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Abstract—The present article proposes to reconstruct a ban-
dlimited signal from nonuniform samples by a sliding peri-
odization of the nonuniformity and successive approximations.
When the nonuniformity consists of bounded deviations of the
sampling instants from a uniform grid, the reconstruction can
be made arbitrarily accurate either by increasing the period
of the periodizations or by increasing the number of successive
approximations.

I. INTRODUCTION

While event-based sampling is attracting increasing atten-
tion due to a number of advantages on the encoding side,
including higher precisions of signal acquisition and lower
power consumptions, one is faced with the difficult topic of
signal reconstruction from nonuniform generalized samples
on the decoding side. This research started all the way from
the 50’s [1], [2] for the basic case of point sampling, with
later developments in [3], [4], [5]. Iterative reconstruction
algorithms were more recently introduced in [6], [7] for
integration-based sampling that has proved particularly suit-
able for time encoding. Meanwhile, non-iterative methods for
the bandlimited interpolation of nonuniform point samples
have been developed in a number of papers including [8],
[9], [10]. For that same context of point sampling, we focus
in this article on iterative signal reconstructions which aim
at successive approximations with simplified implementations.
We propose a new principle of iteration that mixes the frame
algorithm of [1] with special Lagrange interpolators from [2].

For the reconstruction of a signal x(t) in a given
space of bandlimited functions B from nonuniform samples
(x(tn))n∈Z, the method of [1] can be interpreted as finding
functions (fn(t))n∈Z of B that depend on (tn)n∈Z and such
that the linear transformation

Fu(t) :=
∑
n∈Z

u(tn) fn(t) (1)

is close enough to the identity operator I on B. The require-
ment is more specifically that ‖I − F‖ < 1, where ‖ · ‖
designates the operator norm on B. Then the iteration of

u(k+1)(t) = u(k)(t) + F
(
x(t)−u(k)(t)

)
, k ≥ 0. (2)
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is guaranteed to converge to x(t). While the authors of [1]
chose fn(t) to be a sinc function shifted at tn with some
constant scaling factor, we propose in this paper to take for
each n the ideal reconstruction function that would be obtained
if the sampling nonuniformity was N -periodic while matching
exactly the N closest sampling instants to tn. The explicit
expression of this function is indeed available and given in
[2]. In the case where the instants (tn)n∈Z are deviations
from the Nyquist instants by not more than half the Nyquist
period, we show numerically that the rate of convergence of
(2) is increasingly fast with increasing N . We also compare
our results with the iterative methods of [1], [11] and [9].

II. METHOD OF SUCCESSIVE APPROXIMATIONS

We start by explaining in more details the convergence
properties of (2).

A. Successive approximations by contraction

The iteration of (2) can be formulated as

u(k+1)(t) :=Mxu
(k)(t) (3)

where Mxu(t) = (I − F )u(t) + Fx(t), u(t) ∈ B.

The norm ‖A‖ of an operator A on B is by definition the supre-
mum value of ‖Au(t)‖/‖u(t)‖ over u(t) ∈ B\{0}, where ‖·‖
is here the L2-norm. Then Mx is a contraction of B whenever
‖I − F‖ < 1. In this case, it is known that Mx has a unique
fixed point [12, §1.2], and the iterates of (3) systematically
tend to this point. Since Mxx(t) = x(t), we conclude that
u(k)(t) tends to x(t), thus achieving perfect reconstruction.
Moreover, as Mxu(t)− x(t) = (I − F )(u(t)−x(t)),

‖u(k)(t)−x(t)‖ ≤ ‖(I − F )k‖ ‖u(0)(t)−x(t)‖ (4)

≤ ‖I − F‖k ‖u(0)(t)−x(t)‖.

Thus, ‖I − F‖ gives an upper bound on the rate of conver-
gence.

