
Under review as submission to TMLR

Concentration inequalities and optimal number of layers for
stochastic deep neural networks

Anonymous authors
Paper under double-blind review

Abstract

We state concentration and martingale inequalities for the output of the hidden layers of a
stochastic deep neural network (SDNN), as well as for the output of the whole SDNN. These
results allow us to introduce an expected classifier (EC), and to give probabilistic upper
bound for the classification error of the EC. We also state the optimal number of layers for
the SDNN via an optimal stopping procedure. We apply our analysis to a stochastic version
of a feedforward neural network with ReLU activation function.

1 Introduction

Deep neural networks (DNNs) are used extensively in modern statistics and machine learning due to their
prediction accuracy; they are applied across many different areas of artificial intelligence, computer vision,
speech recognition, and natural language processing (Bahdanau et al., 2016; Hinton et al., 2012; Kalchbrenner
& Blunsom, 2013; Krizhevsky et al., 2017; LeCun et al., 2015). Nonetheless, it is common knowledge that
the theoretical understanding of many of their properties is still incomplete (for an account on recent results,
see Zhang et al. (2018, Section 1)).

In contrast to classical neural networks – which learn mappings from a set of inputs to a set of outputs –
stochastic neural networks (SNNs) learn mappings from a set of inputs to a set of probability distributions
over the set of outputs. The added complexity introduced by the stochasticity exacerbates the study of their
theoretical properties. SNNs were introduced by Wong (1991) to generalize Hopfield networks (Hopfield,
1982). Following Jospin et al. (2022), let us briefly describe SNNs; they are a particular type of artificial
neural networks (ANNs). The goal of ANNs is to represent an arbitrary function y = Φ(x). Traditional
ANNs are built using one input layer ν(0)(x) = x, a sequence of of hidden layers (ν(l)(x))L−1

l=1 , and an output
layer ν(L)(x), for some L ∈ N. In the simplest architecture of feedforward neural networks, each layer is
represented by a linear transformation followed by a nonlinear operation σ(l) called activation function,

ν(0)(x) = x,

ν(l)(x) = σ(l)(A(l)ν(l−1)(x) + b(l)), l ∈ {1, . . . , L},

ν(L)(x) = y.

Let A = {A(1), . . . , A(L)} and b = {b(1), . . . , b(L)}. Then, θ = (A, b) represents the parameters of the
network, where the A(l)’s are weight matrices, and the b(l)’s are bias vectors; call Θ the space θ belongs
to. Deep learning is the process of regressing parameters θ from a training data D composed of inputs
x and their corresponding labels y. Stochastic neural networks are a type of ANN built by introducing
stochastic components to the network. This is achieved by giving the network either a stochastic activation
or stochastic weights to simulate multiple possible models with their associated probability distribution.
This can be summarized as

θ ∼ p(θ),
y = Φθ(x) + ε,

1

Under review as submission to TMLR

where Φ depends on θ to highlight the stochastic nature of the neural network, p is the density of a probability
measure on Θ with respect to some σ-finite dominating measure µ, and ε represents random noise to account
for the fact that function Φθ is just an approximation. A well known example of SNN are Bayesian neural
networks (BNNs), that are ANNs trained using a Bayesian approach (Goan & Fookes, 2020; Jospin et al.,
2022; Lampinen & Vehtari, 2001; Titterington, 2004; Wang & Yeung, 2021).

Stochastic neural networks have several advantages with respect to their deterministic counterpart: they
have greater expressive power as they allow for multi-modal mappings, and the stochasticity can be seen as
added regularization (Lee et al., 2017). In Jospin et al. (2022), the authors point out that the main goal of
using SNNs is to obtain a better idea of the uncertainty associated with the underlying process.

The theoretical features of stochastic deep neural networks (SDNNs) have been the object of study of
many recent papers. In Merkh & Montúfar (2019), the authors study universal approximation properties
of deep belief networks, a class of stochastic feedforward networks that were pivotal in the resurgence of
deep learning. A key observation is that, for a finite number of inputs and outputs, the number of maps in
the stochastic setting is infinite, unlike in the deterministic framework. This points to the massive increase
in the approximation power of SDNNs. In De Bie et al. (2019), SDNNs are framed as learning measures
(LMs); deep architectures are introduced to address issues that arise in LMs such as permutation invariance
or equivariance and variation in weights. Training stochastic feedforward networks is significantly more
challenging. To address this issue, Tang & Salakhutdinov (2013) proposed a stochastic feedforward network
with hidden layers composed of both deterministic and stochastic variables with a novel generalized EM
training procedure that allows the user to efficiently learn complicated conditional distributions.

In this work, we first investigate concentration inequalities for the hidden layers of a SDNN.

Proposition 1. Let (ν(l)(X))L
l=1 denote the sequence of outputs of the hidden layers of a generic SDNN. If

• either ν(l)(X) is bounded

• or the sequence of centered outputs (ν(l)(X) − E[ν(l)(X)])L
l=1 is a smooth weak martingale,

then ν(l)(X) concentrates around its expected value.

Proposition 1 is stated informally. The first bullet point is proven in Corollary 5 in section 2.1, and the
second one in Corollary 7 in section 2.2, where we also state conditions that allow us verify the martingale
hypothesis.

Furthermore, we prove the following bound on the classification error of the expected classifier.

Proposition 2. If the output s(ν(X)) of the score function that we choose for our analysis is bounded,
then the score concentrates around its expected value E[s(ν(X))]. The classification error obtained using a
classifier based on E[s(ν(X))] is small.

Proposition 2 is informal as well. The first part is proven in Proposition 12, and the second one in Proposition
13, both in section 2.3.

In addition, we provide a procedure to find the optimal number of layers.

Proposition 3. A backward induction approach to an optimal stopping problem can be used to find the
number of layers of a generic SDNN that strikes the perfect balance between accuracy of the analysis and
computational cost.

Proposition 3, which is informal and that is built on results from Peskir & Shiryaev (2006, Section 1.2), is
proven in Theorem 15 in section 3.

Finally, we apply our findings to a stochastic version of the feedforward neural network with ReLU activation
studied in Zhang et al. (2018).

2

Under review as submission to TMLR

1.1 Previous work

Concentration inequalities for SDNNs have been studied in the context of PAC-Bayes bounds and stochastic
gradient descent (SGD) solutions. In particular, in Huang et al. (2020) the authors propose the Kronecker
Flow, an invertible transformation-based method that generalizes the Kronecker product to a nonlinear
formulation, and uses this construction to tighten PAC-Bayesian bounds. They show that the KL divergence
in the PAC-Bayes bound can be estimated with high probability (they give a Hoeffding-type concentration
result), and demonstrate the generalization gap can be further reduced and explained by leveraging structure
in parameter space. In Zhu et al. (2022) the authors study the concentration property of SGD solutions.
They consider a very rich class of gradient noise – not imposing restrictive requirements such as boundedness
or sub-Gaussianity – where only finitely-many moments are required, thus allowing heavy-tailed noises. In
the present work, we focus on concentration inequalities (of the Chernoff type) for the output of the hidden
layers and of the whole SDNN.

The other focus of our work is finding the number of layers of a generic SDNN that strikes a balance between
computational cost and accuracy of the analysis. A similar problem was studied in Trelin & Prochazka
(2019). There, the authors present Binary Stochastic Filtering (BSF), an algorithm for feature selection and
neuron pruning in a special version of the classical deep neural network structure where stochastic neurons
are mixed with deterministic ones. To the best of our knowledge, the present paper is the first to present an
optimal stopping procedure to select the number of layers in a generic SDNN.

