learning ability [1], [2], [3], i.e., they always overfit
on new tasks and forget previous ones when learning multiple
tasks in stages, known as catastrophic forgetting [4], [5], [6].
To address this issue, class incremental learning (CIL) is
proposed, which learns different tasks with multiple disjoint
categories sequentially and attempts to perform well on all
tasks.

There have been much efforts to improve the performance
of CIL [7], [8], [9], [10], [11], [12], [13]. Among them,
an effective and simple way is rehearsal [14], [15], which
constructs an exemplar set to store a limited number of
samples from previous tasks for future training. Due to limited
capacity, however, saving only a subset of the training data still
encounters severe catastrophic forgetting.

Received 11 October 2024; revised 16 April 2025; accepted 19 August
2025. This work was supported by the National Natural Science Foundation
of China under Grant 62425113 and Grant 62131020. (Corresponding author:
Xueru Bai.)

Kai Jiang and Xueru Bai are with the National Key Laboratory of
Radar Signal Processing, Xidian University, Xi’an 710071, China (e-mail:
xrbai @xidian.edu.cn).

Feng Zhou is with the School of Aerospace Science and Technology, Xidian
University, Xi’an 710071, China (e-mail: fzhou@mail.xidian.edu.cn).

Digital Object Identifier 10.1109/TNNLS.2025.3601373

In view of this, distillation [11], [12], [13], [16], [17], [18]
and parameter regularization [7], [8], [9], [10] maintain the
classification capability of previous tasks by constraining the
output logits, the intermediate features, or part of the crucial
parameters. In a nutshell, they attempt to adapt all tasks with
a single branch, which can express new concepts in the same
feature space without affecting previous tasks. However, such
a strategy suffers from the stability—plasticity dilemma [19],
[20], i.e., maintaining the stability of the original feature space
hinders the learning of new concepts. As the number of tasks
grows, the model will eventually fail to accommodate new
tasks due to insufficient capacity.

Dynamic structure [21], [22], [23], [24], [25], [26], [27],
[28], [29], [30], [31] freezes part of the parameters of old
tasks and introduces new training parameters to solve new
tasks. Among them, network expansion (NE) [22], [27],
[29] improves the classification performance significantly by
adding a complete network per task. As illustrated on the
left side of Fig. 1, a network F; is learned for task 1,
and a new network F;, dubbed as the task expert, is added
for each subsequent task 7. It is worth noting that since
no connections exist among task experts, they may output
various representations of the same input when the training
data change. Accordingly, accurate feature representations of
the original categories will be replaced by multiple distorted
representations as ¢ continuously increases. As shown by the
Grad-CAM visualization [32] of a conventional NE method,
i.e., DER [22], on the right side of Fig. 1, the model gradually
focuses on the invalid area during incremental learning, i.e.,
feature diffusion occurs. In this scenario, extracted features
of old categories gradually expand into irrelevant regions,
which is induced by the progressive accumulation of impre-
cise semantic representations of old categories extracted by
subsequent task experts. By feature confusion, we mean that
the features of different categories are misclassified by the
classifier, which is induced by catastrophic forgetting during
cross-task learning. In this scenario, semantic features of the
old categories retain precise, but the classifier fails to assign
the corresponding labels correctly.

The core challenge in addressing feature diffusion lies in
enabling new task experts to maintain accurate representations
of old categories. Since the corresponding task expert of each
old category consistently extracts accurate representations,
establishing connections between the new and the old task
experts emerges as an intuitive approach. On this basis, we
establish interconnections among task experts through a set

2162-237X © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and
similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on August 28,2025 at 02:43:16 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0002-7406-9177
https://orcid.org/0000-0001-9283-1810
https://orcid.org/0000-0002-1514-7393

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

mm data from task 0
mm data from task 1

L 04
® i

data from task t-1
== data from task t

E)

®

E.('""

T3

Feature sequence

@_‘uli\
© © NV S WN PO

similarity

=3
3

calculation

Fig. 1. Illustration of feature sequence and feature diffusion.

of parameter-shared modules, which can enable subsequent
task experts to acquire intermediate features from previous
task experts without redundant reconstruction and facilitate
adaptive refinement of feature representations. Originated from
task incremental learning [33], [34], [35], [36], [37], NE
with cross connections (NEwCs) [26], [33], [38] builds dense
connections (DCs) among task experts, which can be served
as a solution for feature diffusion. It transfers knowledge from
previous task experts to the new one following the scheme of
transfer learning [39], [40]. However, unlike task incremental
learning with available task labels, the task label is unavailable
for NEwC and all the task experts should participate in
category inference, thereby inducing a large computational
burden.

To tackle the above issues, this article proposes recurrent NE
(RNE), which reduces feature diffusion in CIL by constructing
connections among task experts with affordable computing
cost. Then, in order to achieve sustainable NE, a lite version
dubbed as RNE-compress is designed, which expands the
feature space with only a few parameters while maintaining
competitive performance. On this basis, the classifier is decou-
pled and a bias correction strategy is designed. Specifically,
the classifier is decoupled into multiple task-level classifiers,
which are modified into a more causal form to reduce feature
confusion among tasks. After that, features of the new task
samples are exploited to regenerate pseudo features of the pre-
vious task, and a balanced feature set is constructed with these
pseudo features and new task features. Finally, the classifier is
fine-tuned to achieve balanced classification. Overall, the main
contributions include the following.

1) The feature diffusion phenomenon is uncovered and
RNE is designed to alleviate it. In particular, RNE
allows task experts to share intermediate feature
maps sequentially to improve the efficiency of feature
extraction.

2) The RNE is compressed to drastically reduce the number
of parameters, which can achieve superior CIL perfor-
mance with small increment in the computational cost
for a new task.

3) The classifier is decoupled into a causal form, allowing
the new subclassifier to utilize all the feature sequences
while keeping previous subclassifiers insusceptible to
new task features.

4) Pseudo features of old categories are generated with
new category samples to obtain a balanced feature set,

Similarity matrix of feature sequence

01234567289

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Feature diffusion

10

0.8

0.6 I 1
(b

04 i

RNE
0.2

TRLL

which is then adopted for classifier retraining to achieve
balanced classification.

II. RELATED WORK

The CIL aims to design models that can continuously learn
new tasks with disjoint categories without forgetting. In this
section, we will give a brief discussion of the current CIL
methods.

A. Regularization

Such methods assume that the classification knowledge is
stored within model parameters and add constraints on the
direction of parameter updating to maintain the representa-
tion of previous tasks. For instance, Chaudhry et al. [41],
Yang et al. [42], and Zenke et al. [10] penalize the parameter
drift to avoid catastrophic forgetting. Kirkpatrick et al. [8]
measure the importance of each parameter through the Fisher
matrix and update it accordingly. In addition, some approaches
[43], [44] reckon that avoiding the forgetting of previous
tasks could be achieved by simply making the corresponding
gradients orthogonal to those of the new task. Wang et al.
[45] propose a reserver loss as a new regularization technique
in the pretraining stage for few-shot CIL. Liu et al. [46]
propose a reserver loss as a new regularization technique in the
pretraining stage for few-shot CIL. Knowledge distillation is
also widely used as a function regularization, which targets the
intermediate [16], [17], [18] or final [11] output of prediction
function. Recently, Ji et al. [47] propose a decoupled knowl-
edge distillation to mitigate the sample imbalance between
old tasks and the new one. These methods generally inherit
previous knowledge from a single teacher and have limited
performance. To this end, MTD [48] proposes multiteacher
distillation to find multiple diverse teachers for CIL.

B. Rehearsal

Such methods construct an exemplar set, which stores
limited samples of previous tasks for future training [11].
Due to the strict memory budgets, work [13] does not select
samples uniformly from previous tasks but adjusts the number
of samples of each category dynamically. Luo et al. [49]
keep more compressed exemplars by downsampling their
nondiscriminative pixels. Kim et al. [50] incorporate a feature
augmentation technique motivated by adversarial attacks to
alleviate the collapse of the decision boundaries caused by

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on August 28,2025 at 02:43:16 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIANG et al.: RECURRENT NETWORK EXPANSION FOR CLASS INCREMENTAL LEARNING 3

sample deficiency for the previous tasks. Ho et al. [S1] propose
a dynamic prototype-guided memory replay to guide sample
selection for memory replay.

