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A B S T R A C T
The graph-based multi-view clustering algorithms achieve decent clustering performance b
sensus graph learning of the first-order graphs from different views. However, the first-order
are often sparse, lacking essential must-link information, which leads to suboptimal con
graph. While high-order graphs can address this issue, a two-step strategy involving the se
of a fixed number of high-order graphs followed by their fusion may result in information
redundancy, restricting the exploration of high-order information. To address these challen
propose Multi-view and Multi-order Graph Clustering via Constrained 𝑙1,2-norm (MoMvGC)
mitigates the impact of graph sparsity on multi-view clustering. By innovatively designing cons
𝑙1,2-norm, the model ingeniously integrates the selection of multi-order graphs and corresp
weight learning into a unified framework. Furthermore, MoMvGC not only enable sparse se
of multi-order graphs but also simultaneous selection of views. Afterwards, we design an e
alternative optimization algorithm to solve the optimization problems in MoMvGC. The pr
model achieves state-of-the-art clustering performance on nine real-world datasets, with part
notable improvements observed on the MSRC dataset, where the clustering accuracy is incre
5.24% compared to the best baseline. Comprehensive experiments demonstrate the effectiven
superiority of our model.

duction
e advancements in multimedia and internet tech-
ata often exhibits diverse characteristics that can

by different sensors or represented using multi-
features, commonly referred to as "views" [12].
oints from various media sources and the rep-
s from distinct modalities concerning the same
e regarded as different views. Harnessing insight-
ation from diverse views can foster the analysis
ation of data, which is known as multi-view learn-
s a vital branch of multi-view learning and an ex-
ingle-view clustering, multi-view clustering [40]
xtensively researched and used in Web ranking
unity detection [41], and other areas [25, 5, 31].
the realm of multi-view clustering, graph-based
clustering methods [20, 38] exhibit remark-

s compared to other multi-view clustering meth-
as matrix factorization methods [44], subspace
sed methods [40, 13] and multiple kernel-based
4].The general workflow of graph-based multi-
ring entails the construction of a dedicated graph

iew, followed by the integration of these graphs
hniques such as graph fusion [28, 9] or weighted

n [20, 22], ultimately yielding a consensus graph.
ast decade, many graph-based multi-view cluster-
are proposed by learning consensus embeddings
consensus graph [22, 39, 6, 14, 46, 26, 36, 42,

these algorithms have demonstrated impressive
onding author
wangrong07@tsinghua.org.cn (R. Wang);

clustering capabilities. However, there remain severa
cial aspects that require improvement. A prevalent p
dure in such algorithms involves the generation of g
from multi-view data, and these graphs is sparse. S
graphs mean that the edge density between nodes w
clusters and nodes between clusters is small, and th
little must-link information, which greatly limits clus
performance. Fortunately, in the context of single-view
tering, AOPL proposed by Wu et al. successfully illus
the effectiveness of high-order graph to solve the sp
problem [37]. Inspired by this, we hope to extend
idea to multi-view clustering to further improve clus
performance by leveraging the complementarity an
consistency [15] of multi-view data.

However, the two-step strategy of selecting a fixed
ber of multi-order graphs and then performing graph f
adopted by Wu et al., not only increases a hyperparam
but may also cause information loss or redundancy,
hinders the mining of high-order information. Mor
not every view is suitable for the consensus graph lea
Especially for views that are filled with noise, uti
the corresponding multi-order graphs for graph clus
may not only fail to improve clustering accuracy bu
result in a degradation of clustering performance. T
fore, in the context of multi-view and multi-order
for graph clustering, adaptive selection is required no
for the multi-order graphs but also for the views so
achieve effective consensus graph learning. In order to
the above problems, we innovatively propose Multi
and Multi-order Graph Clustering via Constrained 𝑙1,2(MoMvGC), which can fully mine and utilize multi
@nwpu.edu.cn (Z. Miao)
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rmation from different views. Specifically, our
ns are summarized below:
extends the idea of high-order graphs to multi-
clustering. The MoMvGC model can fully exca-

the rich structural information hidden in the high-
r graphs, which eliminates the influence of graph
sity on clustering performance.
everaging the innovatively proposed constrained
orm, the MoMvGC model integrates multi-order

h selection and weight learning into a unified
ework, avoiding the impact on clustering accu-
caused by information loss or redundancy in the
step strategy. Additionally, the MoMvGC model
les simultaneous selection of different views and
i-order graphs, thereby mitigating the negative
ence of noise from both views and high-order
hs on the consensus graph learning.
ave designed a comprehensive optimization frame-
for the proposed MoMvGC model. We con-

ed extensive and diverse experiments on nine real-
d datasets. The model achieved SOTA clustering
rmance, providing compelling evidence for the
tiveness and superiority of our model.
For the matrix 𝑬 ∈ ℝ𝑝×𝑞 , 𝑬𝑖 and 𝑬𝑗 are denotes
row and 𝑗-th column of 𝑬, respectively. 𝐸𝑖𝑗element of 𝑬𝑖. The Frobenius norm of 𝑬 is√
Tr(𝐄𝑇𝐄). The 𝑙1,2-norm of 𝑬 is ‖𝑬‖1,2 =

𝑖‖21 =
√∑𝑝

𝑖=1(
∑𝑞

𝑗=1 |𝐸𝑖𝑗|)2. All elements of the
ctor 𝟏𝑚 ∈ ℝ𝑚×1 are one.

ed Work
tering with Adaptive Neighbors (CAN)
he data matrix 𝑿 = [𝑥1,⋯ , 𝑥𝑛]𝑇 ∈ ℝ𝑛×𝑑 , where
mber of samples and 𝑑 denotes the dimension of
le. For any sample, the neighbors are defined as 𝑘
osest to it in the Euclidean space. It can be con-
t the probability of the 𝑖-th sample being adjacent
r samples is denoted as 𝑠𝑖𝑗 , 𝑗 ∈ {1, 2,⋯ , 𝑛}. A
roach is that a larger ‖𝑥𝑖 − 𝑥𝑗‖22 corresponds to
𝑖𝑗 . So the objective of Clustering with Adaptive
(CAN) [23] is defined as

min
𝒔𝑖

𝑛∑
𝑖=1

𝑛∑
𝑗=1

(‖𝑥𝑖 − 𝑥𝑗‖22𝑠𝑖𝑗 + 𝜎𝑠2𝑖𝑗),

𝑠.𝑡. ∀𝑖, 𝒔𝑖𝟏𝑛 = 1, 𝒔𝑖 ⪰ 0,

(1)

[𝑠𝑖1, 𝑠𝑖2,⋯ , 𝑠𝑖𝑛] ∈ ℝ1×𝑛, and the regular term
𝜎𝑠2𝑖𝑗 is a uniform hypothesis, which ensures each

has an equal likelihood of 1
𝑛 to be selected as the

f 𝒙𝑖. For the sake of making the learned similarity
more suitable for clustering, a rank constraint

(a) 1st-order (b) 2nd-order (c) 3rd-or

(d) 4th-order (e) 5th-order (f) Ground

Figure 1: Visualization of high-order graphs and ground
of Mfeat dataset.