1.2 Contributions

Inspired by Merkh & Montúfar (2019), this paper studies universal properties of stochastic deep neural
networks. Our first goal is to give concentration inequalities for the outputs of the hidden layers of a generic
SDNN. This problem has already been studied for particular types of SDNNs in Garnier & Langhendries
(2021); Ost & Reynaud-Bouret (2020). In the former, the authors establish a framework for modeling non-
causal random fields and prove a Hoeffding-type concentration inequality; it is especially important because
it can be applied to the field of Natural Language Processing (NLP). In Ost & Reynaud-Bouret (2020), the
authors introduce a new stochastic model of infinite neuronal networks, for which they establish sharp oracle
inequalities for Lasso methods and restricted eigenvalue properties for the associated Gram matrix with high
probability. Their results hold even if the network is only partially observed; their use of stochastic chains
inspired the martingale inequalities of section 2.2. Our results are very general because they require little
mathematical structure: instead of focusing on non-causal random fields or on infinite neuronal networks, we
only require that the output ν(l)(X) of the l-th hidden layer of the SDNN is a random vector. The ν(l)(X)’s
can be correlated with each other, and also have different dimensions. The relevance of our findings is given
by the lack of specific hypotheses: they apply to any SDNN. In Theorem 4 we show that, under a reasonable
assumption, the output ν(1)(X) of the first layer ν(1) of SDNN ν concentrates around its expected value.
In Corollary 5 we show that this is true for the outputs of all the layers, so in turn it is also true for the
output of the neural network. In Corollary 7 we show how, if the neural network is a weak martingale,
then under a weaker assumption than the one in Theorem 4, the output ν(l)(X) of the l-th layer ν(l) of
SDNN ν concentrates around its expected value. In Theorem 9 we give a sufficient condition for our neural
network to be a weak martingale. In Proposition 12 we show that, under a mild assumption, the classifier
of our stochastic neural network concentrates around its expected value. This gives us an expected decision
boundary (EDB). In Proposition 13 we give a probabilistic bound to the classification error of the classifier
based on the EDB, that we call the expected classifier (EC).

We then turn our attention to the number of layers to select. When specifying the structure of a generic
DNN ν, we face a trade-off between accuracy and computational efficiency. One of the main drivers of
this trade-off is the number of layers: more layers may yield more accurate analysis, but they also training
more computationally intensive. To solve this problem, in Liu & Deng (2018) the authors introduce a
new type of DNN called a Dynamic Deep Neural Network (D2NN) that selects a subset of neurons to
execute computations. Given an input, only a subset of D2NN neurons are executed, and the particular
subset is determined by the D2NN itself. In Shen et al. (2021), the authors introduce a (deterministic)
DNN called Floor-Exponential-Step (FLES) network that only requires three hidden layers to achieve super

3

Under review as submission to TMLR

approximation power. In Sabuncu (2020), the author points out that the problem of selecting the correct
number of layers has been studied also when stochasticity is featured in the architecture design of the neural
network. In Huang et al. (2016), for example, the authors study DNNs with stochastic depth: the number of
layers is chosen randomly, while in Li & Talwalkar (2020); Xie et al. (2020) the authors use a random search
algorithm to optimize over the space of neural network architectures. Given a generic SDNN, we adopt an
optimal stopping approach to the problem. In Theorem 15, we find the number τL

1 of layers for the SDNN
that optimizes the trade-off between accuracy and computational cost. To the best of our knowledge, this is
the first time such a problem is studied via an optimal stopping procedure for generic SDNNs.

Finally, we apply our findings to a stochastic feedforward neural networks with ReLU activation (SFNNRA).
We generalize the setup in Zhang et al. (2018) – that builds a bridge between tropical geometry and deep
neural networks – by letting the weight matrix and the bias vector in every layer be stochastic and possibly
correlated with the ones in the previous layers. Although the tropical geometry of deep neural networks has
been further investigated (Alfarra et al., 2021; Maragos et al., 2021), this is the first time probabilistic results
are presented within the framework introduced in Zhang et al. (2018). They are extremely significant: in
Proposition 16 we show that – because the assumption of Theorem 4 is easily satisfied in the context of
SFNNRAs – the output of every layer concentrates around its expected value. In addition, in Proposition 19
we show that the upper bounds to the number of connected regions with value above and below the decision
boundary in the SFNNRA concentrate too around their expected value. In the future, as more general
results for SDNNs like the ones presented in this paper are discovered, applying such results to SFNNRAs
will improve our understanding of their theoretical properties.

The paper is organized as follows. In section 2 we provide concentration inequalities for the hidden layers of
a SDNN and for its output. In section 3 we provide results for the optimal number of layers. In section 4 we
apply our results to a stochastic version of the feedforward neural networks with ReLU activation presented
in Zhang et al. (2018). Section 5 is a discussion. To make the paper self-contained we provide background
on sub-Gaussian random variables and norm-sub-Gaussian random vectors in appendix A, on martingales
and filtrations in appendix B, and on tropical algebra in appendix C. We prove our results in appendix D.

1.3 Notation

We introduce the notation for deep neural networks (DNNs) that we use throughout the paper. An L-layered
DNN is a map ν : Rd → Rp. We denote the width of the l-th layer, that is, the number of nodes of the
l-th layer, by nl, l ∈ {0, . . . , L}, where n0 = d and nL = p, the dimensions of the input and the output
of the network, respectively. The output of the l-th layer is given by ν(l) : Rnl−1 → Rnl . We assume for
convenience that ν(0)(x) ≡ x. The final output ν(x) ≡ ν(L)(x) of the neural network is fed into a score
function s : Rp → Rm that is application specific. We call X the space of inputs and Y the space of
responses. We assume we collect data (X, Y) ∼ D , a distribution on X × Y. In a SDNN, (ν(l)(X))L

l=0 is a
sequence of random vectors having possibly different dimensions and being possibly correlated. Notice that
ν(l)(x) is the realization of random vector ν(l)(X) : Ω → Rnl whose elements may be correlated. Throughout
this paper, we assume that ν(l)(X) has a finite first moment, for all l ∈ {1, . . . , L}.

2 Concentration inequalities

In this section we derive concentration inequalities for the hidden layers of a generic SDNN. The results in
this section are direct applications of standard tools in high-dimensional probability.

2.1 Norm-sub-Gaussian-based concentration inequalities

The results in this section rely on properties of sub-Gaussian random variables and norm-sub-Gaussian
random vectors, see appendix A for details. Let ∥ · ∥2 denote the Euclidean norm; the following is the first
result.

4

Under review as submission to TMLR

Theorem 4. Suppose that ν(1)(X) is bounded so that ∥ν(1)(X)∥2 ≤ ξ(1), for some ξ(1) ∈ R. Then, for all
t ∈ R,

P(X,Y)∼D

(
∥ν(1)(X) − E(X,Y)∼D

[
ν(1)(X)

]
∥2 ≥ t

)
≤ 2 exp

(
− t2

2ξ2
(1)

)
. (1)

Theorem 4 tells us that the output ν(1)(X) of the first layer of our SDNN concentrates around its expected
value E(X,Y)∼D [ν(1)(X)]. The assumption that ν(1)(X) is bounded is mild: it can be interpreted as a safety
check to ensure that output ν(1)(X) does not take on values that are too extreme.

We can use Theorem 4 to find a concentration inequality for the second layer of our neural network. In
particular, if ∥ν(2)(X)∥2 ≤ ξ(2), for some ξ(2) ∈ R possibly different from ξ(1), we have that, for all t ∈ R,

P(X,Y)∼D

(
∥ν(2)(X) − E(X,Y)∼D

[
ν(2)(X)

]
∥2 ≥ t

)
≤ 2 exp

(
− t2

2ξ2
(2)

)
. (2)

This tells us that the output ν(2)(X) of the second layer of our SDNN concentrates around its expected value
E[ν(2)(X)].

The following corollary tells us that the result in Theorem 4 holds for every layer of our SDNN.
Corollary 5. Pick any l ∈ {1, . . . , L}. Suppose that ν(l)(X) is bounded so that ∥ν(l)(X)∥2 ≤ ξ(l), for some
ξ(l) ∈ R. Then, for all t ∈ R,

P(X,Y)∼D

(
∥ν(l)(X) − E(X,Y)∼D

[
ν(l)(X)

]
∥2 ≥ t

)
≤ 2 exp

(
− t2

2ξ2
(l)

)
. (3)

As a result of Corollary 5, we have that the output ν(X) = ν(L)(X) of our SDNN concentrates around its
expected value E(X,Y)∼D [ν(X)] = E(X,Y)∼D [ν(L)(X)]. This proves the first bullet point of Proposition 1.

2.2 Martingale inequalities

We assume now that the sequence ν = (ν(l)(X))L
l=0 of outputs of the hidden layers of our SDNN is a

martingale; this allows us to state some interesting properties of SDNNs. Note that if ν is any kind of
martingale (very-weak, weak, or strong, see appendix B), then the width of the layers of the SDNN is
constant throughout the neural network and equal to p. Indeed, if nl = nl−1 = p does not hold for all
l ∈ {0, . . . , L}, then computing E[ν(l)(X) | ν(0)(X), . . . , ν(l−1)(X)] may not have a clear mathematical
meaning. Neural networks with constant width are used extensively and a well studied subject (Telgarsky,
2016).

