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Figure 1. Geometry-consistent paired nighttime-to-daytime translation dataset generated by our proposed 3D editing based pipeline. Each
scene contains image pairs under various nighttime light conditions.

Abstract

Creating paired nighttime-to-daytime translation datasets
remains a challenging and impractical task, as keeping ev-
ery object static at different times is impossible. While 2D
generative models can synthesize paired data for appear-
ance and style translation, they often fail to maintain geo-
metric consistency. In this paper, we propose a novel paired
synthetic dataset creation pipeline that leverages 3D edit-
ing techniques to convert daytime 3D datasets into night-
time degraded scenes, generating geometrically consistent
high-quality image pairs. Through this approach, we con-
struct the first paired synthetic dataset for nighttime-to-
daytime translation with geometric consistency. The syn-
thesized data pairs can effectively enhance nighttime-to-
daytime editing performance of various 2D generative mod-
els both qualitatively and quantitatively, demonstrating the
advantages of using 3D editing for paired synthetic visual
dataset generation. Code and Dataset are available at
github.com/massyzs/3DEdting4Translation.git.

1. Introduction

Nighttime-daytime image translation benefits many real-
world applications, such as robust autonomous driving.
The success of image translation cannot apart from the
paired images. However, obtaining geometry-consistent
real-world paired images of different lighting conditions is
challenging due to interference from dynamic factors (e.g.,
vehicles, and natural elements).

Existing real-world nighttime-to-daytime datasets [10,
15, 19] mainly focus on semantic learning. The data pairs
are commonly collected by taking videos of the same sce-
nario in daytime and nighttime separately. Therefore, dy-
namic object interference may exist during the collection
process and thus impairs the geometry consistency and in-
curs additional effort on tackling the unpaired data prob-
lem [8, 24, 28, 29]. In view of the limitation of paired data,
previous works [1, 11, 26, 30] mainly focus on developing
techniques to generate consistent results learned from the
inconsistent pairs. While these works achieve remarkable
performance, using paired data has the potential to further
improve their image transfer ability.

Motivated by the data limitation, we investigate the
geometry-consistent nighttime-daytime data generation in
this paper. Intuitively, advanced image editing tech-
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Figure 2. Paired dataset creation pipeline: Our pipeline first applies 3D editing on reconstructed 3D scenes to adjust light conditions,
generating geometry-consistent image pairs. These paired images are subsequently used to fine-tune 2D generative models for downstream
nighttime-to-daytime translation tasks.
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Figure 3. Qualitative results of nighttime-to-daytime translation obtained on our paired synthetic testset. Scene names from the original
3D dataset are denoted in italic.

niques [3–5] can help generate paired data by editing the
image style. Therefore, we first evaluate the performance
of image editing baselines (Fig. 3 and Fig. 4) and observe
that none of the methods can generate geometry consistent
results in daytime style.

To this end, we propose a 3D editing based paired syn-
thetic dataset generation pipeline. Our pipeline can effec-
tively convert existing daytime images from 3D datasets
into geometrically consistent images under various night

lighting conditions, resulting in 3,812 image pairs. The
generated pairs are used to finetune the 2D generative mod-
els [4, 17], significantly improving the translation results.

Our contributions can be summarized as:
• We propose a nighttime-to-daytime paired data genera-

tion pipeline based on 3D editing.
• We collect multiview 3D scene data and convert them

from daytime to various nighttime lighting conditions,
forming a dataset with 3,812 image pairs.
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Figure 4. Qualitative results of nighttime-to-daytime translation obtained on Exdark [13] dataset.

• We evaluate the performance of 2D image editing meth-
ods and demonstrate how our paired synthetic dataset ef-
fectively enhances the nighttime-to-daytime translation
capability of 2D generative models.

2. Related Works

2.1. Nighttime-to-Daytime Image Translation

Many 2D generative models have been proposed to address
the nighttime-to-daytime translation task. BBDM [12] em-
ploys a bidirectional diffusion process for image transla-
tion between different domains. Plug-n-Play [20] integrates
source image features to preserve structure without addi-
tional training. To accelerate the translation process, One-
step Diffusion [25] leverages two diffusion models adver-
sarially, producing more realistic results in a single infer-
ence step. Instruct-Pix2Pix [4] finetunes the vanilla Stable
Diffusion model with instruction-based prompts, enhanc-
ing its suitability for image translation. However, existing
models struggle to maintain geometric consistency when
performing nighttime-to-daytime translation. Therefore,
there is an urgent need for a geometry-consistent paired
nighttime-to-daytime translation dataset.

