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ABSTRACT

In convolutional neural networks (CNNs), activation layers process features from
convolutional layers, which have multiple output channels. Conventional activa-
tion functions like ReLU handle these multi-channel features independently, ig-
noring spatial and cross-channel dependencies. This hard-thresholding approach
can lead to information loss by eliminating negative features and disrupting the
connection within input features. To address this issue, we propose a novel ac-
tivation function that considers mutual relations across multiple channels. Our
activation layer processes tuples across channels as single inputs, ensuring that
output tuples remain in the same projection space, with their £; norms bounded
by a learnable parameter. This parameter controls the pass-through ratio, which is
the proportion of input data allowed to pass through the activation layer, offering
a significant advantage over ReLU. Our approach demonstrated superior accuracy
in classification tasks on common benchmarks and domain-specific datasets for
CNN-based models. The proposed activation layer outperformed ReLU and other
common layers in both clean and noisy data scenarios, as confirmed by statistical
tests. Our results highlight the effectiveness of this activation function in main-
taining feature integrity and improving model performance.

1 INTRODUCTION

Neural networks (NNs) are nonlinear functions that map inputs to outputs through layers per-
forming operations like convolution, pooling, and activation. Each layer can be represented as
y = ¢(Wax 4 b), where W and b are weights and biases, and ¢ is an activation function. Activation
layers are crucial for capturing nonlinearity and sparsity in data, with a suitable choice enhancing
network performance, stability, and noise robustness. While many nonlinear activation functions ex-
ist, finding the optimal one involves trade-offs due to conflicting desirable properties. The Rectified
Linear Unit (ReLU) is popular for its simplicity but suffers from the dying ReLU problem [Lu et al.
(2020)], where neurons can become inactive.

To overcome ReLU’s limitations, various ReLLU-like functions, such as Leaky ReLU [Maas et al.
(2013)], Parametric ReLU (PReLU) [He et al.|(2015)], and GELU [Hendrycks & Gimpel (2016)],
have been developed to retain advantages while addressing drawbacks. Despite their effectiveness
[Szandata (2021)], ongoing research into better activation functions is necessary, employing strate-
gies like genetic algorithms [Basirat et al.[(2019)] and learning-based approaches [Ramachandran
et al.| (2018)]. Adaptive activation functions, which learn parameters during training, represent the
most advanced development in this area.

Existing ReLU-like functions face limitations, particularly their element-wise application and lack
of trainable parameters, preventing them from fully utilizing relationships in input data. This is
especially important in convolutional neural networks (CNNs), where multiple output channels must
be considered. These functions often process inputs separately, neglecting dependence between
them, such as the spatial or cross-channel relation of the features. Spatial relation refers to the local
connectivity and neighborhood structure of the features, while cross-channel relation refers to the
correlation and diversity of the features across different channels. These relations are important for
capturing the patterns and semantics of the input data, and features extracted in the previous layers
of the network. Moreover, ReLLU-like activation may lose the connection with the input features
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and cause information loss due to fixed-threshold eliminating negative features in an element-wise
manner.

To address these issues, we propose the Simplex Projection Activation (SPA), a cross-channel ac-
tivation function that maintains feature relations and connection between input and output. See
illustration of SPA in Fig. SPA was shown to improve classification accuracy on CNN models
across multiple datasets, including noisy data, and is a strong alternative to ReL.U.

2 RELATED WORK

In this section, we review related works on activation functions, and highlight the novelty and ad-
vantages of our proposed simplex projection activation (SPA) function.

Channel-wise activation functions use information from several elements of the input data, rather
than applying a pointwise transformation to each element. Examples include the Maxout unit [Good-
fellow et al|(2013)], which selects the maximum value among several linear transformations, and
meta-ACON functions [Ma et al.|(2021)], which incorporate layer-wise and channel-wise adaptive
parameters. The Variable Activation Function (VAF) [Apicella et al.| (2019)] uses affine transfor-
mations before and after activation to capture cross-channel dependencies, enhancing network per-
formance. Additionally, the study on adaptive activation functions [Liu et al.[ (2020)] introduced
parameterized S-shaped and ReLU-like functions that dynamically adjust during training, improv-
ing accuracy across tasks. These approaches demonstrate the importance of parameterized and
channel-wise activations in modern neural network design.

Concept-based activation functions derive from principles that guide network learning or infer-
ence. Stochastic activation functions [[Urban et al.|(2017); [Shridhar et al.|(2019); (Chen et al.|(2019)]
introduce randomness to outputs, while the ACON family [[Ma et al.[(2021))] extends Maxout with
adaptive Swish-like functions. Lifted Neural Networks [Askari et al.| (2018); [Sambharyal (2018)]
frame activation as solutions to optimization problems, replacing non-smooth functions with smooth
penalties. Furthermore, the introduction of Deep Sparse Rectifier Networks [Glorot et al.| (2011)]
demonstrated how sparsity in activations benefits neural network performance. By employing the
ReLU activation, these networks achieved significant improvements in training efficiency. However,
the limitations of ReL.U, such as the dying ReLU problem, highlight the need for alternative methods
to maintain active neurons during training.

Gaussianization and normalization transformations are relevant for preprocessing and feature
transformation. The Generalized Divisive Normalization (GDN) [Ball€ et al.| (2015)] introduced a
parametric nonlinear transformation to Gaussianize data from natural images. GDN reduces mutual
information between components by combining a linear transformation with divisive normalization.
This approach demonstrates how decorrelation improves density modeling and feature distribution.
Inspired by these principles, simplex projection techniques incorporate similar constraints, ensuring
well-regularized feature spaces.

Simplex projection applications utilize simplex projection in output or intermediate layers of neu-
ral networks, serving as an alternative to the softmax layer [Askari et al.| (2018)] and producing
probability distributions without the associated numerical instability. Convolution Simplex Projec-
tion Networks [Briq et al.[(2018))] integrate simplex projection into CNN’s to improve segmentation
heatmap quality and incorporate additional loss terms.

However, these applications do not explore simplex projection as an activation function in hidden
layers. Unlike most activation functions that act on individual input elements, SPA accounts for
feature dependence across channels, projecting input tuples onto a convex set that preserves their
mutual relations and avoids information loss. This generalization of the ReLU function enhances
information retention, sparsity, regularization, robustness, and overall network performance.

3 CROSS-CHANNEL ACTIVATION FUNCTION

3.1 ACTIVATION LAYER AS AN OPTIMIZATION PROBLEM SOLVER

We reinterpret the ReLU activation as an optimization problem. For an input feature X, which
usually has the shape of C' (channels) x H (height) x W (width), the ReLU layer returns the
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Figure 1: The simplex projection illustration. @ SPA projects an input tuple x;; to an output tuple
y,; onto the § simplex across all channels within a multi-channel input X. Null elements are shown
in white. @) Ilustration of §-simplex projection for a 3-dimensional case. Point A = [—4,0.8 6, ¢],
with negative coefficients, is projected to A’ = [0,0.46,0.6 6] on the simplex border. Point B is
projected inside the simplex.

elements of the output individually as y = max(z, 0). This is equivalent to projecting each element
x = X(c, 7, j) onto the nonnegative orthant, i.e., solving the optimization problem:

y =argmin |y — %, (1)
y
sty >0, )

This interpretation has been introduced in [Agrawal et al.| (2019)], and brings some new insights
to extend the ReLU layer. We note that elements of the input features, X(c, 1, j), are often not
completely statistically independent. Features in the some first layers of the neural networks exhibit
high dependence, while treating them individually may disrupt their latent connection, e.g., changing
their covariance matrices, or feature lengths especially when data is corrupted by noise.

