
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TWO-WAY IS BETTER THAN ONE: BIDIRECTIONAL
ALIGNMENT WITH CYCLE CONSISTENCY FOR EX-
EMPLAR-FREE CLASS-INCREMENTAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual learning (CL) seeks models that acquire new skills without erasing prior
knowledge. In exemplar-free class-incremental learning (EFCIL), this challenge
is amplified because past data cannot be stored, making representation drift for
old classes particularly harmful. Prototype-based EFCIL is attractive for its effi-
ciency, yet prototypes drift as the embedding space evolves; thus, projection-based
drift compensation has become a popular remedy. We show, however, that exist-
ing one-directional projections introduce systematic bias: they either retroactively
distort the current feature geometry or align past classes only locally, leaving cycle
inconsistencies that accumulate across tasks. We introduce bidirectional projector
alignment during training: two maps, old→new and new→old, are trained during
each new task with stop-gradient gating and a cycle-consistency objective so that
transport and representation co-evolve. Analytically, we prove that the cycle loss
contracts the singular spectrum toward unity in whitened space and that improved
transport of class means/covariances yields smaller perturbations of classification
log-odds, preserving old-class decisions and directly mitigating catastrophic for-
getting. Empirically, across standard EFCIL benchmarks, our method achieves
unprecedented reductions in forgetting while maintaining very high accuracy on
new tasks, consistently outperforming state-of-the-art approaches.

1 INTRODUCTION

Continual learning (CL) studies models that learn from a stream of tasks without retraining from
scratch or erasing prior knowledge (Parisi et al., 2019; Lange et al., 2022; Zenke et al., 2017). A
widely used protocol is class-incremental learning (CIL), where tasks introduce disjoint labels and
the learner must recognize all seen classes at test time without task identifiers. While rehearsal with
stored exemplars often curbs forgetting (Lopez-Paz & Ranzato, 2017; Riemer et al., 2018; Pham
et al., 2021; Caccia et al., 2021; Wang et al., 2022b; Yang et al., 2023), privacy or memory constraints
motivate the exemplar-free variant (EFCIL), which prohibits retaining raw inputs. Among the many
directions to mitigate forgetting (Zenke et al., 2017; Lopez-Paz & Ranzato, 2017; Schwarz et al.,
2018; Aljundi et al., 2018; Riemer et al., 2018; Serra et al., 2018; Saha et al., 2020; Pham et al.,
2021; Caccia et al., 2021; Deng et al., 2021; Cha et al., 2021; Wang et al., 2022a;b; Slim et al.,
2022; Wang et al., 2023; Yang et al., 2023; Shi & Wang, 2023; Wang et al., 2024), prototype-
based EFCIL has emerged as a compelling compromise: the model caches compact class statistics
(means/covariances), and inference proceeds via nearest-prototype or Bayes scores—achieving strict
no-memory operation with modest compute.

The core difficulty in prototype-based EFCIL is representation drift: as the backbone adapts to
new tasks, the embedding geometry shifts and previously cached statistics become stale, biasing
predictions toward recent classes. Existing EFCIL solutions to drift largely follow two routes that
differ in how they balance stability and plasticity.

Covariance and geometry modeling. This route improves robustness by shaping the feature
geometry or the decision metric, commonly keeping the backbone partially/fixed to limit drift.
FeTrIL (Petit et al., 2023) freezes the backbone and translates features to synthesize pseudo-features
for past classes, trading some plasticity for stability. FeCAM (Goswami et al., 2023) argues that Eu-
clidean metrics are suboptimal under non-stationarity and adopts anisotropic (Mahalanobis) scoring

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

with class-wise covariances, typically with a frozen extractor. PASS (Zhu et al., 2021) strengthens
old-class representations via prototype augmentation and self-supervision without exemplars. These
methods effectively mitigate forgetting by stabilizing or re-weighting the geometry, but they largely
avoid cross-space transport; the price of stability is potentially limited adaptation to new tasks.

101520253035
Last-Task Average Forgetting (%, mean ± std)

30

35

40

45

50

La
st

-Ta
sk

 A
ve

ra
ge

 A
cc

ur
ac

y
(%

, m
ea

n
±

st
d) OURS

AdaGauss (NeurIPS'24)

LDC (ECCV'24)
EFC (ICLR'24)

LwF (ECCV'16)

ADC (CVPR'24)

SDC (CVPR'20)

Better

Better

Figure 1. CIFAR-100 (T=10): Our train-
ing algorithm yields solid performance gains
over state-of-the-art EFCIL methods.

Prototype drift compensation. A second—and increas-
ingly dominant—route retains backbone plasticity and
explicitly transports outdated prototypes into the current
space. SDC (Yu et al., 2020) projects new features to-
ward the old space and updates old prototypes accord-
ingly. ADC (Goswami et al., 2024) estimates drift adver-
sarially by pushing new samples toward old prototypes,
then “resurrects” past classes. LDC (Gomez-Villa et al.,
2024) replaces hand-crafted updates with a learnable drift
module that scales across regimes. EFC (Magistri et al.,
2024) performs affinity-weighted, class-wise shifts that
update prototypes in tandem with classifier training. Ada-
Gauss (Rypeść et al., 2024) follows the learned-projector
path but transports full Gaussian class statistics (means
and covariances) into the new space for Bayesian in-
ference rather than only moving class means. Despite
strong performance, the prevailing paradigm here is two-
stage: first train on the new task (often with regular-
ization/distillation), then learn a post-hoc adapter (old→
new). This paradigm leaves residual inconsistencies be-
tween spaces: transport is optimized only after the fact, and cycle errors accumulate over tasks.

Our idea: from two-stage to near single-stage transport. Motivated by the limitations of two-
stage drift compensation, we propose bidirectional cycle consistency that evolves adapter training
into the main task optimization so that transport and representation co-evolve. Concretely, during
each new task we jointly learn two maps—A : zold →znew and D : znew →zold—with stop-gradient
targets to prevent retrograde updates on the evolving representation and a cycle-consistency objective
that regularizes the pair toward a near-bijection on the data support. Analytically, we show that the
cycle loss in whitened space equals ∥ÃD̃ − I∥2F and contracts the singular spectrum of ÃD̃ toward
one; and that smaller alignment/cycle errors yield tighter bounds on the perturbation of classification
log-odds, preserving old-class decisions. After the main stage, a brief consolidation fine-tune is
applied; inference uses a Gaussian Bayes classifier built from transported old-class statistics and
freshly estimated current-task statistics.

Contributions.

• Bidirectional cycle consistency within training. We formulate paired projections A (old
→new) and D (new→old) learned during the task, with stop-gradient gating and a cycle
loss that enforces near-inverse behavior on-support—addressing the asymmetry and post-
hoc mismatch of prior two-stage, one-way pipelines.

• Geometry-preserving transport for drift mitigation. Our transport keeps old-class ge-
ometry stable as the backbone changes, yielding reduced recency bias and higher knowl-
edge retention.

• Theory-grounded alignment. We prove that minimizing the cycle loss contracts the sin-
gular spectrum toward unity in whitened space and derive bounds linking mean/covariance
transport errors to classification log-odds stability, explaining the observed reduction in
forgetting.

• Near single-stage pipeline with strong results. By collapsing adapter learning into the
main stage (with a short consolidation fine-tune), our method strikes an excellent balance
between preserving stability (i.e., preventing drift) and maintaining plasticity, substantially
reducing forgetting and maintaining or improving new-task accuracy across CIFAR-100,
TinyImageNet, ImageNet-100, and CUB-200 under multiple splits. We discuss limitations
in the experiments section.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2. Overview. (1) Train: the current backbone ft learns on Dt (producing znew, while frozen ft−1

provides zold) with task loss LCE. (2) Bidirectional alignment: jointly learn a distiller D : znew→ zold and
an adapter A : zold → znew using Lbi. (3) Cycle consistency: enforce A◦D ≈ I and D◦A ≈ I with Lcyc,
yielding near-bijective, geometry-preserving transport. Old Gaussian prototypes are mapped forward by A, and
all classes are evaluated in the new space.

2 PRELIMINARIES

2.1 PROBLEM DEFINITION

Continual learning (CL) aims to train a model on a stream of tasks while preserving previously
acquired knowledge. In the class-incremental scenario considered here, each task t ∈ {1, . . . , T}
introduces a disjoint label set Ct with Ci ∩ Cj = ∅ for i ̸= j. After learning task t, the model must
recognize any class in C1:t :=

⋃t
i=1 Ci without a task identifier at test time.

Let ft : X → Rd denote the feature extractor after completing the first t tasks. During training on
task t, the learner has access only to Dt = {(xi, yi) | yi ∈ Ct}. The absence of any prior-task data
defines the exemplar-free class-incremental setting.

2.2 PROTOTYPE-BASED EXEMPLAR-FREE CIL

In exemplar-free class-incremental learning (EFCIL), the learner is prohibited from retaining
raw samples from prior tasks. In the absence of replayed data, a common strategy is to summarize
past knowledge with prototypes—one representative feature mean per seen class. Focusing on a
single transition t−1→ t, after completing task t−1 the learner stores for each class c ∈ C1:t−1 the
prototype.

µ t−1
c =

1

|Dc|
∑
x∈Dc

ft−1(x), (1)

where Dc collects all examples of class c encountered up to step t−1. This summary is compact—its
memory scales as O(|C1:t−1| d) for feature dimension d—and can be used at inference time either
directly with a nearest-class-mean rule or to regularize subsequent training.

Prototype drift. When adapting the backbone from ft−1 to ft on Dt, the representation changes to
fit the new classes and, as a side effect, the geometry of the feature space shifts. Hence, prototypes
computed under ft−1 become stale once ft is deployed. Denote the updated class mean, its vector
displacement, and its norm by

µ t
c =

1

|Dc|
∑
x∈Dc

ft(x), ∆ t
c = µ t

c − µ t−1
c , δ t

c = ∥∆ t
c∥2. (2)

Larger δ t
c indicates stronger prototype drift, which biases decisions toward recently learned classes.

Because no earlier samples are retained, µ t
c cannot be recomputed exactly; mitigating or compen-

sating for this drift under the exemplar-free constraint motivates the two-stage strategy below.

2.3 PRIOR DRIFT COMPENSATION PARADIGM

A widely adopted recipe to handle prototype drift in EFCIL proceeds in two stages.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Stage I: in-task regularization (backward alignment via D). During task t, the old backbone
ft−1 is frozen and used as a teacher, while the current backbone ft is trained on the new data Dt

as the student. Let g denote the classifier head (shared or task-specific). For each x ∈ Dt we
define zold = ft−1(x), znew = ft(x) and the corresponding logits ℓold = g(zold), ℓnew = g(znew).
The student is optimized with the usual cross-entropy on new labels and a distillation/regularization
term that constrains either features or logits relative to the teacher:

LS1 = E(x,y)∈Dt

[
CE(ℓnew, y) + λD(ϕnew(x), ϕold(x))

]
, (3)

where ϕ is either z (feature) or ℓ (logit), and D stands for a distillation/regularization operator with
λ>0 balancing the terms. This stage constrains the update of ft using only Dt, thereby limiting the
growth of δ t

c for past classes.

