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ABSTRACT

The graph-based multi-view clustering algorithms achieve decent clustering performance by con-
sensus graph learning of the first-order graphs from different views. However, the first-order graphs
are often sparse, lacking essential must-link information, which leads to suboptimal consensus
graph. While high-order graphs can address this issue, a two-step strategy involving the selection
of a fixed number of high-order graphs followed by their fusion may result in information loss or
redundancy, restricting the exploration of high-order information. To address these challenges, we
propose Multi-view and Multi-order Graph Clustering via Constrained /; ,-norm (MoMvGC), which
mitigates the impact of graph sparsity on multi-view clustering. By innovatively designing constrained
1, ,-norm, the model ingeniously integrates the selection of multi-order graphs and corresponding
weight learning into a unified framework. Furthermore, MoMvGC not only enable sparse selection
of multi-order graphs but also simultaneous selection of views. Afterwards, we design an efficient
alternative optimization algorithm to solve the optimization problems in MoMvGC. The proposed
model achieves state-of-the-art clustering performance on nine real-world datasets, with particularly
notable improvements observed on the MSRC dataset, where the clustering accuracy is increased by
5.24% compared to the best baseline. Comprehensive experiments demonstrate the effectiveness and
superiority of our model.

1. Introduction

With the advancements in multimedia and internet tech-
nologies, data often exhibits diverse characteristics that can
be captured by different sensors or represented using multi-
ple sets of features, commonly referred to as "views" [12].
The viewpoints from various media sources and the rep-
resentations from distinct modalities concerning the same
event can be regarded as different views. Harnessing insight-
ful information from diverse views can foster the analysis
and exploration of data, which is known as multi-view learn-
ing [45]. As a vital branch of multi-view learning and an ex-
tension of single-view clustering, multi-view clustering [40]
has been extensively researched and used in Web ranking
[27], community detection [41], and other areas [25, 5, 31].

Within the realm of multi-view clustering, graph-based
multi-view clustering methods [20, 38] exhibit remark-
able results compared to other multi-view clustering meth-
ods, such as matrix factorization methods [44], subspace
learning-based methods [40, 13] and multiple kernel-based
methods [34].The general workflow of graph-based multi-
view clustering entails the construction of a dedicated graph
for each view, followed by the integration of these graphs
through techniques such as graph fusion [28, 9] or weighted
aggregation [20, 22], ultimately yielding a consensus graph.

In the last decade, many graph-based multi-view cluster-
ing models are proposed by learning consensus embeddings
or learning consensus graph [22, 39, 6, 14, 46, 26, 36, 42,
29]. And these algorithms have demonstrated impressive
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clustering capabilities. However, there remain several cru-
cial aspects that require improvement. A prevalent proce-
dure in such algorithms involves the generation of graphs
from multi-view data, and these graphs is sparse. Sparse
graphs mean that the edge density between nodes within
clusters and nodes between clusters is small, and there is
little must-link information, which greatly limits clustering
performance. Fortunately, in the context of single-view clus-
tering, AOPL proposed by Wu et al. successfully illustrates
the effectiveness of high-order graph to solve the sparsity
problem [37]. Inspired by this, we hope to extend this
idea to multi-view clustering to further improve clustering
performance by leveraging the complementarity and the
consistency [15] of multi-view data.

However, the two-step strategy of selecting a fixed num-
ber of multi-order graphs and then performing graph fusion
adopted by Wu et al., not only increases a hyperparameter,
but may also cause information loss or redundancy, which
hinders the mining of high-order information. Moreover,
not every view is suitable for the consensus graph learning.
Especially for views that are filled with noise, utilizing
the corresponding multi-order graphs for graph clustering
may not only fail to improve clustering accuracy but also
result in a degradation of clustering performance. There-
fore, in the context of multi-view and multi-order graph
for graph clustering, adaptive selection is required not only
for the multi-order graphs but also for the views so as to
achieve effective consensus graph learning. In order to solve
the above problems, we innovatively propose Multi-view
and Multi-order Graph Clustering via Constrained /; ,-norm
(MoMvGC), which can fully mine and utilize multi-order
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graph information from different views. Specifically, our
contributions are summarized below:

e We extends the idea of high-order graphs to multi-
view clustering. The MoMvGC model can fully exca-
vate the rich structural information hidden in the high-
order graphs, which eliminates the influence of graph
sparsity on clustering performance.

e By leveraging the innovatively proposed constrained
11 ,-norm, the MoMvGC model integrates multi-order
graph selection and weight learning into a unified
framework, avoiding the impact on clustering accu-
racy caused by information loss or redundancy in the
two-step strategy. Additionally, the MoMvGC model
enables simultaneous selection of different views and
multi-order graphs, thereby mitigating the negative
influence of noise from both views and high-order
graphs on the consensus graph learning.

e We have designed a comprehensive optimization frame-
work for the proposed MoMvGC model. We con-
ducted extensive and diverse experiments on nine real-
world datasets. The model achieved SOTA clustering
performance, providing compelling evidence for the
effectiveness and superiority of our model.