3.2 SIMPLEX PROJECTION ACTIVATION

To preserve the feature dependence and avoid information loss, we propose a new type of activation
function that considers the feature mutual relation across multi-channels. We define X(:, ¢, j) as a
tuple of C feature elements of X at the same location (i, j). Instead of projecting each individual
element x of X onto the nonnegative orthant, we project each tuple € = [z1,22,...,2z¢] of X
onto a convex set S. Here, C' is the number of channels, and .S imposes non-negativity and bound
constraints on the mutual relations among features. For example, S can be defined as the set of
tuples whose ¢1-norms are equal to or bounded above by a constant 4, i.e.,

Sz{x:[M@Q,,xC”lZOa Hxnl S(s}

This approach enforces sparsity and regularization on the output tuples, limits their magnitude, and
ensures that the outputs remain in the same projection space, preserving their mutual relations. The
proposed activation function can be formulated as

|

y=argmin |y — |3, 3)
Y 2

st. yes. “4)

The ¢;-norm inequality constraints can be replaced by equality constraints, e.g., by introducing a
dummy variable z > 0 such that z + 17y = §. The projection can be reformulated as a projection
onto the §-simplex, that is

1 2
= 1 —_ —_ 5
y=arg min oy — x|, ®)
st. y>0, 1Ty=74, (6)

where § > 0 is a learnable parameter of the layer, and 1 is the vector of ones. In this paper, we
consider the projection in (3). We call this activation function Simplex Projection Activation (SPA).
See Fig. [Ia]for an illustration of SPA.
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3.2.1 OPTIMAL §-SIMPLEX PROJECTION

Assume that elements of the tuple x are sorted in the descending order, i.e., 1 > 22 > --- > z¢.
The projection of & onto the probability simplex has been studied in [Boyd & Vandenberghe|(2004);
Chen & Ye|(2011)]. For the problem in (3), the Lagrangian function and its gradient w.r.t to y are
given by

1
Liy, Av) = 5w —yll; —v(1Ty = 0) = A"y,
VyL=y—z—-1v—-A=0,

where A = [A1,...,A¢] > 0 and v are the Lagrange multipliers associated to the inequality and
equality constraints in @ Setting the gradient VL to zero gives the optimal solution y* = x +
v+ A

Let 7 be the index set of positive elements y; > 0, % € Z. Due to the KKT complementary slackness
condition for the nonnegativity constraint, we have \; = 0, ¢ € Z, implying that y* = z; + v.
Considering the equality constraints ) . y* = Z ier Yi = 0, we can derive the optimal dual

:%(Zy;—xl —(6 - Zaf *—Z‘I, @)

i€l 1€L

where I = |Z|, 7 = % > icr i is the mean of z;¢z. In addition, y;" = x; + v* > Oforalli € 7
implies that Z is the index set of all z; > —v*, ie., Z = {i : &; > —v*}. Obviously, for zero
elements y;¢7 = 0 = x; +v* + \j > x; + v*, since \; > 0. It means —v* is the midpoint which
splits the tuple x into two disjoint sets
Tiex > —V* > Xj¢1,

or

Ty > 2w >V > > > 2cn
This suggests an algorithm to determine the largest I elements {x1, ...,z } such that the smallest
element x; > T7 — % or equivalent condition

5>Z i~ ). ®)

Since the elements x; are sorted in the descendlng order, xt; —xy > Oforalli = 1,...,1. The set
T always contains at least the largest element ;.

The final output y; = x; + v* forall i < I, and y; = 0 for all ¢ > I. Thus, the update rule for each
tuple « is

y = max(x + v*,0). 9)

Remark. The formulation of the SPA layer as a convex optimization problem (projection of fea-
ture vectors onto the probability simplex) ensures a globally optimal solution, derived through the
proposed efficient update rule without requiring iterative algorithms.

Remark Different from ReLU, SPA shifts the input, x, by v* in ([7), i.e., centered by T then shifted
by 9 7 before nullifying negative elements. The SPA function tends to pass more features in the early
layers than ReLU, and suppresses more input features to zero in the final layer.

Remark. When all elements of a tuple are negative, ReLU returns a tuple of zeros, which means that
it discards all the information from the input tuple. This can cause information loss and reduce the
network’s ability to learn from the data. The SPA in ({9) returns a tuple that has at least one non-zero
element, the largest element in the input tuple. This means that it preserves the information from the
input tuple, and assigns the highest probability to the most relevant feature. This can enhance the
information retention and improve the network’s ability to learn from the data.

Remark. The SPA activation focuses on the cross-channel dependencies within a feature tuple
at each spatial location, grouping channels identified as relevant and nullifying the less significant
ones. Convolutional operations, in turn, are primarily designed to learn spatial local information by
applying shared kernels over small receptive fields, capturing relationships within the neighborhood
of spatial locations. This distinction reflects the separation of spatial learning (via convolution) and
channel-level feature selection (via activation).
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SPA has several advantages over ReLU and its variants.

* SPA can capture the cross-channel feature dependence and avoid information loss due to the hard-
thresholding rectifier.

* SPA can nullify (sparsify) group of multiple features simultaneously. The features in the later
layers of the neural network may have some redundant or irrelevant elements that do not con-
tribute to the task. Applying the ReLU activation individually to each element may keep some of
these elements, and increase the network complexity and overfitting. SPA, on the other hand, can
eliminate some of these elements together.

* Projection on the probability space (simplex) and sparsification of the features also implies the
features on more important channels are preserved, whereas the output tuples have a probabilistic
interpretation.

» SPA also improves the network robustness by constraints on bound of the activation outcomes.
SPA can normalize or adapt the features to a suitable scale or range (), is able to improve the
network stability.

3.2.2 PASS-THROUGH RATIO BY THE PARAMETER ¢

The parameter § of the SPA layer in controls the scales of the simplex and can be considered
as a learnable parameter or a hyperparameter. The scale of the simplex, J, controls how much the
input tuples are normalized and sparsified by the SPA function, thereby controlling the Pass-Through
Ratio (PTR), which is the proportion of input data allowed to pass through the activation layer. From
and the final update rule (9):

* Small §: A small 6 results in output tuples with a small sum, hence a high sparsity. SPA eliminates
most of the small positive features and highlights the most relevant features by normalizing their
sum to 6. However, this may lead to over-sparsification, which can discard some useful informa-
tion and reduce the network performance and convergence. For instance, when 0 < § < z1 — 2,
given that 27 and x5 are distinct, SPA returns the outcome [4, 0, ..., 0] with only one non-zero
element.

» Large 0: A large § results in output tuples with a large sum and low sparsity, which can retain most
of the input features and avoid information loss. However, this may decrease the non-linearity
properties of SPA, thereby decreasing the abilities of the neural network to learn complex patterns.
If § is too large, all of the input data will be projected inside a J-simplex, and the SPA layer will
degenerate into a linear transformation. For example, when ¢ > Zil x; — Cxc, SPA bypasses
all elements through the layer as y = « — % > T+ %.

To understand the influence of the parameter § on the pass-through ratio, the experiments with
the Gaussian distributed inputs were conducted. For the considered case, if input of size belongs
to N (tin, 0in) the mean value of the output distribution, pgpa = k, - 6/C, where k,, is linear
coefficient, equal to 1 for normal distribution, ¢ is a parameter of the SPA layer, and C'is the number
of channels. The pass-through ratio, PT' R, can be defined as:

PTRspa = fprr(d/(C - 0in)), (10

where 0 is a parameter of the SPA layer, C' is the number of channels, o;,, is a variance parameter of
the input Gaussian distribution, and fprg is a non-linear function. Thus, in order to hold the same
value of the path-trough ratio, we should save the ratio 6 /(C - ;) to be constant. The next note can
be that the PTR and the mean value of the output distribution of the SPA layer do not depend on the
mean value of the input distribution.

4 EXPERIMENTS

Datasets. We evaluated the performance of activation layers using a diverse set of datasets, in-
cluding common benchmarks such as MNIST, FashionMNIST, CIFAR10/100,Caltech256,
Tiny ImageNet, and ImageNet. Additionally, a smaller subset of CIFAR10 (referred to as
CIFAR10-5K) was created for comparison on smaller datasets. Domain-specific datasets such as
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GTSRB (traffic signs), SVHN (street numbers), and seven biomedical datasets from MedMNIST were
also tested. The description of the datasers is presented in Appendix

To assess robustness, experiments with noisy data were conducted by adding Gaussian noise at
five different noise levels (o = 0.05, 0.1, 0.2, 0.3 and 0.4). The noisy data was formed once and
was unchangeable. In other words, the same noisy samples were used across different trials and
activation functions. Examples of noisy images (Figure f)) and additional details can be found in

Appendix [B]

Models. To test the main concept, the first experiments were conducted for 3-layer CNN model
(hereinafter SmallCNN). To validate the proposed activation layer for deep neural networks, exten-
sive experiments were conducted for VGG16 and ResNet-18 networks. More details of the used
neural networks are presented in Appendix

Training procedure. For SmallCNN and VGG model (CIFAR10/100 dataset), Adam optimiser
[Kingma & Ba|(2015)] with constant learning rate was used. For ImageNet, Tiny ImageNet,
and Caltech256 dataset, SGD optimizer was employed with learning rate schedule for VGG and
ResNet-18 models. For MedMNIST datasets, the training parameters followed the setup in [Yang
et al. (2021). The detailed description of the training procedure is in Appendix

Metric evaluation and comparison. In addition to a comparison of SPA with ReLU, we conducted
simulations for GELU activation. It is known that GELU is efficient and resistant to noisy data
Hendrycks & Gimpel| (2016). This comparison aims to investigate whether SPA can offer compa-
rable or improved performance over GELU. However, the comparison with other activation layers,
like PReLLU [He et al.| (2015), ELU [Clevert et al.| (2016), and SELU Klambauer et al.| (2017), were
also performed and can be find in Appendixes [D]and [E] For each trial, a model was trained during
the corresponding number of epochs, and the best accuracy on the validation data was taken. All
utilized datasets are balanced across the classes. Hence, accuracy was used as an evaluation metric.
A permutation test based on Student t-test (100,000 permutation) was selected for statistical com-
parisons [Yuen & Dixon| (1973); [Yuen| (1974); Hemerik & Goemanl (2018) of the accuracy results.
This test is more robust to a non-normal distribution but retains good interpretation ability.