We now show how a martingale hypothesis allows us to weaken the already mild assumption in Theorem 4
and Corollary 5. The price to pay is that the martingale inequalities become looser as the number l of layers
increases.1 This entails that the results we find in this section better suit shallow networks, that is, networks
for which L is small. The following theorem is an immediate result of Hayes (2005, Theorem 1.8).2

Theorem 6. If ν is a weak martingale in Rp such that for every l ∈ {1, . . . , L}, ∥ν(l)(X)−ν(l−1)(X)∥2 ≤ M ,
for some M > 0, then, for every a > 0,

P(X,Y)∼D

(
∥ν(l)(X)∥2 ≥ Ma

)
< 2 exp

(
1 − (Ma − 1)2

2l

)
. (4)

The fact that we demand the distance between the output of successive layers of the neural network to be
bounded can be interpreted as the mild requirement for the SDNN to be “smooth”. That is, no steep jumps
from the output of one layer to the output of the successive one are allowed.

Consider now the sequence Z = (Z(l))L
l=0 such that Z(l) = ν(l)(X)−E(X,Y)∼D [ν(l)(X)], for all l ∈ {1, . . . , L}.

Then, we have the following.
1This type of inequalities are usually called tail bounds in the probability theory literature.
2Hayes (2005, Theorem 1.8) is summarized in appendix B.

5

Under review as submission to TMLR

Corollary 7. If Z is a weak martingale in Rp such that for every l ∈ {1, . . . , L}, ∥Z(l) − Z(l−1)∥2 ≤ M , for
some M > 0, then, for every a > 0,

P(X,Y)∼D

(
∥Z(l)∥2 ≥ Ma

)
= P(X,Y)∼D

(
∥ν(l)(X) − E(X,Y)∼D

[
ν(l)(X)

]
∥2 ≥ Ma

)
< 2 exp

(
1 − (Ma − 1)2

2l

)
.

(5)

Requiring the distance between Z(l) and Z(l−1) to be bounded for all l retains the “smoothness” interpretation
we have given before: we do not want jumps that are too steep between successive centered outputs of the
layers. Corollary 7 tells us that ν(l)(X) concentrates around E(X,Y)∼D [ν(l)(X)], for all l ∈ {1, . . . , L}. In
turn, this provides conditions under which the output of the neural network concentrates around its expected
value, thus proving the second bullet point of Proposition 1.

There is one main difference between Corollary 7 and Corollary 5. In the latter we require ν(l)(X) to be
bounded, while in the former we only require that the Euclidean distance between ν(l)(X)−E(X,Y)∼D [ν(l)(X)]
and ν(l−1)(X) −E(X,Y)∼D [ν(l−1)(X)] is bounded. This is a milder assumption since it governs the dynamics
of the sequence of layer outputs, rather than that of the outputs themselves. It comes at the cost of requiring
that the network is shallow and of verifying that the sequence of outputs in each layer is a weak martingale.

We now provide two theorems that allow us to check whether sequences ν or Z are weak or very-weak
martingales. We first need a definition.
Definition 8. Consider two generic p-dimensional random vectors X1, X2. If

E(ϕ(X1)) ≤ E(ϕ(X2))

for all convex functions ϕ : Rp → R, provided the expectations exist, then X1 is smaller than X2 in the
convex order, denoted by X1 ≤cx X2.

The following results come from Shaked & Shanthikumar (2007, Theorem 7.A.1).
Theorem 9. Pick any l ∈ {1, . . . , L} and any j < l. If ν(j)(X) ≤cx ν(l)(X), then ν is a weak martingale.
Similarly, if Z(j) ≤cx Z(l), then Z is a weak martingale.
Theorem 10. Pick any l ∈ {1, . . . , L}. If ν(l−1)(X) ≤cx ν(l)(X), then ν is a very-weak martingale.
Similarly, if Z(l−1) ≤cx Z(l), then Z is a very-weak martingale.

To the best of our knowledge, Theorems 9 and 10 are the only existing method for checking whether a
vector-valued stochastic processes is a weak or a very-weak martingale. The closest previous procedure
derives the distributions of test statistics required for testing the null hypothesis that a given univariate
stochastic process is a very-weak martingale (Park & Whang, 2005). To apply it to our case, for every
l ∈ {1, . . . , L}, we would need to assume that the entries of ν(l−1)(X) are independent; we would need to
assume the same for Z(l−1). This is an extremely strong assumption and unlikely to hold in practice.
Remark 11. For Theorem 6 and Corollary 7 to hold it is enough that ν and Z are a very-weak martingales
(Hayes, 2005, Theorem 1.8). However, we require them to be weak martingales for the following result to
hold. Pick any l ∈ {1, . . . , L − 1}. Then, we have that

E(X,Y)∼D

[
ν(X) − E(X,Y)∼D (ν(X)) | ν(l)(X) − E(X,Y)∼D

(
ν(l)(X)

)]
= E(X,Y)∼D

[
ν(X) | ν(l)(X) − E(X,Y)∼D

(
ν(l)(X)

)]
− E(X,Y)∼D [ν(X)]

= ν(l)(X) − E(X,Y)∼D

[
ν(l)(X)

]
,

(6)

where the last equality comes from the weak martingale property of Z. Then, the equalities in equation 6
imply that, for all a > 0,

P(X,Y)∼D

(
∥E(X,Y)∼D

[
ν(X) | ν(l)(X) − E(X,Y)∼D

(
ν(l)(X)

)]
− E(X,Y)∼D [ν(X)] ∥2 ≥ Ma

)
= P(X,Y)∼D

(
∥ν(l)(X) − E(X,Y)∼D

[
ν(l)(X)

]
∥2 ≥ Ma

)
< 2 exp

(
1 − (Ma − 1)2

2l

)
,

(7)

6

Under review as submission to TMLR

where the inequality comes from Corollary 7. Equation equation 7 tells us that we can approximate the value
E(X,Y)∼D [ν(X)] that the output ν(X) of our SDNN concentrates around with the quantity E(X,Y)∼D [ν(X) |
ν(l)(X) −E(X,Y)∼D(ν(l)(X))]. The approximation is good for the first layers, and then becomes coarse, since
as the number l of layers increases, so does the bound. This estimate, then, is better in the context of shallow
networks.

2.3 Classification accuracy

In this section, we focus on binary classification for the sake of exposition. As we pointed out earlier, a
DNN ν : Rd → Rp, together with a choice of score function s : Rp → R, gives us a classifier. If the score
function s computed at the output value ν(x), s(ν(x)), exceeds some decision threshold c, then the neural
network predicts x is from a certain class C1, otherwise x is from the other category C2. The input space
is then partitioned into two disjoint subsets by the decision boundary B := {x ∈ Rd : ν(x) = s−1(c)}. We
call connected regions with value above the threshold positive regions, while those having value below the
threshold negative regions.

For the sake of exposition suppose that nL = 1, that is, ν : Rd → R. Then, in our stochastic setting, we
have that s(ν(X)) is a random variable that maps into R; we assume it has finite first moment. We have
the following important result.
Proposition 12. If a ≤ s(ν(X)) ≤ b with probability 1, for some a, b ∈ R, a < b, and c ∈ [a, b], then for all
t > 0,

P(X,Y)∼D

(∣∣s(ν(X)) − E(X,Y)∼D [s(ν(X))]
∣∣ ≥ t

)
≤ 2 exp

(
− 2t2

(b − a)2

)
.

Proposition 12 tells us that s(ν(X)) concentrates around its expected value. The fact that s(ν(X)) is
bounded is a mild condition, as long as c ∈ [a, b]; it simply amounts to the choice of the score function.

We now consider the expected classifier based on the expected decision boundary (EDB)

Bexp :=
{

x ∈ Rd : E(X,Y)∼D [s(ν(X))] = c
}

,

for some decision threshold c. That is,

(i) if E(X,Y)∼D [s(ν(X))] > c, then x ∈ C1;

(ii) if E(X,Y)∼D [s(ν(X))] < c, then x ∈ C2.

Note that being based on the value E(X,Y)∼D [s(ν(X))], the expected classifier will most likely not be perfect.
We can provide a probabilistic bound for the classification error of the expected classifier.
Proposition 13. If E(X,Y)∼D [s(ν(X))] > c, then there exists t1 > 0 such that

P(X,Y)∼D (s(ν(X)) ≤ c) ≤ exp
(

− 2t1
2

(b − a)2

)
. (8)

If instead E(X,Y)∼D [s(ν(X))] < c, then there exists t2 > 0, possibly different than t1, such that

P(X,Y)∼D (s(ν(X)) ≥ c) ≤ exp
(

− 2t2
2

(b − a)2

)
. (9)

Call p1 the bound in equation 8 and p2 the one in equation 9. Then, Proposition 13 tells us that the expected
classifier is correct with probability p > 1 − max{p1, p2}; together with Proposition 12, it proves Proposition
2.