B. Tight condition of convergence

We will see in certain cases that (3) converges even when
‖I − F‖ > 1. As can be seen in (4), it is in fact sufficient
that ‖(I − F )k‖ be less than 1 for some k ≥ 1 for (3)
to converge. Mathematically, this happens exactly when the



spectral radius ρ(I − F ) of I − F is less than 1 due to
the relation ρ(A) = limk→∞ ‖Ak‖1/k [13, §4.2]. In finite
dimension, note that ‖I − F‖ is the largest singular value of
I−F while ρ(I−F ) is the largest magnitude of its eigenvalues.
The rate of convergence of (3) is asymptotically governed by
ρ(I − F ) as ‖(I − F )k‖ ≤ (ρ(I − F )+ε)k for any arbitrarily
small ε > 0 and large enough k.

C. Discrete-time iteration

The iteration of (2) takes place in the space B of continuous-
time bandlimited signals. In common signal processing cul-
ture, one implicitly thinks of discretizing (2) by sampling its
functions at the Nyquist rate (or at the instants n ∈ Z in the
present signal setting). This however makes Fu(t) in (1) a
double sum since u(tn) is itself a sum in terms of the Nyquist
samples of u(t), and such a double summation would need
to be repeated at each iteration of (2). This can be avoided
as follows. With the initial iterate u(0)(t) = 0 (which actually
leads to u(1)(t) = Fx(t)), it is easy to see from (2) and (1)
that u(k)(t) remains in the linear span of (fn(t))n∈Z. So for
each k ≥ 0, u(k)(t) is of the form

u(k)(t) =
∑
n∈Z

c(k)

n fn(t) (5)

for some coefficients (c(k)
n )n∈Z. Suppose we recursively con-

struct these coefficients by

∀n ∈ Z, c(k+1)

n := c(k)

n + x(tn)−
∑
m∈Z

c(k)

m fm(tn) (6)

for k ≥ 0 starting from c(0)
n := 0. After noticing from (5)

that the last term of (6) is u(k)(tn), we have c(k+1)
n := c(k)

n +
x(tn)− u(k)(tn). Then, by injecting this into (5) at k+1, one
retrieves the recursive relation of (2). Aiming at the estimate
u(`)(t), one then just needs to iterate ` times the discrete-time
operation of (6) (with only a single summation), before getting
the continuous-time function u(`)(t) from (5) at k = `.

III. IDEAL BANDLIMITED INTERPOLATION

To find functions (fn(t))n∈Z that make the operator F of
(1) close to I , it is natural to approximate those that make F
equal to I , There are two cases where the latter functions are
known at least theoretically. We will assume that B is a space
of bandlimited signals of some maximum frequency ω0 < π.
The Nyquist period of these signals is therefore larger than 1.

A. General nonuniform sampling

A well known theoretical case of ideal bandlimited inter-
polation is when the instants (tn)n∈Z such that |tn − n| is
bounded and |tn − tm| ≥ ε > 0 for all distinct n,m ∈ Z. It
was shown in [14] that

∀x(t) ∈ B, x(t) =
∑
n∈Z

x(tn) gn(t) (7)

where
gn(t) =

G(t)

G′(t)(t− tn)
and G(t) := (t− t0)

∏
n∈Z\{0}

(
1− t

tn

)

(under the assumption that tn 6= 0 for n 6= 0). It can be easily
verified that

gn(tk) =

{
1, k = n
0, k 6= n

. (8)

An initial attempt would then be to take fn(t) = gn(t) to
obtain F = I . A slight theoretical difficulty is that gn(t) is
not in B as its maximum frequency is π > ω0. But (7) remains
true when replacing gn(t) by g̃n(t), where we denote by ũ(t)
the lowpass filtered version of u(t) at cutoff frequency ω0. So
F = I is rigorously obtained with fn(t) = g̃n(t), However, the
functions (gn(t))n∈Z are in general not accessible in practice.