Experiment procedure.

For the comparison of activation layers, we employed the following methodology. Conducted mul-
tiple training runs (not less than 10) with different initial weights and random order of training sam-
ples within epochs for each activation function while maintaining similar training parameters. We
then performed statistical tests to compare the proposed activation (e.g., SPA, GELU) with ReLU.
Finally, we reported mean accuracy, standard deviation (in parentheses), differences in mean ac-
curacies compared to ReLU (A), and p-values. This methodology was applied consistently across
all experiments with small and medium-scale datasets. For the ImageNet -1k dataset, fewer trials
were conducted, and the reported results consist of the median and the range values of the accuracies.

In addition, to evaluate the average ability of the activation layer to resist noise in the data, we exam-
ined how the activation layer performed under various noises for several benchmark datasets. Ten
independent versions of noisy data were created for different noise levels. For each noise version,
the best accuracy (the best local minimum) from several trials (not less than 3) of model training
was selected. This procedure emulates the practical case, where we can train a model several times
to find the best local minimum. The further statistical comparisons were conducted according to the
methodology described above.

Hyperparameter 6. The initialization method of the parameter  depends on the dataset and the
used model. The detailed description of the proposed methods is presented in Appendix[F| For small
models, the optimal values of the § parameters can be found by a simple search. This method was
applied for experiments with SmallCNN. For bigger models, like VGG16, the § can be initialized
based on intuition, and the final values of the ¢ after training can be taken. Then, we can use these
values for initialization of the next iteration. This approach showed good results for VGG16 and
CIFAR10/100 datasets. However, this approach is not applicable for more difficult datasets or for
training with weigh decay, where the § values can change dramatically and become very small at the
end of the training.

For the relatively big datasets and deep neural networks, we suggest using the approach based on the
similarity between the effects of the SPA and ReLU on the output distribution. For the normalized
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Figure 2: Distribution of input/output data for different activation layers in SmallCNN. The distri-
butions are presented for noise-free CIFAR10 dataset.

Gaussian input distribution N'(0, 1), we can initialize § as 0.4 - C', where C'is a number of channels.
In this case, the form and mean value of the output distribution and pass-through ratio for SPA
and ReLU actvations will be similar. This initialization method showed good results for Tiny
ImageNet and Caltech256 datasets. It should be noted that weight decay parameter should be
different for ¢ values as it forces d to decrease during training procedure.

In addition, Bayesian optimization (BO) |Snoek et al.| (2012) can be used to find the optimal delta
values. For ResNet-18, there are 17 activation layers, and it will be very time-consuming to optimize
all these parameters separately. To decrease the range of the BO search, we consider the finding
multipliers of the § values, which were initially set up based on the similarity between the effect
of the SPA and ReL.U on the output distribution. For this case, ¢ values are the same for the same
number of channels, so we can reduce the number of considered parameters. This initialization
method was used for MedMNIST datasets.

4.1 RESULTS

Result for SmallCNN.

The statistical comparison of the accuracy values for SmallCNN for different datasets is presented
in Table [T} In this experiments, all three activation layers of SmallCNN were replaces on SPA
with § = 20 or GELU. The only exception is for CIFAR100 dataset, where only two first activation
layers were replaced by SPA. The results show the superiority of the proposed SPA layer for MNIST,
FashionMNIST (FMNIST), and CIFAR10, GTSRB and SVHN datasets for noisy-free data. For
CIFAR10-5K and CIFAR100, the accuracy of SPA was similar to ReLLU.

In addition, SPA layer also showed superiority for noisy datasets. As example, the results for exper-
iments with independent noise versions for CIFAR datasets are presented in Table[§]in Appendix D]
SPA showed superiority for all noise levels for CIFAR10 and for high noise levels for CIFAR100
(for 0 = 0.3 and 0.4) and CIFAR10-5K (for ¢ = 0.1, 0.2, and 0.3). The results for other datasets
and other activation layers can be seen in Appendix [D}

Results of Deep models. The results for the noise-free dataset using VGG16 and ResNet-18 are
depicted in Table [l An example of the results for noisy data is presented in Table 2] The full re-
sults can be found in Appendix [E} A detailed description of the methods used for § initialization is
provided in Appendix [F

The results showed the superiority of the proposed SPA layer over ReLLU (and GELU) for most tested
datasets for both noise-free and noisy data. Specifically, SPA showed better accuracy for VGG16 on
the CIFAR10/100 and Tiny ImageNet datasets for noise-free data. For noisy data, superiority
was observed on CTFAR10/100 under all noise levelsand Tiny ImageNet under low noise. For
ResNet-18, SPA showed superiority on Tiny ImageNet and Caltech256 datasets across all
noise levels, including noise-free data. ResNet-18 also showed better accuracy for 6 out of 7 tested
datasets for noise-free data. SPA showed results similar to ReLU only for DermaMNIST. However,
for the noisy case, SPA showed superiority on this dataset and most other tested datasets from the
MedMNIST database. The results for ImageNet (see Table [3]and Appendix [E) showed that SPA
achieves accuracy of 66.74% (range: 66.61%—66.85%) while ReL.U has accuracy of 66.30% (range:
66.19%—-66.57%). In other words, SPA achieves slightly higher accuracy than ReL U, with a non-
overlapping range.
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Table 1: Accuracy results for noise-free datasets with ReLU, GELU, and SPA activations.

Activations

Dataset

ReLU GELU SPA

Acc., % Acc., % A p* Acc., % A p*

SmallCNN
MNIST 99.48 (0.05) 99.51(0.04) 0.03 0.0554 99.58 (0.04) 0.10 0.0000
FMNIST 91.88 (0.21) 91.87(0.17) -0.01 0.8106 92.30 (0.10) 0.42 0.0000
CIFAR10 84.43(0.29) 84.65(0.20) 0.22 0.0072 84.86 (0.25) 0.42 0.0000
CIFAR10-5K 69.83 (0.59) 70.17 (0.61) 0.33 0.0867 70.11(0.75) 0.27 0.2066
CIFAR100" 57.46 (0.37) 57.41(0.34) -0.06 0.5965 57.48(0.41) 0.02 0.8976
GTSRB 93.94 (0.44) 93.74 (0.33) -0.20 0.2512 95.51(0.47) 1.56 0.0000
SVHN 90.47 (0.33) 89.99(0.30) -0.47 0.0010 92.30 (0.20) 1.83 0.0000
VGGl16
CIFAR10 92.21 (0.16) 92.38 (0.13) 0.17 0.0234 92.43(0.14) 0.22 0.0042
CIFAR100 67.56 (0.17) 68.07 (0.25) 0.51 0.0000 68.29 (0.18) 0.73  0.0000
Tiny ImageNet 50.00 (0.39) 51.88(0.38) 1.88 0.0000 52.66 (0.27) 2.66 0.0000
ResNet-18
Tiny ImageNet 53.01 (0.35) 53.49 (0.48) 0.48 0.0164 54.31(0.26) 1.30 0.0003
Caltech256 67.70 (0.31) 66.72(0.18) -0.98 0.0000 68.95(0.38) 1.25 0.0000
ResNet-18 (28)2

PathMNIST 85.39 (0.74) 85.98 (0.73) 0.59 0.0876 87.06 (0.59) 1.67 0.0000
PneumoniaMNIST  90.91 (0.78) 90.00(0.92) -0.91 0.0271 91.75(0.55) 0.84 0.0126
BreastMNIST 83.14 (3.71) 86.86 (2.08) 3.72 0.0117 87.66 (1.35) 4.52 0.0007
DermaMNIST 75.16 (0.49) 75.03 (0.41) -0.13 0.2778 75.23(0.37) 0.07 0.5185

OrganAMNIST? 91.12 (0.33) 90.98 (0.30) -0.14 0.3228 91.55(0.23) 0.42 0.0043
OrganCMNIST* 90.27 (0.22) 90.48 (0.17)  0.20 0.0156 90.68 (0.23) 0.41 0.0001
OrganSMNIST? 76.99 (0.37) 76.97 (0.30) -0.01 0.8967 77.27 (0.41) 0.29 0.0240

Note: * p < 0.05 are marked in bold for higher accuracy and in italic for lower accuracy." only first
two layers of SmallCNN were replaced. 2 input image size of 28 x 28. ** § were initialized from the
main and generalized setups based on Bayesian Optimization, accordingly.

—k- RelU, 0=0, acc=53.15%
A, —8— SPA, 0=0, acc=54.07%

—8— SPA, 0=0, acc=52.62%
807 —%- RelU, 0=0, acc=50.20%

Pass-through Ratio, %

Pass-through Ratio, %

f 11.0 1.1 12.0 2.1 13.0 13.1 14.0 14.1

(a) VGG16 (b) ResNet-18

Figure 3: Pass-through ratios for VGG16 (a) for all activation layers and ResNet-18 (b) for activation
layers after skip connection tested on Tiny ImageNet dataset for noise-free (o = 0) case.