7

Under review as submission to TMLR

3 Optimal number of layers

We find the number of layers for a generic SDNN that strikes the perfect balance between accuracy of the
analysis and computational cost. We do so using an optimal stopping technique. We assume that ν has
constant width p for the same reasons as in section 2.2.

Sequence ν = (ν(l)(X))L
l=0 induces a stochastic process γ = (γ(l))L

l=0, where for every l, γ(l) is a real-valued
random variable, γ(l) : Ω → R. We interpret γ(l) as the utility of choosing l many layers for the neural
network, that is, of stopping the observation of γ at layer l. For example, consider the following situation.
Assume that, for all l1, l2 ∈ {1, . . . , L},

l1 ≤ l2 =⇒ ∥ν(l1)(X) − Y ⋆∥2 ≥ ∥ν(l2)(X) − Y ⋆∥2, (10)

where Y ⋆ is the correct response to input X. Equation equation 10 means that the deeper the neural network
is, the closer its output is to the truth. This assumption reflects the “accuracy of the analysis” side of the
problem.

Now, write the loss function used in the study as a function of the number of layers. So for example the
mean squared error (MSE) loss is written as

LOSS(l) = 1
p

∥ν(l)(X) − Y ⋆∥2
2. (11)

Suppose then that for our analysis we choose a loss function that is positive and monotonically decreasing
in l. The importance of the monotonicity assumption is discussed in a few lines. Given our assumption
equation 10, the MSE loss in equation 11 is a sensible choice.

Let g be a generic functional on R such that g ◦ LOSS is a positive monotonically decreasing function on l.
In our example, we can let g be the identity function.

Finally, consider a generic functional h on {1, . . . , L} that is positive and monotonically decreasing in l. In
our example, we can take h(l) := 1

c
√

l
, for some c > 0.

Then, we let γ(0) = 0, and for all l ∈ {1, . . . , L},

γ(l) = (g ◦ LOSS)(l) · h(l).

In our example, then, γ(l) = LOSS(l)/[c
√

l]. This is a reasonable choice for γ(l) because the loss is smaller as
l increases, but at the same time values of l that are too large are penalized. The optimal number of layers
gives us the balance between cost and accuracy that we are looking for.

In this example, for every l ∈ {1, . . . , L}, γ(l) is the product of two positive monotonically decreasing
functions in l defined on the finite domain {1, . . . , L}. This means that γ(l) itself is positive and monotonically
decreasing in l. This is important from an application point of view: if γ(l) were not to be monotonic, then
all possible values of the number of layers would have to be explored to find the optimum. The choice of
functions g and h gives the scholar control on the trade-off: if more accuracy is required, then g will be chosen
so that g ◦ LOSS decreases faster than h, and vice versa if the computational aspect is more important.

Then, we consider the natural filtration Fγ of F with respect to γ given by

Fγ
l := σ

({(
γ(s)

)−1
(A) : s ∈ N0, s ≤ l, A ∈ B(R)

})
,

where N0 := N∪ {0}.3 We assume that γ is adapted to filtration Fγ , that is, γ(l) is Fγ
l -measurable, for all l.

We interpret Fγ
l as the information available up to layer l. Our decision regarding whether to choose l many

layers – that is, to stop observing γ at layer l – must be based on this information only (no anticipation is
allowed).

3For the definitions of filtration and natural filtration, see appendix B.

8

Under review as submission to TMLR

Definition 14. Given a generic filtered probability space (Ω, F , (Fl)l∈N0 , P), a random variable τ : Ω →
N0 ∪ {∞} is called a Markov time if {τ ≤ l} ∈ Fl, for all l ∈ N0. A Markov time is called a stopping time
if τ < ∞ P -a.s.

We denote the family of all stopping times by M, and the family of all Markov times by M. A family that we
are going to use later in this section is ML

l := {τ ∈ M : l ≤ τ ≤ L}, 0 ≤ l ≤ L. For notational convenience,
we let ML ≡ ML

0 .

The optimal stopping problem we study is the following

V⋆ = sup
τ

E(X,Y)∼D

[
γ(τ)

]
(12)

where the supremum is taken over a family of stopping times. Note that equation 12 involves two tasks,
that is computing the value function V⋆ as explicitly as possible, and finding an optimal stopping time τ⋆ at
which the supremum is attained.

To ensure that the expected value in equation 12 exists, we need a further assumption, that is

E(X,Y)∼D

[
sup

l≤k≤L

∣∣∣γ(k)
∣∣∣] < ∞, (13)

If equation 13 is satisfied, then E(X,Y)∼D [γ(τ)(x)] is well defined for all τ ∈ ML
l .

To each of the families ML
l we assign the following value function

V L
l := sup

τ∈ML
l

E(X,Y)∼D

[
γ(τ)

]
, (14)

0 ≤ l ≤ L. For notational convenience, we let V L ≡ V L
0 .

We solve problem equation 14 using the backward induction approach outlined in Peskir & Shiryaev (2006,
Section 1.2). We assume L < ∞, but this is without loss of generality. Notice that equation 14 can be
rewritten as

V L
l = sup

l≤τ≤L
E(X,Y)∼D

[
γ(τ)

]
, (15)

where τ is a stopping time and 0 ≤ l ≤ L. We solve the problem by letting time go backwards; we proceed
recursively. Let L be a high number in N, e.g. 1000. It is going to represent the maximum number of layers
we deem “usable” for our neural network. We consider an ancillary sequence of random variables (SL

l)0≤l≤L

induced by γ that is built as follows. For l = L we stop, and our utility is SL
L = γ(L); for l = L − 1, we

can either stop or continue. If we stop, our utility is SL
L−1 = γ(L−1), while if we continue our utility is

SL
L−1 = E(X,Y)∼D [SL

L | Fγ
L−1]. As it is clear from the latter conclusion, our decision about stopping at layer

l = L − 1 or continuing with an extra layer must be based on the information contained in Fγ
L−1 only. So, if

γ(L−1) ≥ E(X,Y)∼D [SL
L | Fγ

L−1], we stop at layer L−1, otherwise we add an extra layer. For l ∈ {L−2, . . . , 0}
the considerations are continued analogously.

By the backward induction method we just described, we have that the elements of the sequence (SL
l)0≤l≤L

are defined recursively as

SL
l = γ(L), for l = L, (16)

SL
l = max

{
γ(l),E(X,Y)∼D

[
SL

l+1 | Fγ
l

]}
, for l ∈ {L − 1, . . . , 0}. (17)

The method also suggests that we consider the following stopping time

τL
l = inf

l≤k≤L

{
SL

k = γ(k)
}

, (18)

for all 0 ≤ l ≤ L. Notice that the infimum is always attained. The following is the main result of this section;
it tells us that τL

l is indeed the optimal stopping time for problem equation 15. It comes from Peskir &
Shiryaev (2006, Theorem 1.2).

9

Under review as submission to TMLR

Theorem 15. Consider the optimal stopping problem equation 15, and assume that equation 13 holds. Then,
for all l ∈ {0, . . . , L}, we have that

SL
l ≥ E(X,Y)∼D

[
γ(τ) | Fγ

l

]
, for all τ ∈ ML

l , (19)

SL
l = E(X,Y)∼D

[
γ(τL

l) | Fγ
l

]
. (20)

In addition, fix any l ∈ {0, . . . , L}. Then,

(i) the stopping time τL
l is optimal for equation 15;

(ii) if τ⋆ is any optimal stopping time for equation 15, then τL
l ≤ τ⋆ P(X,Y)∼D-a.s.;

(iii) The stopped sequence (SL
k∧τL

l

)l≤k≤L is a strong martingale.

It follows immediately from Theorem 15.(i) that the optimal number of layers for our neural network ν is
given by τL

1 . This proves Proposition 3.

4 Application: stochastic feedforward neural networks with ReLU activations

In this section we apply our results for a general SDNN to a stochastic version of the feedforward neural
network with ReLU activation (FNNRA) introduced in Zhang et al. (2018). The key insight in Zhang et al.
(2018) is that ideas from tropical algebra can be used to study feedforward neural networks, especially with
ReLU activations. The intuition is that the activation function of a feedforward neural network requires
computing a maximum, which turns out to correspond to tropical addition.

We first present the notation we use for feedforward neural networks. A short summary of ideas from tropical
algebra is given in appendix C.

4.1 Deterministic feedforward neural networks

We use this section to fix the notation for feedforward neural networks. We then introduce the the FNNRA
proposed in Zhang et al. (2018). We restrict our attention to fully connected feedforward neural networks.