C. Dynamic Structure

Such methods improve model plasticity by introducing new
training parameters and maintain model stability by freezing
parameters of previous tasks. For instance, Aljundi et al.
[21] adopt a task-level selector to choose the best suitable
task expert for each sample to be classified. Yan et al. [22]
introduce NE by adding a complete network per task and
enhance the plasticity with an auxiliary loss. Wang et al. [23]
also expand a complete network per task but distill the new
and the old networks into a single one for next expansion, in
order to maintain a constant number of parameters. Douillard
et al. [25] and Hu et al. [26] replace the backbone with trans-
former [52] and then design the corresponding NE structures.
Zhou et al. [28] only expand the shallow layers while sharing
the deep layers to reduce network parameters. Wang et al. [29]
train independent modules in a decoupled manner and achieve
bidirectional compatibility among modules through two addi-
tionally allocated prototypes. It is worth noting that most of
these methods do not interact among task experts, thereby
having limited information interaction and CIL performance.
Rusu et al. [33] first introduce DCs to CIL, which needs an
accurate task ID to choose the corresponding branch. On this
basis, two progressive networks are proposed [26] and [38].
Although previous knowledge can be transferred to the new
task expert successfully, more parameters are added and higher
computing cost is induced.

D. Bias Correction

Such methods adopt postprocessing after incremental train-
ing to deal with classifier bias caused by imbalanced training
data. Fine-tuning the classifier with a small resampled bal-
anced dataset is widely adopted in [17], [22], and [25].
However, its performance is not satisfying due to the limited
number of samples. BiC [53] preserves a few samples in
advance and then utilizes them to train a set of additional
parameters after incremental training, in order to adjust the
output of the classifier. However, the reduction of training
samples due to sample preservation may lead to even worse
performance. WA [12] directly adjusts the classifier weights
to address classifier bias, whereas improper choice of the
adjustment factor can degrade the performance heavily.

III. METHODOLOGY

In this section, we will introduce the proposed RNE
in detail, which attempts to address the issues of feature
diffusion, parameter redundancy, feature confusion, and clas-
sifier bias in CIL. First, the definition of CIL is given in
Section III-A. Then, the overall structure is introduced in
Section III-B. The recurrent structure and the compressed
recurrent structure are introduced in Section III-C. The decou-
pled classifier and the bias correction strategy are presented in
Sections III-D and III-E, respectively.

A. Problem Setup

CIL aims to learn a unified classification model from a
data stream containing different categories. The entire training
process is divided into several sessions sequentially, with each
session learns one task containing multiple disjoint categories.
At the rth session, the model receives the training data
D, = {(x},¥)}, where x} € X, is an input sample; y! €), is
the corresponding label; and &, and), denote the training set
and the label set, respectively. Based on the rehearsal strategy,
only a small number of samples from previous tasks are stored
in an exemplar set V, C Uj;ll D; with fixed capacity. Then, the
model is trained on D; UV, and evaluated on the test set of
all known categories. Without loss of generality, we will only
focus on details of the rth session in the following discussions.
In particular, we denote the label space of old categories and
new categories as), = U;’:ll Y;and Y, =)}, respectively, with
Y, N Y, = 0. In addition, |),| = K represents the number of
new categories and |),| = M represents the number of old
categories.

B. Overall Structure

The overall structure of the proposed method is shown in
Fig. 2, which consists of a feature extractor and a decoupled
classifier. The feature extractor consists of several task experts
and the decoupled classifier consists of several subclassifiers.
The number of task experts and subclassifiers is the same as
the number of tasks. When the rth task arrives, a new task
expert is added to the feature extractor and a new subclassifier
is added to the decoupled classifier. Then, network training is
performed with previous task experts frozen.

In the process of model inference, the input image is
conveyed to each task expert, which transmutes the image into
multiscale intermediate feature maps and shares the feature
maps with the next task expert. Then, the last feature maps
of all the task experts are combined into a feature sequence,
which is fed into the decoupled classifier and transmuted into
logits. Finally, the softmax activation transfers them into a
classification probability.

In the first training stage, i.e., normal training, the model
transmutes the image into logits, compares it with the ground
truth to compute the loss, and updates the parameters. In the
second training stage, i.e., bias correction, a category from the
current task is selected and features of all the corresponding
training samples are extracted. Then, pseudo features are
generated from these features, based on which the classifier is
retrained for bias correction.

C. Recurrent Structure

As illustrated in Fig. 1, the model of an NE method consists
of multiple task experts, with each task expert F consisting
of a series of layers, i.e., F = {fi,..., fo}. Then, intermediate
features of the rth expert at the /th layer can be represented as

r(’) =X (D)

=11 (ris 1) 2)

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on August 28,2025 at 02:43:16 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Task t-1
Feature extractor

First stage: Normal training

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Annotations

[.7'1' ’foTTf
[ﬁlfoLlf

]
Feature sequence

block of model

-

Logits frozen parameters

trainable parameters

-

— within-task connection

Ve N Parameter initialization Parameter initialization
Feature extractor
Decoupled classifier Logits Ground truth —— cross-task connection
::
i % —_— Sub-classifier
.* 2)) (Camputeloss)
= -p ; : | e
[F f f 0 f] g e 1 feature
f== :
o ‘.\
fid Y pseudo feature
[E f fod f]] generation
a N J
S
o
o
<
o
g Freee . Logits Pseudo label
© Q
w <
)
g Compute loss
== | Feature extractor | == (o . |of ey
£
fis
Fig. 2. Overall structure of the proposed method.
g prop
RNE structure Cross task connection
exd
—d M ing Modul, CRLA CRLB
block of model apping Module
e N s N e
.ﬁ .?z .ﬁ frozen parameters 1
Conv Layer
f g 'f =l 'f =l trainable parameters parameter
sharing CRLA
T TF] — ot — o~ BB 0 — B L | o)
—= WIlhin-task connection Module Module
f *Na| f xN2 f *N: l LN Layer LN Layer
MM: | MMz - —=] i CRLB
v —= cross-task connection - l 1
n |
l — e !
DM ¥ MM J @® concatenate operation 1 l
Iy I o I o (+]
N J \——/ MM mapping module f‘ 1
H1
—_— — —_—
block of model —I feature map @ Add by channels
he hs hi C ptckormocet [Y

Fig. 3. Details of the recurrent structure and cross task connection, where Nj~N; represents the number of stacked layers and s denotes the times that the

size of feature map changes during forward propagation of a task expert.

where x denotes the input tensor, rf denotes the feature tensor
at the output of the /th block, and ¢} is the parameter set of
the Ith block.

The intermediate features serve as explicit representations
of the knowledge embedded within the feature extractor. For
a dynamic structure, different task experts should exhibit a
consistent mapping relationship when processing the same
image. However, variations of the input distribution can
alter such relationships. To be specific, due to the rehearsal
strategy, the feature sequence output by all the task experts
within the dynamic structure contains temporal correlation
between the training data distribution of each task, as
demonstrated by the feature correlation matrix in Fig. 1.
For adjacent task experts, they usually exhibit similar map-
pings, i.e., high correlation. For distant experts, however,
the temporal correlation decreases rapidly and large dispar-
ity exists in the output features. In this scenario, multiple
representations of the same category are given by different
task experts, which blur distinctions between categories and

cause catastrophic forgetting in late sessions of incremental
learning.

To tackle this issue, we strengthen interconnections among
task experts and design the recurrent structure, as shown in
Fig. 3. Inspired by sequence models [54], [55], we treat the
expansion process of the dynamic structure as an extension
of the original static classification framework in the temporal
dimension. Then, we construct connections among task experts
and obtain a feature sequence, whose temporal correlation
reflects the distribution variation of training samples during
incremental learning.

Specifically, a feature sharing structure is designed and
inserted between adjacent task experts

= (i) 3)
r=7+MM (") 4)

where MM is a mapping module consisting of a simple
residual structure with two basic CRL blocks and is shared

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on August 28,2025 at 02:43:16 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIANG et al.: RECURRENT NETWORK EXPANSION FOR CLASS INCREMENTAL LEARNING 5

at the same depth as the task experts to learn the generality
within intermediate features.

It is worth noting that in a typical dynamic structure,
information flows in a top-to-bottom manner during feature
extraction, with each task expert operating autonomously
and interconnected solely via the classifier. By integrating
the mapping module, however, the information is not only
passed down through the task experts but also conveyed to
the neighboring task experts, mimicking the information flow
of a multilayer RNN [54] and facilitating the discerning of
temporal correlations within the feature sequence. In addition,
similar to the parameter sharing strategy of RNN, the mapping
module is shared among the same layers of task experts, which
can reduce the number of parameters and enhance connections
between the new and previous tasks. By this means, the frozen
task experts can be optimized mildly during the training of a
new task, thereby improving the model plasticity.