Pass-through ratio analysis. Figure 2] compares the distributions of the input and outputs of the
activation functions in the SmallCNN trained on the noise-free CIFAR10 dataset. The SPA layer
nullifies fewer features in the first layer while it takes into account the cross-channels feature de-
pendence. The proposed SPA shifts the feature input distribution before sparsifying more important
(negative) features (see Figure[2b), which can preserve more information and reduce the information
loss caused by the ReLLU layer. However, the last activation SPA layer produces more sparse output
features, which can adjust the sparsity level of the output features according to the input distribution.
This indicates that the SPA layer can improve the network performance and robustness, as well as
enhance the network adaptability and flexibility.

Figure [3a] compares the pass-through ratios (PTRs) of ReLU and SPA activation functions in the
VGG16 network trained on Tiny ImageNet. The results demonstrate how SPA and ReLU differ in
their behavior across the network’s depth. In the early layers of VGG16, SPA allows more features to
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Table 2: Statistical comparison of Accuracy for deep models with ReLU, GELU, and SPA.

Noise Activations
level ™ peLU GELU SPA (ours)
g Accuracy, %  Accuracy, % A p* Accuracy, % A p*

0.1  56.53(0.16) 56.65(0.26) 0.12 0.2361  57.60 (0.17) 1.07 0.0000
CIFAR100, 02 47.32(0.24) 47.37(0.18) 0.05 0.5991  48.37(0.13) 1.04 0.0000
VGG16 0.3  40.72 (0.21) 41.08 (0.24) 0.36 0.0018  41.48 (0.21) 0.76 0.0000
04  35.94 (0.08) 36.08 (0.20) 0.14 0.0536  36.50 (0.22) 0.56 0.0000

0.1 4236 (0.35) 41.69 (0.35) -0.67 0.0007  43.62(0.34) 1.25 0.0003
Tiny ImageNet, 0.2 30.35(0.58) 29.58(0.81) -0.77 0.0015  31.07 (0.76) 0.72 0.0016

ResNet-18 03 23.72(038)  23.18(1.02) -0.54 03413  25.66(1.39) 1.94 0.0238

0.1 6534(047)  64.57(0.39) -0.76 0.0007 6653 (0.36) 1.20 0.0000
Caltech256, 02 6233(034)  62.06(0.35) -027 00998 63.97(0.33) 1.65 0.0000
ResNet-18 03 59.98(0.38)  59.26(0.37) -0.72 0.0002  60.99 (0.33) 1.01 0.0000

04 57.60(0.43)  57.16(0.30) -0.44 0.0126  58.68 (0.35) 1.08 0.0000

0.1 89.39(1.17)  88.96(1.69) -0.43 0.5448  91.01(0.56) 1.62 0.0013
0.2 84.49(3.09) 84.42(3.32) -0.06 09580 89.31(0.57) 4.82 0.0000
03 80.51(5.97) 80.98(6.36) 046 0.8661 88.59(0.77) 8.08 0.0000
04 80.93(4.59)  74.29(7.02) -6.63 0.0237 87.72(3.55) 6.79 0.0020

0.1  73.60 (0.43) 73.78 (0.37)  0.18 0.1560  73.94 (0.30) 0.34 0.0060
DermaMNIST, 0.2  70.74 (0.55) 70.78 (0.77)  0.04 09101  72.16 (0.25) 1.42 0.0000
ResNet-18 (28) 0.3  68.94 (0.66) 68.84 (0.99) -0.10 0.7909  70.81(0.33) 1.87 0.0000
04  67.93(0.92) 68.07 (0.71)  0.15 0.6926  69.77 (0.48) 1.85 0.0001

0.1> 90.58(0.50)  90.47 (0.22) -0.11 0.5414  91.14 (0.26) 0.57 0.0042
OrganAMNIST,  0.2% 87.93(0.43)  87.97(0.45) 0.04 0.8380  89.02(0.26) 1.09 0.0003
ResNet-18 (28) 0.3* 8575(031)  85.10(0.67) -0.65 0.0109 87.68(0.21) 1.93 0.0000
04* 83.61(037) 83.67(0.74) 0.06 0.8229 8549 (0.46) 1.88 0.0000

Pneumonia-
MNIST,
ResNet-18 (28)

Note: * p < 0.05 are marked in bold for higher accuracy and in italic for lower accuracy. 2 input image
size of 28 x 28. ** § were initialized from the main and generalized setups based on Bayesian Optimization,
accordingly.

Table 3: Accuracy of ResNet-18 with ReLU and SPA activations for ImageNet.

Median Acc. for SPA, % | Range for SPA | Median Acc. for ReLU, % | Range for ReLU
66.63% | 66.61%—66.85% | 66.30% | 66.19%-66.57%

pass through compared to ReLU, suggesting that SPA preserves more key low-level features which
are critical to extract higher-level features in deeper layers. This higher pass-through in the initial
layers could contribute to better learning and representation of the data. It is crucial to highlight
that both activation functions show a decrease in PTR as the network deepens. However, ReLU
exhibits a tendency to oversparsify the features due to its simple rectifying operation which allows
only nonnegative elements to pass. This leads to a substantial drop in the PTR, with layers 3 to 11
showing a PTR below 50%, and layers 10 and 11 dropping to as low as 20%.

While the intermediate ReLLU layers severely sparsifies features, the last ReLU layer reverses this
trend by passing more features, with a PTR that is notably higher than 40%. This increase in the
pass-through ratio can be seen as a compensatory effect, attempting to rectify the extreme sparsifica-
tion that occurs in earlier layers. This sudden increase may aim to recover some of the features that
were excessively filtered out by previous layers, but it could also indicate inconsistency in feature
retention across the network.

SPA, on the other hand, appears to manage this trade-off more effectively by gradually reducing
the PTR in deeper layers without abrupt fluctuations, maintaining a more consistent and balanced
feature selection process. This controlled sparsification is likely a contributing factor to its higher
performance compared to ReLU.
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The controlled reduction of PTR in SPA likely encourages better generalization, focusing the net-
work’s attention on the most important features. The difference in PTRs is also reflected in the
performance, as the SPA activation function achieves a higher accuracy of 52.62%, compared to
50.20% for ReLU. This demonstrates that SPA’s dynamic feature passing and sparseness control
throughout the network’s layers may enhance the network’s ability to extract meaningful patterns,
particularly in more complex datasets like Tiny ImageNet.

Similar behaviors of the SPA layers are observed in ResNet-18, trained on the same Tiny ImageNet
dataset as shown in Figure[3b] Both SPA and ReLU tend to reduce the PTR as the network progresses
through deeper layers. As with VGG16, SPA in ResNet-18 shows a more controlled and gradual
reduction in the PTR, allowing more features to pass in the earlier layers while selectively filtering
them as the layers deepen. This leads to a refined representation of features in the later layers.

The PTRs of ReLU in ResNet-18 initially decrease but subsequently increase, suggesting a compen-
satory mechanism for the extensive sparsification occurring in the earlier layers. This compensatory
effect is most pronounced in the final layer, where the PTR becomes markedly higher, as illustrated
in[3b] Asin VGG16, the final layers of ReLU attempt to rectify this by passing more features, re-
sulting in a pass-through ratio higher than expected in the deeper layers. This fluctuation in ReLU’s
feature selection process may lead to inefficiencies, which are somewhat mitigated in SPA. SPA’s
consistent and balanced approach contributes to its slightly better performance, with an accuracy of
54.07% compared to ReLU’s 53.15%.

Therefore, in both VGG16 and ResNet-18, SPA demonstrates its ability to manage feature sparsifi-
cation more effectively, promoting better feature retention and overall network performance.

5 DISCUSSION AND CONCLUSION

This study introduced Simplex Projection Activation (SPA), a novel activation function designed to
enhance the performance of convolutional neural networks (CNNs) by addressing the limitations of
traditional activation functions such as ReLU. Our extensive experimental evaluations across various
domain-specific datasets demonstrate SPA’s superior classification accuracy. This superiority was
consistent across both original and noise-injected data, as confirmed by permutation statistical tests.
Our findings suggest that SPA provides a more robust and efficient mechanism for feature activation,
thereby enhancing the network’s ability to capture complex patterns and improve generalization over
traditional methods.

5.1 LIMITATIONS AND FUTURE WORK

Generalization to other architectures. SPA can be adapted to fully connected architecture by per-
forming along the feature dimension that allows taking into account mutual relations across multiple
neurons of linear layers. Besides, the SPA function’s ability to project features onto a probability
simplex makes it a promising candidate for replacing “softmax” in certain architectures, such as
attention mechanisms, to enforce sparsity or enhance interpretability. In other words, the proposed
activation could be used in other architectures, like transformers and multilayer perception.