An L-layered feedforward neural network is a map ν : Rd → Rp given by a composition of functions

ν ≡ ν(L) = σ(L) ◦ ρ(L) ◦ σ(L−1) ◦ ρ(L−1) ◦ · · · ◦ σ(1) ◦ ρ(1).

The preactivation functions ρ(1), . . . , ρ(L) are affine transformations to be determined, and the activation
functions σ(1), . . . , σ(L) are chosen and fixed in advance. Affine function ρ(l) : Rnl−1 → Rnl is given by a
weight matrix A(l) ∈ Znl×nl−1 and a bias vector b(l) ∈ Rnl ,

ρ(l)(ν(l−1)) := A(l)ν(l−1) + b(l).

The (i, j)-th coordinate of A(l) is denoted by a
(l)
ij , and the i-th coordinate of b(l) by b

(l)
i . Collectively they

form the parameters of the l-th layer. Notice that, for all l, A(l) can be decomposed as a difference of two
nonnegative integer valued matrices, A(l) = A

(l)
+ − A

(l)
− , with A

(l)
+ , A

(l)
− ∈ Znl×nl−1 , so that their entries are

a
(l)
+ij = max{aij , 0}, a

(l)
−ij = max{−aij , 0}.

For a vector input x ∈ Rnl , σ(l)(x) is understood to be in coordinatewise sense. We make the following
assumptions on the architecture of our feedforward neural network:

(a) the weight matrices A(1), . . . , A(L) are integer-valued;

(b) the bias vectors b(1), . . . , b(L) are real-valued;

10

Under review as submission to TMLR

(c) the activation functions σ(1), . . . , σ(L) take the form

σ(l)(x) := max{x, t(l)} =
(

max{x1, t
(l)
1 }, . . . , max{xnl

, t(l)
nl

}
)⊤

,

where t(l) ∈ (R ∪ {−∞})nl is the threshold vector, and xj and t
(l)
j denote the j-th element of x and

t(l), respectively.

We assume all the neural networks in this section to satisfy (a)-(c).

As pointed out in Zhang et al. (2018, Section 4), assumption (b) is general, and yields no loss of generality.
The same goes for (a), since:

• real weights can be approximated arbitrarily closely by rational weights;

• one may “clear denominators” in these rational weights by multiplying them by the least common
multiple of their denominators to obtain integer weights;

• scaling all weights and biases by the same positive constant does not influence the workings of a
neural network.

The form of the activation function in (c) includes both ReLU activation (t(l) = 01nl
) and identity map

(t(l) = −∞1nl
, so that σ(l)(x) = x) as special cases, where 1nl

is vector (1, . . . , 1)⊤ having nl entries. We
only consider the ReLU activation function in this section as we are generalizing the model in Zhang et al.
(2018) where the tropical algebra makes the most sense for ReLU activations. In addition, much of the
theory literature on neural networks has focused on ReLU networks (Arora et al., 2018; Montúfar et al.,
2014; Zhang et al., 2018).

Let us now describe the the deterministic ReLU neural network proposed in Zhang et al. (2018); its archi-
tecture is depicted in Figure 1.4 In Zhang et al. (2018, Section 5), the authors state that the (l + 1)-th layer
ν(l+1)(x) of an L-layered FNNRA ν(x) can be written as ν(l+1)(x) = F (l+1)(x) − G(l+1)(x), for all x ∈ Rd,
where

F (l+1)(x) = H(l+1)(x) ⊕ G(l+1)(x) ⊙ t(l+1) = max{H(l+1)(x), G(l+1)(x) + t(l+1)},

G(l+1)(x) = A
(l+1)
+ G(l)(x) ⊙ A

(l+1)
− F (l)(x) = A

(l+1)
+ G(l)(x) + A

(l+1)
− F (l)(x),

H(l+1)(x) = A
(l+1)
+ F (l)(x) ⊙ A

(l+1)
− G(l)(x) ⊙ b(l+1) = A

(l+1)
+ F (l)(x) + A

(l+1)
− G(l)(x) + b(l+1),

(21)

where F (l)(x) and G(l)(x) are vectors in Rnl whose coordinates are tropical polynomials in x.5 That is,

F (l)(x) =
(

f
(l)
1 (x), . . . , f (l)

nl
(x)
)⊤

,

G(l)(x) =
(

g
(l)
1 (x), . . . , g(l)

nl
(x)
)⊤

,

(22)

where

f
(l)
j (x) = max{cj1x⊙αj1 , . . . , cjrx⊙αjr },

g
(l)
j (x) = max{c′

j1x⊙α′
j1 , . . . , c′

jrx⊙α′
jr },

(23)

4Figure 1 is a replica of Zhang et al. (2018, Figure A.1).
5Notice that we can write the i-th entry of vector A

(l+1)
+ G(l)(x) in tropical notation as⊙

j∈{1,...,nl}

[
a

(l+1)
+ij

]⊙g
(l)
j

(x)
.

We can write similarly the i-th entries of A
(l+1)
− G(l)(x), A

(l+1)
+ F (l)(x), and A

(l+1)
− F (l)(x).

11

Under review as submission to TMLR

for all j ∈ {1, . . . , nl} and some r ∈ N, and

cjsx⊙αjs := cjs + αjs,1x1 + αjs,2x2 + . . . + αjs,dxd,

for all j ∈ {1, . . . , nl} and all s ∈ {1, . . . , r}. Similarly,

c′
jsx⊙α′

js := c′
js + α′

js,1x1 + α′
js,2x2 + . . . + α′

js,dxd,

for all j ∈ {1, . . . , nl} and all s ∈ {1, . . . , r}. Notice that cjs, c′
js ∈ R for all j and all s, and that αjs =

(αjs,1, . . . , αjs,d)⊤, α′
js = (α′

js,1, . . . , α′
js,d)⊤ ∈ Nd, for all j and all s.

Figure 1: Architecture of the FNNRA ν : Rd → Rp with L layers proposed in Zhang et al. (2018).

4.2 Stochastic feedforward ReLU networks

In this section we derive a stochastic version of the FNNRA described in section 4.1. We introduce two
sources of of stochasticity: (1) the initialization or the starting values of the neural network are random
(that is, F (0)(X) and G(0)(X) are random vectors), and (2) the parameters of all the layers are aleatory
(that is, A(l) is a random matrix with integer entries, and b(l) is a random vector with real entries, for all
l ∈ {1, . . . , L}). We now state the update rules for the first layer, and the second layer given the first. By
induction, this is enough to specify the stochastic feedforward network.

For the first layer we sample random vectors F (0)(X) and G(0)(X) from a distribution R on Rn0 that is
built as follows. Sample

(cj1, . . . , cjr)⊤, (c′
j1, . . . , c′

jr)⊤ ∼ Sj on Rr, αj1, . . . , αjr, α′
j1, . . . , α′

jr ∼ Tj on Nd,

for j ∈ {1, . . . , n0}. Note that we do not require the αjs’s and the α′
js’s to be iid and we do not require the

samples to be independent across the index j. Then, F (0)(x) and G(0)(x) – the realizations of F (0)(X) and
G(0)(X), respectively – are computed according to equation 22 and equation 23. Notice that F (0)(X) and
G(0)(X) need not be independent.

To compute the subsequent layer we first sample A(l+1) ∼ P on Znl+1×nl and b(l+1) ∼ Q on Rnl+1 ,
for l ∈ {0, . . . , L − 1}. After computing F (l+1)(x) and G(l+1)(x) from F (l)(x) and G(l)(x) by equation
equation 21, we find ν(l+1)(x) = F (l)(x) − G(l)(x). Note that ν(l+1)(x) is the realization of random vector
ν(l+1)(X) : Ω → Rnl+1 whose elements may be correlated and that we assume to have finite fist moment.
We now apply Corollary 5 to our stochastic FNNRA.

12

Under review as submission to TMLR

Proposition 16. If P, Q, Sj, and Tj, j ∈ {1, . . . , n0} are bounded, then for all l ∈ {1, . . . , L}, there exists
ξ(l) ∈ R such that ∥ν(l)(X)∥2 ≤ ξ(l) and equation 3 holds.

The assumption that P, Q, Sj , and Tj , j ∈ {1, . . . , n0}, are bounded should always be verified: even if the
distributions we want to use are unbounded, we can always truncate them and use the truncated versions
to obtain the concentration result in Proposition 16.
Remark 17. Notice that if t(l) were a random quantity distributed according to V on Rnl , and possibly
correlated with other t(k)’s, Proposition 16 would still hold, provided that V is bounded.6

4.3 Concentration inequality for positive and negative regions

Tropical rational functions are piecewise linear, so the notion of linear regions applies. A linear region of a
tropical rational function f is a maximal connected subset of the domain on which f is linear; the number
of linear regions of f is denoted by N (f).