Stage II: post-hoc prototype transport (adapter learning). After training ft, both ft−1 and ft
are frozen and an adapter A is learned on Dt to map old features into the new space. Concretely, A
is fitted on paired features (ft−1(x), ft(x)) by minimizing

min
A

Ex∈Dt
∥A (ft−1(x))− ft(x)∥22, (4)

with A instantiated as a global translation operator, a class-conditioned translation, or a learnable
MLP/linear projector (details vary across works; see Appendix A.1). Once trained, A is applied to
the cached prototypes from prior steps to relocate them into the current feature space:

µ̃ t
c = A (µ t−1

c), c ∈ C1:t−1. (5)

These transported prototypes {µ̃ t
c} are then used by the classifier at inference under ft, effectively

compensating for the shift induced by the update from ft−1 to ft.

Our Research Objective. In the two-stage paradigm, the regularization term in Stage I (often a
distillation loss) pulls the new encoder ft toward the frozen teacher ft−1, whereas the Stage II
adapter transports old prototypes forward from the space of ft−1 to that of ft. Functionally, these
two modules act in opposite directions; structurally, a prior work (Rypeść et al., 2024) instantiates
the distiller with the same architecture as the adapter but applies it in the reverse direction (znew →
zold vs. zold → znew). Our objective is to make this duality explicit already in Stage I: we co-learn
a forward adapter A and a backward distiller Dt during Stage I, enforcing bidirectional alignment
and cycle consistency in both function (mutual inverses on features) and structure (mirrored/tied
parameters), so that prototype transport becomes more accurate by design.

3 METHODOLOGY

3.1 SETUP

Let ft−1 be the frozen old backbone from task t−1 and ft the backbone being trained at task t. For
an input x,

zold = ft−1(x) ∈ Rd, znew = ft(x) ∈ Rd.

Unless otherwise noted, evaluation is performed in the new feature space of ft using a Bayes classi-
fier (see Appendix A.2), with class statistics estimated from Dt (new classes) or transported into the
new space (old classes). We instantiate two lightweight maps: a distiller D : Rd→Rd (new→old)
and an adapter A : Rd →Rd (old→new), implemented as linear layers or shallow MLPs. We use
the stop-gradient operator stopgrad(·) throughout.

3.2 JOINT TRAINING WITH BIDIRECTIONAL CYCLE CONSISTENCY

We train ft, A, and D jointly on Dt, combining standard classification with teacher–student regular-
ization and our bidirectional/cycle consistency. Let g be the task-specific classifier head with logits
ℓnew = g(znew). For brevity, we denote the bidirectional alignment + consistency cycle module as
Bicyc(zold, znew) (see Fig. 2).

Bidirectional alignment. We seek (i) backward compatibility by making znew projectable to the
old space via D, and (ii) a forward map A that transports old prototypes into the current space used
for evaluation—without dragging ft backward. Concretely,

Lbi = ∥D(znew)− zold∥22 + ∥A(zold)− stopgrad(znew)∥22. (6)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The first term updates ft and D (feature-level distillation, new→old). The second term up-
dates A only (detached target), so A chases the evolving new space (old→new) without reduc-
ing the plasticity of ft. In a linear–Gaussian view, minimizing equation 6 reduces transport er-
rors εold→new = E∥A(zold) − znew∥2 and εnew→old = E∥D(znew) − zold∥2, which bound prototype
mean/covariance mismatch after transport and help control margin drift.

Cycle consistency. While Lbi aligns both directions, it does not by itself prevent degeneracies
(e.g., rank loss in weakly correlated directions). We therefore add a cycle loss that nudges the
compositions toward identity on the data support:

Lcyc = ∥A(D(znew))− stopgrad(znew)∥22 + ∥D(A(zold))− stopgrad(zold)∥22. (7)

Targets are detached, so Lcyc stabilizes (A,D) without pulling ft. Spectrally, enforcing A◦D≈I and
D◦A≈I contracts the singular values of the composed transports toward 1, curbing rank/energy loss
and promoting near-isometric geometry preservation. Thus Lbi lowers transport error (alignment)
while Lcyc regularizes the transport operators (near-bijection); together they yield faithful prototype
transport and empirically reduce forgetting without sacrificing plasticity. We denote the weighted
sum of the bidirectional alignment and cycle-consistency losses by:

Bicyc(zold, znew) := λbi Lbi + λcyc Lcyc (8)

We analyze the cycle objective under centered features and full-rank covariances on the data support,
passing to whitened variables z̃old = Σ

−1/2
old zold and z̃new = Σ

−1/2
new znew. In this space E[z̃newz̃

⊤
new] =

I , and the expected cycle error equals the squared Frobenius distance of ÃD̃ to I . We now state the
resulting contraction property.

Theorem 1 (Cycle contraction). Let Σold = E[zoldz
⊤
old] and Σnew = E[znewz

⊤
new] be full-rank on the

data support and define whitened variables z̃old = Σ
−1/2
old zold, z̃new = Σ

−1/2
new znew with induced maps

Ã = Σ
−1/2
new AΣ

1/2
old and D̃ = Σ

−1/2
old DΣ

1/2
new . Let M := ÃD̃ − I . If the features are centered, then:

E ∥Mz̃new∥22 = ∥M∥2F . (9)

By Mirsky/Hoffman–Wielandt (Horn & Johnson, 2013)
∑d

k=1(σk(ÃD̃) − 1)
2 ≤ ∥M∥2F and

hence maxk |σk(ÃD̃) − 1| ≤ ∥M∥F . In particular, if ∥M∥2< 1 then 1 − ∥M∥2 ≤ σk(ÃD̃) ≤
1+∥M∥2 and κ(ÃD̃) ≤ 1+∥M∥2

1−∥M∥2
. Consequently, minimizing Lcyc drives the singular values of ÃD̃

toward 1 on the data support, preventing rank loss and preserving geometry. Proof in Appendix A.3.

Corollary 2 (Decision stability for classification). Let old-class statistics be transported as µ̂ t
c =

Aµ t−1
c and (for linear A) Σ̂ t

c = AΣ t−1
c A⊤. Assume evaluation uses the Bayes rule with Gaussian

class-conditionals (µt
c,Σ

t
c) and priors πc, with log-scores ℓc(x) as in Appendix A.2. Define mean

transport errors δc := ∥µ̂ t
c −µt

c∥(Σt
c)

−1 . If the alignment error ε2old→new = E∥Azold − znew∥22 and the
cycle error ε2cyc,new = E∥ADznew − znew∥22 are small, then:

δc ≲
√
ε2old→new , ∥Σ̃ t − Σt∥2 ≲ C1

√
ε2old→new + C2 εcyc,new. (10)

For any class pair (i, j) and any x, let mij(x) := |ℓi(x) − ℓj(x)| be the Bayes margin. Then the
induced change in log-odds satisfies |(ℓ̂i − ℓ̂j) − (ℓi − ℓj)| ≲ Cµ(δi + δj) + CΣ∥Σ̂ t − Σt∥2.
Consequently, if Cµ(δi + δj) + CΣ∥Σ̂ t − Σt∥2< mij(x), the Bayes decision between i and j at x
remains unchanged after transport. Proof in Appendix A.4.

Pitfall of anti-collapse loss. For features z ∈ RB×S , let Σ = 1
B−1 (z− z̄)⊤(z− z̄). The AdaGauss

anti-collapse loss (Rypeść et al., 2024) is

Lac = − 1

S

S∑
i=1

min(chol(Σ)ii, β). (11)

In practice, mini-batch Σ can be non-SPD or rank-deficient, causing Cholesky failures and poten-
tially inflating scale near ill-conditioning. We enforce SPD via symmetrization and shrinkage, with
a jittered Cholesky and eigenvalue flooring as fallback:

Σ̃ =
1

2
(Σ + Σ⊤), Σ̂ = Σ̃ + λ

tr(Σ̃)

S
I + εI, (12)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Average incremental (Ainc) and last-task average (Alast) accuracy (%, mean ± std. over five runs) on
CIFAR-100 and TinyImageNet when training the feature extractor from scratch. Best results are bold.

Method
CIFAR-100 TinyImageNet

T=10 T=20 T=10 T=20

Alast Ainc Alast Ainc Alast Ainc Alast Ainc

EWC 30.9±1.9 50.4±1.7 17.0±1.6 34.2±2.1 18.5±1.8 34.3±2.3 11.3±1.9 26.8±2.5
LwFECCV16 31.9±1.1 51.8±1.5 17.6±1.2 39.2±1.7 27.1±1.5 39.6±2.0 15.2±1.6 31.5±2.1
SDCCVPR20 40.6±0.9 56.2±1.3 32.3±1.0 46.6±1.4 29.5±1.1 43.8±1.5 26.3±1.2 40.6±1.7
PASSCVPR21 30.8±1.2 48.3±1.1 17.6±0.8 31.1±1.3 24.5±0.6 39.5±1.0 18.5±1.4 30.4±1.9
FeTrILWACV23 34.9±0.5 51.2±1.1 23.3±1.4 37.9±1.2 31.0±0.9 45.3±1.8 25.9±1.2 39.9±1.2
FeCAMNeurIPS23 32.4±0.5 48.7±0.9 21.1±1.0 34.5±1.3 30.9±0.9 44.9±1.4 24.9±0.8 37.9±1.4
EFCICLR24 43.5±0.8 58.1±1.2 32.4±0.9 47.0±1.3 34.5±1.1 47.9±1.5 28.4±1.2 42.1±1.6
ADCCVPR24 46.5±1.2 61.4±1.6 35.1±1.4 51.7±1.8 32.3±1.5 43.0±1.9 18.1±1.6 36.0±2.1
LDCECCV24 45.4±1.6 59.5±1.9 35.5±1.9 51.9±2.3 34.2±1.1 46.8±1.6 24.9±2.2 38.2±2.7
AdaGaussNeurIPS24 46.8±1.2 60.9±1.0 37.9±1.0 54.4±0.8 32.9±0.9 45.8±1.3 27.5±1.2 39.5±1.1
DPCRICML2025 50.2±0.7 62.8±1.1 39.8±1.2 54.8±0.9 34.3±1.8 46.9±0.9 25.6±0.7 39.3±0.6
Ours 50.6±0.9 64.2±1.3 41.5±1.1 56.5±1.3 35.4±0.8 49.1±1.4 30.2±1.1 44.2±1.3

and, for very small batches, we optionally use a diagonal approximation Σ̂diag = diag(diag(Σ̂)).
The robust objective is

Lrob
ac = − 1

S

S∑
i=1

min(chol(Σ̂)ii, β). (13)

Total Stage-I loss and gradient routing. Combining the classification, cycle, and anti-collapse
terms yields:

Ltotal = LCE(ℓnew, y)︸ ︷︷ ︸
learn new classes

+Bicyc(zold, znew) + αLrob
ac . (14)

Here, LCE and the first term of equation 6 update ft (and D); the second term of equation 6 updates
A only (detached target); and equation 7 stabilizes (A,D) without reducing the plasticity of ft.
Importantly, if gradients from the adapter are allowed to flow into ft, A and D become adversarial,
severely weakening D’s regularization and causing sharp performance drops. After Stage I, we
freeze ft−1, ft, and D, and perform a low-learning-rate fine-tuning of A on Dt to sharpen transport
without re-optimizing from scratch.