Computational complexity. While traditional activation functions like ReLU have O(n) complex-
ity for n elements due to their element-wise nature, SPA introduces an additional computational cost.
This projection involves sorting the feature vectors, resulting in a complexity of O(n log(n)), where
n is the number of channels in the feature tuple. More information about the computational over-
head of SPA is presented in Appendix [G)). For modern deep networks the additional complexity is
manageable, especially in early layers with fewer channels. Thus, developing the faster realizations
of SPA is the point of the future research.

Hyperparameter selection. As a limitation of the proposed activation layer, the necessity of finding
a robust method of defining the parameter ¢ and its training setup should be mentioned. This issue
becomes relevant for large-scale datasets and models. High computational costs impede the use
of iterative parameter search approaches like Bayesian optimization. The proposed method of §
initialization based on the similarity of the output distribution with ReLU can solve this issue but
requires further investigation.

10
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A APPENDIX: SUPPLEMENTARY OUTLINE

This supplementary material describes the experiment setup used in our study, ¢ initialization meth-
ods, and additional results including various activation functions, such as PReLU He et al.| (2015),
ELU |Clevert et al.|(2016), and SELU Klambauer et al.| (2017). The outline of the supplementary is
presented in Table
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Table 4: Supplementary content.

Appendix Description Page
Appendix Datasets and Preprocessing parameters

Appendix Models and training parameters

Appendix Addition results for SmallCNN

Appendix Addition results for deep models

Appendix [F|  § parameter investigation

Computational and time complexity of the SPA layer

B APPENDIX: DATASETS AND PREPROCESSING

A broad range of datasets was used in the experiments, including widely recognized benchmarks:

MNIST [LeCun et al] (1998)], FashionMNIST [Xiao et al|(2017)], CIFAR10/100 [Krizhevsky
2009)], Caltech256 [Griffin et al.| (2006)], and Tiny ImageNet [Le & Yang (2015)].

Additionally, a smaller subset of the CIFAR10 dataset, comprising 5K training and 5K testing
images (referred to as CIFAR10-5K), was created for comparing activation layers on a smaller
dataset.

Furthermore, domain-specific datasets were used to assess the applicability of the SPA layer in
real-world tasks: GTSRB [Houben et al.| (2013))] (traffic signs), SVHN [Netzer et al.| (2011))] (street
view house numbers), and seven biomedical datasets from the MedMNIST |[Yang et al| (2023)
collection (PathMNIST, PneumoniaMNIST, BreastMNIST, DermaMNIST, OrganAMNIST,
OrganCMNIST, and OrganSMNIST).

In addition, experiments with noisy data were performed to evaluate SPA’s robustness, an important
characteristic for real-world applications. Samples were degraded with random Gaussian noise with
zero mean and varying standard deviations (o) to simulate noise. The noise was added to the orig-
inal samples, and the same noisy images were used for training networks with different activation
functions. Ten noisy copies of each dataset were generated, with noise levels set at o = 0.05, 0.1,
0.2, 0.3, and 0.4. The original dataset (¢ = 0) was also included for comparison. This approach
ensures that comparisons between activation functions are based on the same noisy input data.

FashionMNIST

ik

Noise 0.0 Noise 0.1 Noise 0.3 Noise 0.0 Noise 0.1 Noise 0.3 '

Caltech256

Figure 4: Examples of images in the FashionMNIST and Caltech 256 dataset for different noise
levels.

C APPENDIX: MODELS AND TRAINING PARAMETERS

C.1 MODELS

The backbone of the SmallCNN model consists of 3 convolution layer followed by MaxPool, Batch
Normalization and activation function. The head part of the SmallCNN consists of one Flatten and
one Fully Connected (FC) layer. The SmallCNN architecture is depicted in Fig. [3]

The used VGG16 model consisted of a convolutional neural network (CNN) backbone and a small
head consisting of a flatten layer and a fully connected layer. The head was used to transform CNN
features (output of the backbone) into predicted classes. The backbone consisted of several stacks
of a convolutional layer, batch normalization, and ReL U, separated by maxpool layers with a 2x2
kernel and stride of 2. Each convolutional layer had 3 x 3 kernel size, padding, and stride equaled 1.

13
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Table 5: Datasets description.

Dataset | Samples | # classes | image-size | Description

MNIST | 70,000 | 10 | 28x28x1 | The classic handwritten digit dataset.
FMNIST | 70,000 | 10 | 28x28x1 | The dataset of Zalando’s article images.
CIFARI10 | 60,000 | 10 | 32x32x3 | The CIFAR-10 is a dataset of 10 classes.
CIFAR100 | 60,000 | 100 | 32x32x3 | Like CIFAR-10, but with 100 classes.
GTSRB | 52,000 | 43 | WxHx3 | The German Traffic Sign Benchmark.
SVHN | 600,000 | 10 | 32x32x3 | The Street View House Numbers.

Tiny ImageNet | 100,000 | 200 | 64x64x3 | The tiny version of ImageNet.
ImageNet | 14,197,122 | 1,000 | WxHx3 | A large dataset for image recognition.
Caltech256 | 30,607 | 257 | 64x64x3 | A superset of the Caltech-101 dataset.
PathMNIST | 107,180 |9 | 28x28x3 | Colon Pathology part of MedMNIST.
PneumoniaMNIST | 5,836 | 2 | 28x28x1 | Chest X-Ray part of MedMNIST.
BreastMNIST | 870 | 2 | 28x28x1 | Breast Ultrasound part of MedMNIST.
DermaMNIST | 10,015 | 7 | 28x28x3 | Dermatoscope part of MedMNIST.
OrganAMNIST | 58,830 | 11 | 28x28x1 | Abdominal CT A part of MedMNIST.
OrganCMNIST | 23,583 | 11 | 28x28x1 | Abdominal CT C part of MedMNIST.
OrganSMNIST | 25,211 | 11 | 28x28x1 | Abdominal CT S part of MedMNIST.

Table 6: Dataset training/test parameters for SmallCNN, ResNet-18 and VGG16.

Dataset Epochs Train preprocessing Test preprocessing

MNIST 200 resize(32x32)

FMNIST .
resize(32x32)

SVHN 200

GTSRB

CIFARI10

CIFAR100 350 resize(32x32), RandCrop’, resize(32x32),

CIFARI10-5K RandomFlip, Normalize?34 Normalize?34?

Tiny ImageNet 300

ImageNet 70 . 1 as train

Caltech256 300 resize(256x256), CenterCrop-, procedure

resize(224x224), Normalize®0

Note: ! crop size = 32x32, padding = 4; 2CIFAR10: mean = [0.4914, 0.4822, 0.4465], std = [0.2023, 0.1994,

0.2010]; 2CIFAR100: mean = [0.5071, 0.4867, 0.4408], std = [0.2675, 0.2565, 0.2761]. * Tiny ImageNet:
mean = [0.480, 0.448, 0.398], std = [0.272, 0.266, 0.274]. ® ImageNet: mean = [0.485, 0.456, 0.406], std =
[0.229, 0.224, 0.225].

The structure of the VGG16 model with the number of channels for convolutional layers is presented
in Table[7l

The ResNet-18 model employed follows a residual network architecture, which uses skip connec-
tions to allow gradients to pass through deeper layers more effectively. he network consists of 18
layers, including convolutional layers with 3x3 kernels, batch normalization, and ReLU activation.
Four residual blocks are employed, each increasing the number of channels (64, 128, 256, and 512)
while reducing the spatial resolution. MaxPooling is applied after the first convolutional layer, and
the final classification layer is a fully connected layer preceded by a global average pooling layer.
Dropout is used in intermediate layers to prevent overfitting.

14
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Figure 5: The SmallCNN model architecture. Each convolution layer has 3x3 kernel size and
padding = 1. Each MaxPool layer was used with 2x2 kernel and stride = 2.

Table 7: VGG16 structure. Each conv2d layer is followed by batch normalization and ReLU. Kernel
size is 33, padding and stride equal to 1. Each maxpool layer has 2x2 kernel and stride of 2. All
blocks are stacked sequentially.

CNN backbone Head
blockl | block2 | block3 | block4 | block5 |

conv2d, 64 | conv2d, 128 | conv2d, 256 | conv2d, 512 | conv2d, 512 | flatten
conv2d, 64 | conv2d, 128 | conv2d, 256 | conv2d, 512 | conv2d, 512 | FC
maxpool maxpool | conv2d, 256 | conv2d, 512 | conv2d, 512
maxpool maxpool maxpool

C.2 TRAINING PROCEDURE

For SmallCNN, the training procedure was conducted with learning rate: ir = 0.3 - 1074, batch
size: 128, Adam optimiser [Kingma & Bal(2015)] with 5; = 0.9, B2 = 0.999. No learning rate
schedule was used. The training procedure of SmallCNN consisted of 200 epochs for MNIST and

FashionMNIST datasets, 350 epochs for CIFAR10 and CIFAR100 datasets, and 50 epochs for
GTSRB and SVHN.