Notations. For the matrix E € RP*4, E! and E ; are denotes
as the i-th row and j-th column of E, respectively. E;;
is the j-th element of E’. The Frobenius norm of E is

|Ell = VTr(ETE). The I, ,-norm of E is ||E|,, =

VL B = /2 (T2, 1E, D2 Al clements of the

column vector 1,, € [R’"Xl are one.

2. Related Work
2.1. Clustering with Adaptive Neighbors (CAN)

Given the data matrix X = [x, ---, x,]T € R"™4, where
n is the number of samples and d denotes the dimension of
each sample. For any sample, the neighbors are defined as k
samples closest to it in the Euclidean space. It can be con-
sidered that the probability of the i-th sample being adjacent
to all other samples is denoted as s;;,j € {1,2,--,n}. A
natural approach is that a larger ||x; — x; ||2 corresponds to
a smaller s;;. So the objective of Clusterlng with Adaptive
Neighbors (CAN) [23] is defined as

min Z Z(llx x;l1355; + 057),
5 i=1 j= (1)

s.t. Vi, s'l, = 1,5, >0,

where s’ = [s;1, 57, S;] € R", and the regular term
Yo X, os;;is auniform hypothesis which ensures each

data point has an equal likelihood of 1 to be selected as the
neighbor of x;. For the sake of maklng the learned similarity
matrix § more suitable for clustering, a rank constraint
about the Laplacian matrix is introduced on the basis of the

(a) 1st-order (b) 2nd-order (c) 3rd-order

(d) 4th-order

(e) 5th-order (f) Ground truth

Figure 1: Visualization of high-order graphs and ground truth
of Mfeat dataset.

problem (1), which allows .S to be learned in the form of
diagonal block, as follows

2 2
mmz Z(Hx x;l15s; +asij),
i1 = 2

s.t. Vi,s' 1,, =1,s; >0,rank(L;) =n —c,

where L, = D, — 5748
where i-th diagonal value is Z (2220 After optimizing
the problem (2) to obtain the optlmal S, the cluster labels

are obtained directly without any post-processing.

, and D is a diagonal matrix

2.2. High-order Graph

The concept of high-order graph is of great significance
in the realm of graph learning. High-order graphs adhere
to the principle that the neighbor of a neighbor is also a
neighbor. LINE proposed by Tang et al. [30] integrates first-
order graph and second-order graph for graph embedding
learning, which excavates important structural information
that is not easy to observe in first-order graph. Wu et al.
expressed the concept of second-order graph in the form of
matrix, and further proposed the definition of higher-order
graphs [37]. Given the first-order graph C € R™" i.e. the
original graph, where »n is the number of nodes, the k-th-
order graph C* is defined as

X C, k=1,
C=\ce ks ®)

To clearly demonstrate the outstanding performance of
high-order graphs, we have visualized the multi-order graphs
of the Mfeat dataset, ranging from first-order to fifth-order
graphs. In Figure 1, we observe that compared to the similar-
ity graph corresponding to the ground truth, the first-order
graph is significantly sparse and lacks essential must-link
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information. This largely restricts the performance of multi-
view clustering methods. As the order of the graph increases,
it becomes progressively denser. However, the number of
cannot-link edges also increases, which can be regarded as
a form of noise. So selecting graphs with too low or too
high order is detrimental to graph learning. Notably, the
third-order graph appears to be the most suitable for learning
the consensus graph. Therefore, selecting appropriate multi-
order graphs for graph fusion is of utmost importance for
effective graph clustering.

2.3. Adaptive-order Proximity Learning (AOPL)

Dedicated to alleviating the impact of first-order graph
sparsity on clustering performance, Wu et al. proposed a
high-order graph clustering framework within a single-view
context [38]. Specifically, the algorithm initially selects the
optimal m multi-order graphs, followed by weight learning
for these graphs and their fusion for consistent graph .S,
which is essentially a two-step strategy. The objective func-
tion is defined as follows:

K
min 3’ g/ (IS = Celp).
= “)
5t.81,=1,8>0,q" 1 =m,

q € {0,1}", rank(L,)=n—c,

where ¢, is the boolean variable that determines whether
to choose the k-th order graph C,, and f(||S — Ck||2F)
represents an approach to learn optimal consistent graph. Ev-
idently, the hyperparameter m has a significant impact on the
model, and manually adjusting m is highly subjective. When
m is relatively large, it may lead to issues of information
redundancy. When m is relatively small, it might result in
insufficient exploration of high-order information, causing
problems of information loss. Therefore, the adaptive selec-
tion of the number of multi-order graphs for graph fusion is
very importance.

2.4. Related Work on Graph-based Multi-view
Clustering

In recent years, the realm of graph-based multi-view
clustering has witnessed a surge in activity, marked by
the emergence of numerous high-quality algorithms. These
algorithms fall into two main categories: one emphasizing
the acquisition of consensus embedding and the other fo-
cusing on the acquisition of consensus graph. Effectively
learning consensus embedding from diverse views involves
judiciously amalgamating different representations to derive
an embedding that best aligns with the real data distribu-
tion [39]. In addressing this challenge, Nie et al. proposed
AMGL, an algorithm that adaptively learns a consensus
spectral embedding from Laplacian matrices constructed
across various views [21]. Furthermore, extending spectral
clustering to multi-view scenarios, Hu et al. introduced
a Re-Weighted framework [24] for adaptively learning a
consistent non-negative embedding [7, 2]. Observing the
differing relevance of embeddings across varied viewpoints

in clustering tasks, Wang et al. formulated a globally-applied
truncated weight allocation mechanism, thus amplifying the
discriminative power of embeddings for clustering [33].
In response to the computational complexity entailed in
embedding learning, He et al. proposed FAMVC, leveraging
singular value decomposition (SVD) as an alternative to
eigenvalue decomposition in spectral clustering [6], result-
ing in notable improvements in clustering performance.