In Zhang et al. (2018, Corollary 5.3, Theorem 5.4, and Proposition 5.5), the authors show the equivalence of
tropical rational functions, continuous piecewise linear functions with integer coefficients, and neural networks
satisfying assumptions (a)-(c). Hence, they are able to link the number of linear regions of a tropical rational
function to (bounds on) the number of positive and negative regions that the neural network divides the
input space into.7

Proposition 18. (Zhang et al., 2018, Proposition 6.1) Let ν be an L-layer stochastic neural network sat-
isfying (a)-(c) in section 4.1 such that t(L) = −∞ and p = nL = 1, that is, ν : Rd → R. Let the score
function s : R → R be injective with decision threshold c in its range. If ν = f ⊘g, where f and g are tropical
polynomials, then the number of connected positive regions is at most N (f), while the number of connected
negative regions is at most N (g).

Suppose now all the assumptions of Proposition 18 hold. In our stochastic setting, we have that f and g are
both random variables, so N (f) and N (g) are two stochastic quantities in N. Assume their first moment is
finite and notice that they are bounded below by 1. Then, the following proposition holds.
Proposition 19. If N (f) ≤ b1 and N (g) ≤ b2 with probability 1, for some possibly different natural numbers
b1, b2 > 1, then for all t > 0,

P(X,Y)∼D

(∣∣N (f) − E(X,Y)∼D [N (f)]
∣∣ ≥ t

)
≤ 2 exp

(
− 2t2

(b1 − 1)2

)
and

P(X,Y)∼D

(∣∣N (g) − E(X,Y)∼D [N (g)]
∣∣ ≥ t

)
≤ 2 exp

(
− 2t2

(b2 − 1)2

)
.

The assumption that N (f) and N (g) have an upper bound is always verified: all the possible realizations of
f and g have a finite number of linear regions. Proposition 19 tells us that the upper bounds for the number
of positive and negative regions concentrate around their expected value.

5 Conclusion

In this paper we present concentration inequalities for the hidden layers and the output of a generic SDNN
based on the ideas of norm-sub-Gaussian distribution and of weak martingale. We introduce the notion of
expected classifier and give a probabilistic bound to its classification error. We also find – via an optimal
stopping procedure – the number of layers for the SDNN that strikes the perfect balance between computa-
tional cost and accuracy of the analysis. Finally, we apply our findings to a stochastic version of the FNNRA
of Zhang et al. (2018). In future work, we plan to explore the geometric properties of SDNNs, in the spirit
of Alfarra et al. (2021); Hauser & Ray (2017); Maragos et al. (2021).

6If t(l) ∼ V on Rnl , this means that we rule out the identity activation map. To include it, V should be a distribution on
(R ∪ {−∞})nl .

7Recall that positive and negative regions were introduced in section 2.3.

13

Under review as submission to TMLR

Acknowledgements

We would like to thank Federico Ferrari, Vittorio Orlandi, Alessandro Zito, and three anonymous referees for
their helpful comments. Michele Caprio would like to acknowledge partial funding from NSF CCF-1934964
and ARO MURI W911NF2010080. Sayan Mukherjee would like to acknowledge partial funding from HFSP
RGP005, NSF DMS 17-13012, NSF BCS 1552848, NSF DBI 1661386, NSF IIS 15-46331, NSF DMS 16-
13261, and the Alexander von Humboldt Foundation. High-performance computing is partially supported
by grant 2016-IDG-1013 from the North Carolina Biotechnology Center. Sayan Mukherjee would also like to
acknowledge the German Federal Ministry of Education and Research within the project Competence Center
for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig (BMBF 01IS18026B).

References
Motasem Alfarra, Adel Bibi, Hasan Hammoud, Mohamed Gaafar, and Bernard Ghanem. On the decision

boundaries of neural networks: A tropical geometry perspective. Available at arxiv:2002.08838, 2021.

Le Thi Hoai An and Pham Dinh Tao. The DC (difference of convex functions) programming and DCA
revisited with DC models of real world nonconvex optimization problems. Annals of Operations Research,
133:23–46, 2005.

Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding deep neural networks
with rectified linear units. In International Conference on Learning Representations, 2018.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to
align and translate. Available at arxiv:1409.0473, 2016.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge University Press, Cambridge,
2004.

Mark Burgin and Marek Czachor. Non-Diophantine Arithmetics in Mathematics, Physics and Psychology.
World Scientific, Singapore, 2020.

Michele Caprio, Andrea Aveni, and Sayan Mukherjee. Concerning three classes of non-Diophantine arith-
metics. Involve, forthcoming, 2021.

Gwendoline De Bie, Gabriel Peyré, and Marco Cuturi. Stochastic deep networks. Proceedings of Machine
Learning Research, 97:1556–1565, 2019.

Rémy Garnier and Raphaël Langhendries. Concentration inequalities for non-causal random fields. Available
at arxiv:2009.08905, 2021.

Ethan Goan and Clinton Fookes. Bayesian Neural Networks: An Introduction and Survey, pp. 45–87. Cham,
Switzerland : Springer International Publishing, 2020.

Philip Hartman. On functions representable as a difference of convex function. Pacific Journal of Mathe-
matics, 9(3):707–713, 1959.

Michael Hauser and Asok Ray. Principles of Riemannian geometry in neural networks. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Thomas P. Hayes. A large-deviation inequality for vector-valued martingales. Submitted to Combinatorics,
Probability and Computing. Available here, 2005.

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N.
Sainath, and B. Kingsbury. Deep neural networks for acoustic modeling in speech recognition: The shared
views of four research groups. IEEE Signal Processing Magazine, 29(6):82–97, 2012.

J.J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. Pro-
ceedings of the National Academy of Sciences, 79(8):2554–2558, 1982.

14

https://arxiv.org/abs/2002.08838
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/2009.08905
https://www.cs.unm.edu/~hayes/papers/VectorAzuma/VectorAzuma20050726.pdf

Under review as submission to TMLR

Chin-Wei Huang, Ahmed Touati, Pascal Vincent, Gintare Karolina Dziugaite, Alexandre Lacoste, and Aaron
Courville. Stochastic neural network with Kronecker flow. Available at arxiv:1906.04282, 2020.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep networks with stochastic
depth. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (eds.), Computer Vision – ECCV 2016,
pp. 646–661. Springer International Publishing, 2016.

Ilia Itenberg, Grigory Mikhalkin, and Eugenii I. Shustin. Tropical Algebraic Geometry, volume 35 of Ober-
wolfach Seminars Book. Birkhäuser, Basel, 2009.

Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M. Kakade, and Michael I. Jordan. A short note on concen-
tration inequalities for random vectors with subGaussian norm. Available at arxiv:1902.03736, 2019.

Laurent Valentin Jospin, Hamid Laga, Farid Boussaid, Wray Buntine, and Mohammed Bennamoun. Hands-
on Bayesian neural networks – A tutorial for deep learning users. IEEE Computational Intelligence
Magazine, 17(2):29–48, 2022.

Nal Kalchbrenner and Phil Blunsom. Recurrent continuous translation models. In Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing, pp. 1700–1709. Association for Com-
putational Linguistics, 2013.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional
neural networks. Communications of the Association for Computing Machinery, 60(6):84–90, 2017.

Jouko Lampinen and Aki Vehtari. Bayesian approach for neural networks - review and case studies. Neural
Networks, 4:257–274, 2001.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521:436–444, 2015.

Kimin Lee, Jaehyung Kim, Song Chong, and Jinwoo Shin. Simplified stochastic feedforward neural networks.
Available at arxiv:1704.03188, 2017.

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search. In
Uncertainty in artificial intelligence, pp. 367–377. PMLR, 2020.

Lanlan Liu and Jia Deng. Dynamic deep neural networks: Optimizing accuracy-efficiency trade-offs by selec-
tive execution. In Sheila A. McIlraith and Kilian Q. Weinberger (eds.), Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial In-
telligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence
(EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pp. 3675–3682. AAAI Press, 2018.

Diane Maclagan and Bernd Sturmfels. Introduction to Tropical Geometry, volume 161 of Graduate Studies
in Mathematics. American Mathematical Society, Providence, 2015.

Petros Maragos, Vasileios Charisopoulos, and Emmanouil Theodosis. Tropical geometry and machine learn-
ing. Proceedings of the IEEE, 109(5):728–755, 2021.