For VGG model and CIFAR10/100 datasets, the same training procedure was applied for 200
epochs.

For Tiny ImageNet and Caltech256 dataset, SGD optimizer with 4 = 0.9 and Ir = 0.01
was used for 300 epochs. In addition, weight decay parameter (¢ regularization) of 5 - 10~* was
set up, which provides higher results together with learning rate schedules. The step learning rate

(updated every 100 epochs) and cosine learning rate decreasing (7' = 300) was used for ResNet-18
and VGG16, accordingly.

The ImageNet dataset was tested using an SGD optimizer with /7 = 0.004 for 70 epochs, with the
learning rate decreasing 50 times on the 50th epoch.

For MedMNIST datasets, the training parameters followed the setup in [Yang et al| (2021): 100
epochs with Adam optimizer, learning rate decreasing by 10 at 50-th and 75-th epochs. The input
images of size 28 x 28 were converted to RGB format and normalized.

D APPENDIX: ADDITION RESULTS FOR SMALLCNN

The results for of statistical comparison of Best Accuracy under independent noise versions of
SmallCNN with ReLU, GELU, and SPA activations are presented in Table @

To gain deeper insights into the performance of various activation functions, we conducted addi-
tional experiments by incorporating other commonly used activation functions into our analysis.
These experiments aimed to provide a broader comparison and understand how these functions per-
form under different conditions. We constructed boxplots to assess the accuracy achieved by neural
networks utilizing PReLU |[He et al.| (2015)), ELU |Clevert et al.|(2016), and SELU Klambauer et al.
(2017) activation functions. These performances were evaluated across different noise levels using
the CIFAR10 and FashionMNIST datasets, as shown in Figure@ The results revealed that, gen-
erally, these activation functions, PReLU, ELU, and SELU, tended to yield lower accuracies than
ReLU, GELU, and SPA.
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Table 8: Statistical comparison of Best Accuracy under independent noise versions of SmallCNN
with ReLU, GELU, and SPA activations.

Noise Activation
level
ReLU GELU SPA (ours)
7 Accuracy, %  Accuracy, % A p* Accuracy, % A p*

0.1 7826 (0.14)  78.45(0.15 0.9 0.0119  78.61(0.14) 0.35 0.0001
0.2 7136 (0.27)  71.62(0.10) 0.26 0.0064  71.99 (0.20) 0.64 0.0000
0.3 65.61 (0.21)  65.77(0.30)  0.16 0.1825 66.16 (0.21) 0.55  0.0000
0.4 60.64 (0.35)  60.73(0.26) 0.09 0.5234  61.25(0.18) 0.60 0.0003

0.1 65.11 (0.56) 65.39 (0.30) 0.28 0.1861 65.16 (0.48) 0.05 0.8467
CIFAR10- 0.2 59.44 (0.29) 59.19 (0.45) -0.25 0.1499 59.71 (0.53) 0.27 0.1681
5K 0.3 54.18 (0.38) 54.23(0.47) 0.05 0.7925 54.80 (0.43) 0.62 0.0031
04 50.23 (0.34) 50.07 (0.48) -0.17 0.3800 50.89 (0.62) 0.66 0.0091

0.05 54.39 (0.24) 54.41(0.27) 0.01 0.9103 54.34 (0.22) -0.05 0.6193
0.1 50.32 (0.22) 50.39 (0.28)  0.07 0.5348 50.61 (0.22) 0.30 0.0090
0.2 43.51 (0.21) 43.48 (0.18) -0.02 0.8020 43.71 (0.07) 0.21  0.0085
0.3 38.01 (0.23) 38.09 (0.19)  0.08 0.4230 38.28 (0.15) 0.27 0.0067

Note: * p < 0.05 are marked in bold. * only first two layers of SmallCNN were replaced for CIFAR100.

CIFAR10

CIFAR100*

More statistical comparisons for MNIST, FashionMNIST, GTSRB and SVHN are presented in
Table [O] The data in the Table indicates that, on average, the SPA layers tends to converge to
local minimum with higher accuracy compared to the ReLU activation function. This observation
is statistically significant and consistent across the MNIST, FashionMNIST, GTSRB and SVHN
datasets, as well as at all levels of noise introduced in the tests.
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Figure 6: Boxplot analysis of performance of SmallCNN models with different activation layers for
the FMNIST and CIFAR10 datasets corrupted at different noise levels o = {0,0.1,0.2,0.3,0.4}.

E APPENDIX: ADDITION RESULTS FOR DEEP MODELS

This section presents additional results for deep models, such as VGG16 and ResNet-18, on various
datasets (e.g., Tiny ImageNet, Caltech 256,PathMNIST, and other medical datasets). The
graphs show a comparison of accuracy between SPA, ReLU, and GELU activations for each of the
models. As can be seen, for most noise and datasets, SPA activation performs better than ReLLU and
GELU, confirming its effectiveness in a variety of task conditions.
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Table 9: Statistical comparison of Accuracy of SmallCNN with ReLU, GELU, and SPA activations

for noisy datasets.

Noise Activations
level ReLU GELU SPA (ours)
Accuracy, %  Accuracy, % A p* Accuracy, % A p*

MNIST

0.1 99.43 (0.03)  99.42(0.04) -0.01 0.4218 99.51 (0.04) 0.08 0.0004

0.2 99.23 (0.07)  99.22 (0.04) -0.01 0.7017 99.29 (0.05) 0.07 0.0257

0.3 98.91 (0.07)  98.86 (0.07) -0.05 0.1640 98.99 (0.05) 0.08 0.0075

0.4 98.39(0.13)  98.36(0.11) -0.02 0.6551 98.55 (0.06) 0.16 0.0023

FashionMNIST

0.1 89.27(0.14)  89.32(0.13) 0.04 0.4961 89.68 (0.10) 0.40 0.0000

0.2 86.87 (0.25)  86.95(0.24) 0.07 0.5119 87.52 (0.18) 0.64 0.0000

0.3 84.98 (0.11)  84.88(0.17) -0.10 0.1347 85.64 (0.33) 0.66 0.0000

0.4 82.92 (0.25)  83.00(0.17) 0.08 0.4068 83.75 (0.22) 0.83 0.0000
GTSRB

0.1 82.67 (1.05)  83.06(0.50) 0.40 0.3011 84.94 (0.66) 2.28 0.0001

0.2 68.88 (0.80)  69.41(0.83) 0.53 0.1655 72.23 (0.33) 3.35 0.0000

0.3 58.66 (0.43)  58.60 (0.67) -0.06 0.8310 61.90 (0.73) 3.25 0.0000

0.4 51.41(0.72)  51.62(0.61) 0.21 0.4920 53.80 (0.70) 2.39 0.0000
SVHN

0.1 85.68 (0.33)  85.67 (0.22) -0.01 0.9027 87.98 (0.11) 2.30 0.0000

0.2 79.30 (0.17) 79.13(0.11) -0.17 0.0045 81.34 (0.23) 2.04 0.0000

0.3 72.34(0.29)  72.30(0.26) -0.05 0.6585 74.09 (0.25) 1.75 0.0000

0.4 65.82(0.40)  65.48(0.29) -0.34 0.0169 67.18 (0.27) 1.36 0.0000

Note: * p < 0.05 are marked in bold

The comparison for the VGG16 model on the Tiny ImageNet dataset can be seen in the Figure[/]
and for ResNet-18 on the same dataset in the Figure @ Also, the results for ResNet-18 on the
Caltech 256 dataset are shown in the Figure[9]

Results for medical dataset (MedMNIST) are presented for PathMNIST (Figure ,
PneumoniaMNIST (Figure [[I), BreastMNIST (Figure [I2), DermaMNIST (Figure [[3),
OrganAMNIST (Figure[[4), OrganCMNIST (Figure[I3), and OrganSMNIST (Figure[I6). The 3
versions of coefficients are presented the last three datasets. “BO, best” refers to the mean setup in
the main text. “BO, average” refers the generalized setup in the main text. Simple, “SPA” refers to
the ones multipliers.

The Table [T1] shows a comparison of the accuracy of models with different activations (ReLU,
GELU and SPA) on data with different noise levels. Testing was carried out on several datasets,
including CIFAR100, Tiny ImageNet and Caltech 256, for the VGG16 and ResNet-18
models. This is a more extended table of the one that was in the main text. The table shows the
accuracy for different noise levels, as well as the difference (A) between the accuracy of GELU
and SPA activations compared to ReLU. As can be seen from the table, SPA activation shows better
results compared to Rely at almost all noise levels for all datasets.

Large-scale dataset. For ImageNet dataset, the results for Resnet-18 models are presented in
Table Due to the computation power restriction, each trial consisted of 70 epoch.