In contrast to methods focusing on learning consensus
embedding, approaches centered around learning consen-
sus graphs often exhibit superior performance in multi-
view clustering, fostering the development of numerous
high-quality algorithms. Nie et al. proposed SWMC, which
employs Laplacian rank constraints to learn a consensus
graph [22]. Expanding upon this paradigm, a succession of
related efforts [43, 32] has emerged, consistently showcasing
commendable clustering accuracy.Recognizing the signif-
icance of initialization graphs for clustering performance,
Tang et al. proposed CGD served as the first algorithm that
enhances consensus graph quality via a diffusion process
for learning improved graphs from different views [29].
Acknowledging that learning consensus graphs directly from
the original data may lead to clustering performance insta-
bility, Zhao et al. proposed AONGR, a method that fuses
spectral clustering and non-negative matrix decomposition
into a unified framework for reconstructing the consensus
graph [46]. While these models have achieved superior clus-
tering performance, they predominantly prioritize consis-
tency, overlooking the inherent diversity across views [10].
To address this limitation, Huang et al. proposed CDMGC,
a representative work that decomposes the graph from each
view into a consistent part and a divergent part, and then
learns a high-quality consensus graph by fusing the consis-
tent parts obtained from different views [10]. Furthermore,
some multi-view clustering algorithms based on bipartite
graphs have been proposed to address the issue of high com-
putational complexity [26, 36, 14, 42]. These approaches
typically generate a concise anchor set from the original
data, serving to represent the overall structure of the sample
set, which notably reduces the computational complexity,
resulting in a linear reduction [17, 8, 4, 35].

However, the graph-based multi-view clustering algo-
rithm mentioned above utilizes sparse graphs, as shown in
Figure 1, thereby lacking a substantial amount of must-link
information and consequently constraining clustering accu-
racy. So it is necessary to solve the problem for improving
the clustering performance, which serves as the primary
motivation of our research.

3. Multi-view and Multi-order Graph
Clustering via Constrained /, ,-norm
(MoMvGC)

This section provides a detailed explanation of the Multi-

view and Multi-order Graph Clustering via Constrained /, ,-
norm (MoMvGC) clustering model. We begin by presenting
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Figure 2: The framework of Multi-view and Multi-order Graph Clustering via Constrained /, ,-norm.

the model along with its formulations, followed by the
development of an efficient optimization algorithm.

3.1. The Proposed MoMvGC Model

Most graph-based multi-view clustering algorithms are
susceptible to the influence of graph sparsity, which greatly
hinders graph fusion. Inspired by AOPL, we introduce high-
order graphs into multi-view clustering, aiming to fully
exploit the rich structural information hidden in high-order
graphs. Although the two-step strategy proposed by Wu et al.
achieves decent clustering performance, the mandatory se-
lection of a fixed number of multi-order graphs for graph fu-
sion can potentially lead to information loss or redundancy,
resulting in suboptimal consensus graphs. Apart from that,
in real-world datasets, there are often certain views where
the noise significantly outweighs the useful information. For
such views, we have no choice but to discard them to avoid
their negative impact on consensus graph learning. There-
fore, it is imperative to not only select appropriate high-order
graphs but also simultaneously choose the relevant views.

To address the aforementioned issues, we propose Multi-
order Graph Clustering via Constrained /; ,-norm (MoMvGC),
which perfectly integrates the selection of multi-order graphs
and corresponding weight learning into a unified framework,
as shown in Figure 2. Specifically, the core idea is that
the constrained /; ,-norm, inspired by the feature selection
model [18], is proposed innovatively to adaptively select
multi-order graphs from different views. Simultaneously,
the selected graphs are utilized for the consensus graph
learning. The mutual enhancement between them enables
the MoMvGC model to learn the optimal consensus graph.

Given multi-view data X = [X, X,, -, X}, ] with VV
views, the first-order graph could be generated through the
KNN algorithm [23], and then the K-order graphs for each
view can be obtained by Eq. (3). C;/ denotes k-th order graph
of v-th view. H € RY*K is a coefficient matrix and H
represents the corresponding weight with respect to C/. The
objective is to minimize the sum of squared errors between

the consensus graph S € R™" and the multi-order graphs
from all views, subject to the restriction of applying the
constrained /; ,-norm on the weight coefficients, which is
defined as:

K
D HyllS = CI% + BIHIE,
v=1 k=1

5..851,=1,,8 > 0,1  Hl =1,
H > 0,rank(Ly) =n—c,

M=

min
H.S

®)

where f is the hyperparameter. On the one hand, the / -
norm allows competition among different views, ensuring
that each view has a fair chance to contribute. On the other
hand, for the i-th view, it encourages sparsity in the i-th row
of H, meaning that non-zero weights tend to concentrate on
few multi-order graphs. Hence, the adaptive learning of H
ingeniously achieves the simultaneous selection of views and
multi-order graphs. When f approaches 0, the graphs from
only a few views participate in consensus graph learning.
When g is sufficiently large, the selected multi-order graphs
of all views contribute to graph fusion.