problem (1), which allows 𝑺 to be learned in the fo
diagonal block, as follows

min
𝒔𝑖

𝑛∑
𝑖=1

𝑛∑
𝑗=1

(‖𝑥𝑖 − 𝑥𝑗‖22𝑠𝑖𝑗 + 𝜎𝑠2𝑖𝑗),

𝑠.𝑡. ∀𝑖,𝒔𝑖𝟏𝑛 = 1, 𝒔𝑖 ⪰ 0, 𝑟𝑎𝑛𝑘(𝑳𝑠) = 𝑛 − 𝑐,

where 𝑳𝑠 = 𝑫𝑠 − 𝑺𝑇+𝑺
2 , and 𝑫𝑠 is a diagonal m

where 𝑖-th diagonal value is ∑
𝑗(

𝑠𝑖𝑗+𝑠𝑗𝑖
2 ). After optim

the problem (2) to obtain the optimal 𝑺, the cluster
are obtained directly without any post-processing.
2.2. High-order Graph

The concept of high-order graph is of great signifi
in the realm of graph learning. High-order graphs a
to the principle that the neighbor of a neighbor is
neighbor. LINE proposed by Tang et al. [30] integrates
order graph and second-order graph for graph embe
learning, which excavates important structural inform
that is not easy to observe in first-order graph. Wu
expressed the concept of second-order graph in the fo
matrix, and further proposed the definition of higher
graphs [37]. Given the first-order graph 𝑪 ∈ ℝ𝑛×𝑛 i.
original graph, where 𝑛 is the number of nodes, the
order graph 𝑪𝑘 is defined as

𝑪𝑘 =

{
𝑪 , 𝑘 = 1;

𝑪𝑘−1𝑪 , 𝑘 > 1.

To clearly demonstrate the outstanding performan
high-order graphs, we have visualized the multi-order g
of the Mfeat dataset, ranging from first-order to fifth
graphs. In Figure 1, we observe that compared to the si
ity graph corresponding to the ground truth, the first
graph is significantly sparse and lacks essential mus
aplacian matrix is introduced on the basis of the

Preprint submitted to Elsevier Page 2 of 11
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n. This largely restricts the performance of multi-
ring methods. As the order of the graph increases,
progressively denser. However, the number of
edges also increases, which can be regarded as

noise. So selecting graphs with too low or too
is detrimental to graph learning. Notably, the
graph appears to be the most suitable for learning

sus graph. Therefore, selecting appropriate multi-
hs for graph fusion is of utmost importance for
raph clustering.

tive-order Proximity Learning (AOPL)
ted to alleviating the impact of first-order graph

clustering performance, Wu et al. proposed a
graph clustering framework within a single-view
]. Specifically, the algorithm initially selects the
multi-order graphs, followed by weight learning
raphs and their fusion for consistent graph 𝑺,
sentially a two-step strategy. The objective func-
ned as follows:

min
𝑺

𝐾∑
𝑘=1

𝑞𝑘𝑓 (‖𝑺 − 𝑪𝑘‖2𝐹 ),

𝑠.𝑡. 𝑺𝟏𝑛 = 𝟏𝑛,𝑺 ⪰ 0, 𝒒𝑇 𝟏𝐾 = 𝑚,
𝒒 ∈ {0, 1}𝑚, 𝑟𝑎𝑛𝑘(𝑳𝑠) = 𝑛 − 𝑐,

(4)

s the boolean variable that determines whether
the 𝑘-th order graph 𝑪𝑘, and 𝑓 (‖𝑺 − 𝑪𝑘‖2𝐹 )an approach to learn optimal consistent graph. Ev-
hyperparameter 𝑚 has a significant impact on the
manually adjusting 𝑚 is highly subjective. When

vely large, it may lead to issues of information
y. When 𝑚 is relatively small, it might result in
t exploration of high-order information, causing
f information loss. Therefore, the adaptive selec-
number of multi-order graphs for graph fusion is
tance.
ted Work on Graph-based Multi-view
tering
nt years, the realm of graph-based multi-view
has witnessed a surge in activity, marked by
nce of numerous high-quality algorithms. These
fall into two main categories: one emphasizing

ition of consensus embedding and the other fo-
the acquisition of consensus graph. Effectively
nsensus embedding from diverse views involves
amalgamating different representations to derive
ing that best aligns with the real data distribu-
n addressing this challenge, Nie et al. proposed

algorithm that adaptively learns a consensus
bedding from Laplacian matrices constructed

ous views [21]. Furthermore, extending spectral
to multi-view scenarios, Hu et al. introduced
hted framework [24] for adaptively learning a
non-negative embedding [7, 2]. Observing the

in clustering tasks, Wang et al. formulated a globally-ap
truncated weight allocation mechanism, thus amplifyi
discriminative power of embeddings for clustering
In response to the computational complexity entail
embedding learning, He et al. proposed FAMvC, lever
singular value decomposition (SVD) as an alternat
eigenvalue decomposition in spectral clustering [6], r
ing in notable improvements in clustering performanc

In contrast to methods focusing on learning cons
embedding, approaches centered around learning co
sus graphs often exhibit superior performance in
view clustering, fostering the development of num
high-quality algorithms. Nie et al. proposed SwMC,
employs Laplacian rank constraints to learn a cons
graph [22]. Expanding upon this paradigm, a success
related efforts [43, 32] has emerged, consistently showc
commendable clustering accuracy.Recognizing the s
icance of initialization graphs for clustering perform
Tang et al. proposed CGD served as the first algorithm
enhances consensus graph quality via a diffusion pr
for learning improved graphs from different views
Acknowledging that learning consensus graphs directly
the original data may lead to clustering performance
bility, Zhao et al. proposed AONGR, a method that
spectral clustering and non-negative matrix decompo
into a unified framework for reconstructing the cons
graph [46]. While these models have achieved superior
tering performance, they predominantly prioritize c
tency, overlooking the inherent diversity across views
To address this limitation, Huang et al. proposed CDM
a representative work that decomposes the graph from
view into a consistent part and a divergent part, and
learns a high-quality consensus graph by fusing the c
tent parts obtained from different views [10]. Further
some multi-view clustering algorithms based on bip
graphs have been proposed to address the issue of high
putational complexity [26, 36, 14, 42]. These appro
typically generate a concise anchor set from the or
data, serving to represent the overall structure of the s
set, which notably reduces the computational comp
resulting in a linear reduction [17, 8, 4, 35].

However, the graph-based multi-view clustering
rithm mentioned above utilizes sparse graphs, as sho
Figure 1, thereby lacking a substantial amount of mus
information and consequently constraining clustering
racy. So it is necessary to solve the problem for impr
the clustering performance, which serves as the pr
motivation of our research.