4 EXPERIMENTS

Baselines. We benchmark our approach against a broad set of exemplar-free class-incremental learn-
ing (EFCIL) methods. Classic regularization baselines—EWC (Kirkpatrick et al., 2017) and LwF (Li
& Hoiem, 2016)—are executed using the reference OCL implementation (Mai et al., 2022). Con-
temporary state-of-the-art approaches—SDC (Yu et al., 2020), PASS (Zhu et al., 2021), FeTrIL (Pe-
tit et al., 2023), FeCAM (Goswami et al., 2023), EFC (Magistri et al., 2024), ADC (Goswami et al.,
2024), LDC (Gomez-Villa et al., 2024), and AdaGauss (Rypeść et al., 2024)—are run with the au-
thors’ public codebases as distributed via FACIL (Masana et al., 2023), PyCIL (Zhou et al., 2023),
or the official repositories. Unless otherwise noted, we preserve the original data augmentations and
default hyper-parameters reported by each paper.

Implementation details and reproducibility. We build on the public AdaGauss codebase and add
the components introduced in this work. Unless stated otherwise, all experiments use a ResNet-18
backbone trained from scratch (He et al., 2016) with a batch size of 256 images per iteration, fol-
lowing AdaGauss. For CIFAR-100 (Krizhevsky, 2009), TinyImageNet (Le & Yang, 2015), and
ImageNet-100 (Deng et al., 2009), we train for 200 epochs using SGD (fixed learning rate 1×10−1,
weight decay 5× 10−4). For CUB-200 (Wah et al., 2011), we adopt a split learning rate: 1× 10−2

for the backbone and 1× 10−1 for the heads. The distiller and adapter are trained with learning rate
5 × 10−2 and weight decay 1 × 10−4. In the from-scratch regime we set λbi=5 and λcyc=1; the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Average incremental (Ainc) and last-task average (Alast) accuracy (%, mean ± std. over five runs) on
ImageNet-100 and CUB-200. Best results are bold. †: results excerpted from (Gomez-Villa et al., 2024).‡:
results excerpted from (He et al., 2025).

Method
ImageNet-100 CUB-200

T=10 T=20 T=10 T=20

Alast Ainc Alast Ainc Alast Ainc Alast Ainc

EWC 25.1±2.8 40.6±3.3 13.7±2.1 29.2±2.5 15.8±0.7 32.6±0.5 12.3±0.8 27.2±0.6
LwFECCV16 33.4±2.2 51.5±1.6 18.6±1.6 41.3±1.9 30.4±1.1 46.1±1.0 19.4±1.6 34.7±1.8
SDCCVPR20 35.4±1.9 50.1±1.6 19.4±1.0 36.5±1.4 50.3±1.3 60.5±1.2 27.9±1.4 40.1±1.6
PASSCVPR21 26.4±1.3 45.7±0.2 14.4±1.2 31.7±0.4 27.0±0.9 42.3±0.9 18.1±1.2 36.9±1.1
FeTrILWACV23 36.2±1.2 52.6±0.6 26.6±1.5 42.4±2.1 36.9±0.7 48.2±0.6 34.6±1.0 45.3±0.9
FeCAMNeurIPS23 38.7±1.0 54.8±0.5 29.0±1.3 44.6±2.0 40.2±0.8 54.9±1.0 36.2±1.1 48.9±1.3
EFCICLR24 50.9±1.1 61.3±1.2 38.6±1.2 50.5±1.5 51.0±0.6 63.3±0.7 46.1±1.0 59.3±1.3
ADCCVPR24 38.3±1.2 55.5±1.5 25.1±1.3 43.4±1.7 49.5±0.9 58.8±1.1 35.4±1.4 48.3±1.4
LDCECCV24 51.4†±1.2† 69.4†±0.6† 28.5±1.7 46.5±2.7 47.5±0.7 55.7±1.3 27.2±1.1 39.8±2.1
AdaGaussNeurIPS24 51.1±1.2 65.0±1.4 42.6±1.6 57.4±1.9 52.9±0.8 63.4±1.3 45.0±1.3 57.0±1.0
DPCRICML2025 49.9±0.8 64.8±1.1 37.3±1.6 54.7±0.7 – – – –
Ours 52.7±0.9 66.8±1.4 43.8±1.4 58.2±1.8 53.7±0.7 64.0±0.8 43.7±1.4 55.9±1.2

Table 3: Last-task average forgetting (Flast) (%, mean ± std. over five runs) of drift compensation methods
when training the feature extractor from scratch. Best results are bold.

Method
CIFAR-100 TinyImageNet ImageNet-100 CUB-200

T=10 T=20 T=10 T=20 T=10 T=20 T=10 T=20

Flast Flast Flast Flast Flast Flast Flast Flast

LwFECCV16 23.2±1.7 31.2±1.8 21.9±1.9 33.5±2.4 42.1±2.3 48.1±2.2 16.5±1.1 21.7±1.4
SDCCVPR20 34.8±1.7 35.9±1.9 25.1±1.4 29.4±2.1 44.6±2.0 54.4±2.3 10.9±1.3 17.3±1.1
EFCICLR24 23.1±1.1 24.7±1.8 23.5±2.4 30.1±3.0 21.5±1.9 23.8±2.5 10.7±0.7 14.8±1.7
ADCCVPR24 21.9±1.1 31.0±1.6 30.2±2.0 36.8±1.9 32.4±1.6 33.4±1.8 12.8±1.1 21.3±1.5
LDCECCV24 21.7±1.9 25.6±2.3 24.7±2.5 30.7±2.1 25.7±1.7 32.9±2.3 13.6±1.2 23.9±1.8
AdaGaussNeurIPS24 16.7±1.4 21.0±1.5 18.7±1.2 23.1±1.0 20.6±0.9 22.9±1.1 11.6±0.7 16.9±1.3
Ours 13.5±1.3 16.6±0.9 12.0±0.9 18.9±1.1 18.2±1.6 20.8±1.4 11.3±0.9 17.5±1.3

learning rate is decayed by a factor of 10 at epochs {60, 120, 180}. After Stage I, we fine-tune the
adapter for 30 epochs using SGD (initial learning rate 1× 10−2, weight decay 5× 10−4).

All other hyperparameters follow AdaGauss verbatim. In particular, we adopt its default settings
for prototype storage and sampling, and therefore do not discuss additional computational overhead.
For completeness, we note that the public AdaGauss code reports TinyImageNet results averaged
over splits formed from the first 100 classes, which is slightly misaligned with common balanced
partitions. To enable an apples-to-apples comparison, our tables present the corrected numbers under
the standard balanced partitioning.

Evaluation metrics. We report three standard measures: the last-task average accuracy Alast,
its running mean, the average incremental accuracy Ainc and the last-task average forgetting
Flast. Dataset specifics, hyper-parameter schedules, and metric definitions are provided in the Ap-
pendix A.7.

4.1 MAIN RESULTS

Tables 1 and 2 report training-from-scratch results on balanced CIFAR-100, TinyImageNet,
ImageNet-100, and CUB-200 (mean±std over five runs). CIFAR–100: compared to AdaGauss,
we gain +3.8/+3.3 pp at T=10 and +3.6/+2.1 pp at T=20. DPCR‡ is competitive, but our method
still slightly leads on all CIFAR-100 settings (e.g., +0.4/+1.4 pp at T=10 and +1.7/+1.7 pp at T=20).
TinyImageNet: improvements over AdaGauss are +2.5/+3.3 pp at T=10 and +2.7/+4.7 pp at
T=20; the margins over the second-best (EFC) are +0.9/+1.2 pp (T=10) and +1.8/+2.1 pp (T=20).
DPCR again trails our method, with gaps of about +1.1/+2.2 pp at T=10 and +4.6/+4.9 pp at T=20.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3. CIFAR-100 (T=10): Per-step, per-task accuracy gains (∆, percentage points) of Ours over Ada-
Gauss, EFC, and LDC. Improvements concentrate on earlier tasks, indicating stronger retention and reduced
forgetting.

ImageNet–100: vs. AdaGauss we obtain +1.6/+1.8 pp at T=10 and +1.2/+0.8 pp at T=20; at T=10
our Alast is best (runner-up LDC†, +1.3 pp), while Ainc is 2.6 pp below the best (LDC†). Under our
protocol, DPCR‡ is clearly weaker than AdaGauss and ours: at T=10 it trails our method by about
2.8/2.0 pp in Alast/Ainc (and is already slightly below AdaGauss by 1.2/0.2 pp), while at T=20 the
gap to ours further widens to 6.5/3.5 pp (with AdaGauss still ahead of DPCR by 5.3/2.7 pp). For
T=20 we achieve the best Alast and Ainc (runner-up AdaGauss: +1.2/+0.8 pp). Under our protocol,
rerunning public LDC code at T=10 yields Alast=41.7± 1.5% and Ainc=58.7± 1.7%. CUB–200
(ImageNet pre-trained): our performance is close to AdaGauss (vs. AdaGauss: +0.8/+0.6 pp at
T=10, −1.3/−1.1 pp at T=20), while on the 20-split setting we trail EFC by 2.4/3.4 pp). DPCR
does not report its CUB-200 hyperparameter configuration under our training protocol, so the cor-
responding entries are marked “–” in Table 2. With a pretrained backbone, practitioners typically
adopt a very low backbone learning rate, which keeps cross-task feature drift small and thus limits
the incremental gains of our method.

Table 4: CIFAR-100: Contributions of Lbi and Lcyc.