2.2. 3D editing

Recent 3D editing methods [6, 7, 9, 21, 23] leverage the
capabilities of 2D generative models to perform geometry-
aware and view-consistent 3D scene editing. Specifically,
Instruct-NeRF2NeRF [9] and Instruct-GS2GS [21] ensure
view consistency through iterative editing combined with
3D scene fine-tuning. GaussCtrl [23] introduces a cross-
attention mechanism that integrates 3D geometry and multi-
view image information to simultaneously maintain geo-
metric and texture consistency. Meanwhile, DGE [7] in-
corporates epipolar geometry constraints to preserve consis-
tency while enabling editing with significant texture seman-
tic modifications. In this work, we leverage a naive 3D edit-
ing baseline instruct-NeRF2NeRF in our proposed pipeline
to show its effectiveness for constructing paired datasets.

3. Dataset

3.1. Dataset Creation Pipeline
Our paired image translation generation pipeline contains 4
parts: (1) 3D reconstruction, (2) 3D editing, (3) rendering
degraded images, and (4) generative models downstream
finetuning. Two 3D datasets of different scene structures
are used, including 360-degree 3D scene [2], and 3D re-
lighting [18]. All of these data are daytime and our aim is
to convert them to nighttime with various lighting condi-
tions. We first conduct 3D reconstruction with NeRF [14],
which compresses a 3D scene into a neural network and
can render arbitrary views. After reconstruction, 3D editing
is applied following Instruct-NeRF2NeRF [9]. Specifically,
an image is rendered from the trained NeRF and edited with
a pre-trained IP2P [4]. Then the edited image is used to fine-
tune the NeRF. This process will gradually change the style
of NeRF-rendered images while maintaining 3D geome-
try consistency. For the editing instructions, we set ”Dark
night”, ”Night time”, ”Twilight”, ”Dusk” and ”Moonlight”
as style prompts, and use ”Turn this into a {style} scene” as
the prompt template for 3D editing. After 3D editing stage,
the scenes with low style alignment score are filtered out.

Our final goal is to synthesize image pairs that can bene-
fit the nighttime-to-daytime translation. Therefore, to avoid
the blur due to the lack of observation in 3D reconstruc-
tion, we only render images with viewpoints corresponding
to existing daytime ground-truth images, i.e., views origi-
nally used for training the 3D reconstruction, thereby en-
suring geometry-consistent image pairs. The synthesized
image pairs can effectively improve the performance of the
specific image translation and they are applicable to various
base models. In this paper, we finetune Stable Diffusion
v1.5 [17] and Instruct-Pix2Pix [4] to demonstrate the effec-
tiveness of the synthetic data.

3.2. Dataset Statistic
We present statistics of our synthetic paired nighttime-to-
daytime translation dataset in Tab. 2. After filtering out low-
quality scenes, the final dataset comprises 8 scenes under 5



Method
Twilight Dusk Moonlit

CLIP ↑ SSIM ↑ LPIPS ↓ CLIP ↑ SSIM ↑ LPIPS ↓ CLIP ↑ SSIM ↑ LPIPS ↓

SD-v1.5[17] 0.5786 0.2684 0.6475 0.5769 0.2404 0.6523 0.5782 0.2374 0.6614
IP2P[4] 0.8389 0.4290 0.3670 0.8126 0.4335 0.3725 0.8594 0.4404 0.3413

Ledits++[3] 0.7463 0.4097 0.5457 0.7276 0.3726 0.5375 0.7160 0.3893 0.5623
MasaCtrl[5] 0.7789 0.3996 0.4939 0.7467 0.3572 0.5039 0.7757 0.3786 0.5051

Finetuned SD-v1.5 0.9067 0.4554 0.3048 0.9016 0.4535 0.2929 0.9239 0.4579 0.2684
Finetuned IP2P 0.9335 0.5017 0.2332 0.9322 0.4879 0.2412 0.9322 0.4855 0.2369

Method
Night Dark Night Average

CLIP ↑ SSIM ↑ LPIPS ↓ CLIP ↑ SSIM ↑ LPIPS ↓ CLIP ↑ SSIM ↑ LPIPS ↓

SD-v1.5[17] 0.5694 0.2086 0.7498 0.5672 0.0812 0.8072 0.5746 0.2213 0.6941
IP2P[4] 0.6703 0.3142 0.5970 0.6638 0.3626 0.5921 0.7752 0.3958 0.4459