3. Multi-view and Multi-order Graph
Clustering via Constrained 𝑙1,2-norm
(MoMvGC)
This section provides a detailed explanation of the M

view and Multi-order Graph Clustering via Constraine
norm (MoMvGC) clustering model. We begin by prese
levance of embeddings across varied viewpoints
Preprint submitted to Elsevier Page 3 of 11
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Figure 2: The framework of Multi-view and Multi-order Graph Clustering via Constrained 𝑙1,2-norm.

along with its formulations, followed by the
nt of an efficient optimization algorithm.
Proposed MoMvGC Model
raph-based multi-view clustering algorithms are
to the influence of graph sparsity, which greatly

ph fusion. Inspired by AOPL, we introduce high-
hs into multi-view clustering, aiming to fully
rich structural information hidden in high-order
hough the two-step strategy proposed by Wu et al.
ecent clustering performance, the mandatory se-
fixed number of multi-order graphs for graph fu-
tentially lead to information loss or redundancy,
suboptimal consensus graphs. Apart from that,

ld datasets, there are often certain views where
gnificantly outweighs the useful information. For
, we have no choice but to discard them to avoid
ive impact on consensus graph learning. There-
perative to not only select appropriate high-order
also simultaneously choose the relevant views.
ress the aforementioned issues, we propose Multi-
h Clustering via Constrained 𝑙1,2-norm (MoMvGC),
ectly integrates the selection of multi-order graphs
onding weight learning into a unified framework,

in Figure 2. Specifically, the core idea is that
ined 𝑙1,2-norm, inspired by the feature selection
], is proposed innovatively to adaptively select
r graphs from different views. Simultaneously,
d graphs are utilized for the consensus graph
he mutual enhancement between them enables

GC model to learn the optimal consensus graph.
multi-view data 𝑿 = [𝑿1,𝑿2,⋯ ,𝑿𝑉 ] with 𝑉
first-order graph could be generated through the
rithm [23], and then the 𝐾-order graphs for each
e obtained by Eq. (3).𝑪𝑣

𝑘 denotes 𝑘-th order graph
w. 𝑯 ∈ ℝ𝑉 ×𝐾 is a coefficient matrix and 𝐻𝑣𝑘the corresponding weight with respect to 𝑪𝑣

𝑘 . The
s to minimize the sum of squared errors between

the consensus graph 𝑺 ∈ ℝ𝑛×𝑛 and the multi-order g
from all views, subject to the restriction of applyin
constrained 𝑙1,2-norm on the weight coefficients, wh
defined as:

min
𝑯 ,𝑺

𝑉∑
𝑣=1

𝐾∑
𝑘=1

𝐻𝑣𝑘‖𝑺 − 𝑪𝑣
𝑘‖2𝐹 + 𝛽‖𝑯‖21,2,

𝑠.𝑡. 𝑺𝟏𝑛 = 𝟏𝑛,𝑺 ⪰ 0, 𝟏𝑇𝑉 𝑯𝟏𝐾 = 1,
𝑯 ⪰ 0, 𝑟𝑎𝑛𝑘(𝑳𝑠) = 𝑛 − 𝑐,

where 𝛽 is the hyperparameter. On the one hand, th
norm allows competition among different views, ens
that each view has a fair chance to contribute. On the
hand, for the 𝑖-th view, it encourages sparsity in the 𝑖-t
of 𝑯 , meaning that non-zero weights tend to concentr
few multi-order graphs. Hence, the adaptive learning
ingeniously achieves the simultaneous selection of view
multi-order graphs. When 𝛽 approaches 0, the graphs
only a few views participate in consensus graph lea
When 𝛽 is sufficiently large, the selected multi-order g
of all views contribute to graph fusion.

In order to ensure the learning of high-quality 𝑺
prevent the scenario where only one graph is select
each view, it is necessary to introduce two regulari
terms on the basis of Eq. (5). So the final objective o
proposed MoMvGC model is as detailed below

min
𝑯 ,𝑺

𝑉∑
𝑣=1

𝐾∑
𝑘=1

𝐻𝑣𝑘‖𝑺 − 𝑪𝑣
𝑘‖2𝐹 + 𝜇‖𝑺‖2𝐹

+ 𝛽(‖𝑯‖21,2 + 𝛼‖𝑯‖2𝐹 ),
𝑠.𝑡. 𝑺𝟏𝑛 = 𝟏𝑛,𝑺 ⪰ 0, 𝟏𝑇𝑉𝑯𝟏𝐾 = 1,

𝑯 ⪰ 0, 𝑟𝑎𝑛𝑘(𝑳𝑠) = 𝑛 − 𝑐,

where 𝜇 and 𝛼 are the hyperparameters. 𝛼 balance
interaction of two norms, which is set to 1 in our m
Compared to the APOL algorithm, our proposed MoM
Preprint submitted to Elsevier Page 4 of 11
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inates the need for manual selection of a spe-
er of multi-order graphs. Instead, it intricately
the selection of multi-order graphs with weight
wing to the introduction and flexible application
trained 𝑙1,2-norm.
mization
𝑠 is a positive semi-definite matrix, there exist

ative eigenvalues: 0 ≤ 𝜎1 ≤ 𝜎2 ≤ ⋯ ≤ 𝜎𝑛.
er of multiplicities of zero as an eigenvalue of
l to connected component count of graph 𝑆 [19].
s that data are already clustered into 𝑐 clusters
onstraint ∑𝑐

𝑖=1 𝜎𝑖 = 0. According to Ky Fan’s
we have

𝑐∑
𝑖=1

𝜎𝑖 = min
𝑭 𝑇 𝑭=𝑰

Tr(𝑭 𝑇𝑳𝑠𝑭 ), (7)

ℝ𝑛×𝑐 denotes the graph embedding. Thus, the
) can be reformulated as

n
,𝑭

𝑉∑
𝑣=1

𝐾∑
𝑘=1

𝐻𝑣𝑘‖𝑺 − 𝑪𝑣
𝑘‖2𝐹 + 𝜇‖𝑺‖2𝐹

𝛽(‖𝑯‖21,2 + ‖𝑯‖2𝐹 ) + 2𝜆Tr(𝑭 𝑇𝑳𝑠𝑭 ),

.𝑡. 𝑺𝟏𝑛 = 𝟏𝑛,𝑺 ⪰ 0, 𝟏𝑇𝑉 𝑯𝟏𝐾 = 1,𝑯 ⪰ 0,

𝑭 𝑇𝑭 = 𝑰 ,𝑳𝑠 = 𝑫𝑠 −
𝑺𝑇 + 𝑺

2
.

(8)

Update 𝑺 with fixed 𝑯 and 𝑭 : Let 𝑫 ∈ ℝ𝑛×𝑛

= 𝜆‖𝒇 𝑖 − 𝒇 𝑗‖22, where 𝒇 𝑖 ∈ ℝ1×𝑐 is 𝑖-th row of
blem (8) can be simplified to

min
𝑺𝟏𝑛=𝟏𝑛,𝑺⪰0

𝑉∑
𝑣=1

𝐾∑
𝑘=1

𝐻𝑣𝑘(Tr(𝑺𝑇𝑺)

−2Tr(𝑺𝑇𝑪𝑣
𝑘 )) + Tr(𝑺𝑇𝑫).

(9)

o rows of 𝑺, the constraints applied to them
ly unrelated. So the problem (9) can be further

min
𝑺𝑖𝟏𝑛=1,𝑺𝑖⪰0

1
2
‖𝑺 𝑖 + 1

2(𝜇 + 1)
𝑴 𝑖‖22, (10)

𝑫 − 2
∑𝑉

𝑣=1
∑𝐾

𝑘=1𝐻𝑣𝑘𝑪𝑣
𝑘 . Using the Lagrange

method for the problem (10), we have
‖𝑺 𝑖 + 1

2(𝜇 + 1)
𝑴 𝑖‖22 − 𝜂𝑖(𝑺 𝑖𝟏𝑛 − 1) − 𝑺 𝑖𝜃𝑖, (11)

nd 𝜃𝑖 are the lagrangian multiplier. The closed-
ion of 𝑺 is obtained through the Karush Kuhn-
T) condition [1, 23].