Components T=10 T=20

Lbi Lcyc Alast(%) Ainc(%) Alast(%) Ainc(%)

× × 46.8±1.2 60.9±1.0 37.9±1.0 54.4±0.8
✓ × 49.4±1.0 63.1±1.1 40.2±1.1 55.8±1.0
× ✓ 47.8±1.1 61.8±1.0 39.0±1.1 54.9±0.9
✓ ✓ 50.6±0.9 64.2±1.3 41.5±1.1 56.5±1.3

Per-step advantage on CIFAR-100 (T=10).
As shown in Figure 3, across three baselines, our
method shows consistently positive accuracy gain
throughout training, with the largest gains on
older tasks (lower-right region in each heatmap).
Against EFC, margins often exceed +15–20 pp at
mid/late steps; versus LDC, we sustain +6–11 pp
on most old tasks; and relative to AdaGauss we
obtain +5–10 pp improvements that persist to the
final step. The concentration of positive ∆ on early tasks indicates significantly smaller forgetting:
accuracy on initial tasks decays far less under ours while recent tasks remain competitive, yielding
a superior plasticity–stability trade-off.

4.2 ADVANCE IN FORGETTING
As shown in Table 3, across the three balanced, training-from-scratch datasets, our method
achieves the lowest forgetting. On CUB-200, however, most methods fine-tune from a pretrained
backbone, so the gaps in forgetting are much smaller than in the from-scratch regime.

4.3 EFFECT OF LBI AND LCYC

Notably, our approach delivers especially strong preservation of prior knowledge when training
from scratch.

As summarized in Table 4, on CIFAR-100 enabling either loss improves both Alast and Ainc over the
AdaGauss baseline, and enabling both yields the best results across the 10- and 20-task splits. This
pattern matches the roles established in Sec. 3: Lbi (Eq. 6) reduces the new↔old feature-transport
errors that bound prototype mean/covariance mismatch, while Lcyc (Eq. 7) contracts the spectrum
of AD toward 1, mitigating rank loss and promoting near-isometric transport. Used together, they
simultaneously lower transport error and preserve geometry, explaining consistent gains in Alast
and Ainc. Empirical diagnostics corroborate this: Figs. 4 and 5 (CIFAR-100, T=10) show lower
symmetric KL between transported and ground-truth class Gaussians and singular-value spectra

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Adapter Strategy vs. Architecture: Ablation on CIFAR-100

(a) Direct prototype projection vs. projection with
post-training adapter fine-tuning. Arrows indicate the
preferred direction.

Ablation T=10 T=20

Alast ↑ Flast ↓ Alast ↑ Flast ↓

Direct projection 49.9 15.2 38.9 17.6
+ fine tuning (vs. Direct) +0.7 -1.7 +2.6 -1.0

(b) Adapter/Distiller Architectures: MLP shows ab-
solute scores, others report ∆ vs. MLP

Ablation T=10 T=20

Alast ↑ Flast ↓ Alast ↑ Flast ↓

MLP 50.6 13.5 41.5 16.6
Linear -3.5 +1.2 -4.2 +1.3
CrossAttention -2.7 -0.7 -6.0 -1.0
MoE -3.7 -3.6 -2.8 -4.9

of AD that are tighter and more concentrated at 1 than AdaGauss, indicating better distributional
transport and more stable decision boundaries.

4.4 ABLATION: DIRECT PROJECTION VS. POST-TRAINING FINE-TUNING.

1 2 3 4 5 6 7 8 9

100
150
200
250
300
350
400
450

Sy
m

m
et

ric
 K

L
(m

ea
n

±
st

d) AdaGauss
Ours

Figure 4. Task-0 stability via SymKL
(↓). On the fixed task-0 data, we compare
Gaussian fits from models after t=1 . . . 9
to the task-0 reference using symmet-
ric KL (Eqs. 30–31); mean±std over
classes. Our method maintains a smaller
divergence—i.e., a closer match to the
original distribution—than AdaGauss.

The adapter learned via bidirectional cycle consistency can
be used as is to map old-class prototypes into the new space.
We compare this “Direct projection” with an additional post-
training fine-tuning of the adapter. On CIFAR-100, direct
projection achieves Alast=49.9 and Flast=15.2 at 10 -task
split, and Alast=38.9 and Flast=17.6 at 20 -task split. Fine-
tuning yields consistent gains: +0.7 points in Alast and −1.7
in Flast at 10 -task split, and a larger +2.6 / −1.0 at 20-task
split. These results indicate that while the cycle-consistent
adapter already provides a strong zero-shot projection, a
brief post-training adjustment further aligns prototypes to
the new feature geometry—an effect that becomes more pro-
nounced as the task sequence lengthens.

4.5 ABLATION: ADAPTER/DISTILLER ARCHITECTURE

1 2 3 4 5 6 7 8 9
75

80

85

90

95

100

AD
 %

 in
 [0

.9
, 1

.1
]

AdaGauss
OURS

Figure 5. Near-isometry on task-0
under continual updates. AD-% in
[0.9, 1.1] for models after t=1 . . . 9; our
method consistently preserves geometry
better than AdaGauss.

Because our method learns bidirectional maps between old
and new feature spaces, the adapter/distiller architecture di-
rectly affects performance. Beyond the linear or shallow
MLP adapters common in prior work, we test lightweight
but richer alternatives—cross-attention and sparse MoE—to
probe whether conditional/nonlinear mappings better track
representation drift. Table 5b reports CIFAR-100 results for
the 10- and 20-task splits. Across both splits, multilayer
adapters consistently outperform a single linear map: rela-
tive to an MLP baseline, the linear variant lowers Alast by
3.5–4.2 points and increases Flast by 1.2–1.3 points. Within
the multilayer family, cross-attention favors stability, reduc-
ing forgetting (∆Flast = −0.7 to −1.0) at the expense of
accuracy (∆Alast = −2.7 to −6.0), whereas sparse MoE delivers the largest forgetting gains (−3.6
to −4.9) with only moderate accuracy drops (−2.8 to −3.7). If new and old features differed by a
single global affine transform, a linear adapter would suffice; the observed trade-offs instead point
to content-dependent, anisotropic drift, which conditional/nonlinear adapters model more faith-
fully. All variants share identical training schedules; a parameter-matched linear control is a natural
follow-up to isolate capacity from architecture.

4.6 PROTOTYPE DRIFT FROM ORACLE MEANS ON CIFAR-100

To assess how well each method preserves old-class geometry, Fig. 6 reports prototype drift on
CIFAR-100 with the 10-task split. After training Task 9, we freeze the backbone and, for every old
class c, compute the maintained prototype µ̂c and an oracle prototype µ⋆

c given by the empirical
feature mean of all samples of class c under the final backbone. The drift for class c is defined as
∥µ̂c − µ⋆

c∥2.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

(a) (b)

Figure 6. CIFAR-100 (T=10). Drift between maintained prototypes and oracle prototypes (empirical class
means) after completing Task 9. For each of the 90 old classes (Tasks 0–8), we measure the ℓ2 distance in
feature space between the maintained prototype and its oracle prototype. (a) Per-source-task average drift for
the three methods. (b) Histogram of per-class drift over all old classes.

Panel 6a averages this drift over the ten classes of each source task, while Figure 6b plots the full
per-class distribution over all 90 old classes. Our method yields both lower average drift and a
tighter distribution at small values than AdaGauss and LDC, indicating less accumulated distortion
of old-class prototypes.

4.7 PARAMETER OVERHEAD IN THE 64-DIMENSIONAL SETTING

Setup. Following AdaGauss (Rypeść et al., 2024), all experiments use a ResNet-18 backbone fol-
lowed by a 512→64 linear reduction and a two-layer MLP projector D (new→old) in the S=64
space. Our bidirectional variant simply adds a second MLP A (old→new) with the same archi-
tecture. Both A and D are MLPs RS → RmS → RS with width multiplier m=32 (hidden size
mS=2048).

Parameter count. A two-layer MLP with biases in this setting has

#paramsMLP = 2mS2 + (m+1)S ⇒ #paramsMLP = 264,256

for S=64, m=32. Thus AdaGauss already uses one such projector D (≈ 0.26M parameters), and
our bidirectional version adds one more (A), for an extra

∆#params = 264,256

on top of the published AdaGauss model. Since a standard ResNet-18 backbone has about 11M
parameters, the additional adapter increases the total parameter count by only ≈ 2.4%. (We use this
shared 64-dimensional configuration in all experiments and please refer to Sec. B.5 and Sec.B.6 for
a more comprehensive explanation.)

5 CONCLUSIONS, LIMITATIONS, AND FUTURE WORKS

Conclusions. We presented a bidirectional drift-compensation framework for exemplar-free class-
incremental learning that jointly learns old to new and new to old projectors with stop-gradient
gating and cycle consistency. Our analysis links least-squares projectors to CCA and shows how re-
ducing alignment and cycle error stabilizes prototype margins. Experiments across standard EFCIL
benchmarks demonstrate the new state-of-the-art forgetting reduction while maintaining excellent
new-task accuracy.

Limitations. The current formulation assumes centered features, and second-order (Gaussian) pro-
totype statistics; its theory is local to small alignment errors on the data support. The method may
be sensitive to covariance estimation and hyperparameters in low-data regimes.

Future works. We plan to develop uncertainty-aware and class-imbalance–robust prototype trans-
port, and derive non-asymptotic generalization/forgetting bounds beyond Gaussian assumptions. We
also plan to integrate test-time adaptation and multi-modal backbones under strict memory budgets.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Gabriel Aguiar, Bartosz Krawczyk, and Alberto Cano. A survey on learning from imbalanced
data streams: taxonomy, challenges, empirical study, and reproducible experimental framework.
Mach. Learn., 113(7):4165–4243, 2024.

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In ECCV, 2018.

Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuytelaars, Joelle Pineau, and Eugene Belilovsky.
New insights on reducing abrupt representation change in online continual learning. In ICLR,
2021.

Hyuntak Cha, Jaeho Lee, and Jinwoo Shin. Co2l: Contrastive continual learning. In ICCV, 2021.

Hao Chen and Yin Xia. A normality test for high-dimensional data based on the nearest neighbor
approach. Journal of the American Statistical Association, 118(541):719–731, 2023. doi: 10.
1080/01621459.2021.1953507.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In ICML, 2020a.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020b.

Danruo Deng, Guangyong Chen, Jianye Hao, Qiong Wang, and Pheng-Ann Heng. Flattening sharp-
ness for dynamic gradient projection memory benefits continual learning. NeurIPS, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Bruno Ebner and Norbert Henze. Tests for multivariate normality—a critical review with emphasis
on weighted l2-statistics. TEST, 29(4):845–892, 2020. doi: 10.1007/s11749-020-00740-0.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Alex Gomez-Villa, Dipam Goswami, Kai Wang, Bagdanov Andrew, Bartlomiej Twardowski, and
Joost van de Weijer. Exemplar-free continual representation learning via learnable drift compen-
sation. In ECCV, 2024.