In order to ensure the learning of high-quality S and
prevent the scenario where only one graph is selected for
each view, it is necessary to introduce two regularization
terms on the basis of Eq. (5). So the final objective of our
proposed MoMvGC model is as detailed below

V K

min 3’ 3 HyllS = GG + ullSIG
T o=1k=1

+BUHI, +al HIIZ),
5t.81,=1,,8>0,1 Hlg =1,
H > 0,rank(L,) =n—c,

(6)

where p and o are the hyperparameters. a balances the
interaction of two norms, which is set to 1 in our model.
Compared to the APOL algorithm, our proposed MoMvGC
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model eliminates the need for manual selection of a spe-
cific number of multi-order graphs. Instead, it intricately
integrates the selection of multi-order graphs with weight
learning, owing to the introduction and flexible application
of the constrained /; ,-norm.

3.2. Optimization

Since L, is a positive semi-definite matrix, there exist
n non-negative eigenvalues: 0 < oy < 0p < -+ < 0,
The number of multiplicities of zero as an eigenvalue of
L is equal to connected component count of graph .S [19].
It indicates that data are already clustered into ¢ clusters
when the constraint Zle o; = 0. According to Ky Fan’s
theory [3], we have

Za,: min Tr(FTL,F), 7)
P FTF=I

where F € R™¢ denotes the graph embedding. Thus, the
problem (6) can be reformulated as

V K
min D" ¥ HyllS = CUIE + ullSIE

H.S.F
v=1 k=1
+BUHIT, + I HIZ) +22Te(FTLF), (g
st.81,=1,,8>0,1,Hlx =1,H >0,
ST+S8

FTF=1,L,=D, - R
Step 1: Update S with fixed H and F: Let D € R"™"
and D@, j) = Al f' — f7]|2, where f! € R'¢ is j-th row of
F. The problem (8) can be simplified to

VvV K
min H,, (Tr(STS)
51,=1,.5>0 U; ]Z{ y ©)
—2Tr(S"C))) + Tr(S™ D).

For any two rows of S, the constraints applied to them
are mutually unrelated. So the problem (9) can be further
reduced to

1

1. .
S + ———
I 2u+1)

min M2, 10
Si1,=1,51>0 2 Iz (10)
where M = D -2 ZL/:] ZkK:] H,, C.. Using the Lagrange
multiplier method for the problem (10), we have

1
2(u+ 1)

where #; and 6, are the lagrangian multiplier. The closed-
form solution of S is obtained through the Karush Kuhn-
Tucker (KKT) condition [1, 23].

Step 2: Update H with fixed S and F: The problem
(8) can be written as

L= %IIS"+ M3 =n(S'1, - )-89, (D)

K

14
min H, P, +(H|?, +I|H|>3), 12
1;H1K=1,Hzo;; WP+ BUHIE, +IHIZ),  (12)

where P € R"*K and P, = ||§— C/||3.. The problem (12)
could be solved through the QP solver.

Algorithm 1 The procedure to solve problem (8)

Input: The order K, the first-order graphs, the number of
cluster c, the parameters u, f and A
Output: The consensus graph §
1: Obtain multi-order graphs of each view by Eq. (1).

Initialize H,; = V—lk and F with spectral embedding

of the graph §' = % ZL/:l C/, respectively.
while not converge do
Update S by Eq. (11);
Update H by Eq. (15);
Update F by Eq. (16);
end while
return S

NN R RN

Theorem 1. For the matrix Z € R™* where Z > 0,

1ZI}, = ZTIZ. Z =vec(Z) = (Zyy. ... . Zyy. ... Zy
s ZrS]T, where vec(-) is a matrix-vector operator. J is

a block diagonal matrix consisting of r identical matrices
T € R**%, whose elements are all 1.

Proof. Given a vector x = [x, X5, ..., xn]T, we have (x; +
Xy + - +x,)> = xI Gx, where G € R™" and its elements
are all 1. Similarly, for the matrix Z, we have

r r
1ZI2, =D 1213 =) zTz" =2"1Z, (13)
i=1 i=1

where Z' is i-th row of Z. Eq. (13) satisfies the second
equality when Z > 0. Taking Z € R?*? as an example,
there is

1 1.0 0
1 1 .00

J = 00 1 1l (14)
0 0 1 1

O

Let U € RVKXVK be a block diagonal matrix composed
of V identical matrices with dimensions K by K like J.
H = vec(H) and P = vec(P). So the problem (12) could
be converted to

min ABH'RH + P"H, (15)
1, H1x=1,H>0

where R = U + I and I € RVXXVK ig an identity matrix.
Obviously, the problem (15) can be solved by the QP solver.