Thomas Merkh and Guido Montúfar. Stochastic feedforward neural networks: Universal approximation.
Available at arxiv:1910.09763, 2019.

Guido Montúfar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear regions
of deep neural networks. In Proceedings of the 27th International Conference on Neural Information
Processing Systems, volume 2, pp. 2924–2932. NeurIPS, 2014.

Guilherme Ost and Patricia Reynaud-Bouret. Sparse space–time models: Concentration inequalities and
Lasso. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 56(4):2377–2405, 2020.

Joon Y. Park and Yoon-Jae Whang. A test of the martingale hypothesis. Studies in Nonlinear Dynamics
and Econometrics, 9(2):1–29, 2005.

15

https://arxiv.org/abs/1906.04282
https://arxiv.org/abs/1902.03736
https://arxiv.org/abs/1704.03188
https://arxiv.org/abs/1910.09763

Under review as submission to TMLR

Goran Peskir and Albert N. Shiryaev. Optimal Stopping and Free-Boundary Problems. Lectures in Mathe-
matics. ETH Zürich. Birkhäuser, Basel, 2006.

Mert R. Sabuncu. Intelligence plays dice: Stochasticity is essential for machine learning. Available at
arxiv:2008.07496, 2020.

Moshe Shaked and J. George Shanthikumar. Stochastic Orders. Springer Series in Statistics. Springer, New
York, 2007.

Zuowei Shen, Haizhao Yang, and Shijun Zhang. Neural network approximation: Three hidden layers are
enough. Neural Networks, 141:160–173, 2021.

Charlie Tang and Russ R. Salakhutdinov. Learning stochastic feedforward neural networks. In C. J. C.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger (eds.), Advances in Neural Infor-
mation Processing Systems, volume 26. Curran Associates, Inc., 2013.

Matus Telgarsky. Benefits of depth in neural networks. In Vitaly Feldman, Alexander Rakhlin, and Ohad
Shamir (eds.), 29th Annual Conference on Learning Theory, volume 49 of Proceedings of Machine Learning
Research, pp. 1517–1539, Columbia University, New York, New York, USA, 23–26 June 2016.

D. Michael Titterington. Bayesian methods for neural networks and related models. Statistical Science, 19
(1):128–139, 2004.

Andrii Trelin and Ales Prochazka. Binary stochastic filtering: a method for neural network size minimization
and supervised feature selection. Available at arxiv:1902.04510, 2019.

Hao Wang and Dit-Yan Yeung. A survey on Bayesian deep learning. ACM Computing Surveys, 53(5):1–37,
2021.

Eugene Wong. Stochastic neural networks. Algorithmica, 6:466–478, 1991.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: Stochastic neural architecture search. Available
at arxiv:1812.09926, 2020.

Liwen Zhang, Gregory Naitzat, and Lek-Heng Lim. Tropical geometry of deep neural networks. Proceedings
of Machine Learning Research, 80:5824–5832, 2018.

Wanrong Zhu, Zhipeng Lou, and Wei Biao Wu. Beyond sub-Gaussian noises: Sharp concentration analysis
for stochastic gradient descent. Journal of Machine Learning Research, 23(46):1–22, 2022.

A Sub-Gaussian random variables and norm-sub-Gaussian random vectors

Sub-Gaussian random variables and norm-sub-Gaussian random vectors are crucial concepts for the results
in section 2.1. We first introduce the former (Jin et al., 2019).
Definition 20. A generic random variable X ∈ R is sub-Gaussian, written SG(σ), if there exists σ ∈ R
such that, for all θ ∈ R,

E
[
eθ(X−E(X))

]
≤ exp

(
θ2σ2

2

)
.

The following is an important characterization of sub-Gaussian random variables.
Proposition 21. If X is SG(σ), then for all t > 0

P (|X − E(X)| ≥ t) ≤ 2 exp
(

− t2

2σ2

)
.

If a random variable is bounded, then it is sub-Gaussian.

16

https://arxiv.org/abs/2008.07496
https://arxiv.org/abs/1902.04510
https://arxiv.org/abs/1812.09926

Under review as submission to TMLR

Proposition 22. Let X be a generic random variable in R such that a ≤ X ≤ b with probability 1, for some
a, b ∈ R, a < b. Then, for all θ ∈ R,

E
[
eθ(X−E(X))

]
≤ exp

(
θ2

2
(b − a)2

4

)
,

that is, X is SG
(

b−a
2
)
.

We now give the random vector counterpart of a sub-Gaussian random variable.
Definition 23. A generic random vector X ∈ Rd is norm-sub-Gaussian, written nSG(σ), if there exists
σ ∈ R such that, for all t ∈ R,

P (∥X − E(X)∥2 ≥ t) ≤ 2 exp
(

− t2

2σ2

)
.

Definition 23 is closely related to the characterization in Proposition 21. The following comes from Jin et al.
(2019, Lemma 1), and it is the random vector counterpart of Proposition 22.
Proposition 24. Let X be a generic bounded random vector in Rd such that ∥X∥2 ≤ σ. Then, X is nSG(σ).

B Martingales and filtrations

We first define very-weak, weak, and strong martingales. They were introduced in Hayes (2005), and are
extremely important for section 2.2. We denote by E any real Euclidean space (of finite or infinite dimension),
and by 1E the vector (1, 1, . . . , 1)⊤ having #E entries, where # denotes the cardinality operator.
Definition 25. Let X = (Xj : Ω → E) be a sequence of random vectors taking values in E, such that
X0 = 01E, and for every i ≥ 1, E(∥Xj∥2) < ∞ and E(Xj | X0, . . . , Xj−1) = Xj−1. Then we call X a strong
martingale in E.
Definition 26. Let X = (Xj : Ω → E) be a sequence of random vectors taking values in E, such that
X0 = 01E, and for every j < i, E(∥Xj∥2) < ∞ and E(Xj | Xj) = Xj. Then we call X a weak martingale in
E.

If X is a strong martingale, then it is also a weak martingale. The converse need not hold.
Definition 27. Let X = (Xj : Ω → E) be a sequence of random vectors taking values in E, such that
X0 = 01E, and for every i ≥ 1, E(∥Xj∥2) < ∞ and E(Xj | Xj−1) = Xj−1. Then we call X a very-weak
martingale in E.

If X is a weak martingale, then it is also a very-weak martingale. The converse need not hold. Notice that
in section 2.2 we implicitly assume ν(0)(X) = 01p. This is just a convention, even if it differs from the one
in section 2.1 where we require ν(0)(X) to be equal to X. We now state Hayes (2005, Theorem 1.8), which
we used extensively to derive the results in section 2.2.
Theorem 28. (Hayes, 2005, Theorem 1.8) Let X = (Xj)n

j=1 be a very-weak martingale taking values in E
such that X0 = 01E, and, for every i ≥ 1, ∥Xj − Xj−1∥2 ≤ 1. Then, for every a > 0,

P (∥Xj∥2 ≥ a) < 2 exp
(

1 − (a − 1)2

2j

)
.

We then introduce the concepts of filtration and natural filtration. They are crucial for section 3.
Definition 29. Let (Ω, F , P) be a probability space and let I be an index set with a total order ≤. For every
i ∈ I, let Fj be a sub-σ-algebra of F . Then, F = (Fj)j∈I is a filtration if, for all k ≤ ℓ, Fk ⊂ Fℓ.
Definition 30. Let (Ω, F , P) be a probability space and let I be an index set with a total order ≤. Let (S, Σ)
be a measurable space and let X : I × Ω → S be a stochastic process. Then the natural filtration of F with
respect to X is defined to be the filtration FX = (FX

j)j∈I given by

FX
j := σ

({
X−1

j (A) : j ∈ I, j ≤ i, A ∈ Σ
})

.

That is, FX
j is the smallest σ-algebra on Ω that contains all pre-images of Σ-measurable subsets of S for

“times” j up to i.

17

Under review as submission to TMLR

C Tropical algebra

A detailed introduction to tropical algebra and tropical geometry is provided in Itenberg et al. (2009);
Maclagan & Sturmfels (2015). The fundamental element of tropical algebra, the tropical semiring, is given
by

T = (R ∪ {−∞}, ⊕, ⊙).
The two operations ⊕ and ⊙ are called tropical addition and tropical multiplication, respectively, and are
such that a⊕b := max{a, b} and a⊙b := a+b, for all a, b ∈ R∪{−∞}. The distributive law holds for tropical
addition and multiplication, the identity element of tropical addition is −∞, and the identity element of
tropical multiplication is 0. The tropical semiring is idempotent in the sense that a ⊕ a ⊕ · · · ⊕ a = a, for all
a ∈ R ∪ {−∞}. Because of this, there is no tropical subtraction, but tropical division is well defined

a ⊘ b := a − b,

for all a, b ∈ R ∪ {−∞}. Tropical exponentiation is well defined as well, for all a ∈ R ∪ {−∞}, we have that

a⊙b :=
{

a · b if b ∈ Z+

(−a) · (−b) if b ∈ Z−
.