B. Ideal interpolation under periodic nonuniform sampling

There is a case where gn(t) is explicitly known. It is when
there exists an integer N ≥ 1, i.e.,

tn+N = tn +N, ∀n ∈ Z. (9)

Qualitatively speaking, the sampling nonuniformity is N -
periodic. Assuming that (tn)n∈Z is an increasing sequence, the
assumptions of the previous section are automatically satisfied
in this case. In this situation, the functions (gn(t))n∈Z were
explicitly derived in [15]. By an adaptation of eq. (18) of this
work for N = 2M +1, gn(t) can be presented as equal to the
functions

hn(t) :=
pn(t)

pn(tn)
sinc

( t− tn
N

)
(10)

where pn(t) :=
∏

0<|k|≤M

sin
(
π
t−tn+k

N

)
, n ∈ Z

and sinc(t) := sin(πt)/(πt). With (9), one easily sees that
hn+N (t) = hn(t−N) for all n ∈ Z. In the case N = 1 (or
M = 0), which corresponds to a uniform sampling of period
1, one retrieves the standard solution hn(t) = sinc(t−tn).

IV. LOCAL PERIODIZATION OF SAMPLING
NONUNIFORMITY

In this section, we describe our proposed construction of
functions (fn(t))n∈Z with the goal to make the operator F of
(1) arbitrarily close to I .

A. Method description and intuition

Assuming the following condition

tn = n+ δn where |δn| ≤ δ for all n ∈ Z (11)

and some positive constant δ < 1
2 , we propose to take in (1)

fn(t) := h̃n(t), n ∈ Z (12)

where hn(t) is still defined by (10) for some choice of
N = 2M + 1 in (10), even though the nonuniformity of
(tn)n∈Z may not be periodic.. We call this estimation scheme
the approximation by sliding periodization of the sampling
nonuniformity (SPSNU).

Because (9) is not assumed, F has no reason to be identity.
But it is intuitive that the larger N is, the closer hn(t) will
be to gn(t). This can be observed in Fig. 1 where h0(t)
is compared with g0(t) for some randomly drawn sequence
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Fig. 1. Observation of the function h0(t) of (10) for given nonuniform instants (tn)n∈Z indicated by the time location of the black dots, for various values
of N (h0(t) = g0(t) with N =∞): (a) δ = 0.4; (b) δ = 0.2.

(tn)n∈Z satisfying (11) with t0 = 0, and some various values
of N and δ. In the top parts of the figure, g0(t) is represented
by a black dotted line which is labeled as N =∞. The black
dots represent the samples of g0(t) at (tn)n∈Z, which satisfy
(8). By construction, the samples of h0(t) coincide with those
of g0(t) only for |n| ≤ M . In the bottom parts, we plot
h0(t) − g0(t) to highlight the difference between these two
functions. Meanwhile, it is also intuitive that for any given N ,
hn(t) gets closer to gn(t) when δ is closer to 0. This is can
be observed as well by comparing parts (a) and (b) of Fig. 1 .
But an objective confirmation of this intuition will be from the
resulting values of ‖I−F‖ and ρ(I−F ), which are evaluated
next.

B. Numerical analysis of I − F
For the experimental analysis of I−F with (12), we assume

that B is the space of bandlimited signals of Nyquist period
1 (note that this corresponds to ω0 = π) that are periodic of
period L ' 300. This allows us to work in finite dimension
without boundary effects. We then form sampling instants
of the type (11) where (δn)0≤n<L is a sequence of random
variables that are uniformly distributed in [−δ, δ] for various
values of δ that are indicated in the figure. For each chosen
value of δ, we plot ‖I − F‖ in Fig. 2(a) in terms of selected
values of N in log-log representation. We have chosen values
of N that are powers of two minus 1, to obtain odd values
that are close to a geometric progression. For each value of
N and δ, we have reported in ordinate the quadratic average
of ‖I − F‖ obtained from 100 randomly drawn sequences
(δn)n. The figure confirms the decrease of ‖I − F‖ either
with increasing N starting from N = 3 for a fixed amplitude
δ of nonuniformity, or with decreasing δ for a given N . A
possible disappointment is the relatively large resulting values
of ‖I−F‖ and their slow decay with increasing N . In practice

however, it may be more relevant to observe the quadratic
average of ‖x(t)−Fx(t)‖/‖x(t)‖ over all x(t) ∈ B, instead
of the worst case. We evaluate this by taking the Frobenius
norm of I−F divided by