Step 3: Update F with fixed S and H: Based on the
above analysis, the problem (8) becomes

min Tr(FTLF), (16)
FTF=I ’

so the optimal F is the eigenvector corresponding to the first
¢ minimum eigenvalues of L.

Xin et al.: Preprint submitted to Elsevier

Page 5 of 11



Multi-view and Multi-order Graph Clustering via Constrained [, ,-norm

3.3. Complexity Analysis

Time complexity The MoMvGC model necessitates the
construction of ¥ X (K — 1) high-order graphs from V'
initial graphs. The construction of each graph requires a
complexity of O(n|€]), where |£| denotes the number of
edges. Due to the sparsity of initial graphs, |£| and »n are
comparable in magnitude. Then the time complexity for this
stage is O(V (K — 1)n|&]). In the process of updating .S,
first computing D requires O(cn?), and then computing S
requires O(n?). Updating H only requires a quadratic pro-
gramming, which is independent of » and can be negligible.
The computation of the optimal F requires a complexity of
O(cn?). Overall, the MoMvGC model exhibits a quadratic
time complexity, placing it on par with other graph-based
multi-view clustering algorithms.

Space complexity During the learning procedure, the major
memory costs of our model are matrices § € R™", H €
RVEXVK and F € R™¢. So the space complexity of
MoMvVGC is O(n? + V2K? + cn). Since ¢ < n, K < n
and V' < n, the overall space complexity of our model is
approximately O(n?).

4. Experiments

In this section, we employ real-world datasets to verify
the clustering performance of MoMvGC from different as-
pects such as clustering performance, sensitivity analysis,
and convergence analysis.

4.1. Experimental Settings
4.1.1. Dataset Descriptions

We utilize nine real-world benchmark datasets to assess
the quality and effectiveness of our clustering model. a) The
face dataset Yale' contains 15 people or 15 classes, each
with 11 face images with different expressions, postures
and lighting, for a total of 165 images. b) 3Sources® com-
prises news articles gathered from three distinct sources:
BBC, The Guardian, and Reuters. It includes a total of 169
news items, each reported by all three media outlets, and
classified into six categories. ¢) WebKB> is a dataset that
contains webpages characterized by two aspects: content and
links. These webpages are gathered from four universities,
with a specific focus on the data from the University of
Wisconsin. d) MSRC* encompasses 210 images capturing
objects across 7 distinct classes and is presented from 5
different viewpoints. The classes include airplane, bicycle,
building, car, cow, face, and tree. The dataset is characterized
by 5 views, each represented by a unique feature set: 24-D
color moment (CM), 576-D histogram of oriented gradient
(HOG), 512-D GIST, 256 local binary pattern (LBP), and
254-D centrist (CENT). ¢) YaleB® comprises a total of 2,414
face images taken from 38 individuals. Each person is repre-
sented by 65 images captured under varying illuminations.

1http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
2http://mlg.ucd,ie/datasets/3sources.html
3http://lig—membres.imag.Fr/grimal/data.html
4https://www4microsoft.com/en—us/research/project/
5http://vision,ucscLedu/leekc/ExtYaleDatabase/ExtYaleBAhtml

In our experiments, we focus on a subset of the dataset,
specifically the first 10 individuals, which amounts to a total
of 650 images. f) COIL-20° is a commonly used dataset
in the fields of image processing and pattern recognition.
This dataset comprises images of 20 objects with 3 views,
with each object having 72 images captured under various
angles and lighting conditions. g) Object recognition dataset
Caltech101” has 101 categories, whose number of views is
6. h) The Mfear® dataset, sourced from the UCI repository,
is a collection of handwritten digits (0-9). This dataset com-
prises 2000 samples, with each sample characterized by six
different types of features. i) The dataset Scene’ comprises
a total of 2688 images divided into 8 distinct groups. For
each image, we extract four distinct feature vectors, namely
a 512-D GIST feature vector, a 432-D color moment feature
vector, a 256-D HOG feature vector, and a 48-D local binary
pattern (LBP) feature vector.

4.1.2. Comparison Models

We assess the performance of our MoMvGC model by
benchmarking it against nine existing graph-based multi-
view clustering algorithms. We acquired these implementa-
tions either from the authors’ official websites or by direct
communication with the authors. Specifically, the compar-
ison models and the corresponding brief descriptions are
listed as follows.

e SWMC [22] is a classical graph-based multi-view
clustering algorithm that learns a consistent structured
graph by imposing Laplacian rank constraints. The
computational complexity is O(cn?).

e MVGL [43] obtains a global consistent structured
graph by adaptively learning the optimal weight of
each sample in different views. The computational
complexity is O(cn?).

e GMC [32] gets the optimal graph fusion by simul-
taneously learning the optimal similarity matrix for
each view and adaptively weighting each view. The
computational complexity is O(cn?).

o CGD [28] is the first time to use the fusion process
to learn an improved graph for each view, easing
the dependence on high-quality initial graphs. The
computational complexity is O(n?).

e CoMSC [16] utilize eigendecomposition to acquire
a robust data representation characterized by low re-
dundancy, which could help obtain better clustering
results. The computational complexity is O(cn?).

o SMVSC [26] unifies anchor learning and graph con-
struction within a single optimization framework,
making the learned anchors are capable of more

6http://cs.columbia.edu/CAVE/software/softlib/

7http://www.vision.caltech.edu/datasets/

8https://archiveAicsAuciAedu/ml/datasets/Multip1e+Features

9https://figshare.com/articles/datasetﬂ5*Scene,Image,Dataset/
7007177
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Table 1

Clustering performance comparison. Best results are in bold, and the second best results are underlined.