In RNE, we do not construct connections at each layer
of task experts because: 1) DCs adopted by NEwC methods
[26], [33], [38] are inefficient and can reduce the plasticity
of the new task expert [33] and 2) excessive connections can
introduce noise to extracted features of the new task expert
[23] and hinder new task learning. Therefore, we only build
connections at key layers where the size of feature maps
changes, e.g., the layer that doubles the channel dimension
of the feature map and halves its width and height.

Since the representation of new tasks with the previous
task experts is enhanced by the recurrent structure, we further
reduce the parameter redundancy of RNE by reducing the
parameters of task experts. The compressed model, i.e., RNE-
compress, is illustrated in Fig. 4, where a complete network
is adopted as the feature extraction backbone and is trained
together with the first task expert in the first task. Then, a
simplified version of the general network, i.e., the compressed
network, serves as the task expert for each stage. In particular,
it shares a similar structure with the feature extraction back-
bone, with the dimensionality of layers reduced to 1/4 and
the number of parameters reduced to 6% of the original by
the feature reduction module (which consists of convolutional
layers). Specifically, the feature extraction backbone is frozen,
while the mapping module and the feature reduction module
are trained with a lower learning rate to improve the feature
extraction ability.

D. Decoupled Classifier

As shown in Fig. 5(a), a general classifier transmutes
features to logits directly and brings feature confusion among
tasks. Although some methods decoupled the classifier com-
pletely, as shown in Fig. 5(b), the new classifier loses
information of previous task experts. To tackle this issue, we
propose the decoupled classifier shown in Fig. 5(c), where
previous task classifiers are decoupled with the new task expert
while feeding features from all task experts to the new task
classifier.

The classifier of previous tasks is trained on a closed set
composed of old categories, making it inherently biased to
produce higher responses to certain categories within the task.
For instance, when inputting an image from a new category

2 -; RN E-compress block of model

frozen parameters

trainable parameters

— within-task connection

Fz

— cross-task connection

ompresseq
Network

® concatenate operation

Feature reduction

MM mapping module

Feature extraction

backbone @ @
Fig. 4. Structure of RNE-compress.
(I l I_ﬂr_ll 7]) =)= =) L&) I_'f_l
ﬁ' D — @
1 4o L. i
-1 i [
W 00 Gd - 00 O o
‘ Updiate [Upd__;te Upéate [lé q‘{Nalt;
(a) (b) (c)

Fig. 5. Comparisons of different classifiers. (a) General -classifier.

(b) Decoupled completely. (c) Our classifier.

into a subclassifier of a previous task, it is still likely to
be classified as one of the old categories with high confi-
dence. Therefore, fine-tuning the classifier for the new task
is indispensable for all CIL methods. The proposed decoupled
classifier specifically addresses this factor. Since the model has
not been trained on the new task but has completed training on
old ones, the subclassifier corresponding to new tasks should
receive larger gradient updates. Conversely, for subclassifiers
associated with old tasks, only minor adjustments are needed
to adapt their responses to new task categories, thus requiring
smaller gradient updates. To tackle this issue, we constrain the
update of classifier by the following equation:

. oL
Aloi1 =Pty +y A
(9¢1 —1 (5)
R oL
— 1.-2=
b= ¢+ a6,

where ¢, is the parameter set of classifier {h,...,h_1},
¢, is the parameter set of classifier /,, A is the learning rate,
and A is a factor to slow the update of previous task classifiers.

The cross-entropy loss for the new and old category samples
is calculated by the following equations:

Lee = Leen + Leco 6)
Bowa

= 2o | 7

=5 B (7N

where L. is the cross-entropy loss comprising of the cross-

entropy loss L., for new categories and the cross-entropy loss

Leeo for old categories, Byq is the number of old categories

of a batch, By is the number of new categories of a batch,

and 8 is a dynamic factor defined by the following equation:
epoch,

B=01+09—F ®)
epoch,y

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on August 28,2025 at 02:43:16 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

o features from class 0

® features from class 2
features from class 1 o features from class 3

Fig. 6. Illustration of pseudo-feature generation.

where epoch, denotes the current number of iterations and
epoch,;, denotes the total number of iterations. By this means,
the model is able to learn the deep representation of new task
instead of embezzling features learned from previous tasks.

E. Bias Correction Using Pseudo Features

Current bias correction strategies with postprocessing focus
more on samples [11], [17], [29], [53]. However, since the
classifier inputs are features rather than samples, a large feature
set rather than a large sample set is required for bias correction.
In addition, due to the frozen task experts of previous tasks,
the NE methods are free from feature drift [11], [17], [29],
[53], and the mean and variance of features calculated in
previous incremental sessions maintain representativeness. In
view of this, we design a pseudo-feature generation strategy
to reconstruct old category features from new task samples, in
order to obtain a large and balanced feature set. As illustrated
in Fig. 6, it trains the model normally like most CIL methods
do at the first phase and retrains the classifier with pseudo
feature vectors at the second phase.

—+ mean of classes

Algorithm 1 Pseudo-Feature Generation (¢ > 1)

Input: New data D,, exemplar-set V,, task experts
JFi ~ F; after the first training phase, the set of
feature mean &; (¢; =), the set of feature
variance 1, (n; =).

Qutput: Pseudo-features r;’fake.

for k =0 to K do

Extract r¥

new |xnew ’ n

ew € D, by Eq. (9)
Calculate pf, ~and of, by Eq. (10), (11), (12)

& <& U {/Lngw}, ne < U {Gr];ew}

for m =0 to M do
Extract /%, [x",, x, € V, by Eq. (13)
Update u}, € & and o}, € n; by

Eq. (14), (15), (16)

1
2
3
4
5 end
6
7
8

9 end

Choose the k*-th category from new task by Eq. (17)
Generate 7%, by Eq. (18) with the k*-th category

12 return r'iz,,

—
-

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Training process

Update parameters

Phase 1:

Training |Input 7: f I Compute loss
images W|th true labels

Eztract feature

Phase 2;

New class
features

Generate |
features ¥

Pseudo
features

The pseudocode for pseudo-feature generation is shown in
Algorithm 1. Supposing that we obtain the classification model
g(x)={F1,...., F,h1,...,h} at the first training phase, then,
at the second training phase, we freeze all the task experts
{F1,...,F:}, extract features of the new task samples by (9),
and Calculate the mean ut,,, and variance o, of features for
the kth category in the new task by

rﬁew =7 (xﬁew) o 0F (xﬁew) s xﬁew €D, 9)
1 k
7 = — 10
new Nk rﬂeW ()
Hiew = Trew (11
1
1 2\ 2
OJr(lew = (ﬁk Z (r]riew _:uﬁew)) (12)

where xk.. denotes the samples of the kth new category in
the new task and N; denotes the sample number of the new
category in the new task. All the operations are based on
vectors.

Meanwhile, we extract features of the old categories from
the exemplar set by (13) and then update the corresponding
mean and variance of features by

roia = Fr (%) s Xoja € Vi (13)
m 1
Tola = 3 ngld (14)
Hola = Hola © Tolg (15)
1
. 1 A
O'Zidzo':ﬁd@(N_Z(rﬁd—rﬁd)) (16)

where x[}; denotes the samples of the mth old category from
the exemplar set, N,, denotes the sample number of the mth
old category from the exemplar set, fi’;, denotes the mean of
the feature for the mth old category before updating, and &7,
denotes the variance of the feature for the mth old category
before updating. All the operations are based on vectors.

To minimize the impact of pseudo features on new cate-
gories, we only select one category from the new task for
pseudo-feature generation. In detail, we calculate the average
Euclidean distance between the mean vector of each new
category and those of all the old categories and then choose

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on August 28,2025 at 02:43:16 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIANG et al.: RECURRENT NETWORK EXPANSION FOR CLASS INCREMENTAL LEARNING 7

the one with the maximum Euclidean distance from the new
task as the generator, as shown in the following equation:

M
K" = argmax 1 2 (Hhew = 1510) (17)
m=1
Then, the pseudo feature is generated by
P = K
e = 2 iy (8)

new

where 7%, denotes the sample feature of the chosen category
in the new task and r{} . denotes the corresponding pseudo
feature for the mth old category in previous tasks. Such a
dynamic structure can prevent task experts from serious feature
drift and make the means and variances of previous task
features representative in subsequent tasks.