As we can see, tropical exponentiation is well defined only for integer exponents. We also have that

−∞⊙a :=

−∞ if a > 0
0 if a = 0
undefined if a < 0

.

Notice that the tropical semiring is a (non-Diophantine) abstract prearithmetic, where the partial order is
defined on the extended reals (Burgin & Czachor, 2020; Caprio et al., 2021). We can now define tropical
polynomials and tropical rational functions.

A tropical monomial in d variables x1, . . . , xd is an expression of the form
c ⊙ x⊙a1

1 ⊙ x⊙a2
2 ⊙ · · · ⊙ x⊙ad

d ,

where c ∈ R∪ {−∞} and a1, . . . , ad ∈ N. As a notational shorthand, we can write it in multi-index notation
as cxα, where α = (a1, . . . , ad)⊤ ∈ Nd and x = (x1, . . . , xd)⊤.

A tropical polynomial f(x) = f(x1, . . . , xd) is a finite tropical sum of tropical monomials,
f(x) = c1xα1 ⊕ · · · ⊕ crxαr ,

where αi = (ai1, . . . , aid)⊤ ∈ Nd and ci ∈ R ∪ {−∞}, i ∈ {1, . . . , r}. We assume that αi ̸= αj , for all i ̸= j.

A tropical rational function is a standard difference, that is, a tropical quotient of two tropical polynomials
f(x) and g(x),

f(x) − g(x) = f(x) ⊘ g(x).
We denote a tropical rational function by f ⊘ g, where f and g are tropical polynomial functions. A tropical
polynomial f can be seen as a tropical rational function, indeed f = f ⊘ 0. Hence, any result holding for
tropical rational functions hold also for tropical polynomials.

A d-variate tropical polynomial f(x) defines a function f : Rd → R that is a convex function, in that taking
max and sum of convex functions preserves convexity (Boyd & Vandenberghe, 2004). So, a tropical rational
function f ⊘ g : Rd → R is a difference of convex function (An & Tao, 2005; Hartman, 1959).

A function F : Rd → Rp, x = (x1, . . . , xd)⊤ 7→ (f1(x), . . . , fp(x))⊤, is called a tropical polynomial map if each
fi : Rd → R is a tropical polynomial, for all i ∈ {1, . . . , p}, and a tropical rational map if f1(x), . . . , fp(x) are
tropical rational functions.

Tropical polynomials and tropical rational functions are piecewise linear functions. Hence, a tropical rational
map is a piecewise linear map and the notion of a linear region applies. A linear region of a tropical rational
map F is a maximal connected subset of the domain on which F is linear. The number of linear regions of
F is denoted by N (F).

18

Under review as submission to TMLR

D Proofs

Proof of Theorem 4. Immediate from Definition 23 and Proposition 24.

Proof of Corollary 5. Immediate from Theorem 4 and equation equation 2.

Proof of Corollary 7. Immediate from Theorem 6.

Proof of Proposition 12. Immediate from Propositions 21 and 22.

Proof of Proposition 13. Let us first assume E(X,Y)∼D [s(ν(X))] < c. By Proposition 12, we have that, for
all t > 0,

P(X,Y)∼D

(
s(ν(X)) ≥ E(X,Y)∼D [s(ν(X))] + t

)
≤ exp

(
− 2t2

(b − a)2

)
. (24)

Then, since E(X,Y)∼D [s(ν(X))] < c, there exists t2 > 0 such that E(X,Y)∼D [s(ν(X))] + t2 = c. The bound
in equation 24 implies that

P(X,Y)∼D

(
s(ν(X)) ≥ E(X,Y)∼D [s(ν(X))] + t2

)
= P(X,Y)∼D (s(ν(X)) ≥ c) ≤ exp

(
− 2t2

2

(b − a)2

)
.

Assume now that E(X,Y)∼D [s(ν(X))] > c. By Proposition 12, we have that, for all t > 0,

P(X,Y)∼D

(
s(ν(X)) ≤ E(X,Y)∼D [s(ν(X))] − t

)
≤ exp

(
− 2t2

(b − a)2

)
. (25)

Then, since E(X,Y)∼D [s(ν(X))] > c, there exists t1 > 0 such that E(X,Y)∼D [s(ν(X))] − t1 = c. The bound
in equation 25 implies that

P(X,Y)∼D

(
s(ν(X)) ≤ E(X,Y)∼D [s(ν(X))] − t1

)
= P(X,Y)∼D (s(ν(X)) ≤ c) ≤ exp

(
− 2t1

2

(b − a)2

)
.

Proof of Proposition 16. If Sj and Tj are bounded for all j ∈ {1, . . . , n0}, then F (0)(X) and G(0)(X) are
bounded. In addition, if P and Q are bounded, then A(l) and b(l) are bounded, for all l ∈ {1, . . . , L}. In
turn, this entails that ν(l)(X) is bounded, that is, there exists ξ(l) ∈ R such that ∥ν(l)(X)∥2 ≤ ξ(l), for all
l ∈ {1, . . . , L}. Then, the fact that equation 3 holds comes immediately from Corollary 5.

Proof of Proposition 19. We prove the claim only for N (f), as the proof for N (g) is analogous. Notice that
N (f) ∈ N, so given our assumption that for some b1 > 1, N (f) ≤ b1 with probability 1, we can write
that 1 ≤ N (f) ≤ b1 with probability 1. Then, by Proposition 22, we have that N (f) is SG(b1−1

2). So, by
Proposition 21, for all t > 0,

P(X,Y)∼D

(∣∣N (f) − E(X,Y)∼D [N (f)]
∣∣ ≥ t

)
≤ 2 exp

(
− t2

2 (b1−1)2

4

)

= 2 exp
(

− 2t2

(b1 − 1)2

)
,

concluding the proof.

Proof of Proposition 21. Let X be SG(σ). We have that, for all s > 0,

P (X − E(X) ≥ t) ≤ P
(

es(X−E(X) > est
)

≤
E
(
es(X−E(X))

est
,

19

Under review as submission to TMLR

where the first inequality comes from using Markov’s inequality, and the second one from using Chernoff’s
bound. Then, since X is SG(σ), we have that

P (X − E(X) ≥ t) ≤ exp
(

s2σ2

2 − st

)
.

The above inequality holds for any s > 0 so to make it the tightest possible, we minimize with respect to
s > 0. In particular, we solve ϕ′(s) = 0, where ϕ(s) = s2σ2

2 − st, and we find infs>0 ϕ(s) = − t2

2σ2 . We
complete the proof by repeating this process for P (X − E(X) ≤ −t).

Proof of Proposition 22. Without loss of generality, let E(X) = 0. Then, let P denote the probability
distribution of X. Pick any θ ∈ R and define φ(θ) := logEP (eθX). Let then Qθ be the distribution of X
defined by

dQθ(x) := eθx

EP (eθX)dP (x).

We have that
φ′(θ) = EP (XeθX)

EP (eθX) =
∫

x
eθx

EP (eθX)dP (x) = EQθ
(X)

and that

φ′′(θ) = EP (X2eθX)
EP (eθX) − EP (XeθX)2

EP (eθX)2

= EQθ
(X2) − EQθ

(X)2 = VQθ
(X),

where V denotes the variance operator. Now, by Popoviciu’s inequality we have that VQθ
(X) ≤ (b−a)2

4 .
Then, by the fundamental theorem of calculus, we have that

φ(θ) =
∫ θ

0

∫ µ

0
φ′′(ρ) dρ dµ ≤ (b − a)2

4
θ2

2 , (26)

using φ(0) = log 1 = 0 and φ′(0) = EQ0(X) = EP (X) = 0. The proof is concluded by exponentiating both
sides of the inequality in equation 26.

20

	Introduction
	Previous work
	Contributions
	Notation

	Concentration inequalities
	Norm-sub-Gaussian-based concentration inequalities
	Martingale inequalities
	Classification accuracy

	Optimal number of layers
	Application: stochastic feedforward neural networks with ReLU activations
	Deterministic feedforward neural networks
	Stochastic feedforward ReLU networks
	Concentration inequality for positive and negative regions

	Conclusion
	Sub-Gaussian random variables and norm-sub-Gaussian random vectors
	Martingales and filtrations
	Tropical algebra
	Proofs