Dataset Metric SwMC MVGL GMC CGD

CoMSC

SMVSC  CDMGC  MSCTM UDBGL  MoMvGC

ACC  0.6606_ 4,00 0.6000400, 0.654,¢ 00

Yale NMI  0.6687 900 0.63631000 0.6735.000 0.5348.¢ 00
ARI 0.4159 ;40 0.4146, 0o 0.4410 40 0.3008 14

F-Score 0.4568_4qy 0.4538.1000 0.4800, 00 0.3567.00s

0.456 1003 0.2897_1000 0.4939, ¢, 0.6527 140 0.6000 00 0.5454.4 0 0.7333 000
0.3555, 9, 0.53740.0; 0.6793100 0.5820,4 05 0.6125, 40 0.6969. o
0.0718 1 5o 0.301740.0, 0.4283, 40 0.33931 400 0.3761 1409 0.4775 g0
0.1321 9o 0.3506,00; 0.4679.1000 0.38391 9o 0.4182140 0.5127 o

ACC  0.6686 0 0.7514 400 0.6923, 400 0.7869,4 g0

3Sources NMI 0.5382, 09 0.5990009 0.5479.1000 0-6985.9 00
ARl 0.4168.4 0 0.5244 400 0.4431 40 0.6282 0

F-Score 0.5813_ 0y 0.6573,.0.00 0.6046 00 0.72349.00

0.5479 9 0p 0.3082.00; 0.3538.1009 0.5266, 00 0.4082.000 0.7573.100
0.3719 1 4¢; 0.08324009 0.0676, 40 0.4343 1900 0.1995,4 09 0.6626 g9
0.2836,.9p 0.0341 400 0.0128.4040 0.2605, 400 0.1325,409 0.5699 ¢ o0
0.4797 4902 0.2342,40; 0.3566.10 40 0.48024400 0.3213 1409 0.6764 0

ACC  0.01974 40 051721000 0.7586.09 0.7635,00

WebKB NMI  0.2024.40 00 0.0614, 00 0.3634,400 0.3269_ o
ARl 0.000400, 0.0269,40, 0.4207 00 0.4702.10 00

F-Score 0.000490, 0.5288,000 0.6894 000 0.70014 g0

0.5468 149 0.5985 1 0.0197 4400 0.7931 1000 0.6945, 40 0.8177 1900
0.0384 140 0.3072, 9 4 0.2024 4.0 0.5076,4 g9 0.1679, 900 0.4799 ¢ 00
0.0359 .00 0.3148 006 0.000.100y 0.5755440 0.25071400 0-6122,4 09
0.5627 9o 0.5548.009 0.0001 900 0.7648 400 0.6095,4 00 0.7855 ¢ g0

ACC  0.7666,9 09 0.871410 0 0.74764 00 0.8238.0 00

MSRC  NMI  0.7537049 0.7731 900 0.74211 400 0.7314.40 40
ARl 0.6662 gy 0.71529 0 0.6399, 40 0.6641 4o

F-Score 0.71854.0 0.7560.10,00 0.6968. 900 0.7123.¢ 00

0.4123 1460 0.8190_0 6 0.74524051 0.3523105 0.7904 g0 0.92389.00
0.3463 1099 0.71180 g9 0.687900 0-2724,¢ o 0.6722_ gy 0.8535,900
0.2090.49 g 0.6486.0 00 0.5635.4 0y 0.1456_0 0 0.6242 00 0.8308_ 9
0.32494 69 0.6987_109 0.63330,01 0.28450 5 0.6782_ g 0.8545,900

ACC  0.4784 g 0.373800 0-4338.4900 0.328040.00

YaleB  NMI  0.43400, 03391, 0.4162_ 4, 0.3085., 00
ARl 0.1830.4 09 0.0891400 0.1571 4400 0.1287_0 00

F-Score 0.2899,.4 00 0.21134060 0.2651 105 0.2250.10 0o

0.5647 4900 0.3016¢0; 0.3963.0, 0.4646, 4, 0.1630, 40 0.5769. g9
0.5433 g9 0.2282.4 o, 0.3415, 4, 0.4479 0o 0.0813009 0.5395, 40
0.3174 0,99 0.0702¢ g0 0.1161 4, 0.2255, 05 0.0194 40 0.30234 40
0.3936..0,99 0.1838.14.09 0.24391 1 0.3224140p 0.1191 140 0.3854,40

ACC  0.8541 g 0.7845.,0 00 0.79094000 0.7918,4 0

CoIL-20 NMI  0.9428, 0, 0.9130,0, 0.9189 g 0.8786.1 00
ARl 0.8318.000 0.7738400 0.7819, 060 0.752310 00