Dipam Goswami, Yuyang Liu, Bartłomiej Twardowski, and Joost van de Weijer. Fecam: Feature
covariance and mahalanobis metric for incremental learning. In Neurips, 2023.

Dipam Goswami, Albin Soutif-Cormerais, Yuyang Liu, Sandesh Kamath, Bartlomiej Twardowski,
and Joost van de Weijer. Resurrecting old classes with new data for exemplarfree continual learn-
ing. In CVPR, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

Run He, Di Fang, Yicheng Xu, Yawen Cui, Ming Li, Cen Chen, Ziqian Zeng, and Huiping Zhuang.
Semantic shift estimation via dual-projection and classifier reconstruction for exemplar-free class-
incremental learning. In ICML, 2025.

Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 2nd edition,
2013.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. In NeurIPS, 2020.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, and et al. Overcoming catastrophic forgetting
in neural networks. In Proceedings of the National Academy of Sciences, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis, Gregory G.
Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
tasks. IEEE Trans. Pattern Anal. Mach. Intell., 44(7):3366–3385, 2022.

Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS231N, 2015.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
out-of-distribution samples and adversarial attacks. In Samy Bengio, Hanna M. Wallach, Hugo
Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neu-
ral Information Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3–8, 2018, Montréal, Canada, pp. 7167–7177, 2018.

Zhizhong Li and Derek Hoiem. Learning without forgetting. In ECCV, 2016.

Lei Liu, Li Liu, and Yawen Cui. Prior-free balanced replay: Uncertainty-guided reservoir sampling
for long-tailed continual learning. In Jianfei Cai, Mohan S. Kankanhalli, Balakrishnan Prab-
hakaran, Susanne Boll, Ramanathan Subramanian, Liang Zheng, Vivek K. Singh, Pablo César,
Lexing Xie, and Dong Xu (eds.), Proceedings of the 32nd ACM International Conference on
Multimedia, MM 2024, Melbourne, VIC, Australia, 28 October 2024 - 1 November 2024, pp.
2888–2897. ACM, 2024.

Xialei Liu, Yu-Song Hu, Xu-Sheng Cao, Andrew D Bagdanov, Ke Li, and Ming-Ming Cheng. Long-
tailed class incremental learning. In European Conference on Computer Vision, pp. 495–512,
2022.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
NeurIPS, 2017.

Simone Magistri, Tomaso Trinci, Albin Soutif-Cormerais, Joost van de Weijer, and Andrew D.
Bagdanov. Elastic feature consolidation for cold start exemplarfree incremental learning. In
ICLR, 2024. URL https://openreview.net/forum?id=7D9X2cFnt1.

Simone Magistri, Tomaso Trinci, Albin Soutif-Cormerais, Joost van de Weijer, and Andrew D. Bag-
danov. Efc++: Elastic feature consolidation with prototype re-balancing for cold start exemplar-
free incremental learning, 2025. URL https://arxiv.org/abs/2503.10439.

Zheda Mai, Ruiwen Li, Jihwan Jeong, David Quispe, Hyunwoo Kim, and Scott Sanner. Online
continual learning in image classification: An empirical survey. Neurocomputing, 469:28–51,
2022. ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.2021.10.021. URL https://
www.sciencedirect.com/science/article/pii/S0925231221014995.

Marc Masana, Xialei Liu, Bartłomiej Twardowski, Mikel Menta, Andrew D. Bagdanov, and Joost
van de Weijer. Class-incremental learning: Survey and performance evaluation on image clas-
sification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5):5513–5533,
2023. doi: 10.1109/TPAMI.2022.3213473.

German Ignacio Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter. Con-
tinual lifelong learning with neural networks: A review. Neural Networks, 113:54–71, 2019.

Grégoire Petit, Adrian Popescu, Hugo Schindler, David Picard, and Bertrand Delezoide. Fetril:
Feature translation for exemplar-free class-incremental learning. In WACV, January 2023.

Quang Pham, Chenghao Liu, and Steven Hoi. Dualnet: Continual learning, fast and slow. NeurIPS,
2021.

Siddeshwar Raghavan, Jiangpeng He, and Fengqing Zhu. DELTA: decoupling long-tailed online
continual learning. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR
2024 - Workshops, Seattle, WA, USA, June 17-18, 2024, pp. 4054–4064. IEEE, 2024.

12

https://openreview.net/forum?id=7D9X2cFnt1
https://arxiv.org/abs/2503.10439
https://www.sciencedirect.com/science/article/pii/S0925231221014995
https://www.sciencedirect.com/science/article/pii/S0925231221014995

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald
Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing interfer-
ence. In ICLR, 2018.

Grzegorz Rypeść, Sebastian Cygert, Tomasz Trzciński, and Bartłomiej Twardowski. Task-recency
bias strikes back: Adapting covariances in exemplar-free class incremental learning. NeurIPS,
2024.

Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning. In
ICLR, 2020.

Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska, Yee Whye
Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework for contin-
ual learning. In ICML, 2018.

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. In ICML, 2018.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
ICLR, 2017.

Haizhou Shi and Hao Wang. A unified approach to domain incremental learning with memory:
Theory and algorithm. In NeurIPS, 2023.

Habib Slim, Eden Belouadah, Adrian Popescu, and Darian Onchis. Dataset knowledge transfer for
class-incremental learning without memory. In WACV, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Liyuan Wang, Xingxing Zhang, Qian Li, Jun Zhu, and Yi Zhong. Coscl: Cooperation of small
continual learners is stronger than a big one. In ECCV, 2022a.

Zhenyi Wang, Li Shen, Le Fang, Qiuling Suo, Donglin Zhan, Tiehang Duan, and Mingchen Gao.
Meta-learning with less forgetting on large-scale non-stationary task distributions. In ECCV,
2022b.

Zhenyi Wang, Yan Li, Li Shen, and Heng Huang. A unified and general framework for continual
learning. In ICLR, 2024.

Zifeng Wang, Zheng Zhan, Yifan Gong, Yucai Shao, Stratis Ioannidis, Yanzhi Wang, and Jennifer
Dy. Dualhsic: Hsic-bottleneck and alignment for continual learning. In ICML, 2023.

Shixiong Xu, Gaofeng Meng, Xing Nie, Bolin Ni, Bin Fan, and Shiming Xiang. Defying im-
balanced forgetting in class incremental learning. In Michael J. Wooldridge, Jennifer G. Dy,
and Sriraam Natarajan (eds.), Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI
2024, Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence, IAAI 2024,
Fourteenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2014, February
20-27, 2024, Vancouver, Canada, pp. 16211–16219. AAAI Press, 2024.

Enneng Yang, Li Shen, Zhenyi Wang, Tongliang Liu, and Guibing Guo. An efficient dataset con-
densation plugin and its application to continual learning. NeurIPS, 2023.

Lu Yu, Bartlomiej Twardowski, Xialei Liu, Luis Herranz, Kai Wang, Yongmei Cheng, Shangling
Jui, and Joost van de Weijer. Semantic drift compensation for class-incremental learning. In
CVPR, 2020.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In ICML, 2017.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Da-Wei Zhou, Fu-Yun Wang, Han-Jia Ye, and De-Chuan Zhan. Pycil: a python toolbox for class-
incremental learning. SCIENCE CHINA Information Sciences, 66(9):197101, 2023. doi: https:
//doi.org/10.1007/s11432-022-3600-y.

Fei Zhu, Xu-Yao Zhang, Chuang Wang, Fei Yin, and Cheng-Lin Liu. Prototype augmentation and
self-supervision for incremental learning. In CVPR, 2021.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In ICCV, 2017.

A APPENDIX

This document provides additional experimental results, more details of our approach (proof of
theorems, metric calculation, etc.), organized as follows:

• §A.1. Prototype Drift Compensation: A Transport Perspective

• §A.2. Bayes Classifier in the New Feature Space

• §A.3. Proof of Theorem 1

• §A.4. Proof of Corollary 2

• §A.5. Pseudo-code for Our Algorithm

• §A.6. Experimental Setup

• §A.7. Accuracy Metrics

• §A.8. Distribution-Similarity Evaluation Metrics

• §A.9. Additional Visualizations

• §A.10. Additional Details on Distiller/Adapter Architecture Ablations

• §A.11. Limitations of ImageNet-1K Experiments

• §A.12. LLM Usage Disclosure

A.1 PROTOTYPE-DRIFT COMPENSATION: A TRANSPORT PERSPECTIVE

In the main paper, we adopt a vectorial notion of prototype drift. For each previously-seen class
c ∈ C1:t−1, the backbone update from ft−1 to ft induces the feature-mean displacement

∆ t
c = µ t

c − µ t−1
c , δ t

c = ∥∆ t
c∥2, (15)

where µ t
c =

1
|Dc|

∑
x∈Dc

ft(x) is the (unknown) class mean under the updated encoder ft. Because
EFCIL forbids storing past raw samples, µ t

c cannot be recomputed exactly, and cached prototypes
µ t−1

c become stale once ft is deployed.

Under our Stage-I/Stage-II paradigm, Stage I regularization constrains the update using only Dt:

LS1 = E(x,y)∈Dt

[
CE(g(ft(x)), y) + λD(ϕnew(x), ϕold(x))

]
, (16)

with ϕ ∈ {f(·), g ◦f(·)} and D a generic distillation/regularizer. Stage II then learns a forward
adapter At (frozen ft−1, ft) by aligning paired features (ft−1(x), ft(x)) on Dt, and transports old
prototypes:

At ∈ argmin
A

Ex∈Dt
∥A(ft−1(x))− ft(x)∥22, µ̃ t

c = At(µ
t−1
c). (17)

This transport view unifies existing drift-compensation recipes—each can be seen as instantiating
either a global/class-wise translation At(z) = z + ∆̂ t or a learned projector At applied to cached
prototypes.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Transport-based summary of prior methods. Below we cast representative EFCIL approaches
as special cases of Eq. equation 17. For consistency, we denote the encoders by ft−1 and ft (some
works write Ft−1, Ft) and use Dt for the current-task data.

• Semantic Drift Compensation (SDC) (Yu et al., 2020). SDC estimates a global shift from
new-task samples and uses it as a translation adapter:

∆̄ t =
1

|Dt|
∑
x∈Dt

(ft(x)− ft−1(x)), At(z) = z + ∆̄ t, µ̃ t
c = µ t−1

c + ∆̄ t.