: Update 𝑯 with fixed 𝑺 and 𝑭 : The problem
written as

in
=1,𝑯⪰0

𝑉∑
𝑣=1

𝐾∑
𝑘=1

𝐻𝑣𝑘𝑃𝑣𝑘 + 𝛽(‖𝑯‖21,2 + ‖𝑯‖2𝐹 ), (12)

ℝ𝑉 ×𝐾 and 𝑃𝑣𝑘 = ‖𝑺−𝑪𝑣
𝑘‖2𝐹 . The problem (12)

Algorithm 1 The procedure to solve problem (8)
Input: The order 𝐾 , the first-order graphs, the num

cluster 𝑐, the parameters 𝜇, 𝛽 and 𝜆
Output: The consensus graph 𝑺

1: Obtain multi-order graphs of each view by Eq
Initialize 𝐻𝑣𝑘 = 1

𝑉 𝐾 and 𝑭 with spectral embe
of the graph 𝑺 = 1

𝑉
∑𝑉

𝑣=1 𝑪
𝑣
1 , respectively.

2: while not converge do
3: Update 𝑺 by Eq. (11);
4: Update 𝑯 by Eq. (15);
5: Update 𝑭 by Eq. (16);
6: end while
7: return 𝑺

Theorem 1. For the matrix 𝒁 ∈ ℝ𝑟×𝑠 where 𝒁
‖𝒁‖21,2 = 𝒁̃𝑇 𝑱𝒁̃. 𝒁̃ = 𝑣𝑒𝑐(𝒁) = [𝒁11,… ,𝒁1𝑠,… ,
,… ,𝒁𝑟𝑠]𝑇 , where 𝑣𝑒𝑐(⋅) is a matrix-vector operator
a block diagonal matrix consisting of 𝑟 identical ma
𝑻 ∈ ℝ𝑠×𝑠, whose elements are all 1.

Proof. Given a vector 𝒙 = [𝑥1, 𝑥2,… , 𝑥𝑛]𝑇 , we have
𝑥2 +⋯ + 𝑥𝑛)2 = 𝒙𝑇𝑮𝒙, where 𝑮 ∈ ℝ𝑛×𝑛 and its ele
are all 1. Similarly, for the matrix 𝒁, we have

‖𝒁‖21,2 =
𝑟∑

𝑖=1
‖𝒁 𝑖‖21 =

𝑟∑
𝑖=1

𝒁 𝑖𝑻𝒁 𝑖𝑇 = 𝒁̃𝑇 𝑱𝒁̃,

where 𝒁 𝑖 is 𝑖-th row of 𝒁. Eq. (13) satisfies the s
equality when 𝒁 ⪰ 0. Taking 𝒁 ∈ ℝ2×2 as an exa
there is

𝐽 =
⎡⎢⎢⎢⎣

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

⎤⎥⎥⎥⎦
.

Let 𝑼 ∈ ℝ𝑉 𝐾×𝑉 𝐾 be a block diagonal matrix com
of 𝑉 identical matrices with dimensions 𝐾 by 𝐾 li
𝑯̃ = 𝑣𝑒𝑐(𝑯) and 𝑷 = 𝑣𝑒𝑐(𝑷 ). So the problem (12)
be converted to

min
𝟏𝑇𝑉 𝑯̃𝟏𝐾=1,𝑯̃⪰0

𝛽𝑯̃𝑇𝑹𝑯̃ + 𝑷 𝑇 𝑯̃ ,

where 𝑹 = 𝑼 + 𝑰 and 𝑰 ∈ ℝ𝑉 𝐾×𝑉 𝐾 is an identity m
Obviously, the problem (15) can be solved by the QP s

Step 3: Update 𝑭 with fixed 𝑺 and 𝑯 : Based o
above analysis, the problem (8) becomes

min
𝑭 𝑇 𝑭=𝑰

Tr(𝑭 𝑇𝑳𝑠𝑭 ),

so the optimal 𝑭 is the eigenvector corresponding to th
𝑐 minimum eigenvalues of 𝑳𝑠.
lved through the QP solver.
Preprint submitted to Elsevier Page 5 of 11
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plexity Analysis
plexity The MoMvGC model necessitates the
n of 𝑉 × (𝐾 − 1) high-order graphs from 𝑉
hs. The construction of each graph requires a
of (𝑛||), where || denotes the number of
to the sparsity of initial graphs, || and 𝑛 are

e in magnitude. Then the time complexity for this
(𝑉 (𝐾 − 1)𝑛||). In the process of updating 𝑺,
ting 𝑫 requires (𝑐𝑛2), and then computing 𝑺
(𝑛2). Updating 𝑯 only requires a quadratic pro-
which is independent of 𝑛 and can be negligible.
tation of the optimal 𝑭 requires a complexity of
erall, the MoMvGC model exhibits a quadratic
lexity, placing it on par with other graph-based
clustering algorithms.
plexity During the learning procedure, the major
sts of our model are matrices 𝑺 ∈ ℝ𝑛×𝑛, 𝑯 ∈

and 𝑭 ∈ ℝ𝑛×𝑐 . So the space complexity of
is (𝑛2 + 𝑉 2𝐾2 + 𝑐𝑛). Since 𝑐 ≪ 𝑛, 𝐾 ≪ 𝑛
𝑛, the overall space complexity of our model is
tely (𝑛2).
iments

section, we employ real-world datasets to verify
ing performance of MoMvGC from different as-
as clustering performance, sensitivity analysis,

gence analysis.
rimental Settings

taset Descriptions
ize nine real-world benchmark datasets to assess
and effectiveness of our clustering model. a) The
t Yale1 contains 15 people or 15 classes, each
ce images with different expressions, postures
g, for a total of 165 images. b) 3Sources2 com-
s articles gathered from three distinct sources:
Guardian, and Reuters. It includes a total of 169
s, each reported by all three media outlets, and
nto six categories. c) WebKB3 is a dataset that
ebpages characterized by two aspects: content and
e webpages are gathered from four universities,
cific focus on the data from the University of
. d) MSRC4 encompasses 210 images capturing
ross 7 distinct classes and is presented from 5
iewpoints. The classes include airplane, bicycle,
ar, cow, face, and tree. The dataset is characterized
, each represented by a unique feature set: 24-D
ent (CM), 576-D histogram of oriented gradient
2-D GIST, 256 local binary pattern (LBP), and

trist (CENT). e) YaleB5 comprises a total of 2,414
s taken from 38 individuals. Each person is repre-
65 images captured under varying illuminations.
www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html

mlg.ucd.ie/datasets/3sources.html

lig-membres.imag.fr/grimal/data.html

/www.microsoft.com/en-us/research/project/

In our experiments, we focus on a subset of the da
specifically the first 10 individuals, which amounts to
of 650 images. f) COIL-206 is a commonly used d
in the fields of image processing and pattern recogn
This dataset comprises images of 20 objects with 3 v
with each object having 72 images captured under v
angles and lighting conditions. g) Object recognition d
Caltech1017 has 101 categories, whose number of vi
6. h) The Mfeat8 dataset, sourced from the UCI repos
is a collection of handwritten digits (0-9). This dataset
prises 2000 samples, with each sample characterized
different types of features. i) The dataset Scene9 com
a total of 2688 images divided into 8 distinct group
each image, we extract four distinct feature vectors, n
a 512-D GIST feature vector, a 432-D color moment f
vector, a 256-D HOG feature vector, and a 48-D local b
pattern (LBP) feature vector.
4.1.2. Comparison Models

We assess the performance of our MoMvGC mod
benchmarking it against nine existing graph-based
view clustering algorithms. We acquired these implem
tions either from the authors’ official websites or by
communication with the authors. Specifically, the co
ison models and the corresponding brief description
listed as follows.