√
L, which we denote by ‖I−F‖ave

and is equivalently the quadratic average of the singular values
of I−F . As can be seen in Fig. 2(b), ‖I−F‖ave yields more
clearly the sought dependence with N and δ, together with
significantly smaller values. We plot in Fig. 2(c) yet another
magnitude measure of I − F , which is its spectral radius
ρ(I − F ). In finite dimension, this amounts to measuring the
maximum eigenvalue of I − F in magnitude, instead of its
maximum singular value as is the case of ‖I − F‖. While
ρ(I − F ) yields larger values than ‖I − F‖ave, this function
has some fundamental contribution to approximation, as seen
in the next section.

C. Successive approximations

We now consider the iteration of (3) where F is the operator
of SPSNU approximation as defined by (12) and (10) for
some choice of period N . We show in curves (e)-(i) of Fig. 3
the relative errors ‖u(k)(t)−x(t)‖/‖x(t)‖ obtained from this
iteration under the experimental conditions of Section IV-B
for the specific maximum nonuniformity deviation of δ = 0.4.
Except for the case N = 1, we observe that these errors tend
to 0 with increasing k, although ‖I −F‖ appears to be larger
than in 1 in Fig. 2(a) for δ = 0.4 and N ≤ 15. In fact,
‖I − F‖ < 1 is too strong a condition of convergence. As
can be seen in (4), it is sufficient to have ‖(I −F )k‖ < 1 for
some k ≥ 1. It does appear in Fig. 2(c) that ρ(I − F ) < 1
for δ = 0.4 and all N , except precisely N = 1. The rates of
convergence of ‖u(k)(t)−x(t)‖/‖x(t)‖ to 0 in Fig. 3 is also
well correlated to the values of ρ(I −F ) in Fig. 2(c) for each
N and δ = 0.4.
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Fig. 2. Log-log plots of ‖I−F‖, ‖I−F‖ave and ρ(I−F ) in terms of N with SPSNU approximation under experimental conditions of Section IV-B.

0 2 4 6 8 10
−120

−100

−80

−60

−40

−20

0

δ = 0.4

k

‖
u
(k
)
−

x
‖
/
‖
x
‖
(d
B
)

 

 

(a) frame algorithm
(b) cyclic Kaczmarz
(c) greedy Kaczmarz
(d) Taylor expansion
(e) SPSNU, N=1
(f) SPSNU, N=3
(g) SPSNU, N=7
(h) SPSNU, N=15
(i) SPSNU, N=31

(a)

0 2 4 6 8 10
−120

−100

−80

−60

−40

−20

0

δ = 0.25

k

‖
u
(k
)
−

x
‖
/
‖
x
‖
(d
B
)

 

 

(b)

Fig. 3. Relative estimation error of various iterative methods of signal reconstruction methods versus iteration number for two values of δ.

V. COMPARISON WITH OTHER ITERATIVE METHODS

For comparison, we plot in curves (a)-(d) of Fig. 3 the re-
sults of a number of other methods, which we have selected for
their contribution either as historical or theoretical references.
The description of these methods is as follows.

(a) Frame algorithm: This is precisely the algorithm intro-
duced in [1, §3]. It follows the iteration of (2) with

fn(t) := λ sinc(t−tn), n ∈ Z (13)

where λ := 2/(A+B),

A := inf
u∈B
‖u‖=1

∑
n∈Z
|u(tn)|2 and B := sup

u∈B
‖u‖=1

∑
n∈Z
|u(tn)|2.