• Adversarial Drift Compensation (ADC) (Goswami et al., 2024). For each old class c,
ADC selects a current-sample x̂c that is adversarially driven towards the vicinity of µ t−1

c
(in the old space), and takes the resulting pairwise feature gap as a class-wise translation:

∆̂ t
c = ft(x̂c)− ft−1(x̂c), A

(c)
t (z) = z + ∆̂ t

c , µ̃ t
c = µ t−1

c + ∆̂ t
c .

• Learnable Drift Compensation (LDC) (Gomez-Villa et al., 2024). LDC directly learns a
projector as the adapter:

Gθ ∈ argmin
G

Ex∈Dt
∥G(ft−1(x))− ft(x)∥22, At(z) = Gθ(z), µ̃ t

c = Gθ(µ
t−1
c).

This captures non-linear, potentially class-dependent deformations.
• EFC (EFM-weighted transport). (Magistri et al., 2024) EFC computes a weighted aver-

age of per-sample shifts using a pseudo-metric induced by the Empirical Feature Matrix
Et−1 (estimated after task t−1). Let ∥v∥2E := v⊤E v. Each xi∈Dt casts a vote for class c
with weight

wc,i = exp
(
−

∥ ft−1(xi)− µ t−1
c ∥2Et−1

2σ2

)
,

yielding the class-wise transport

∆̂ t
c =

∑
xi∈Dt

wc,i (ft(xi)− ft−1(xi))∑
xi∈Dt

wc,i
, µ̃ t

c = µ t−1
c + ∆̂ t

c .

• AdaGauss. Like LDC, AdaGauss first learns a forward projector Gθ by aligning paired
features on Dt:

Gθ ∈ argmin
G

Ex∈Dt
∥G(ft−1(x))− ft(x)∥22, At(z) = Gθ(z).

Unlike LDC—which directly transports old means via µ̃ t
c = Gθ(µ

t−1
c)—AdaGauss

models each old class as a Gaussian and transports the distribution by Monte Carlo
push-forward (see Alg. 1, Stage II):

um ∼ N(µ t−1
c , Σ t−1

c), vm = Gθ(um) = At(um), m = 1, . . . ,M,

followed by re-estimation in the new space:

µ̃ t
c =

1

M

M∑
m=1

vm, Σ̃ t
c =

1

M − 1

M∑
m=1

(vm − µ̃ t
c)(vm − µ̃ t

c)
⊤.

When Gθ (equivalently At) is affine, this reduces in closed form to pushing moments
(µ̃ t

c , Σ̃
t
c) = (Aµ t−1

c + b, AΣ t−1
c A⊤).

A.2 BAYES CLASSIFIER IN THE NEW FEATURE SPACE.

Let z = ft(x) ∈ Rd be the feature of an input x at task t and let each seen class c ∈ C1:t be
represented in the new space by a Gaussian prototype N (µc,Σc) (means and covariances trans-
ported/estimated as in Sec. A.1). The Bayes score is the class conditional quadratic form

sc(x) = (z − µc)
⊤
Σ−1

c (z − µc), (18)
and the task agnostic prediction (TAg) is

ŷTAg(x) = arg min
c∈C1:t

sc(x). (19)

When a task aware (TAw) report is required, we restrict the argmin to the current task’s label set Ct:
ŷTAw(x) = argmin

c∈Ct

sc(x). (20)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.3 PROOF OF THEOREM 1

Proof of Theorem 1 (Cycle contraction). Let M := ÃD̃−I and note that by definition of whitening,
E[z̃newz̃

⊤
new] = I (features are taken to be centered; otherwise replace z by its centered version). Then

E∥M z̃new∥22= E[z̃⊤newM
⊤Mz̃new] = Tr(M⊤M E[z̃newz̃

⊤
new]) = Tr(M⊤M) = ∥M∥2F , (21)

which yields the stated identity.

For the consequence, write the singular values of ÃD̃ as {σk}dk=1. Since M = ÃD̃ − I , Weyl’s
inequality gives maxk|σk − 1|≤ ∥M∥2≤ ∥M∥F . Thus minimizing Lcyc = E∥Mz̃new∥22= ∥M∥2F
forces ∥M∥F→ 0, hence σk → 1 for all k. In particular, when the loss is small, all singular values
of ÃD̃ lie in a tight neighborhood of 1, preventing rank/energy loss and preserving local geometry
on the data support.

A.4 PROOF OF COROLLARY 2

Proof of Corollary 2 (Decision stability for classification). Fix a class c and abbreviate µ = µt
c,

Σ = Σt
c, µ̃ = µ̃ t

c , Σ̃ = Σ̃ t
c , ∆µ := µ̃ − µ, ∆Σ := Σ̃ − Σ. The Bayes log-score is

ℓc(x) = log πc −
1

2
log detΣ − 1

2
(x − µ)⊤Σ−1(x − µ). A first-order expansion in (∆µ,∆Σ)

gives the perturbation

ℓ̃c(x)− ℓc(x) =−1

2
Tr(Σ−1∆Σ)+

1

2
(x−µ)⊤Σ−1∆ΣΣ−1(x−µ)+∆µ⊤Σ−1(x−µ) + Rc(x),

(22)

where Rc(x) = O(∥∆Σ∥22+∥∆µ∥2Σ−1) by the identities log det(Σ + ∆Σ) = log detΣ +
Tr(Σ−1∆Σ) +O(∥∆Σ∥22) and (Σ +∆Σ)−1 = Σ−1 − Σ−1∆ΣΣ−1 +O(∥∆Σ∥22).
Taking absolute values and applying Cauchy–Schwarz and spectral norm bounds,

(23)|ℓ̃c(x)− ℓc(x)| ≤ C
(1)
Σ ∥∆Σ∥2 + C

(2)
Σ ∥∆Σ∥2 ∥x− µ∥2Σ−1

+ ∥∆µ∥Σ−1 ∥x− µ∥Σ−1 +O(∥∆Σ∥22 + ∥∆µ∥2Σ−1),

for constants C(1)
Σ , C

(2)
Σ depending only on ∥Σ−1∥2 (and dimension via standard inequalities). For

a pair (i, j), the log-odds perturbation satisfies by triangle inequality

|(ℓ̃i− ℓ̃j)−(ℓi−ℓj)| ≤ Cµ(∥∆µi∥(Σt
i)

−1+∥∆µj∥(Σt
j)

−1)+CΣ(∥∆Σi∥2+∥∆Σj∥2)+O(·), (24)

where Cµ, CΣ absorb bounded factors of ∥x− µt
c∥(Σt

c)
−1 on the evaluation support. Now set δc :=

∥µ̃ t
c − µt

c∥(Σt
c)

−1 and invoke the transport-fidelity bounds used in the corollary,

δc ≲
√
ε2old→new, ∥Σ̃ t − Σt∥2 ≲ C1

√
ε2old→new + C2 εcyc,new, (25)

to obtain
|(ℓ̃i − ℓ̃j)− (ℓi − ℓj)| ≲ Cµ(δi + δj) + CΣ∥Σ̃ t − Σt∥2. (26)

If the right-hand side is strictly smaller than the Bayes margin mij(x) := |ℓi(x) − ℓj(x)|, then
the sign of the log-odds is unchanged and the Bayes decision between i and j at x is preserved, as
claimed.

A.5 PSEUDO-CODE FOR OUR ALGORITHM

Algorithm 1 specifies the end-to-end procedure for each task t: it learns the current backbone ft
under classification with bidirectional alignment and cycle consistency (via A and D), and updates
the class prototypes by transporting stored Gaussians into the current feature space for inference.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 1 Bidirectional Cycle Consistency (EFCIL)

Inputs: Task stream {Dt}Tt=1; old backbone ft−1 (frozen); current backbone ft (learnable); classifier head g;
adapter A : Rd→Rd (old→new); distiller D : Rd→Rd (new→old);
hyperparameters λbi, λcyc, α; learning rates η, ηA, ηD; batch size B;
per-class sample count M for distribution transport.

Outputs: Trained ft, A, D for each t; transported means & covariances for inference.
Initialization: Copy ft ← ft−1; randomly initialize A,D; freeze ft−1.
for t = 1, . . . , T do
Stage I: Joint training on current task Dt

while not converged do
Sample minibatch {(x, y)}Bb=1 ∼ Dt.
zold ← ft−1(x) ▷ no gradient
znew ← ft(x)
ℓnew ← g(znew)
Bidirectional alignment:
Lbi ← ∥D(znew)− zold∥22+∥A(zold)− z

(detach)
new ∥22

Cycle consistency:
Lcyc ← ∥A(D(znew))− z

(detach)
new ∥22+∥D(A(zold))− z

(detach)
old ∥22

Classification: LCE ← CE(ℓnew, y)
Robust anti-collapse on features:

Σ← 1

B − 1
(znew − z̄)(znew − z̄)⊤; Σ̃← 1

2
(Σ+Σ⊤); Σ̂← Σ̃ + λ

tr(Σ̃)

d
I + εI

Lrob
ac ← −

1

d

∑d
i=1 min(chol(Σ̂)ii, β)

Total: L ← LCE + λbiLbi + λcycLcyc + αLrob
ac

end while
Stage II: Distribution transport via sampling + adapter fine-tuning

Freeze ft−1, ft, D; fine-tune A on Dt with a small LR by minimizing ∥A(zold)− z
(detach)
new ∥22.

for each old class c ∈ C1:t−1 do
Load stored stats (µ t−1

c ,Σ t−1
c).

Sample old features: draw U = {um}Mm=1 ∼ N (µ t−1
c ,Σ t−1

c).
Push-forward to new space: V = {vm}Mm=1 with vm ← A(um).
Re-estimate in new space:
µ̃ t
c ← 1

M

∑M
m=1 vm, Σ̃ t

c ← 1
M−1

∑M
m=1(vm − µ̃ t

c)(vm − µ̃ t
c)

⊤.
end for
Estimate new-class stats under ft from Dt: (µ t

c ,Σ
t
c) for all c ∈ Ct.

Build a new prototype collection using {(µ̃ t
c , Σ̃

t
c)}c∈C1:t−1 and {(µ t

c ,Σ
t
c)}c∈Ct .

Store {(µ t
c ,Σ

t
c)}c∈C1:t for the next task.

end for

A.6 EXPERIMENTAL SETUP

We utilize a workstation equipped with an NVIDIA RTX 6000 Ada GPU and a Xeon Gold 6448Y
CPU to run all the experiments.

Datasets. We evaluate our method on four canonical continual-learning benchmarks CIFAR-100,
TinyImageNet, ImageNet-100 and CUB-200. Each benchmark is instantiated with multiple class-
incremental task splits so that every training image is seen exactly once; only the granularity of the
partition changes. We use the official train/val (or test) partitions supplied with each dataset.

• CIFAR-100 consists of 50,000 training and 10,000 test images of size 32× 32 drawn from
100 classes.