• SwMC [22] is a classical graph-based multi
clustering algorithm that learns a consistent struc
graph by imposing Laplacian rank constraints
computational complexity is 𝑂(𝑐𝑛2).

• MVGL [43] obtains a global consistent struc
graph by adaptively learning the optimal weig
each sample in different views. The computa
complexity is 𝑂(𝑐𝑛2).

• GMC [32] gets the optimal graph fusion by s
taneously learning the optimal similarity matr
each view and adaptively weighting each view
computational complexity is 𝑂(𝑐𝑛2).

• CGD [28] is the first time to use the fusion pr
to learn an improved graph for each view, e
the dependence on high-quality initial graphs
computational complexity is 𝑂(𝑛3).

• CoMSC [16] utilize eigendecomposition to ac
a robust data representation characterized by lo
dundancy, which could help obtain better clus
results. The computational complexity is 𝑂(𝑐𝑛2

• SMVSC [26] unifies anchor learning and graph
struction within a single optimization frame
making the learned anchors are capable of

6http://cs.columbia.edu/CAVE/software/softlib/
7http://www.vision.caltech.edu/datasets/
8https://archive.ics.uci.edu/ml/datasets/Multiple+Features
9https://figshare.com/articles/dataset/15-Scene_Image_Datas
vision.ucsd.edu/leekc/ExtYaleDatabase/ExtYaleB.html 7007177
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performance comparison. Best results are in bold, and the second best results are underlined.

set Metric SwMC MVGL GMC CGD CoMSC SMVSC CDMGC MSCTM UDBGL MoMvGC

e

ACC 0.6606±0.00 0.6000±0.00 0.654±0.00 0.456±0.03 0.2897±0.00 0.4939±0.02 0.6527±0.00 0.6000±0.00 0.5454±0.00 0.7333±0.00

NMI 0.6687±0.00 0.6363±0.00 0.6735±0.00 0.5348±0.00 0.3555±0.01 0.5374±0.02 0.6793±0.00 0.5820±0.00 0.6125±0.00 0.6969±0.00

ARI 0.4159±0.00 0.4146±0.00 0.4410±0.00 0.3008±0.04 0.0718±0.00 0.3017±0.02 0.4283±0.00 0.3393±0.00 0.3761±0.00 0.4775±0.00

F-Score 0.4568±0.00 0.4538±0.00 0.4800±0.00 0.3567±0.04 0.1321±0.00 0.3506±0.02 0.4679±0.00 0.3839±0.00 0.4182±0.00 0.5127±0.00

ces

ACC 0.6686±0.00 0.7514±0.00 0.6923±0.00 0.7869±0.00 0.5479±0.02 0.3082±0.01 0.3538±0.00 0.5266±0.00 0.4082±0.00 0.7573±0.00

NMI 0.5382±0.00 0.5990±0.00 0.5479±0.00 0.6985±0.00 0.3719±0.01 0.0832±0.00 0.0676±0.00 0.4343±0.00 0.1995±0.00 0.6626±0.00

ARI 0.4168±0.00 0.5244±0.00 0.4431±0.00 0.6282±0.00 0.2836±0.02 0.0341±0.00 0.0128±0.00 0.2605±0.00 0.1325±0.00 0.5699±0.00

F-Score 0.5813±0.00 0.6573±0.00 0.6046±0.00 0.7234±0.00 0.4797±0.02 0.2342±0.01 0.3566±0.00 0.4802±0.00 0.3213±0.00 0.6764±0.00

B

ACC 0.0197±0.00 0.5172±0.00 0.7586±0.00 0.7635±0.00 0.5468±0.00 0.5985±0.01 0.0197±0.00 0.7931±0.00 0.6945±0.00 0.8177±0.00

NMI 0.2024±0.00 0.0614±0.00 0.3634±0.00 0.3269±0.00 0.0384±0.00 0.3072±0.04 0.2024±0.00 0.5076±0.00 0.1679±0.00 0.4799±0.00

ARI 0.000±0.00 0.0269±0.00 0.4207±0.00 0.4702±0.00 0.0359±0.00 0.3148±0.06 0.000±0.00 0.5755±0.00 0.2507±0.00 0.6122±0.00

F-Score 0.000±0.00 0.5288±0.00 0.6894±0.00 0.7001±0.00 0.5627±0.00 0.5548±0.00 0.000±0.00 0.7648±0.00 0.6095±0.00 0.7855±0.00

C

ACC 0.7666±0.00 0.8714±0.00 0.7476±0.00 0.8238±0.00 0.4123±0.00 0.8190±0.00 0.7452±0.01 0.3523±0.00 0.7904±0.00 0.9238±0.00

NMI 0.7537±0.00 0.7731±0.00 0.7421±0.00 0.7314±0.00 0.3463±0.00 0.7118±0.00 0.6879±0.00 0.2724±0.00 0.6722±0.00 0.8535±0.00

ARI 0.6662±0.00 0.7152±0.00 0.6399±0.00 0.6641±0.00 0.2090±0.00 0.6486±0.00 0.5635±0.02 0.1456±0.00 0.6242±0.00 0.8308±0.00

F-Score 0.7185±0.00 0.7560±0.00 0.6968±0.00 0.7123±0.00 0.3249±0.00 0.6987±0.00 0.6333±0.01 0.2845±0.00 0.6782±0.00 0.8545±0.00

B

ACC 0.4784±0.00 0.3738±0.00 0.4338±0.00 0.3280±0.00 0.5647±0.00 0.3016±0.01 0.3963±0.02 0.4646±0.00 0.1630±0.00 0.5769±0.00

NMI 0.4340±0.00 0.3391±0.00 0.4162±0.00 0.3085±0.00 0.5433±0.00 0.2282±0.01 0.3415±0.02 0.4479±0.00 0.0813±0.00 0.5395±0.00

ARI 0.1830±0.00 0.0891±0.00 0.1571±0.00 0.1287±0.00 0.3174±0.00 0.0702±0.00 0.1161±0.02 0.2255±0.00 0.0194±0.00 0.3023±0.00

F-Score 0.2899±0.00 0.2113±0.00 0.2651±0.00 0.2250±0.00 0.3936±0.00 0.1838±0.00 0.2439±0.01 0.3224±0.00 0.1191±0.00 0.3854±0.00

-20

ACC 0.8541±0.00 0.7845±0.00 0.7909±0.00 0.7918±0.00 0.6091±0.03 0.5735±0.03 0.8666±0.00 0.8354±0.00 0.5784±0.00 0.8986±0.00