After pseudo-feature generation, a large-scale, balanced
dataset with all known categories is constructed, which is then
utilized to retrain the classifier {hy,...,h} (see the following
equation):

A

1.0 = ar(f;’ min L (y;re,y%ake)
L.t

19)

where Lcg represents the cross-entropy loss, y;re represents the
predicted label, and yg,, . represents the fake label correspond-
ing to the generated features. The classifier is trained with only
a few epochs and tested in a validation set constructed by the
exemplar set and part of the new category samples.

IV. EXPERIMENTS

In this section, extensive experiments are conducted to
validate the effectiveness of the proposed method. Specifi-
cally, the proposed method is validated on CIFAR-100 [56],
ImageNet-100 [57], and Food-101 [58] datasets with widely
used benchmark protocols, and is compared with other CIL
methods in both performance and computational cost. Mean-
while, results on ImageNet-1K [57] are reported. In addition,
an ablation study is performed to verify the validity of each
module. Furthermore, the memory budget is adjusted to more
stringent conditions to demonstrate model robustness.

A. Experimental Setting

1) Datasets: The following experiments are conducted on
four standard CIL benchmarks.

1) CIFAR-100: This consists of 32 x 32 colored images
from 100 categories, with 50000 training samples (500
per category) and 10000 test samples (100 per category).

2) ImageNet-100: A subset of ImageNet-1000 [40] with
100 randomly selected categories from 1000 categories,
containing about 130000 high-resolution colored images
for training (approximately 1300 images for each cat-
egory) and 5000 images for validation (with 50 per
category).

3) Food-101: This consists of 101 food categories with 750
training samples and 250 test samples per category, and
the maximum length for a single image is 512 pixels.

4) ImageNet-1K: This consists of 1000 categories with
over 12.8 million training images (approximately 1300

TABLE I
DETAILS OF THE THREE DATASETS

Dataset Classes Training images Test images Avg. size
CIFAR-100 100 50,000 10,000 32x32
ImageNet-100 100 129,394 5,000 407x472
Food-101 101 75,750 25,250 475x496
ImageNet-1K 1,000 1,281,167 50,000 482x415

high-resolution images per category for training and
50 images for validation). Details of the datasets are
provided in Table I.

2) Protocols: A widely adopted protocol is selected from
recent CIL works [11], [22], [27], [28], [29], [49]. The model
is trained on half of categories (e.g., 50 categories for CIFAR-
100) at the first session, and the remaining categories are
learned evenly in the subsequent N sessions, where N can
be 5, 10, and 25. After the training of each session, the model
is validated on the test data of all known categories. Each
experiment is conducted more than three times (5 for CIFAR-
100 and 3 for others) and the average results are reported. For
ImageNet-1K, the model is trained on 100 categories at each
session following recent CIL works [11], [22], [27], [28], [29],
[49].

3) Memory Budgets: We adopt the rehearsal strategy and
construct the exemplar set, where a constant memory budget
is allocated for each category. Specifically, 20 exemplars for
each new category are added to the exemplar set after training
at each session, and each exemplar is selected according to
the herding algorithm [59].

4) Compared Methods: The proposed approach is com-
pared with six single-branch approaches, i.e., iCaRL [11],
BiC [53], UCIR [16], WA [12], PODNet [17], and CSCCT
[18]; as well as five dynamic structure-based approaches, i.e.,
DER [22], FOSTER [23], TCIL [27], MEMO [28], and BEEF
[29]. In addition, we provide two methods that can be used
in conjunction with other methods for comparison, i.e., CCFA
[50] and MTD [48]. They can be combined with PODNet as
a single-branch method or DER as a dynamic structure-based
approach. Following FOSTER, we apply AutoAugmentation
[60] to all the methods in order to enhance the sample
utilization efficiency. Each method adopts the same data aug-
mentation technique for fairness. In addition, the method that
only adopts the rehearsal strategy serves as the lower bound of
CIL and is denoted as Replay. Following [23], [28], and [29],
the method that utilizes all the samples for training serves
as the upper bound of CIL and is denoted as Bound. The
proposed method and all the baselines are implemented with
Pytorch [61] in PyCIL [61].

5) Implementation Details: An 18-layer ResNet [62] is
adopted as the backbone for all the methods. For CIFAR-100,
the kernel size of the first layer is modified as 3 x 3 considering
its low resolution, and the first max-pooling layer is removed.

1) For existing CIL methods, two sets of hyperparameters

are adopted: the first set adopts the same hyperparam-
eters as the original articles and the second set adopts
the same hyperparameters as the proposed method. The
better results are selected for comparison.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on August 28,2025 at 02:43:16 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CIFAR-100 N=5

CIFAR-100 N=10

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

CIFAR-100 N=25

Accuracy (%)
Accuracy (%)

Accuracy (%)

L L L L L

50 60 70 80 90 100 50 60 70

Number of classes

Number of classes

80 90 100 50 60 70 80 90 100

Number of classes

‘-.-m..- Bound =~ Replay

iCaRL —&— BiC —v— UCIR —¢— WA —¢— PODNet —¢— DER —— FOSTER —— MEMO

BEEF —— CCFA —v— MTD —*— RNE —*— RNE-compress

Fig. 7. Accuracy at each session on the CIFAR-100 benchmark.

TABLE II
RESULTS ON CIFAR-100 AND IMAGENET-1K BENCHMARK

CIFAR-100 ImageNet-1K

Methods N=5 N=10 N=25 N=10

At D, Py F| A% D, Py F| A% D, Py F| A% Pl FI
Bound 80.59 0 1120 056 80.52 0 1120 056 80.19 0 1120 056 79.89t 1121 7.9
Replay 5258 37.07 1120 0.56 46.85 3869 1120 0.56 46.48 3804 1120 056 55787 1121 7.9
iCaRL [11] 56.74 3555 1120 0.56 49.87 3813 1120 0.56 4695 3819 1120 0.56 57.947 1121 7.29
BiC [53] 59.54 3619 1120 0.56 5225 3620 1120 0.56 4938 3850 11.20 0.56 - 1121 7.29
UCIR [16] 6543 2576 1198 056 6272 2724 1202 0.56 5356 34.19 12.10 0.56 - 12.03 7.29
WA [12] 6562 2541 1120 056 61.87 2532 1120 056 5159 3481 1120 0.56 59.867 11.21 7.29
PODNet [17] 66.86 2443 1198 0.56 64.85 2491 1202 0.56 58.76 3124 12.10 0.56 - 12.03 7.29
CCFA [50]+PODNet ~ 67.24F - 1198 056 65501 - 1202 056 62.91F - 1210 056 67.82F 1203 7.29
MTD [48]+PODNet 67.64% - 1198 0.56 65.58F - 1202 056 60.94F - 1210 056 67.211 12.03 7.29
DER [22] 69.54 17.16 3925 195 67.08 1843 6727 335 6682 2082 1514 753 66877 6169 40.1
FOSTER [23] 7242 1504 2054 1.03 6942 1756 2147 107 6605 2232 2210 110 68347 21.38 139
MEMO [28] 67.78 17.83 3232 090 6377 2149 5340 123 6175 2322 1167 224 68.097 49.17 147
BEEF [29] 7237 1275 3927 195 6922 1785 6734 335 6931 19.08 1514 753 67.097 61.69 40.1
CCFA [50]+DER 7217 1469 3925 195 7147 1520 6727 335 69.86 19.00 1514 753 6853 6169 40.1
MTD [48]+DER 7320 1357 3925 195 7069 1567 6727 335 6698 2207 1514 753 6912 61.69 40.1
RNE 7796 545 39.84 231 7618 625 67.83 407 7537 831 1517 933 7145 6464 51.8
RNE-compress 7556 867 13.68 072 7399 1070 1557 0.82 7222 1363 20.84 1.04 69.72 1554 11.3

T denotes that the result is directly cited from the corresponding paper.

2) For RNE, the model is trained for 200 epochs at each
session. Following [11], [12], [16], [17], [23], [28], [29],
and [63], the learning rate A is initialized as 0.1 and
decreased to zero with a cosine annealing scheduler [64].
The batch size is set to 128 for CIFAR-100 and 256 for
other datasets. The SGD optimizer is deployed, where
the momentum factor is set to 0.9 and the weight decay
is set to 0.0005.