Ledits++[3] 0.6294 0.2414 0.7890 0.7276 0.3726 0.5375 0.6985 0.3205 0.6350
MasaCtrl[5] 0.6247 0.2326 0.7618 0.6685 0.0855 0.7894 0.7199 0.3104 0.5978

Finetuned SD-v1.5 0.8271 0.4047 0.4429 0.9053 0.4157 0.3083 0.8882 0.4383 0.3311
Finetuned IP2P 0.8263 0.3898 0.3948 0.9154 0.4193 0.3000 0.9036 0.4582 0.2841

Table 1. Quantitative results of baselines and finetuned generative models on synthetic nighttime-to-daytime translation dataset under
different light conditions. Bold numbers refers to the best performance and underlined numbers refers to the second best performance.

distinct light conditions, effectively covering diverse real-
world scenarios with varying degrees of nighttime degrada-
tion, ranging from easier conditions (i.e., twilight) to more
challenging conditions (i.e., dark night). We visualize rep-
resentative examples from the proposed dataset in Fig. 1.
From top-left (Twilight) to bottom-right (Dark night), scene
visibility gradually decreases, correspondingly increasing
the difficulty of nighttime-to-daytime translation.

4. Experiment

4.1. Quantitative Results
We conduct quantitative comparisons for SD-v1.5 [17],
Ledits++ [3], MasaCtrl [5], IP2P [4], and finetune SD-v1.5
and IP2P on our proposed dataset. Evaluated by CLIP [16],
SSIM [22] and LPIPS [27] scores, finetuned baselines out-
perform other baselines significantly under all scenarios
with various light conditions. This demonstrates that our
paired dataset can help enhance 2D generative models’ im-
age transfer ability. Due to the unpaired setting of real-
world nighttime datasets, we only conduct qualitative com-
parisons in following section.

4.2. Qualitative Results
In-distribution Dataset. We present qualitative results ob-
tained on our dataset in Fig.3. Under all tested conditions,
finetuned methods consistently outperform baseline mod-
els. As shown in Fig.3a, 3b, and 3c, baseline methods such
as SD-v1.5, Ledits++, and MassCtrl introduce artifacts, and
they fail significantly under extremely dark nighttime con-
ditions (Fig.3d and 3e). In contrast, the fine-tuned methods
effectively translate nighttime images into realistic daytime
images without artifacts.

Split\Scene Night Night Night Night Night Night Night Dark night Dark night Dusk Dusk
garden lk2 lwp rathaus stjacob dinosaur bicycle farm campsite campsite farm

Train 167 157 94 135 135 135 174 242 157 157 242
Test 18 17 10 15 15 15 19 42 17 17 42

Split\Scene Dusk Dusk Moonlit Moonlit Moonlit Moonlit Twilight Twilight Twilight Twilight Total
garden rathaus campsite farm garden rathaus campsite farm garden rathaus

Train 167 135 157 225 167 135 157 225 181 135 3410
Test 18 15 17 25 18 15 17 25 33 15 402

Table 2. Statistic of our paired synthetic nighttime-to-daytime im-
age translation dataset. Each scene contains different nighttime
light conditions.

Out-of-distribution Dataset. To further verify whether
this performance improvement originates from overfitting
to specific scenes or genuine nighttime-to-daytime transla-
tion capability, we further evaluate methods on the unpaired
Exdark dataset [13] (Fig. 4). Across the baselines, only
IP2P partially translate input images into daytime while
artifacts are introduced. The blue sky is translated into
blur roof in the first scene and the building is merged with
blue sky in the second scene. Instead, the finetuned model
achieves the most satisfying results with realistic sky and
structure-preserved buildings. Such results further demon-
strate our proposed paired synthetic dataset effectively en-
hances the nighttime-to-daytime translation capability of
2D generative models.

5. Conclusion
Creating geometry-consistent paired datasets is a consum-
ing and challenging task, particularly in the nighttime-to-
daytime translation domain. In this work, we propose
an effective 3D editing based generating paired datasets
pipeline and establish the first geometry-consistent night-
to-dayt paired dataset. Experimental results demonstrate
the effectiveness of our paired data generation pipeline and
highlight out synthetic paired dataset’s utility.
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