NMI 0.9428±0.00 0.9130±0.00 0.9189±0.00 0.8786±0.00 0.7355±0.01 0.7078±0.02 0.9435±0.00 0.9196±0.00 0.7426±0.00 0.9449±0.00

ARI 0.8318±0.00 0.7738±0.00 0.7819±0.00 0.7523±0.00 0.5210±0.03 0.4805±0.03 0.8376±0.00 0.7911±0.00 0.5296±0.00 0.8587±0.00

F-Score 0.8410±0.00 0.7867±0.00 0.7942±0.00 0.7655±0.00 0.5482±0.03 0.5113±0.03 0.8465±0.00 0.8027±0.00 0.5568±0.00 0.8666±0.00

7

ACC 0.7232±0.00 0.7367±0.00 0.6919±0.00 0.6791±0.00 0.4873±0.00 0.5487±0.02 0.8071±0.00 0.6933±0.00 0.5651±0.00 0.8297±0.00

NMI 0.5569±0.00 0.5342±0.00 0.6056±0.00 0.5630±0.00 0.3508±0.00 0.4115±0.05 0.5233±0.01 0.5987±0.00 0.4699±0.00 0.4864±0.00
ARI 0.4685±0.00 0.4778±0.00 0.5942±0.00 0.5480±0.00 0.2971±0.00 0.3532±0.06 0.5829±0.00 0.4874±0.00 0.4163±0.00 0.6175±0.00

F-Score 0.6763±0.00 0.6884±0.00 0.7216±0.00 0.6831±0.00 0.4728±0.00 0.5363±0.02 0.7646±0.00 0.6703±0.00 0.5597±0.00 0.7926±0.00

at

ACC 0.8855±0.00 0.8550±0.00 0.8820±0.00 0.8545±0.00 0.6272±0.00 0.7474±0.05 0.8432±0.01 0.6980±0.00 0.7640±0.00 0.8860±0.00

NMI 0.9039±0.00 0.8962±0.00 0.8940±0.00 0.8877±0.00 0.7037±0.00 0.7284±0.02 0.8823±0.00 0.7406±0.00 0.7259±0.00 0.9041±0.00

ARI 0.8641±0.00 0.8373±0.00 0.8502±0.00 0.8328±0.00 0.5869±0.00 0.6662±0.03 0.8156±0.00 0.6328±0.00 0.6588±0.00 0.8611±0.00

F-Score 0.8788±0.00 0.8547±0.00 0.8658±0.00 0.8507±0.00 0.6315±0.00 0.7037±0.02 0.8354±0.00 0.6738±0.00 0.6940±0.00 0.8753±0.00

e

ACC 0.4196±0.00 0.3251±0.00 0.3400±0.00 0.5871±0.00 0.6005±0.00 0.6077±0.03 0.2693±0.06 0.3846±0.00 0.6945±0.00 0.6525±0.00

NMI 0.3436±0.00 0.2093±0.00 0.3141±0.00 0.4599±0.00 0.4712±0.00 0.4734±0.03 0.1463±0.09 0.2565±0.00 0.5300±0.00 0.5375±0.00

ARI 0.1845±0.00 0.0727±0.00 0.1925±0.00 0.3757±0.00 0.3801±0.00 0.3887±0.03 0.0562±0.07 0.1013±0.00 0.4645±0.00 0.4686±0.00

F-Score 0.3457±0.00 0.2680±0.00 0.3546±0.00 0.4676±0.00 0.4601±0.00 0.4815±0.02 0.2607±0.05 0.2865±0.00 0.5337±0.00 0.5466±0.00

is worth noting that the MoMvGC results are based on the first-order graphs with five neighbors.

rately representing the latent data distribution.
computational complexity is 𝑂(𝑛).
GC [10] pays attention to the consistency and

rsity of graphs from multi-views when learning
ptimal consensus graph. The computational com-
ity is 𝑂(𝑐𝑛2).
TM [11] benefits from exploring the inherent
manifold by learning the topological relation-

s among data points, which seamlessly integrates
iple graphs from different views into a consensus
h. The computational complexity is 𝑂(𝑐𝑛2).
GL [4] integrates the construction of bipartite

hs through subspace learning with consensus

clustering performance while reducing computa
complexity. The computational complexity is 𝑂

4.1.3. Evaluation Metrics and Hyperparameter
Settings

We adopt widely used evaluation metrics includin
curacy (ACC), normalized mutual information (NMI)
and F-Score to comprehensively assess the clusterin
formance. The closer the value of these metrics is
the better the clustering performance of the correspo
algorithm. In the MoMvGC model, we use the grid s
technique, setting both 𝜇 and 𝛽 to vary in the ran
{10−3, 10−2, 10−1,… , 103}. And we conducted the e
iments on MATLAB 2022a environment.
h learning into a unified framework, ensuring
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Figure 3: Parameter sensitivity of MoMvGC w.r.t 𝜇 and 𝛽.

lt Analyses
stering Performance
presents the results of four commonly adopted

performance metrics. Based on the aforemen-
lts, we can draw the following conclusions:
result reveals that the proposed model consis-
y outperforms or closely competes with existing
oaches across all nine datasets, as evidenced by
t metrics employed. This indicates the superior
rmance of high-order graphs within the realm

raph-based multi-view clustering. Moreover, the
ering metrics of our model exhibit zero variance,
ating the strong stability of the MoMvGC model

gside its superior clustering performance.
xample, on MSRC dataset, our method surpasses

best comparison method (MVGL) by +0.0524
, +0.0804 NMI, +0.0985 F-Score and +0.1156

, which can be considered as a substantial im-
ement for clustering tasks. Specifically, through
riments, it can be found that the optimal result
tained by the consensus learning of only multi-
r graphs from the fourth view, which proves the
ssity of simultaneous selection of multi-order

4.2.2. Parameter Sensitivity on 𝝁 and 𝜷
We plotted the sensitivity of the four datasets wi

spect to the parameters 𝜇 and 𝛽. As shown in Fig
the sensitivity of 𝜇 is relatively higher than that of
could achieve coarse tuning by imposing constrain
consensus graph 𝑺 while 𝛽 has a fine-tuning effect. T
the dataset Caltech101-7 as an example, when 𝜇 = 1
𝛽 ∈ [10−1, 102], the ACC obtained by MoMvGC is th
and the performance is stable. This fully demonstrat
advantages of simultaneous selection and weight learn
multi-order graphs.
4.2.3. Impact of The Number of Neighbors

The KNN algorithm [23] is used to generate first
graph for each view as input of the MoMvGC mode
number of neighbors is a crucial parameter that deter
the sparsity level of the graph. To further investiga
impact of high-order graphs on graph sparsity, we p
the trend of ACC obtained by the MoMvGC mode
varying numbers of neighbors, as shown in Figure
can be observed that for most datasets: a) an insuffici
excessive number of neighbors will have a negative i
on the clustering accuracy. b) when the number of neig
is greater than three but less than nine, the perform
is relatively good and stable. On the one hand, a sm
hs and views.
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Figure 6: Convergence analysis.
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Figure 7: Visualization of learned weights.