F-Score 0.8410,.0,0y 0.78671000 0.794210 0 0.7655.4 00

0.6091 9 o3 0.5735 003 0.8666.4 00 0.8354, 0o 0.5784 140 0.8986_¢ g9
0.7355 901 0.7078 0.0 0.9435 40 0.9196, 400 0.7426 40 0.9449 4o
0.5210,.9 93 0.4805_ 403 0.8376.1040 0.7911, 4o 0.5296. 40 0.85870go
0.5482_ ¢ g3 0.51134 03 0.8465 49 0.8027 1400 0.5568.14 0 0.8666_ ¢ qq

ACC  0.7232 gy 0.73671000 0.69191000 0.6791 400

Cal7  NMI 0.5569 g 0.5342.4 0 0.6056_ g9 0.5630, 0
ARl 0.4685, 0 0.4778 00 0.5942 00 0.5480_ o

F-Score 0.6763.9 0y 0.6884,.400 0.7216 000 0.6831.0 00

0.4873 .49 09 0.548740.0» 0.8071 000 0.69331000 0.56511 0 0.8297_000

0.3508..0 9o 0-4115_ 5 0.5233 100 0.5987 g 0.4699 10y 0.4864 .44 0
0.2971 4069 0.3532.0 65 0.58291000 0.48741 o 0.4163 1 g0 0.6175,9.00

0.4728 14 49 0.5363 902 0.7646,409 0.6703 1000 0.5597 1000 0.7926.40 00

ACC  0.8855¢,09 0.8550.4 0 0.88204 900 0.8545. 00

Mfeat ~ NMI  0.9039 40 0.8962, 405 0.894000 0.88771 000
ARl 0.8641 49 083734900 0.8502,009 0.8328.0 00

F-Score 0.8788_ gp 0.8547_ ¢y 0.8658. g9 0.8507¢ 9

0.6272, g0 0.7474 ¢ 05 0.8432404; 0.6980, 0, 0.7640 40 0.8860¢ g9
0.7037 4900 0.7284 100, 0.8823 040 0.7406, 400 0.7259 4 0.9041 ¢ qo
0.5869., 9 9o 0.6662.¢03 0.8156.1009 0.6328, 900 0.6588.000 0.86110 40
0.6315_ o 0.70370.0, 0.8354, 940 0.67381 00 0.6940,0 09 0.87534 g9

ACC  0.4196_ 0 0.32514000 0.34004900 0.58710 0

Scene  NMI  0.3436.,00 0.20934400 0.31414000 0.459940 0
ARl 0.1845_ 0 0.0727_400 0.1925,400 0.37571000

F-Score 0.3457 .40y 0.2680,o 0.3546 gy 0.4676.10 0o

0.6005_9 g0 0.6077 1403 0.2693 105 0.3846, 0o 0.6945,9 g 0.6525 o0
0.4712, 990 0.4734403 0.1463 049 0.2565, 449 0.5300,40 0.5375.¢.g9
0.38011 g 0.3887.40.03 0.0562,4; 0.1013 40, 0.4645 4 0.4686 ¢ g0
0.4601 g oo 0.4815 40, 0.2607 05 0.2865, 0o 0.5337 ¢ 0.5466_ o

1t is worth noting that the MoMvGC results are based on the first-order graphs with five neighbors.

accurately representing the latent data distribution.
The computational complexity is O(n).

e CDMGC [10] pays attention to the consistency and
diversity of graphs from multi-views when learning
the optimal consensus graph. The computational com-
plexity is O(cn?).

e MSCTM [11] benefits from exploring the inherent
data manifold by learning the topological relation-
ships among data points, which seamlessly integrates
multiple graphs from different views into a consensus
graph. The computational complexity is O(cn?).

e UDBGL [4] integrates the construction of bipartite
graphs through subspace learning with consensus
graph learning into a unified framework, ensuring

clustering performance while reducing computational
complexity. The computational complexity is O(n).

4.1.3. Evaluation Metrics and Hyperparameter
Settings

We adopt widely used evaluation metrics including ac-
curacy (ACC), normalized mutual information (NMI), ARI
and F-Score to comprehensively assess the clustering per-
formance. The closer the value of these metrics is to 1,
the better the clustering performance of the corresponding
algorithm. In the MoMvGC model, we use the grid search
technique, setting both y and f to vary in the range of
{10‘3, 1072,107L, ..., 103}. And we conducted the exper-
iments on MATLAB 2022a environment.
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Figure 3: Parameter sensitivity of MoMvGC w.r.t u and .

4.2. Result Analyses
4.2.1. Clustering Performance

Table 1 presents the results of four commonly adopted
clustering performance metrics. Based on the aforemen-
tioned results, we can draw the following conclusions:

a) The result reveals that the proposed model consis-
tently outperforms or closely competes with existing
approaches across all nine datasets, as evidenced by
most metrics employed. This indicates the superior
performance of high-order graphs within the realm
of graph-based multi-view clustering. Moreover, the
clustering metrics of our model exhibit zero variance,
indicating the strong stability of the MoMvGC model
alongside its superior clustering performance.

b) For example, on MSRC dataset, our method surpasses
the best comparison method (MVGL) by +0.0524
ACC, +0.0804 NMI, +0.0985 F-Score and +0.1156
ARI, which can be considered as a substantial im-
provement for clustering tasks. Specifically, through
experiments, it can be found that the optimal result
is obtained by the consensus learning of only multi-
order graphs from the fourth view, which proves the
necessity of simultaneous selection of multi-order
graphs and views.