6) Evaluation Metrics: Assuming that there are N tasks and
the classification accuracy after learning task ¢ is A,, then the
performance is measured by A = (1/N) ZZIA,. If the last
accuracy of the upper bound method, i.e., Bound, is Ay Bound,
then the forgetting rate D = Ay Bound — AN.model 18 calculated
to measure the difference between the upper bound and CIL
models. In addition, given the number of model parameters
P; and the floating-point operations (FLOPs) F; for task ¢,
the average number of parameters P = (1/N) ZZI P; and the
average FLOPs F = (1/N) Zf;l F, are adopted to measure the
memory consumption and the computational cost, respectively.

B. Experimental Results and Analyses

1) CIFAR-100: Table II and Fig. 7 present the experimental
results on CIFAR-100, with Rows 1 and 2 show the upper
bound and the lower bound of CIL, respectively. Rows 3-9
show the results of single-branch methods, and Rows 10-13
show the results of NE methods. Obviously, NE methods out-
perform the single-branch methods. In addition, Row 14 shows
the results of RNE, whose average accuracy is 3.56%, 3.31%,
and 5.51% higher than state-of-the-art (SOTA) methods for
N =5, 10, and 25. As indicated by Row 15, the average
accuracy of RNE-compress is 1.16%, 1.12%, and 1.96%
higher than SOTA methods, while the average number of
parameters is only 34%, 23%, and 14% of RNE for N =5, 10,
and 25. Meanwhile, the average FLOPs is only 31%, 20%, and
11% of RNE for N =5, 10, and 25, which is the lowest among
comparative NE methods. For N = 5, the parameter size and
computational complexity of RNE-compress are comparable
to single-branch methods. Furthermore, all the CIL methods
are compared with the Bound. The forgetting rate D of RNE

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on August 28,2025 at 02:43:16 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIANG et al.: RECURRENT NETWORK EXPANSION FOR CLASS INCREMENTAL LEARNING 9
00 ImageNet-100 N=5 0 ImageNet-100 N=10 FOOD-101 N=5 FOOD-101 N=10
> N > >
S g g g
= = 2 =
3 S 3 3
<% < < <
40 10 40
Sb 6‘0 7b 8‘0 9b 1 60 5‘0 6‘0 7‘0 Sb 9‘0 1 60 56 éO 76 8‘0 9‘0 1 60 6‘0 7b 86 9‘0 1 60
Number of classes Number of classes Number of classes Number of classes
|+~a= Bound = Replay iCaRL —— BiC —— UCIR —— WA —— PODNet —— DER —— FOSTER —— MEMO BEEF —— CCFA —v— MTD —+— RNE —— RNE-compress
Fig. 8. Accuracy at each session on the ImageNet-100 and FOOD-101 benchmarks.
TABLE III
RESULTS ON THE IMAGENET-100 AND FOOD-101 BENCHMARKS
ImageNet-100 FOOD-101
Methods N=5 N=10 N=5 N=10
A1 D Py Fy A1 D Py Fy A1 D Py Fy A1 D Py F
Bound 81.05 0 11.21 729 80.89 0 11.21 729 8596 0 1121 729 86.01 0 11.21 7.29
Replay 58.52 2898 1121 729 53.18 31.84 1121 729 5597 40.09 1121 729 5056 4241 1121 729
iCaRL [11] 60.08 28.04 1121 7.29 5499 3124 1121 729 5688 4424 11.21 729 5030 47.05 1121 7.29
BiC [53] 59.80 3322 1121 729 5482 36.62 1121 729 6630 2843 11.21 729 5285 4502 1121 7.29
UCIR [16] 6696 21.13 1199 7.29 62.10 29.04 1203 729 7147 2564 1199 729 6544 3230 12.03 729
WA [12] 67.01 2212 1121 729 60.77 2946 1121 729 6506 3486 11.21 7.29 56.85 4343 11.21 7.29
PODNet [17] 67.69 2032 1199 729 6323 2872 1203 729 7253 2462 1199 729 6648 33.00 12.03 7.29
DER [22] 7157 12.16 3928 255 7002 16.85 6730 43.8 7278 2097 39.28 255 73.77 2153 6730 438
FOSTER [23] 7476 12.00 20.63 134 7093 1532 2148 139 77.14 1562 20.63 134 7579 19.02 2148 139
MEMO [28] 7445 1020 3231 114 71.76 1435 5340 155 77.80 13.06 3231 114 7644 1487 5340 155
BEEF [29] 7577 7.18 3928 255 7386 11.74 6730 438 7826 1195 3928 255 77.15 1351 6730 438
CCFA [50]+DER 74.07 10.60 39.28 255 7409 1130 6730 43.8 7799 1229 3928 255 7681 1445 6730 438
MTD [48]+DER 76.23 6.60 3928 255 7290 1230 6730 438 79.13 11.84 3928 255 7790 13,59 6730 43.8
RNE 7922 352 4206 320 7812 452 7026 567 82.00 628 42.06 320 8220 6.67 7026 56.7
RNE-compress 7777 590 1413 992 7537 938 1589 11.6 8022 1041 1413 99 78.09 12,65 1589 11.6

is only 5.45%, 6.25%, and 8.31% for N = 5, 10, and 25.
However, the forgetting rate is 11.75%, 16.70%, and 18.62%
for the best NE method and 23.13%, 24.91%, and 31.24%
for the best single-branch method, indicating that RNE can
alleviate catastrophic forgetting effectively. With N increasing
from 5 to 25, the forgetting rate D of RNE only increases by
2.86%, whereas that of the SOTA methods increases at least
by 6.33%. Therefore, RNE exhibits the best performance for
incremental learning with more sessions, and RNE-compress
also maintains better performance than existing CIL methods
with the smallest number of parameters and FLOPs among
NE methods.

2) ImageNet-1K: In order to evaluate the performance of
RNE in large-scaled dataset, Table II reports the result on
ImageNet-1K following recent CIL works [11], [22], [27],
[28], [29], [49]. It is observed that RNE achieves an average
accuracy of 71.45% across the ten incremental sessions, which
is at least 3.11% higher than existing CIL methods. In addition,
RNE adopts the same data augmentation as FOSTER [23],
MEMO [28], and BEEF [29].

3) ImageNet-100: Table III and Fig. 8 present the experi-
mental results on ImageNet-100. Comparisons between Rows
3-9 and Rows 10-13 show that the dynamic structure performs
better than the single-branch method in terms of average
accuracy and forgetting rate. Row 14 shows that the accuracy

of RNE is 3.45% and 4.26% higher than methods with
dynamic structure for N = 5 and 10, respectively; and its
average accuracy is only 1.83% lower than the upper bound.
In addition, the forgetting rates D of RNE are only 3.52%
and 4.52% for N =5 and 10, while those of the existing CIL
methods are at least 7.18% and 11.74%. Row 15 shows the
results of RNE-compress, which also outperforms the existing
CIL methods with only 1/3 and 1/5 of the parameters and
computational cost of RNE for N = 5 and 10. Therefore,
RNE-compress also performs well on high-resolution datasets
with less parameters and computational cost than RNE.

4) FOOD-101: Table III and Fig. 8 summarize the exper-
imental results on CIFAR-100, where Rows 1 and 2 show
the upper bound and lower bound of CIL respectively; Rows
3-9 show the results of single-branch methods; and Rows
10-13 show the results of NE methods. Similarly, NE methods
outperform all the single-branch methods. Row 14 shows the
results of RNE, whose average accuracy is 5.54%, 6.74%,
and 6.06% higher than existing methods for N = 5, 10,
and 25. Row 15 shows the results of RNE-compress, whose
average accuracy is 3.14%, 4.57%, and 2.91% higher than the
existing methods. Although the performance degrades slightly,
the average number of parameters decreases by 34%, 23%,
and 14% while the average FLOPs decrease by 31%, 20%,
and 11% for N =5, 10, and 25, respectively. Under N = 5,

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on August 28,2025 at 02:43:16 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Original image session 0 session 3 session 6 session 9

Original image Original image ~ session 0

session 3

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

session 9

session 6

session 6 session 9 session 0 session 3 session 6 session 9

session 0 session 3 session 6 session 9 Original image session 0

Original image session 0 session 3 session 6 session 9 Original image session 0

3

session 3

session 3 session 6 session 9

session 9

session 6 Original image session 0 session 3 session 6 session 9

Fig. 9. Visualizations of feature diffusion. For each image sample, the first row provides the visualizations of DER and the second row provides the

visualizations of RNE.