neighbors implies that the first-order graph lacks
ust-link information, hindering the ability of the
plore structural information. On the other hand, a

ber of neighbors may introduce some cannot-link
n to the first-order graph, which could mislead the
the consensus graph.
act of The Number of The Order 𝑲
MoMvGC model, the order 𝐾 is a significant
that should not be overlooked. To investigate the
he order 𝐾 on the performance of the MoMvGC
present a histogram of the optimal ACC w.r.t.
. As shown in Figure 4, ACC obtained is low

s small. This can be attributed to the fact that
different views lack necessary must-link infor-

king that the learned consensus graph is of poor
ith the increase of 𝐾 , the model can mine more
ral information that is not available in the low-

hs but in the high-order graphs, which promotes
ing performance. When 𝐾 is relatively large, a
amount of noise is introduced into the high-order
consequently, the adaptive selection mechanism

ese high-order graphs. Therefore, we suggest that,
setting 𝐾 to 5 is sufficient to fully exploit useful
information.
ualization of Learned Weights
re idea of MoMvGC lies in the simultaneous se-
learning of weights for multi-order graphs using

ined 𝑙1,2-norm. To illustrate this, we visualize the
ributions learned for the Caltech101-7 and Mfeat
der optimal performance, as shown in Figure 7.
ltech101-7 dataset, the learned non-zero weights
ing to the optimal clustering accuracy concen-
first, third, and fifth views, which means that other
noise are not very suitable for consensus graph
ll views of the Mfeat dataset contribute to the
stering performance. Moreover, it is worth noting
few of the multi-order graphs from the same view
d, which highlights the role of row sparsity of the
𝑙 -norm.

4.2.6. Convergence Analysis
For the sake of demonstrating the effectiveness

MoMvGC model, we plot the trend of the objective an
corresponding metrics for the four datasets with the inc
of the number of iterations. As depicted in Figure 6,
number of iterations increases, the objective value st
decreases while the ACC and NMI gradually improve
observation suggests that the model continuously learn
ter consensus graphs through each optimization step.
the objective function converges, ACC and NMI also
their maximum.

5. Conclusion and Discussion
In this paper, we introduce high-order graphs into

view clustering, and propose Multi-view and Multi
Graph Clustering via Constrained 𝑙1,2-norm (MoMv
which alleviates the influence of sparse graphs on clus
performance. Specifically, by introducing constrained
norm, the model can simultaneously select and lear
weights of multi-order graphs, avoiding the informatio
or information redundancy caused by the two-step str
Moreover, the MoMvGC model is capable of jointly s
ing multi-order graphs and views, reducing the imp
noisy views on consensus graph learning. Extensive e
iments conducted on nine datasets provide ample evi
of the feasibility and effectiveness of our model.

On the other hand, utilizing the 𝑛 × 𝑛 fully conn
graph as input introduces a relatively high computa
complexity due to eigenvalue decomposition, which is
This is not conducive to clustering task of large-scale
view datasets. Therefore, the design of a structure
learning method based on multi-view and multi-order a
graphs is our future work.

CRediT Authorship Contribution Stateme
Haonan Xin: Conceptualization, Methodology, V

tion, Software, Formal analysis, Investigation, Writ
original draft. Zhezheng Hao: Methodology, Valid
Formal analysis, Writing – original draft. Zhensheng
1,2

Preprint submitted to Elsevier Page 10 of 11



Journal Pre-proof

Multi-view and Multi-order Graph Clustering via Constrained 𝑙1,2-norm

Methodolo
Resources,
ology, Vali
Project ad
Zongcheng
tion, Form
review & e
ing acquisi
Project adm

Referenc
[1] Ben-Hu

vector c
[2] El Hajj

clusteri
209–21

[3] Fan, K.
transfor

[4] Fang, S
Efficien
learning

[5] Fang, U
compre
Data En

[6] He, Z.,
rank ap
multi-v

[7] Hu, Z.,
via inte
Fusion

[8] Huang,
via ense
Trans. K

[9] Huang,
clusteri

[10] Huang,
in grap
clusteri

[11] Huang,
Multi-v
NeurIPS

[12] Jouirou
tion fus
52, 308

[13] Li, A.,
plete m
redunda

[14] Li, L.,
view bi
Trans. K

[15] Li, Y., Y
tation le

[16] Liu, J.,
subspac
Trans. N

[17] Lu, X.,
fusion f

[18] Ming, D
exclusiv

[19] Mohar,
laplacia

[20] Nie, F.,
supervi

[21] Nie, F.,
multiple
semi-su

stering

ojected
7–986.

rinciple
IEEE

ntation.

hu, E.,
unified

earning
. Intell.

2020a.
: Proc.

2020b.
: Proc.

. Line:
W, pp.

a, M.,
i-nmf.

ti-view

graph
ion, in:

Local
earning

iscrete
Pattern

., Zhu,
g with
6–568.
aptive-
ecogn.

fficient
: Proc.

ter-free
stering.

stering
on. Inf.

c social
M, pp.

Wang,
ork for

ing for

ia deep

earning
43–54.

nal and
nf. Sci.

Xin et al.:
Jo
ur

na
l P

re
-p

ro
of

gy, Validation, Formal analysis, Investigation,
Writing – review & editing. Rong Wang: Method-
dation, Formal analysis, Investigation, Resources,
ministration, Supervision, Funding acquisition.
Miao: Conceptualization, Methodology, Valida-

al analysis, Investigation, Resources, Writing –
diting, Project administration, Supervision, Fund-
tion. Feiping Nie: Conceptualization, Validation,
inistration, Funding acquisition, Supervision.

es
r, A., Horn, D., Siegelmann, H.T., Vapnik, V., 2001. Support
lustering. J. Mach. Learn. Res. 2, 125–137.

ar, S., Dornaika, F., Abdallah, F., 2022. Multi-view spectral
ng via constrained nonnegative embedding. Inf. Fusion 78,
7.
, 1949. On a theorem of weyl concerning eigenvalues of linear
mations i, in: Proc. PNAS, pp. 652–655.
.G., Huang, D., Cai, X.S., Wang, C.D., He, C., Tang, Y., 2023a.
t multi-view clustering via unified and discrete bipartite graph
. IEEE Trans. Neural Netw. Learn. Syst. 34, 4412–4419.
., Li, M., Li, J., Gao, L., Jia, T., Zhang, Y., 2023b. A

hensive survey on multi-view clustering. IEEE Trans. Knowl.
g. 35, 12350–12368.

Wan, S., Zappatore, M., Lu, H., 2023. A similarity matrix low-
proximation and inconsistency separation fusion approach for
iew clustering. IEEE Trans. Artif. Intell. 5, 868–880.
Nie, F., Wang, R., Li, X., 2020. Multi-view spectral clustering
grating nonnegative embedding and spectral embedding. Inf.
55, 251–259.
D., Wang, C.D., Lai, J.H., 2023. Fast multi-view clustering
mbles: Towards scalability, superiority, and simplicity. IEEE
nowl. Data Eng. 35, 11388–11402.
S., Tsang, I., Xu, Z., Lv, J., Liu, Q., 2022a. Multi-view

ng on topological manifold, in: Proc. AAAI, pp. 6944–6951.
S., Tsang, I.W., Xu, Z., Lv, J., 2021. Measuring diversity

h learning: A unified framework for structured multi-view
ng. IEEE Trans. Knowl. Data Eng. 34, 5869–5883.
S., Wu, H., Ren, Y., Tsang, I., Xu, Z., Feng, W., Lv, J., 2022b.
iew subspace clustering on topological manifold, in: Proc.
, pp. 25883–25894.