4.2.2. Parameter Sensitivity on yu and

We plotted the sensitivity of the four datasets with re-
spect to the parameters p and f. As shown in Figure 3,
the sensitivity of p is relatively higher than that of f. u
could achieve coarse tuning by imposing constraints on
consensus graph § while § has a fine-tuning effect. Taking
the dataset Caltech101-7 as an example, when ¢ = 10 and
p € [107!,10%], the ACC obtained by MoMvVGC is the best
and the performance is stable. This fully demonstrates the
advantages of simultaneous selection and weight learning of
multi-order graphs.

4.2.3. Impact of The Number of Neighbors

The KNN algorithm [23] is used to generate first-order
graph for each view as input of the MoMvGC model. The
number of neighbors is a crucial parameter that determines
the sparsity level of the graph. To further investigate the
impact of high-order graphs on graph sparsity, we plotted
the trend of ACC obtained by the MoMvGC model with
varying numbers of neighbors, as shown in Figure 5. It
can be observed that for most datasets: a) an insufficient or
excessive number of neighbors will have a negative impact
on the clustering accuracy. b) when the number of neighbors
is greater than three but less than nine, the performance
is relatively good and stable. On the one hand, a smaller
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number of neighbors implies that the first-order graph lacks
essential must-link information, hindering the ability of the
model to explore structural information. On the other hand, a
larger number of neighbors may introduce some cannot-link
information to the first-order graph, which could mislead the
learning of the consensus graph.

4.2.4. Impact of The Number of The Order K

In the MoMvGC model, the order K is a significant
parameter that should not be overlooked. To investigate the
impact of the order K on the performance of the MoMvGC
model, we present a histogram of the optimal ACC w.r.t.
the order K. As shown in Figure 4, ACC obtained is low
when K is small. This can be attributed to the fact that
graphs from different views lack necessary must-link infor-
mation, making that the learned consensus graph is of poor
quality. With the increase of K, the model can mine more
rich structural information that is not available in the low-
order graphs but in the high-order graphs, which promotes
the clustering performance. When K is relatively large, a
significant amount of noise is introduced into the high-order
graphs, and consequently, the adaptive selection mechanism
discards these high-order graphs. Therefore, we suggest that,
in general, setting K to 5 is sufficient to fully exploit useful
high-order information.

4.2.5. Visualization of Learned Weights

The core idea of MoMvGC lies in the simultaneous se-
lection and learning of weights for multi-order graphs using
the constrained /, ,-norm. To illustrate this, we visualize the
weight distributions learned for the Caltech101-7 and Mfeat
datasets under optimal performance, as shown in Figure 7.
For the Caltech101-7 dataset, the learned non-zero weights
corresponding to the optimal clustering accuracy concen-
trate in the first, third, and fifth views, which means that other
views with noise are not very suitable for consensus graph
learning. All views of the Mfeat dataset contribute to the
optimal clustering performance. Moreover, it is worth noting
that only a few of the multi-order graphs from the same view
are selected, which highlights the role of row sparsity of the
constrained /, ,-norm.

o [+

Orders

(b) Mfeat

of learned weights.

4.2.6. Convergence Analysis

For the sake of demonstrating the effectiveness of the
MoMvGC model, we plot the trend of the objective and the
corresponding metrics for the four datasets with the increase
of the number of iterations. As depicted in Figure 6, as the
number of iterations increases, the objective value steadily
decreases while the ACC and NMI gradually improve. This
observation suggests that the model continuously learns bet-
ter consensus graphs through each optimization step. When
the objective function converges, ACC and NMI also reach
their maximum.

5. Conclusion and Discussion

In this paper, we introduce high-order graphs into multi-
view clustering, and propose Multi-view and Multi-order
Graph Clustering via Constrained /| -norm (MoMvGC),
which alleviates the influence of sparse graphs on clustering
performance. Specifically, by introducing constrained /, ,-
norm, the model can simultaneously select and learn the
weights of multi-order graphs, avoiding the information loss
or information redundancy caused by the two-step strategy.
Moreover, the MoMvGC model is capable of jointly select-
ing multi-order graphs and views, reducing the impact of
noisy views on consensus graph learning. Extensive exper-
iments conducted on nine datasets provide ample evidence
of the feasibility and effectiveness of our model.

On the other hand, utilizing the n X n fully connected
graph as input introduces a relatively high computational
complexity due to eigenvalue decomposition, which is 9(n?).
This is not conducive to clustering task of large-scale multi-
view datasets. Therefore, the design of a structure graph
learning method based on multi-view and multi-order anchor
graphs is our future work.
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Highlights

We introduce the idea of high-order graphs to multi-view clustering.
We innovatively propose constrained [; ,-norm for weight learning.
Our model enables simultaneous selection of views and multi-order graphs.
We design a comprehensive optimization framework for MoMvGC model.

Our model achieves decent clustering performance.
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