Original image

Expert 1 Expert 2

Expert 3

Expert 4 Expert 5 All Experts

Fig. 10. Visualizations of different experts for a single input, where the ground truth is marked by the red box. The first row shows the regions of interest
for each task expert using a conventional NE method without cross-task connection, and the second row shows the regions of interest for each task expert

using the proposed RNE.

the parameter size and computational complexity are even
comparable to the single-branch method. Furthermore, we
compare all the CIL methods with the Bound. The forgetting
rate D is only 5.45%, 6.25%, and 8.31% for N = 5, 10, and 25,
respectively, for RNE; whereas it becomes 12.75%, 17.56%,
and 19.08% for the best NE method and 23.13%, 24.91%,
and 26.24% for the best single-branch method. Therefore, the
performance of RNE approaches the upper bound. In addition,
RNE-compress also maintains better performance than other
CIL methods with the smallest number of parameters and
FLOPs among NE methods.

5) Visualizations and Discussion: Fig. 9 provides more
visualizations of feature diffusion, where the attention of a

general NE method gradually diffuses to invalid areas, while
the RNE is always focusing on the key area. In the following,
we will discuss the inherent mechanism of RNE in tackling
feature diffusion. The data in incremental learning can be
divided into two types, i.e., old task data and new task data;
and the task experts can also be split into two types, i.e.,
previous task experts and new task experts. Accordingly, there
are totally four scenarios: 1) old task data and previous task
expert; 2) new task data and previous task expert; 3) old
task data and new task expert; and 4) new task data and
new task expert. Only scenario 3) can cause feature diffusion,
as the new task expert cannot learn from the old tasks and
fails to obtain their proper feature representations.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on August 28,2025 at 02:43:16 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIANG et al.: RECURRENT NETWORK EXPANSION FOR CLASS INCREMENTAL LEARNING 11
90 40 90 90
—=—NE without connections —=— NE without connections —=— General classifier ~—=— w/o Bias correction
—e—DC —e—DC —e— Decoupled comy —— Fine-tune
A\ —a—DC(lite) —a—DC(lite) AN —— Our classifier A\ ——BiC

80 \ —v— Recurrent siructure 30 |-——Recurrent structure 80 80 —v— Weight alignment
s \ —+— Recurrent structure(compress)| —e— Recurrent structure(compress) . s \ —+— Bias correction using pseudo features|
S \ = S S
s : S s —_ s >
=70 ~ =2 =70 =70 L
9 - Z 9
: g : .
3 | 3 — 3
S = S ~a S
<< 60 << 60 << 60

50 50 50

50 60 70 80 90 100 50 60 70 80 90 100 50 60 70 80 90 100 50 60 70 80 90 100
Number of classes Number of classes Number of classes Number of classes
(a) (b) () (d)
Fig. 11. Comparison of each module. (a) Recurrent structure. (b) FLOPs comparison. (c) Decoupled classifier. (d) Bias correction.

TABLE IV
CONTRIBUTION OF EACH COMPONENT

CIFAR-100 N=10

Recurrent structure Decoupled classifier — Bias correction At Dl
Baseline 67.08 18.43

v 7320 10.31

v 75.13 7.73

4 v 7458 7.57

v v 76.18 6.25

In the following, we perform a comprehensive analysis of
the feature output by each task expert by feeding an image
from the initial task into the incrementally trained model. The
mechanism of feature diffusion is visualized by the Grad-CAM
images in Fig. 10, where the ground truth is marked by the red
box. Specifically, the first row provides the visualization results
of each task expert in a conventional NE method without cross-
task connection, and the second row provides the visualization
results of each task expert in the proposed method. In addition,
the last column presents the synthesized result of all task
experts. For the first row, it is observed that only the first
task expert focuses on the target region, while the others
gradually become defocused. In addition, the last image shows
severe feature diffusion, which is induced by progressive
accumulation of erroneous feature representations extracted by
subsequent task experts. On the contrary, the task experts in
the second row focus on similar target regions, indicating that
the proposed method alleviates feature diffusion by guiding
each task expert to maintain a similar representation for the
old category.

C. Ablation Study

To verify the effectiveness of each component in RNE, we
conduct an ablation study on CIFAR-100 with N = 10. In
Table IV, Row 1 shows the results of the baseline method,
i.e., DER [22]; Row 2 shows the results after adding the
recurrent structure (see Section III-C) to the baseline; Rows
3 and 4 show the results after adding the decoupled classifier
(see Section III-D) and bias correction (see Section III-E),
respectively, to the recurrent structure; and Row 5 shows the
results after adding all the three modules.

We also demonstrate the validity of each module, i.e.,
recurrent structure, decoupled classifier, and bias correction,

120 -
700 === DER DER
e MEMO —e— MEMO
o0 ——BEEF ¥ W0 —spper
FOSTER = FOSTER
S50 —==RNE____ 2 S 804 = RNE- -y
é = —#*— RNE-compress
L R it el SR L e Iy D Al <
3 £
R T £
B A0t A
2004 - A oy
1004 - HF—r—g—w—0——v ¥y 20
0 : , : : . 0l . . : : .
50 60 70 80 9% 100 50 60 70 80 9% 100

Number of classes Number of classes
(@) (b)

Fig. 12. Comparison of each method in FLOPs and parameters. The backbone
network is ResNet-18 and the size of input images is 32 x 32 (in CIFAR-100
ten-step setting). (a) FLOPs. (b) Parameters.

(@)

(b) ()

Fig. 13. Comparisons of the confusion matrices. (a) DER. (b) RNE without
bias correction. (¢) RNE with bias correction.

by applying them to the baseline independently. In Fig. 11(a),
DC refers to a dense connection that exists in each layer
between the new task expert and all previous ones, and DC
(lite) refers to a dense connection that only exists in the
key layers between the new task expert and all previous
ones. Both of them originate from PNN [33]. It is observed
that the recurrent structure and the compressed version out-
perform DC and DC (lite). Fig. 11(b) shows the FLOPs
at each session, which indicates that the computational cost
of DC and DC (lite) grows quadratically (since ((t — 1)¢/2)
connections for task ¢z are constructed at a layer), thereby
resulting in nonsustainable NE. On the contrary, the FOLPs
of the recurrent structure is similar to that of the NE method,
and the FLOPs of the compressed version is much lower
than that of the NE method. In Fig. 11(c), the proposed
decoupled classifier is compared with a general classifier and a
completely decoupled classifier [25]. Obviously, the proposed
classifier performs better as it learns the causality of feature

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on August 28,2025 at 02:43:16 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 exemplars 5 exemplars

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

2 exemplars 1 exemplar

ool

~70 \
3\.c/60 \\“\N\
AN

250 i M‘\
g 40 4\\ \‘7‘(’*‘%_ .

5‘0 ﬁb 76 8‘0 9‘0 160 5‘0 66 7‘0 8‘0 Qb 160
Number of classes Number of classes

50 60 70 80 90 100 50 60 70 80 90 100

Number of classes Number of classes

|~~~'—— Bound ~-=- Replay

iCaRL —— BiC —— UCIR —+— WA —— PODNet —— CSCCT —=— DER —— FOSTER —+— TCIL —— MEMO

BEEF —*— RNE —— RNE-compress

Fig. 14. Accuracy at each session in the robustness test on the CIFAR-100 dataset.

TABLE V
RESULTS OF ROBUSTNESS TEST

CIFAR-100 N=10

Methods 20 exemplars 10 exemplars 5 exemplars 2 exemplars 1 exemplar
A Dl AT D\ At D\ At D\ At D\
Replay 46.85 38.69 37.80 49.84 31.16 55.83 21.98 65.06 17.34 69.80
iCaRL [11] 49.87 38.13 39.66 49.37 33.97 54.85 23.83 64.26 20.07 68.26
BiC [53] 52.25 36.20 46.23 52.90 - - - - - -
UCIR [16] 62.72 27.24 58.15 33.10 52.49 40.42 44.95 50.13 42.98 54.88
WA [12] 61.87 25.32 57.35 32.15 48.34 41.86 39.93 52.86 35.60 53.37
PODNet [17] 64.85 24.91 61.38 28.46 56.86 35.01 48.90 42.31 44.92 49.56
CSCCT [18] 60.03 29.91 55.75 36.24 50.23 43.74 43.94 52.57 37.68 56.45
DER [22 67.08 18.43 58.07 29.81 49.98 38.40 35.14 60.50 29.34 60.65
FOSTER [23] 69.42 17.56 68.66 17.67 64.91 23.28 62.81 31.63 49.78 44.01
TCIL [27] 72.87 16.70 64.72 21.49 59.43 27.81 50.54 35.61 44.85 47.94
MEMO [28] 63.77 21.49 56.72 30.04 48.27 39.53 38.49 53.25 31.29 56.51
BEEF [29] 69.22 17.85 65.37 20.30 59.99 27.47 51.14 34.45 45.37 47.72
RNE 76.18 6.25 75.69 8.45 73.60 1343 69.42 20.16 64.20 27.63
RNE-compress 73.99 10.70 72.27 14.14 70.64 17.50 67.50 21.91 61.47 31.51

sequence. In Fig. 11(d), the bias correction is compared with
the existing postprocessing methods, i.e., Fine-tune [22], BiC
[53], and weight alignment [12]. It shows that BiC only works
well in early sessions and fine-tuning has limited performance,
while the proposed bias correction strategy achieves the best
performance.