, A., Baâzaoui, A., Barhoumi, W., 2019. Multi-view informa-
ion in mammograms: A comprehensive overview. Inf. Fusion
–321.
Feng, C., Cheng, Y., Zhang, Y., Yang, H., 2024. Incom-
ultiview subspace clustering based on multiple kernel low-
nt representation learning. Inf. Fusion 103, 102086.
Zhang, J., Wang, S., Liu, X., Li, K., Li, K., 2023. Multi-
partite graph clustering with coupled noisy feature filter. IEEE

nowl. Data Eng. 35, 12842–12854.
ang, M., Zhang, Z., 2018. A survey of multi-view represen-
arning. IEEE Trans. Knowl. Data Eng. 31, 1863–1883.

Liu, X., Yang, Y., Guo, X., Kloft, M., He, L., 2021. Multiview
e clustering via co-training robust data representation. IEEE
eural Netw. Learn. Syst. 33, 5177–5189.
Feng, S., 2023. Structure diversity-induced anchor graph

or multi-view clustering, in: Proc. TKDD, pp. 1–18.
., Ding, C., 2019. Robust flexible feature selection via

e l21 regularization, in: Proc. IJCAI, pp. 3158–3164.
B., Alavi, Y., Chartrand, G., Oellermann, O., 1991. The
n spectrum of graphs. Graph comb. 2, 12.
Cai, G., Li, X., 2017a. Multi-view clustering and semi-

sed classification with adaptive neighbours, in: Pro. AAAI.
Li, J., Li, X., et al., 2016. Parameter-free auto-weighted
graph learning: a framework for multiview clustering and

[22] Nie, F., Li, J., Li, X., et al., 2017b. Self-weighted multiview clu
with multiple graphs., in: Proc. IJCAI, pp. 2564–2570.

[23] Nie, F., Wang, X., Huang, H., 2014. Clustering and pr
clustering with adaptive neighbors, in: Proc. SIGKDD, pp. 97

[24] Nie, F., Wu, D., Wang, R., Li, X., 2020. Truncated robust p
component analysis with a general optimization framework.
Trans. Pattern Anal. Mach. Intell. 44, 1081–1097.

[25] Shi, J., Malik, J., 2000. Normalized cuts and image segme
IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905.

[26] Sun, M., Zhang, P., Wang, S., Zhou, S., Tu, W., Liu, X., Z
Wang, C., 2021. Scalable multi-view subspace clustering with
anchors, in: Proc. MM, pp. 3528–3536.

[27] Sun, S., Dong, W., Liu, Q., 2020. Multi-view representation l
with deep gaussian processes. IEEE Trans. Pattern Anal. Mach
43, 4453–4468.

[28] Tang, C., Liu, X., Zhu, X., Zhu, E., Luo, Z., Wang, L., Gao, W.,
Cgd: Multi-view clustering via cross-view graph diffusion, in
AAAI, pp. 5924–5931.

[29] Tang, C., Liu, X., Zhu, X., Zhu, E., Luo, Z., Wang, L., Gao, W.,
Cgd: Multi-view clustering via cross-view graph diffusion, in
AAAI, pp. 5924–5931.

[30] Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q., 2015
Large-scale information network embedding, in: Proc. WW
1067–1077.

[31] Wang, D., Li, T., Huang, W., Luo, Z., Deng, P., Zhang, P., M
2023a. A multi-view clustering algorithm based on deep sem
Inf. Fusion 99, 101884.

[32] Wang, H., Yang, Y., Liu, B., 2019. Gmc: Graph-based mul
clustering. IEEE Trans. Knowl. Data Eng. 32, 1116–1129.

[33] Wang, P., Wu, D., Wang, R., Nie, F., 2023b. Multi-view
clustering via efficient global-local spectral embedding fus
Proc. MM, pp. 3268–3276.

[34] Wang, Q., Dou, Y., Liu, X., Xia, F., Lv, Q., Yang, K., 2018.
kernel alignment based multi-view clustering using extreme l
machine. Neural Comput. 275, 1099–1111.

[35] Wang, R., Chen, H., Lu, Y., Zhang, Q., Nie, F., Li, X., 2023c. D
and balanced spectral clustering with scalability. IEEE Trans.
Anal. Mach. Intell. 45, 14321–14335.

[36] Wang, S., Liu, X., Zhu, X., Zhang, P., Zhang, Y., Gao, F
E., 2021. Fast parameter-free multi-view subspace clusterin
consensus anchor guidance. IEEE Trans. Image Process. 31, 55

[37] Wu, D., Chang, W., Lu, J., Nie, F., Wang, R., Li, X., 2022a. Ad
order proximity learning for graph-based clustering. Pattern R
126, 108550.

[38] Wu, D., Lu, J., Nie, F., Wang, R., Yuan, Y., 2022b. Emgc2f: E
multi-view graph clustering with comprehensive fusion, in
IJCAI, pp. 3566–3572.

[39] Wu, D., Nie, F., Dong, X., Wang, R., Li, X., 2021. Parame
consensus embedding learning for multiview graph-based clu
IEEE Trans. Neural Netw. Learn. Syst. 33, 7944–7950.

[40] Xu, J., Ren, Y., Shi, X., Shen, H.T., Zhu, X., 2023. Untie: Clu
analysis with disentanglement in multi-view information fusi
Fusion 100, 101937.

[41] Yang, Y., Lan, C., Li, X., Luo, B., Huan, J., 2014. Automati
circle detection using multi-view clustering, in: Proc. CIK
1019–1028.

[42] Yu, S., Wang, S., Dong, Z., Tu, W., Liu, S., Lv, Z., Li, P.,
M., Zhu, E., 2024. A non-parametric graph clustering framew
multi-view data, in: Proc. AAAI, pp. 16558–16567.

[43] Zhan, K., Zhang, C., Guan, J., Wang, J., 2017. Graph learn
multiview clustering. IEEE Trans. Cybern. 48, 2887–2895.

[44] Zhao, H., Ding, Z., Fu, Y., 2017a. Multi-view clustering v
matrix factorization, in: Proc. AAAI, pp. 2921–2927.

[45] Zhao, J., Xie, X., Xu, X., Sun, S., 2017b. Multi-view l
overview: Recent progress and new challenges. Inf. Fusion 38,

[46] Zhao, M., Yang, W., Nie, F., 2023. Auto-weighted orthogo
nonnegative graph reconstruction for multi-view clustering. I
632, 324–339.
pervised classification., in: Proc. IJCAI, pp. 1881–1887.

Preprint submitted to Elsevier Page 11 of 11



Journal Pre-proof

Highlights 

⚫

⚫

⚫

⚫

⚫

 

Jo
ur

na
l P

re
-p

ro
of

 We introduce the idea of high-order graphs to multi-view clustering. 

 We innovatively propose constrained 𝑙1,2-norm for weight learning. 

 Our model enables simultaneous selection of views and multi-order graphs. 

 We design a comprehensive optimization framework for MoMvGC model. 

 Our model achieves decent clustering performance. 
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