Table 10: Accuracy of with ReLU and SPA activations for ImageNet.

Activation | Median Accuracy | Range | #trials | Model
ReLU 66.30% 66.19%—-66.57% 5 ResNet-18
SPA 66.74% 66.61%—66.85% 4
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Table 11: Accuracy of different nets with ReL.U, GELU, and SPA activations for noise data.

Noise Activations
level RelLU GELU SPA
Acc., % Acc., % A p* Acc., % A p*

CIFAR100, VGG16
0.0 67.56 (0.17)  68.07 (0.25) 0.51 0.0000  68.29 (0.18) 0.73  0.0000
0.1 56.53 (0.16) 56.65(0.26) 0.12 0.2361 57.60 (0.17) 1.07  0.0000
0.2 47.32(0.24) 4737 (0.18) 0.05 0.5991 48.37 (0.13) 1.04  0.0000
0.3 40.72 (0.21)  41.08 (0.24) 0.36 0.0018  41.48 (0.21) 0.76  0.0000
0.4 3594 (0.08) 36.08 (0.20) 0.14 0.0536  36.50 (0.22) 0.56  0.0000

Tiny ImageNet (cos) %, VGG16

0.0 50.00 (0.39) 51.88(0.38) 1.88 0.0000  52.66 (0.27) 2.66 0.0000
0.05 47.78 (0.28)  49.47 (0.30) 1.68 0.0002  49.53(0.19) 1.74  0.0008
0.1 42.17 (0.28) 41.70(0.47) -0.48 0.0118  41.89(0.36) -0.29  0.0650
0.2 31.18 (0.34) 27.71(0.75) -3.46 0.0002 29.27(0.67) -1.91  0.0002
0.3 24.13 (0.54) 20.86 (0.77) -3.27 0.0002 23.10(0.47) -1.03  0.0023

Tiny ImageNet (step) >, ResNet-18
0.0 53.01 (0.35) 53.49(0.48) 0.48 0.0156  54.31 (0.26) 1.30  0.0003
0.05 49.84 (0.31) 49.94(0.27) 0.10 0.5197  50.78 (0.33) 0.93 0.0016
0.1 42.36 (0.35) 41.69(0.35) -0.67 0.0007  43.62(0.34) 1.25 0.0003
0.2 30.35(0.58) 29.58(0.81) -0.77 0.0015  31.07 (0.76) 0.72 0.0016
0.3 23.72(0.38) 23.18(1.02) -0.54 0.3413  25.66 (1.39) 1.94 0.0238

Caltech 256 ®°, ResNet-18°
0.0 67.70 (0.31)  66.72 (0.18) -0.98 0.0000  68.95(0.38) 1.25  0.0000

0.1 65.34 (0.47) 64.57(0.39) -0.76 0.0007  66.53(0.36) 1.20  0.0000
0.2 62.33 (0.34) 62.06 (0.35) -0.27 0.0998 63.97 (0.33) 1.65  0.0000
0.3 59.98 (0.38)  59.26 (0.37) -0.72 0.0002 60.99 (0.33) 1.01  0.0000

0.4 57.60 (0.43) 57.16(0.30) -0.44 0.0126  58.68 (0.35) 1.08  0.0000

Note: * p < 0.05 are marked in bold for higher accuracy and in italic for lower accuracy
! § were trained with smaller weight decay in 0.3 times than other model parameters

2 cosine learning rate schedular was used for training

3 § were trained with smaller weight decay in 0.1 times than other model parameters

4 step learning rate schedular was used for training

5 § were trained with smaller weight decay in 0.08 times than other model parameters

6 Base version of ResNet-18 was used (as for ImageNet (input image of 224 x 224))

F APPENDIX: 0 PARAMETER INITIALIZATION

F.1 PARAMETER SEARCH FOR SMALLCNN

Figure illustrates the average and peak accuracy levels achieved by the SmallCNN model when
employing SPA layers initialized with various § values. These experiments were carried out on the
CIFAR10 dataset without any added noise. For each § setting, five separate trials were conducted.
The value of § = 20 yielded the highest accuracy, along with a robust average accuracy, making it the
preferred choice for the base initialization in subsequent experiments. It is important to highlight that
the selected value J represents the lower limit of the initialization range, with d;,,;+ being uniformly
distributed between ¢ and 0 + 1, denoted as &;,,;¢ ~ U[0, + 1].

The evolution of the § parameter initialized with 6 = 20 for the SmallCNN with CIFAR10 dataset is
presented in Figure One can observe that § values did not converge in 350 epochs. In addition,
the graph line of the third layer is notably different from the graphs of the first two layers, which
implies that the diverse ¢ for different layers can be beneficial.

To estimate the influence of the learnability of the § parameter and the number of replaced layers,
we conducted statistical comparisons for four different SPA setups presented in Table[I2] The com-
parison with the ReLU layer is presented in Table[T3] The comparison between SPA (fixed) and SPA
is presented in Table The boxplot representation of the comparisons is presented in Figure
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Figure 7: Accuracies for VGG16 for SPA, ReLU and GELU for Tiny ImageNet.
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Figure 8: Accuracies for ResNet-18 for SPA, ReLU and GELU for Tiny ImageNet.

From Table[T4] we can conclude that there is no statistically significant difference between choosing
the best parameter and fixing it or leaving it trainable. According to our experiments from Table [T3]
when we replace all ReLU layers with SPA the results are better than when we replace only first two

layers.

F.2 PARAMETER SEARCH FOR VGG16

Our evaluation of the VGG16 deep learning model on the CIFAR10 dataset revealed that the initial-
ization of the § parameter significantly influences the model’s final accuracy. To optimize the initial

¢ setting, we employed various strategies:

 Layer-Specific Initialization (Setup 1): We assigned unique ¢ values to each layer.
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Figure 9: Accuracies for ResNet-18 for SPA, ReL.U and GELU for Caltech dataset.
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Figure 10: Accuracies for ResNet-18 for SPA, ReLU and GELU for PathMNIST.

Table 12: Different SPA setups. The § was initialized from uniform distribution. Replaced ReL.U

layers: with other activations, SmallCNN has 3 ReL.U layers.

Label | Learnable |  dini¢ | Replaced layers
SPA (fixed) all

SPA (fixed, 2 layers) | O | Y02 g one
SPA all

SPA (2 layers) Yes u(20,21] 1t and 2"

* Trained Parameter Initialization (Setup 2): We initialized the SPA layers using the final
trained ¢ values from a previous run and retrained the model.
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Figure 11: Accuracies for ResNet-18 for SPA, ReLU and GELU for PneumoniaMNIST.
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Figure 12: Accuracies for ResNet-18 for SPA, ReLU and GELU for BreastMNIST.

* Uniform Initialization (Identical): We tested a uniform § value across all layers

* Selective SPA Layer Initialization (2 layers): We replaced only the first two ReLU layers

with SPA layers, maintaining the same initial J.

The 0 values for these initialization methods are detailed in Table[I3] and the corresponding accuracy
distributions are illustrated in Figure [20] All experiments were performed on noise-free CIFAR10

data.

F.3 DELTA INITIALIZATION BASED ON THE SIMILARITY BETWEEN THE EFFECTS OF THE

SPA AND RELU ON OUTPUT DISTRIBUTION

For the relatively big datasets and deep neural networks, we suggest using the approach based on the
similarity between the effects of the SPA and ReLU on the output distribution. For the normalized
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Figure 14: Accuracies for ResNet-18 for SPA, ReLLU and GELU for OrganAMNIST.

Gaussian input distribution (0, 1), we can initialize § as 0.4 - C, where C'is a number of channels.
In this case, the form and mean value of the output distribution and pass-through ratio for SPA and
ReL.U actvations will be similar. This method means that for the § will be the same for the same
number of channels. The coefficient 0.4 is the mean value of output distribution of the ReLLU.

F.4 DELTA INITIALIZATION FROM BAYESIAN OPTIMIZATION

The used ResNet-18 module includes 17 activation layers; however, there are only 4 numbers of
channels: 64, 128, 256, and 512. For this number of channels, the delta was initially set based on
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Figure 15: Accuracies for ResNet-18 for SPA, ReLU and GELU for OrganCMNIST.
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Figure 16: Accuracies for ResNet-18 for SPA, ReLU and GELU for OrganSMNIST

the similarity between the effects of the SPA and ReLU on output distribution. The 5 or 6 layers of
different multipliers were considered for Bayesian optimization search: for the very first activation
layer, for 4 ResNet blocks (layers), the ResNet-18, and the very last activations as the 6-th multiplier.