Fig. 12 shows the variation of FLOPs (which indicates the
computational cost) and the number of parameters (which
indicates the memory usage) for the proposed and comparative
methods. It is observed that the computational cost and the
number of parameters for RNE are almost the same as
those of DER and BEEF. In contrast, the RNE-compress
demonstrates the smallest computational cost and number of
parameters.

Fig. 13 provides the visualization of confusion matrices,
where misclassification of old categories decreases signifi-
cantly, indicating that the preference for new tasks can be
suppressed effectively.

D. Robustness Test

In this section, we use the CIFAR-100 dataset to conduct
robustness tests on RNE by reducing the capacity of the
exemplar set. The original capacity is 2000 images with 20
images per category, accounting for 4% of the total train-
ing images. Then, the capacity is reduced to 50%, 25%,

77.89 73.24

°

177.02 77.73 77.65 76.97

o

171.91 73.16 72.73 71.89

77.38 7186

°

177.33 77.73 77.63 77.01

=
o

172.48 73.05 72.56 70.99

76.87
70.48

177.28 77.84 77.41 76.95

7637

172.5 73.11 72.58 71.93 69.82

69.10

Dynamic factor
=
Dynamic factor B
S

75.86

S
3

177.21 77.54 77.83 76.72

S
=

171.86 72.88 73.03 71.34169.4

7535 67.72

°
>

177.15 77.89 77.63 77.05

o
=Y

172.14 73.24 72.6 72.19

74.84
0.001 0.005 0.01 0.05 0.1 0.001 0.005 0.01 0.05 0.1

Learning Rate Learning Rate
(@) (b)

Fig. 15. Evaluation of the hyperparameter sensitivity. (a) Average accuracy.
(b) Last accuracy.

66.34

and 10% of the original, i.e., 10, 5, and 2 images per
category, respectively. As shown in Table V, the average
accuracy of the normal dynamic method DER decreases
rapidly with the reduction of the exemplar set. In addition,
most CIL methods exhibit strong dependence on the exem-
plar set. On the contrary, the RNE exhibits more robustness
to the reduction of exemplar-set capacity. As illustrated in
Fig. 14, the accuracy curves of RNE decrease relatively more
slowly than other CIL methods as: 1) the recurrent structure
receives information of previous tasks from previous task
experts and becomes less dependent on old exemplars and

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on August 28,2025 at 02:43:16 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIANG et al.: RECURRENT NETWORK EXPANSION FOR CLASS INCREMENTAL LEARNING 13

2) the bias correction strategy can mitigate the classifier bias
effectively.

In addition, we evaluate the sensitivity of hyperparam-
eters, i.e., the learning rate A and the initial value of
dynamic factor S for the proposed RNE by conducting
experiments on CIFAR-100 with N = 5. Specifically, A is
chosen from {0.001,0.005,0.01,0.05,0.1} and S is chosen
from {0.01,0.05,0.1,0.3,0.5}. The average accuracy is shown
in Fig. 15(a) and the last accuracy is shown in Fig. 15(b). The
results indicate that the proposed method represents robustness
to hyperparameters.

V. CONCLUSION

This article proposed the RNE, i.e., RNE, for CIL by
constructing connections among task experts elegantly. Then,
the RNE was compressed to reduce the number of parameters
and FLOPs while maintaining superior CIL performance. In
addition, the classifier is decoupled in a more causal way
to reduce feature confusion and avoid overfitting and was
retrained with pseudo features to address the issue of classifier
bias. Experiments have shown that RNE outperforms existing
CIL methods with less complexity and exhibits robustness to
restricted exemplar-set capacity.

Future work will be focused on CIL of image series and
on designing models applicable to open environments, such
as the emergence of unknown categories.

REFERENCES

[1] M. De Lange et al., “A continual learning survey: Defying forgetting in
classification tasks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44,
no. 7, pp. 3366-3385, Jul. 2022.

[2] Z. Mai, R. Li, J. Jeong, D. Quispe, H. Kim, and S. Sanner, “Online
continual learning in image classification: An empirical survey,” Neuro-
computing, vol. 469, pp. 28-51, Jan. 2022.

[3] M. Masana, X. Liu, B. Twardowski, M. Menta, A. D. Bagdanov, and
J. van de Weijer, “Class-incremental learning: Survey and performance
evaluation on image classification,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 45, no. 5, pp. 5513-5533, May 2023.

[4] R. French, “Catastrophic forgetting in connectionist networks,” Trends
Cognit. Sci., vol. 3, no. 4, pp. 128-135, Apr. 1999.

[5] L. Golab and M. T. Ozsu, “Issues in data stream management,” ACM
SIGMOD Rec., vol. 32, no. 2, pp. 5-14, Jun. 2003.

[6] M. McCloskey and N. J. Cohen, “Catastrophic interference in con-
nectionist networks: The sequential learning problem,” in Psychology
of Learning and Motivation, vol. 24. Amsterdam, The Netherlands:
Elsevier, 1989, pp. 109-165.

[71 Z.Liand D. Hoiem, “Learning without forgetting,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 40, no. 12, pp. 2935-2947, Dec. 2018.

[8] J. Kirkpatrick et al., “Overcoming catastrophic forgetting in neural
networks,” Proc. Nat. Acad. Sci. USA, vol. 114, no. 13, pp. 3521-3526,
2017.

[9]1 R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, and T. Tuytelaars,

“Memory aware synapses: Learning what (not) to forget,” in Proc. Eur.

Conf. Comput. Vis. (ECCV), Sep. 2018, pp. 139-154.

F. Zenke, B. Poole, and S. Ganguli, “Continual learning through synaptic

intelligence,” in Proc. Int. Conf. Mach. Learn., 2017, pp. 3987-3995.

S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “ICaRL:

Incremental classifier and representation learning,” in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 2001-2010.

B. Zhao, X. Xiao, G. Gan, B. Zhang, and S.-T. Xia, “Maintaining

discrimination and fairness in class incremental learning,” in Proc.

IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,

pp. 13208-13217.

Y. Liu, B. Schiele, and Q. Sun, “RMM: Reinforced memory management

for class-incremental learning,” in Proc. Adv. Neural Inf. Process. Syst.,

2023, pp. 3478-3490.

[10]

(11]

[12]

[13]

[14] A. Robins, “Catastrophic forgetting in neural networks: The role of
rehearsal mechanisms,” in Proc. 1st New Zealand Int. Two-Stream Conf.
Artif. Neural Netw. Expert Syst., Nov. 1993, pp. 65-68.

A. Robins, “Catastrophic forgetting, rehearsal and pseudorehearsal,”

Connection Sci., vol. 7, no. 2, pp. 123-146, Jun. 1995.

S. Hou, X. Pan, C. C. Loy, Z. Wang, and D. Lin, “Learning a unified

classifier incrementally via rebalancing,” in Proc. IEEE/CVF Conf.

Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 831-839.

A. Douillard, M. Cord, C. Ollion, T. Robert, and E. Valle, “PODNet:

Pooled outputs distillation for small-tasks incremental learning,” in Proc.

Eur. Conf. Comput. Vis., 2020, pp. 86-102.

A. Ashok, K. Joseph, and V. N. Balasubramanian, “Class-incremental

learning with cross-space clustering and controlled transfer,” in

Proc. Eur. Conf. Comput. Vis. Cham, Switzerland: Springer, 2022,

pp. 105-122.

M. Mermillod, A. Bugaiska, and P. Bonin, “The stability-plasticity

dilemma: Investigating the continuum from catastrophic forgetting to

age-limited learning effects,” Frontiers Psychol., vol. 4, p. 504, Mar.