Note that taking λ := 1 in (13) leads to the SPSNU method
with N = 1, which was seen to diverge in Fig. 3. With
λ := 2/(A+B), it was shown in [1] that ‖I − F‖ =
(B−A)/(A+B), which is less than 1 when A > 0. A
drawback however is that the coefficients A and B are not
accessible in practice.

(b) Cyclic Kaczmarz method: This algorithm introduced in
[11] is the first practical method of bandlimited interpola-
tion of nonuniform samples, Assuming L sampling instants
t0, · · ·, tL−1, it consists in iterating

v(k+1)(t) := Pnk
v(k)(t), k ≥ 0 (14)

where Pnu(t) := u(t) +
(
x(tn)−u(tn)

)
sinc(t−tn) (15)

and nk := k mod L. As all samples are visited only after one
full cycle of projections, we report in curve (b) of Fig. 3 the
error of the estimates u(k)(t) := v(kL)(t). The figure shows
how these estimates outperform those of the frame algorithm.
Each iteration of (14) has the complexity of one term in the
summation of (3). However, the derivation of u(k+1)(t) from
u(k)(t) requires L successive transformations of v(`)(t) for
` = kL, · · ·, kL+L−1, while it is a direct function of u(k)(t)
in the frame algorithm. This implies substantial delays and
complications of implementation. Meanwhile, this Kaczmarz
method is outperformed in accuracy by the SPSNU method
with N = 3. Note from (10) that hn(t) is in this case only a
sinc function multiplied by by a product of two sinusoids.



(c) Greedy Kaczmarz method: In this variant of the Kacz-
marz method, the indices nk in (14) are chosen as

nk := argmax
0≤n<L

∣∣x(tn)−v(k)(tn)
∣∣, k ≥ 0.

This naturally converges faster than (14) as the nonuniform
samples of u(k)(t) with highest errors are treated in priority.
The figure shows a drastic improvement over the cyclic variant.
Our experiments also show it slightly outperforms the SPSNU
method with N = 5 (not reported in Fig. 3). However, this
greedy variant implies an overhead of computation that makes
it unrealistic for real-time processing. It is mostly of interest
as a theoretical reference.

(d) Taylor expansion: This method introduced in [9] consists
in finding bandlimited estimates u(k)(t) whose kth order
Taylor expansion at every instant tn with respect to n ∈ Z
tends to x(tn) when k goes to ∞. After some transformation,
the Nyquist samples u(k)(n) of u(k)(t) can be presented as
recursively defined by

u(k+1)(n) = x(tn)−
∑
m∈Z

u(k)(m) f (k)
m (n) (16)

where f (k)
m (n) :=

k∑
i=1

δin
i!
d(i)(n−m), (17)

δn := tn− n, d(i)(n) is the discrete-time sequence such that

∀u(t) ∈ B, d(i)(n) ∗ u(n) = diu

dti
(n), n ∈ Z

and ∗ denotes discrete-time convolution. It can be seen that
(16) is equivalent to

u(k+1)(n) = x(tn)−
k∑

i=1

δin
i!

diu(k)

dti
(n).

Assuming that u(k)(t) tends to a limit u(∞)(t), this implies at
the limit of k towards ∞ that

x(tn) = u(∞)(n) +
∞∑
i=1

δin
i!

diu(∞)

dti
(n) = u(∞)(tn)

by Taylor expansion since tn = n+ δn. As u(∞)(tn) = x(tn)
for all n ∈ Z, the uniqueness of reconstruction from (7)
implies that u(∞)(t) = x(t). Curve (d) of Fig. 3 not only
confirms that u(k)(t) tends to x(t) with increasing k, but it also
indicates the decay rate of the estimation error. It outperforms
the SPSNU method with N = 3. This is however at the price
of a tremendous increase of computation with the order k as
seen in the sequences h(k)

m (n) of (17). This method is also of
interest at least as a theoretical reference.