• Tiny-ImageNet contains 100,000 training and 10,000 validation images at 64× 64 resolu-
tion spanning 200 classes.

• ImageNet-100 (also referred to as ImageNet-Subset) includes 130,000 training and 5,000
validation images at the original ImageNet resolution of 224× 224 for 100 classes.

• CUB-200 comprises 11,788 bird photographs—5,994 for training and 5,794 for test-
ing—covering 200 fine-grained species. All images are center-cropped and resized to
224× 224 to match ImageNet preprocessing.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Testing. All results are reported with a test batch size of 512 and no test-time augmentations. The
code will be made publicly available at the time of publication.

A.7 ACCURACY METRICS

We evaluate continual learning along three complementary axes: (i) aggregate predictive perfor-
mance on seen tasks, (ii) distributional alignment between stored prototypes and the current test
distribution, and (iii) near–isometry of the learned transport between old and new representations.
This subsection formalizes the first axis.

We report the last-task average accuracy Alast, its running mean average incremental accuracy
Ainc, and the last-task average forgetting Flast. Let a(K)

i denote accuracy on task i after training up
to task K, and let |Ci| be the number of classes introduced at step i. Then

Alast =

∑K
i=1|Ci| a

(K)
i∑K

i=1|Ci|
, Ainc =

1

K

K∑
j=1

A
(j)
last, Flast =

∑K
i=1|Ci| f

(K)
i∑K

i=1|Ci|
, (27)

where f (K)
i = [max1≤j≤K a

(j)
i −a

(K)
i]+ and A

(j)
last is Alast evaluated at step j. Here Alast summarizes

performance at the current step with class-count weighting, Ainc averages this summary over training
steps to reflect stability over time, and Flast quantifies degradation on past tasks.

A.8 DISTRIBUTION-SIMILARITY EVALUATION METRICS

To study prototype drift, we compare stored Gaussian prototypes to test-time class statistics under
the current backbone. Let fθ(·) ∈ RS denote the feature map, and for each class c let (µ̂c, Σ̂c) be
the stored prototype. Given a held-out set Dtest

c , we compute

µ⋆
c =

1

|Dtest
c |

∑
x∈Dtest

c

fθ(x), Σ⋆
c = Cov({fθ(x) : x ∈ Dtest

c }) ∈ RS×S .

For numerical stability, all expressions involving covariances use Tikhonov regularization Σ̃ :=
Σ + εI with a small ε > 0.

We report three per-class discrepancies that emphasize complementary aspects of drift; lower values
are better.

(1) Prototype Mean Drift (µ-L2). Translation of class centers:
µ-L2c = ∥µ̂c − µ⋆

c∥2. (28)

(2) Covariance Drift (Frobenius). Change in intra-class shape/volume:

Σ-Fc = ∥Σ̂c − Σ⋆
c∥F =

√
tr
[
(Σ̂c − Σ⋆

c)
⊤
(Σ̂c − Σ⋆

c)
]
. (29)

(3) Symmetric KL Between Gaussians. A joint measure capturing center shift, anisotropy, and
volume differences:

DKL(N (µ1,Σ1) ∥N (µ2,Σ2)) =
1

2

[
tr(Σ−1

2 Σ1) + (µ2 − µ1)
⊤Σ−1

2 (µ2 − µ1)− S + ln
detΣ2

detΣ1

]
,

(30)
with S the feature dimension and inverses/determinants taken on regularized covariances. We report
the bi-directional form:

SymKLc = DKL

(
N (µ̂c, Σ̃̂c) ∥N (µ⋆

c , Σ̃
⋆
c)
)
+DKL

(
N (µ⋆

c , Σ̃
⋆
c) ∥N (µ̂c, Σ̃̂c)

)
. (31)

Aggregation over a Class Set. For any per-class statistic mc ∈ {µ-L2c,Σ-Fc, SymKLc} and
class set C (e.g., a task slice), we report its mean and dispersion:

m =
1

|C|
∑
c∈C

mc, std(m) =

√
1

|C|
∑
c∈C

(mc −m)
2
. (32)

Unless stated otherwise, results are shown as m ± std(m) per incremental stage, where smaller
values indicate closer alignment between stored prototypes and test-time distributions.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 7. CIFAR-100 (T=10): Prototype drift on task-0 under continual updates (↓). Using the fixed task-
0 validation split, for each step t=1 . . . 9 we evaluate the model trained up to step t. Left: prototype mean drift
µ-L2 (Eq. 28); Right: covariance drift Σ-Frobenius (Eq. 29). Curves show mean±std over classes (Eq. 32);
smaller is better. OURS exhibits consistently lower center and covariance drift than AdaGauss, indicating closer
alignment to the original task-0 distribution.

A.8.1 AD-% IN [0.9, 1.1]

Finally, to probe geometry preservation of the old↔new mapping, we measure the fraction of sin-
gular values of the composed map that lie in a tight unit band. Consistent with Sec. A.1, let ft−1 and
ft be the frozen previous and current encoders at task t, and let At (old→new) and Dt (new→old) be
the learned maps. On a held-out split Vt restricted to the newly introduced classes Ct, extract paired
features

zold = ft−1(x) ∈ RS , znew = ft(x) ∈ RS , x ∈ Vt, y(x) ∈ Ct,
stack them as Zold, Znew ∈ RS×N , and form least-squares surrogates:

D̂t = (ZoldZ
⊤
new) (ZnewZ

⊤
new)

†, Ât = (ZnewZ
⊤
old) (ZoldZ

⊤
old)

†.

Let {σi}Si=1 = σ(ÂtD̂t) be the singular values. We report

AD-% in [0.9, 1.1] = 100× 1

S

S∑
i=1

1
{
0.9 ≤ σi(ÂtD̂t) ≤ 1.1

}
. (33)

(If At or Dt is a single linear layer, its weight can replace the corresponding surrogate.)

Interpretation. Higher AD-% in [0.9, 1.1] indicates that AtDt is closer to an isometry with less
spectral shrinkage/expansion. This complements Sec. A.8: improved near–isometry typically co-
incides with lower symmetric KL, indicating better preservation of the class-conditional geometry
across tasks.

A.9 ADDITIONAL VISUALIZATIONS

Figure 7 tracks prototype drift on the fixed task-0 validation split over steps t=1 . . . 9 (CIFAR-100,
T=10), reporting the mean L2 shift of class centers (µ-L2; Eq. 28) and the Frobenius change of
covariances (Σ-Fro; Eq. 29) with mean±std across classes; smaller is better. Our method exhibits
consistently lower center and covariance drift than AdaGauss, indicating closer alignment to the
original task-0 distribution, i.e., reduced degradation of old-class statistics as ft evolves.

Relation to the main findings. These curves complement the diagnostics in A.8: we observe both
lower symmetric KL between transported and ground-truth Gaussians and a higher fraction of singu-
lar values for AtDt within [0.9, 1.1] (near-isometry), each pointing to better distributional transport
and geometry preservation under our bidirectional + cycle training. Together, these visualizations
substantiate the our narrative that mitigating prototype/covariance drift translates into more stable
old-class decisions and the reduced forgetting reported in the main tables.

A.10 ADDITIONAL DETAILS ON DISTILLER/ADAPTER ARCHITECTURE ABLATIONS

Setup and parity. All adapter/distiller variants in Table 5b are trained under an identical data
pipeline, optimization schedule, and loss configuration; only the architectural family of the

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

adapter/distiller changes. Each map takes an S-dimensional feature and returns an S-dimensional
output. Unless noted, dropout is disabled and LayerNorms use default ϵ.

Linear. A single affine projection W ∈ RS×S without bias (i.e., z 7→ Wz). This variant is
parameter- and compute-light, and serves to illustrate the contribution of our objective under mini-
mal capacity.

MLP (default). Unless stated otherwise, we instantiate the adapter/distiller as a two-layer MLP
RS→RmS→RS with GELU nonlinearity, no residual connection, and no dropout. We set the width
multiplier to m=32 (hidden size 32S), which matches the capacity used in our main experiments.

Cross-Attention (XAttn). To explicitly align new and old feature spaces, we use a single cross-
attention block with pre-LayerNorm, 8 heads, and an FFN with SwiGLU and expansion 4× (hidden
size 4S), followed by a linear projection back to S; dropout is disabled. Queries are produced
from the current (student) features and keys/values from the frozen previous-task (teacher) features,
following the standard encoder–decoder attention pattern (Vaswani et al., 2017). This provides a
direct path for geometry transfer while keeping depth small.

Mixture-of-Experts (MoE). We optionally replace the projection MLP with a sparse MoE
(Switch-style) comprising 4 experts. A lightweight router (LayerNorm + linear) performs top-1
routing per sample; the selected expert is a SwiGLU FFN with expansion 4× (hidden size 4S) and
a linear projection back to S; dropout is disabled. This trades dense capacity for conditional com-
putation and has been shown to be stable and efficient at shallow depth (Shazeer et al., 2017; Fedus
et al., 2022).

Interpretation and scope. Table 5b compares representative lightweight instantiations of Lin-
ear/MLP/XAttn/MoE under a common training protocol. Because parameter counts and FLOPs
naturally co-vary across families (e.g., attention projections in XAttn or conditional routing in MoE),
the absolute margins in Table 5b are best read as evidence of cross-family robustness under standard
small-footprint configurations, rather than as a capacity-matched ranking. To aid interpretation, we
provide symbolic capacity accounting below, and—critically—Table 4 shows consistent gains when
toggling Lbi/Lcyc at a fixed architecture, indicating objective-level benefits beyond raw capacity.

Symbolic capacity accounting (per map). Let S denote the feature dimension and mS the MLP
hidden size. Ignoring biases, LayerNorm, and constants:

Linear: Θ(S2)

2-layer MLP: Θ(2mS2) (S→mS→S; default m=32)

1-block XAttn: 4S2︸︷︷︸
Q/K/V/O

+ 8S2︸︷︷︸
FFN (4×)

≈ 12S2

Sparse MoE (4 experts, top-1): O(S2)︸ ︷︷ ︸
router

+ 8S2︸︷︷︸
active expert per sample

These orders clarify that differences observed in Table 5b reflect both architectural choices and their
typical capacity/compute footprints under small, practical configurations.

Limitations and future work. We refrain from drawing capacity-controlled rankings from
Table 5b. A comprehensive study that matches parameter and FLOP budgets across Lin-
ear/MLP/XAttn/MoE and sweeps S ×m is orthogonal to our present focus and left as informative
future work. The intended takeaway is that our objective improves diverse families under a common
training protocol, while capacity remains an important factor for downstream performance.