The search range was set from 0.1 to 6 with step 0.1.
23



Under review as a conference paper at ICLR 2025

—8— Max —— 6 of layer 1
Mean 22.0 4 6 of layer 2
85.0
21.5 4 —— 6 of layer 3
21.0 A
X 84.5
z 20.5
© w
=)
£ 8401 2001
19.5
83.51 19.04 \\\
18.5
5 10 15 20 25 30 35 0 100 200 300
Ginit Epoch
(a) (b)
Figure 17: ¢ value selection. @) Maximum and mean accuracy over 5 trials for SmallCNN with
SPA layers with different 6. The presented § values are the low bound of the uniform distribution
(EI) Evolution of ¢ parameter during training process.
. SPA (fixed)
noise=0.0 B SPA (fixed, 2 layers)
085 |l = B SPA
ES _— H =
s "0'5;0'05 B SPA (2 layers)
0.80 - TETF noise=0.1 RelU
FaFLo
X
3 0.75
§ noise=0.2
3 . _9
2 FErE=L
0.70 -
noise=0.3
0.65 TEFE=
noise=0.4
0.60 - TE=£=
§§587 §8887 §8887F §8887F §858F §85§83F
€5 &% €5 &% €5 &% €5 &% €5 &% £5 &°
R LI O L T L
o < o < kel < ksl < ksl < i<} <
] Q ] Q ] Q 7] Q 7] QU o aQ
g 2] g 2] g 2] g 2] g 2] é( 2
X NS NS NS NS NS
& & & & & &
Activation layer for different noise levels

Figure 18: Boxplot of comparison of SPA layer with different § parameters for different noise levels

and for CIFAR10 dataset.
G APPENDIX: COMPUTATIONAL AND TIME COMPLEXITY OF THE SPA

LAYER

G.1 COMPUTATIONAL COMPLEXITY
Let’s consider one cross-channel vector in a feature map with size C. A ReLU activation will process
this vector element-wise with O(C') computational complexity. For SPA, we need to clamp the shift
@ where the set Z

or satisfying the

input according to[9} The shifting parameter v can be calculated according to
is the largest I elements {21, ...,z } such that the smallest element z; > Z7 —
condition (8] All the mentioned calculations can be done element-wise with O(CS with the already
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Table 13: Comparison of SPA layer with different § parameters with respect to ReLU for different
noise levels and for CIFAR10 dataset.

Activations | Noise | mean (std) | A | p* | t | nl/n2
00 | 84.27(0.22) | 0.000 | -[2020
0.05 | 81.25(0.23) | 0.000 S -] 20n20
0.1 | 77.95(0.22) | 0.000 1 -] 20n0
ReLU (base) |5 | 71107 (0.23) | 0.000 ] - | 20120
03 | 64.84 (0.14) | 0.000 S - ]20n20
04 | 59.90(0.17) | 0.000 1 -] 20n20
0.0 | 84.54(0.23) | 0.270 | 0.0008 | 3.77 | 20/20
0.05 | 81.66 (0.18) | 0.410 | 0.0000 | 6.36 | 20/20
0.1 | 78.46(0.17) | 0.510 | 0.0000 | 8.17 | 20/20
SPA (fixed) 0.2 | 71.41(0.24) | 0.340 | 0.0001 | 4.63 | 20/20
03 | 65.40 (0.30) | 0.560 | 0.0000 | 7.60 | 20/20
0.4 | 60.27(0.28) | 0.370 | 0.0000 | 4.97 | 20/20
00 | 8443 (042) | 0.160 | 0.0552 | 1.97 | 20/20
0.05 | 81.35(0.27) | 0.100 | 0.1957 | 1.32 | 20/20
SPA (fixed, 0.1 | 77.91(0.23) | -0.040 | 0.6022 | -0.52 | 20/20
2 layers) 02 | 71.18(022) | 0.110 | 0.1476 | 1.48 | 20/20
03 | 65.09(0.24) | 0.250 | 0.0003 | 4.10 | 20/20
0.4 | 60.25(0.21) | 0.350 | 0.0000 | 5.67 | 20/20
0.0 | 84.57(0.19) | 0.300 | 0.0000 | 5.19 | 20/20
0.05 | 81.77 (0.25) | 0.520 | 0.0000 | 6.95 | 20/20
SPA 0.1 | 78.46(0.25) | 0.510 | 0.0000 | 6.82 | 20/20
02 | 71.43(0.37) | 0.360 | 0.0005 | 3.68 | 20/20
03 | 65.23(0.32) | 0.390 | 0.0000 | 5.02 | 20/20
0.4 | 60.25(0.21) | 0.350 | 0.0000 | 5.72 | 20/20
0.0 | 84.54 (0.45) | 0.270 | 0.0034 | 3.18 | 20/20
0.05 | 81.40 (0.27) | 0.150 | 0.0589 | 1.95 | 20/20
SPA Qlayersy | 01 | 78:11(0.29) | 0.160 | 00505 | 2.02 | 20120
02 | 7121(028) | 0.130 | 0.1124 | 1.62 | 20/20
03 | 65.03(0.22) | 0.190 | 0.0020 | 3.29 | 20/20
0.4 | 60.19(0.30) | 0.290 | 0.0004 | 3.80 | 20/20

Table 14: Comparison of SPA layer with fixed and learnable parameters with respect to each other.

Noise = Mean (std) of accuracy, % Stat. parameters

level SPA SPA (fixed) A p* t nl/n2
0.0 84.57 (0.19) 84.54(0.23) -0.030 0.5918 -0.55 20/20
0.05 81.77(0.25) 81.66(0.18) -0.110 0.1033 -1.67 20/20
0.1 78.46 (0.25) 78.46 (0.17) 0.000 0.9916 0.01 20/20
0.2 71.43 (0.37) 71.41(0.24) -0.020 0.8696 -0.17 20/20
0.3 65.23 (0.32) 65.40(0.30) 0.170 0.0943 1.73 20/20
0.4 60.25 (0.21) 60.27 (0.28) 0.020 0.8035 0.24 20/20

defined set Z. The implemented algorithm of set Z identification consists of sorting, cumulative
sum, and several simple element-wise operations. All of them have O(C') complexity except the
sorting operation. The fastest sorting algorithms have computation complexity O(n log(n)), which
is the speed bottleneck compared to other operations. Therefore, the implemented SPA layer has
O(C'log(C)) computation complexity.

It should be noted that to identify set Z we need to find only the minimum element of ;. Then, we
can define the full set Z by selecting all the elements of the input that are greater than or equal to
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Figure 19: Shifting values (v*) of the update rule (EI) for SmallCNN on noise-free CIFAR10 dataset.

Table 15: The § values for different initialization methods for VGG16. The initialization of § is:
Oinit ~U[', 0" + 1].

. o

Convolutional Layers Identical 2 layers Setup 1 Setup 2
1 blockl.conv2d.64 20 20 20 20
2 blockl.conv2d.64 20 20 20 22
3 block2.conv2d.128 20 - 30 33
4 block2.conv2d.128 20 - 30 34
5 block3.conv2d.256 20 - 50 57
6 block3.conv2d.256 20 - 50 58
7 block3.conv2d.256 20 - 50 59
8 block4.conv2d.512 20 - 80 90
9 block4.conv2d.512 20 - 80 86
10 block4.conv2d.512 20 - 80 83
11 block5.conv2d.512 20 - 80 80
12 block5.conv2d.512 20 - 80 80
13 block5.conv2d.512 20 - 80 83

z7. Hence, the sorting of all elements is excessive, and faster implementations of a SPA layer are
possible.

The conclusions above are related to one tuple along the channels dimension with a size of
C. The full computational complexity of the feature map with a size of B x C' x H x W is
O(BHW Clog(C)) for SPA and O(BHW C') for ReLU.

G.2 TIME COMPLEXITY EXPERIMENTS

To test the real time consumption, we have collected the evaluation and training time for one epoch
for ResNet-18 on the Tiny-ImageNet dataset. The time complexity tests were conducted for the GPU
NVIDIA RTX 2080 SUPER with CUDA 11.1, Python 3.9.13, PyTorch 1.13.1, and 2x CPU: AMD
EPYC 7352 24-Core Processor. The results are presented in Table [[6] Deep models (ResNet-18
and VGG-16) with SPA activations showed approximately 3 times more evaluation time and 2 times
more training time than with ReLU activation functions. However, SPA tends to find the optimal
point faster than ReLU, as can be seen based on the difference in the best epoch. In other words,
more computation consumption of the SPA can be compensated for by faster finding of the optimal
local minimum for some cases (ResNet-18).
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Figure 20: Boxplot of VGG16 model accuracy across various ¢ initialization methods on CIFAR10
dataset.

Table 16: Time comparison of ResNet-18 and VGG-16 and SmallCNN with ReL U and SPA activa-
tions on Tiny-ImageNet.

Activation | evaluation time, s | train time, s | best epoch, mean (std)

ResNet-18
RelLU 2 48 239.4 (47.2)
SPA ‘ 6 92 ‘ 104.0 (2.4)
VGG16
ReLU 1 26 283.5(6.2)
SPA ‘ 3 ‘ 49 ‘ 280 (8.3)
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