VI. SUMMARY

The difficulty in nonuniform sampling is the complexity
of the nonuniformity for signal reconstruction. It turns out
that bandlimited interpolation has an explicit formula when
the nonuniformity is periodic [15], the Shannon interpolation
formula being the particular case of a period 1. Approximating
signal reconstruction by sliding periodization of the sampling
nonuniformity enables us to use this explicit formula. At least
when the nonuniformity amounts to bounded deviations of a

uniform grid of at least Nyquist rate density, this technique
leads to approximations of increasing accuracy with increasing
periods of periodization. These approximations can also be
iterated until perfect reconstruction. The performance of a
number of high accuracy iterative methods of bandlimited
interpolation can be achieved at substantially lower compu-
tation complexities. A crucial task in future research will
be to compare these iterative methods with advanced non-
iterative methods such as in [10] in terms of total computation
complexity for given reconstruction accuracies.

REFERENCES

[1] R. Duffin and A. Schaeffer, “A class of nonharmonic Fourier series,”
Transactions of the American Mathematical Society, vol. 72, pp. 341–
366, Mar. 1952.

[2] J. L. Yen, “On nonuniform sampling of bandwidth-limited signals,” IRE
Trans. Circ. Theory, vol. CT-3, pp. 251–257, Dec. 1956.

[3] J. Benedetto, “Irregular sampling and frames,” in Wavelets: A Tutorial in
Theory and Applications (C. K. Chui, ed.), pp. 445–507, Boston, MA:
Academic Press, 1992.

[4] H. G. Feichtinger and K. Gröchenig, “Theory and practice of irregular
sampling,” in Wavelets: Mathematics and Applications (J. Benedetto,
ed.), pp. 318–324, Boca Raton: CRC Press, 1994.

[5] F. Marvasti, Nonuniform Sampling: Theory and Practice. New York:
Kluwer, 2001.

[6] A. Lazar and L. T. Tóth, “Perfect recovery and sensitivity analysis
of time encoded bandlimited signals,” IEEE Trans. Circ. and Syst.-I,
vol. 51, pp. 2060–2073, Oct. 2004.

[7] N. T. Thao and D. Rzepka, “Time encoding of bandlimited signals:
Reconstruction by pseudo-inversion and time-varying multiplierless FIR
filtering,” IEEE Transactions on Signal Processing, vol. 69, pp. 341–356,
2021.

[8] H. Johansson and P. Löwenborg, “Reconstruction of nonuniformly
sampled bandlimited signals by means of time-varying discrete-time FIR
filters,” EURASIP J. Adv. Signal Process, vol. 2006, pp. 105–105, Jan.
2006.

[9] S. Tertinek and C. Vogel, “Reconstruction of nonuniformly sampled
bandlimited signals using a differentiator–multiplier cascade,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 8,
pp. 2273–2286, 2008.

[10] J. Selva, “Functionally weighted lagrange interpolation of band-limited
signals from nonuniform samples,” IEEE Transactions on Signal Pro-
cessing, vol. 57, no. 1, pp. 168–181, 2009.

[11] S.-J. Yeh and H. Stark, “Iterative and one-step reconstruction from
nonuniform samples by convex projections,” J. Opt. Soc. Am. A, vol. 7,
pp. 491–499, Mar 1990.

[12] D. Smart, Fixed Point Theorems. Cambridge Tracts in Mathematics,
Cambridge University Press, 1980.

[13] V. Lebedev, An Introduction to Functional Analysis in Computational
Mathematics: An Introduction. An Introduction to Functional Analysis
in Computational Mathematics, Birkhäuser Boston, 1996.

[14] K. Yao and J. Thomas, “On some stability and interpolatory properties of
nonuniform sampling expansions,” IEEE Trans. Circuit Theory, vol. 14,
pp. 404–408, Dec. 1967.

[15] Y. C. Eldar and A. V. Oppenheim, “Filterbank reconstruction of
bandlimited signals from nonuniform and generalized samples,” IEEE
Transactions on Signal Processing, vol. 48, no. 10, pp. 2864–2875, 2000.