2013.

S. Grossberg, “Adaptive resonance theory: How a brain learns to

consciously attend, learn, and recognize a changing world,” Neural

Netw., vol. 37, pp. 1-47, Jan. 2013.

R. Aljundi, P. Chakravarty, and T. Tuytelaars, “Expert gate: Lifelong

learning with a network of experts,” in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit. (CVPR), Jul. 2017, pp. 3366-3375.

S. Yan, J. Xie, and X. He, “DER: Dynamically expandable representation

for class incremental learning,” in Proc. IEEE/CVF Conf. Comput. Vis.

Pattern Recognit., Jun. 2021, pp. 3014-3023.

F. Y. Wang, D. W. Zhou, H. J. Ye, and D.-C. Zha, “FOSTER:

Feature boosting and compression for class-incremental learning,” in

Proc. 17th Eur. Conf. Comput. Vision (ECCV), vol. 13685, Jun. 2022,

pp. 398-414.

T.-Y. Wu et al., “Class-incremental learning with strong pre-trained

models,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.

(CVPR), Jun. 2022, pp. 9591-9600.

A. Douillard, A. Ramé, G. Couairon, and M. Cord, “DyTox: Trans-

formers for continual learning with dynamic token expansion,” in Proc.

IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022,

pp- 9285-9295.

[26] Z. Hu, Y. Li, J. Lyu, D. Gao, and N. Vasconcelos, “Dense network

expansion for class incremental learning,” in Proc. IEEE/CVF Conf.

Comput. Vis. Pattern Recognit. (CVPR), Jun. 2023, pp. 11858-11867.

B. Huang, Z. Chen, P. Zhou, J. Chen, and Z. Wu, “Resolving task

confusion in dynamic expansion architectures for class incremental

learning,” in Proc. AAAI Conf. Artif. Intell., 2023, vol. 37, no. 1,

pp. 908-916.

D.-W. Zhou, Q. Wang, H.-J. Ye, and D. Zhan, “A model or

603 exemplars: Towards memory-efficient class-incremental

learning,” in Proc. 11th Int. Conf. Learn. Represent., May 2023,

pp. 9689-9703.

F.-Y. Wang et al., “Beef: Bi-compatible class-incremental learning via

energy-based expansion and fusion,” in Proc. 11th Int. Conf. Learn.

Represent., May 2023, pp. 12773-12787.

Y. Liu, X. Hong, X. Tao, S. Dong, J. Shi, and Y. Gong, “Model behavior

preserving for class-incremental learning,” IEEE Trans. Neural Netw.

Learn. Syst., vol. 34, no. 10, pp. 75297540, Oct. 2023.

[31] Z. Zhang, Y. Chen, and C. Zhou, “Self-growing binary activation

network: A novel deep learning model with dynamic architecture,”

IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 1, pp. 624-633,

Jan. 2024.

R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and

D. Batra, “Grad-CAM: Visual explanations from deep networks via

gradient-based localization,” in Proc. IEEE Int. Conf. Comput. Vis.

(ICCV), Oct. 2017, pp. 618-626.

A. A. Rusu et al, “Progressive

arXiv:1606.04671.

[34] J. Schwarz et al., “Progress & compress: A scalable framework for con-
tinual learning,” in Proc. Int. Conf. Mach. Learn., 2018, pp. 4528-4537.

[35] J. Yoon, E. Yang, J. Lee, and S. J. Hwang, “Lifelong learning with

dynamically expandable networks,” 2017, arXiv:1708.01547.

D.-W. Zhou, Y. Yang, and D.-C. Zhan, “Learning to classify with

incremental new class,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33,

no. 6, pp. 2429-2443, Jun. 2022.

[37] J. Zhang, T. Wang, W. W. Y. Ng, and W. Pedrycz, “KNNENS: A k-
nearest neighbor ensemble-based method for incremental learning under
data stream with emerging new classes,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 34, no. 11, pp. 9520-9527, Nov. 2023.

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[27]

(28]

[29]

[30]

[32]

[33] neural networks,” 2016,

(36]

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on August 28,2025 at 02:43:16 UTC from IEEE Xplore. Restrictions apply.

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

A. Razdaibiedina, Y. Mao, R. Hou, M. Khabsa, M. Lewis, and A. Alma-
hairi, “Progressive prompts: Continual learning for language models,”
2023, arXiv:2301.12314.

S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation
via transfer component analysis,” IEEE Trans. Neural Netw., vol. 22,
no. 2, pp. 199-210, Feb. 2011.

B. Gong, Y. Shi, F. Sha, and K. Grauman, “Geodesic flow kernel for
unsupervised domain adaptation,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2012, pp. 2066-2073.

A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. Torr,
“Riemannian walk for incremental learning: Understanding forgetting
and intransigence,” in Proc. Eur. Conf. Comput. Vis. (ECCV), Sep. 2018,
pp. 532-547.

Y. Yang, D.-W. Zhou, D.-C. Zhan, H. Xiong, and Y. Jiang, “Adaptive
deep models for incremental learning: Considering capacity scalability
and sustainability,” in Proc. 25th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Jul. 2019, pp. 74-82.

D. Lépez-Paz and M. Ranzato, “Gradient episodic memory for continual
learning,” in Proc. Adv. Neural Inf. Process. Syst., vol. 30, Apr. 2017,
pp. 1-11.

S. Wang, X. Li, J. Sun, and Z. Xu, “Training networks in null space
of feature covariance for continual learning,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 184-193.

X. Wang, Z. Ji, Y. Yu, Y. Pang, and J. Han, “Model attention expansion
for few-shot class-incremental learning,” IEEE Trans. Image Process.,
vol. 33, pp. 44194431, 2024.

J. Liu, Z. Ji, Y. Pang, and Y. Yu, “NTK-guided few-shot class incre-
mental learning,” IEEE Trans. Image Process., vol. 33, pp. 6029-6044,
2024.

Z. Ji, Z. Jiao, Q. Wang, Y. Pang, and J. Han, “Imbalance mitigation
for continual learning via knowledge decoupling and dual enhanced
contrastive learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 36,
no. 2, pp. 3450-3463, Feb. 2025.

H. Wen et al, “Class incremental learning with multi-teacher
distillation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2024, pp. 28443-28452.

Z. Luo, Y. Liu, B. Schiele, and Q. Sun, “Class-incremental
exemplar compression for class-incremental learning,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2023,
pp. 11371-11380.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[50]
(51]
[52]
[53]
[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

[62]

[63]

[64]

T. Kim, J. Park, and B. Han, “Cross-class feature augmentation for
class incremental learning,” in Proc. AAAI Conf. Artif. Intell., 2023,
pp. 13168-13176.

S. Ho, M. Liu, L. Du, L. Gao, and Y. Xiang, “Prototype-guided memory
replay for continual learning,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 35, no. 8, pp. 10973-10983, Aug. 2024.

A. Vaswani et al., “Attention is all you need,” 2017, arXiv:1706.03762.
Y. Wu et al., “Large scale incremental learning,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 374-382.
J. Elman, “Finding structure in time,” Cognit. Sci., vol. 14, no. 2,
pp. 179-211, Jun. 1990.

A. Graves and A. Graves, “Long short-term memory,” in Supervised
Sequence Labelling with Recurrent Neural Networks. Berlin, Germany:
Springer, 2012, pp. 37-45.

A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,” Univ. Toronto, Tech. Rep., 2009. [Online]. Available:
https://www.cs.utoronto.ca/\simkriz/learning-features-2009-TR.pdf

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248-255.

L. Bossard, M. Guillaumin, and L. Van Gool, “Food-101—Mining dis-
criminative components with random forests,” in Proc. 13th Eur. Conf.
Comput. Vis. (ECCV). Cham, Switzerland: Springer, 2014, pp. 446-461.
M. Welling, “Herding dynamical weights to learn,” in Proc. 26th Annu.
Int. Conf. Mach. Learn., Jun. 2009, pp. 1121-1128.

E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le,
“AutoAugment: Learning augmentation strategies from data,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 113-123.

A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019,
pp- 8026-8037.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770-778.

D.-W. Zhou, H.-J. Ye, and D.-C. Zhan, “Co-transport for class-
incremental learning,” in Proc. 29th ACM Int. Conf. Multimedia, Oct.
2021, pp. 1645-1654.

I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent with
warm restarts,” 2016, arXiv:1608.03983.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on August 28,2025 at 02:43:16 UTC from IEEE Xplore. Restrictions apply.