A.11 LIMITATIONS OF IMAGENET-1K EXPERIMENTS

Under our current setup, scaling this protocol to the full 1K-class ImageNet dataset would require
several weeks of continuous GPU time, making such an experiment unrealistic for the present study.
Consequently, we restrict large-scale evaluation to ImageNet-100, whose class count still exposes
the challenges of our current setup while remaining computationally feasible.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A.12 LLM USAGE DISCLOSURE

We used ChatGPT (OpenAI) as a writing copilot to critique and polish the prose (clarity, tone, and
grammar). The model was not used to generate technical content, figures, or results, nor to design
experiments or draw conclusions. The authors take full responsibility for all claims and the accuracy
of the paper. We gratefully acknowledge ChatGPT and the OpenAI team for editorial assistance.

B REBUTTAL APPENDIX

B.1 PROTOTYPE-BASED EFCIL AND GAUSSIAN MODELING IN PRIOR WORK

Prototype-based strategies are already a well-established line of work in exemplar-free class-
incremental learning (EFCIL). Broadly, existing methods differ in how they represent class proto-
types (means vs. Gaussians) and how they use them (direct classification vs. pseudo-feature rehearsal
vs. drift compensation).

Mean prototypes with synthetic feature rehearsal. Early prototype-based EFCIL methods operate
purely at the level of class means and rely on synthetic features derived from these prototypes:

• PASS stores one feature mean per class and performs prototype rehearsal by injecting
Gaussian noise around these means to synthesize pseudo-features, which are mixed with
current-task data to train the classifier; a self-supervised rotation head is added to further
stabilize the backbone.

• FeTrIL also stores class means, but does not train a generator; instead, it produces old-
class pseudo-features by a geometric translation of real features from the current task, f̂ =
fnew + µold − µnew, and uses these translated features together with new-class features to
train a linear classifier.

In both cases, prototypes are means only, and their primary role is to anchor synthetic samples in
feature space.

Explicit Gaussian prototypes and covariance-aware classification. A second line of work moves
beyond means and explicitly models Gaussian structure for each class:

• FeCAM estimates per-class means and covariances and performs Bayes/Mahalanobis clas-
sification in this Gaussian space, reporting that explicit covariance modeling outperforms
sampling from a normal distribution followed by retraining a linear classifier.

• EFC treats each class as a Gaussian prototype (µc,Σc) and samples from these Gaussians
to perform asymmetric prototype rehearsal (PR-ACE), mixing sampled features and current
data to improve the stability–plasticity trade-off, while explicitly compensating prototype
drift across tasks.

• AdaGauss likewise represents each class as N (µc,Σc) and introduces an anti-collapse reg-
ularizer based on the Cholesky factor of Σc to prevent rank deficiency and feature collapse,
together with covariance-adaptation mechanisms that update (µ,Σ) across tasks (e.g., by
transporting samples (by Gaussian Sampling on prototype’s mean and covariance) through
an adapter or via Bayes classification).

These methods clearly show that Gaussian prototypes and covariance-aware decisions are already a
recurring and effective design choice in EFCIL.

Mean-only prototype drift compensation. A third group of methods focuses on compensating
prototype drift but still uses means only. LDC stores one mean prototype per class and learns a
forward projector that maps old-space means into the new feature space after each task, thereby
correcting their positions without explicitly modeling covariance. ADC also centers its design on
means: it constructs adversarially perturbed current-task inputs whose embeddings lie near old-class
means, and uses the resulting feature displacements to estimate how old means should move in the
new space. Neither LDC nor ADC models full Gaussian structure; instead, they treat prototype drift
as a mean-shift phenomenon.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

On suitability of Gaussian assumptions under ResNet18 backbone. Using a standard ResNet-18
backbone makes the Gaussian modeling assumption particularly plausible in our setting. After su-
pervised training on natural images, the penultimate-layer features z = fθ(x) for a fixed class tend
to concentrate in a relatively low-dimensional, approximately elliptical region; representation learn-
ing has already disentangled many subconcepts and maps them into a single, well-clustered class
manifold Lee et al. (2018). In practice, this implies that simple multivariate Gaussian descriptors—
empirical class means µc and covariances Σc—can be reliably estimated in the feature space and
used as compact summaries of the data. Such Gaussian descriptors capture the dominant intra-class
variability while remaining easy to update and analyze, which is particularly advantageous in an
exemplar-free continual learning setup.

Our position. Against this backdrop, our work does not introduce Gaussian prototypes as a
new concept. On the contrary, we build on this existing line of Gaussian-based EFCIL (FeCAM,
EFC, AdaGauss) and on mean-based drift compensation (LDC, ADC). Our contribution lies in how
these prototypes are transported across tasks: we introduce a bidirectional projector with cycle
consistency that jointly learns old→new and new→old mappings during training, with theoretical
guarantees linking cycle loss to spectral contraction and classification stability. In other words,
Gaussian prototypes and covariance modeling are established ingredients in prior work; our novelty
is in integrating them into a principled, bidirectionally aligned transport mechanism that directly
targets drift and cycle inconsistency, rather than in proposing Gaussians themselves.

B.2 MEASURING THE ADHERENCE OF USED DATA TO THE GAUSSIAN ASSUMPTIONS.

On the suitability of multivariate normality tests. In response to the reviewer’s suggestion, we
note that Mardia’s multivariate normality test is not well aligned with the geometry and scale of
continual-learning vision features. Mardia’s test relies on third- and fourth-order moments (mul-
tivariate skewness and kurtosis), and its asymptotic calibration assumes moderate dimension and
i.i.d. samples. In high-dimensional settings with complex dependence structures and large sample
sizes—as in deep feature spaces of EFCIL benchmarks—this test is known to be overly restrictive
and to reject even when deviations are mild and do not affect downstream methods Ebner & Henze
(2020); Chen & Xia (2023). These works further report that numerical multivariate normality tests
such as Mardia’s tend to become too restrictive for large datasets and therefore recommend graphical
diagnostics instead of using Mardia as a hard decision rule. In addition, recent studies highlight that
Mardia’s statistics are sensitive to sample size and dimensionality, leading to unstable or inconsistent
normality decisions. In a machine-learning context, such strict normality tests have been repeatedly
criticized as too restrictive for realistic data, motivating non-Gaussian or more robust alternatives.

Instead of relying on a global hypothesis test that almost always rejects in our regime, we assess
Gaussianity through a geometric, class-wise visualization in a low-dimensional embedding space.
For a fixed subset of classes, we periodically extract their validation features across the training se-
quence, embed them with t-SNE, and overlay the corresponding fitted class-conditional Gaussians
by plotting their one- and two-standard-deviation ellipses. This procedure directly reveals whether
the learned representations form compact, approximately elliptical clusters that are stable over time,
rather than providing only a binary accept/reject decision. In the continual-learning setting, such
snapshots are more informative: they expose how class-conditional geometry evolves across tasks
and whether it remains compatible with an ellipsoidal (approximately Gaussian) model that under-
lies our prototype-based design, even if strict multivariate normality is violated in the tails, as is
typical for deep vision features.

B.3 T-SNE SNAPSHOTS OF TASK-0 CLASSES ON CIFAR-100 (10 TASKS)

To better understand how feature distributions evolve over time, we conduct a t-SNE study on the
balanced CIFAR-100 benchmark with T=10 equally sized tasks. We fix the ten classes introduced
at task 0 and, after finishing tasks 0, 3, 6, and 9, extract their validation features and project them with
t-SNE. For each snapshot in Figure 8, we fit a Gaussian to the features of each class and visualize
its one- and two-standard-deviation regions with solid and dashed ellipses, respectively.

Across all stages, the per-class clusters remain roughly unimodal and are well covered by a single
Gaussian, rather than fragmenting into multiple disjoint modes. This suggests that the main source of

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(a) After task 0. (b) After task 3.

(c) After task 6. (d) After task 9.

Figure 8. t-SNE of task-0 classes on CIFAR-100 with T=10. We project validation features of the same ten
classes after training tasks 0, 3, 6, and 9. Solid and dashed ellipses mark the one- and two-standard-deviation
regions of the fitted Gaussian for each class.

error is not a gross mismatch between the Gaussian prototype assumption and the empirical feature
geometry.

B.4 INTUITIVE VIEW OF BIDIRECTIONAL CYCLE CONSISTENCY AND LOW-DRIFT REGIMES

From post-hoc adapters to in-task bidirectional alignment. Most prior drift-compensation
pipelines follow a two-stage pattern: during Stage I the new encoder ft is regularized toward ft−1

(often via distillation), and only in Stage II is an adapter A trained post hoc to map old features into
the new space (Sec. 2.3). Our goal in Sec. 3.2 is to make this duality explicit and move it inside
Stage I: we jointly learn a distiller D: znew → zold and an adapter A: zold → znew while the backbone
is still being optimized. Intuitively, D is a feature-level projected distiller: it pulls the current rep-
resentation znew toward the frozen teacher zold and acts as a geometry-aware regularizer on ft; A is
the forward transport map used at inference, learning how old features should be expressed in the
evolving new space so that old prototypes remain usable under ft. The bidirectional loss Lbi (Eq. 6)
enforces this division of roles: (i) D(znew) should be close to zold (backward compatibility), and (ii)
A(zold) should chase the current znew (forward transport), without pulling ft backwards.

Why this is not adversarial training. Cycle consistency in Eq. 7 is inspired by the success of
cycle-based constraints (e.g., CycleGAN (Zhu et al., 2017)), but in our case it is a self-consistency
constraint rather than an adversarial game: applying D then A (or A then D) should approximately
return the original feature on the data support. A key design choice is that both Lbi and Lcyc are
implemented with stop-gradient targets: the term ∥A(zold)− stopgrad(znew)∥2 updates A only, so A
must follow the evolving ft rather than dragging it; the cycle terms ∥A(D(znew))−stopgrad(znew)∥2

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

and ∥D(A(zold))− stopgrad(zold)∥2 update (A,D) but not ft, stabilizing the maps without reducing
the plasticity of the backbone. Empirically, we found that removing these stop-gradients causes
A and D to behave almost adversarially: A pushes features in one direction, D tries to undo it,
and the gradients from A propagate into ft in a way that weakens D’s regularization role. In this
regime, D stops acting like a teacher and starts chasing A instead; both maps overfit to each other
and accuracy collapses sharply. This failure mode is exactly why Sec. 3.2 and Eqs. 6–7 explicitly
emphasize gradient routing: D regularizes ft, while A and the cycle loss are trained around the
evolving representation, not against it.

An intuitive reading of Theorem 1 and Corollary 2. Theorem 1 analyzes the cycle loss in a
whitened feature space where each side has identity covariance. In that space, the expected cycle
error is exactly the squared Frobenius distance between the composed map ÃD̃ and the identity.
Minimizing Lcyc can therefore be read as:

“Make the round-trip map ‘old → new → old’ act like doing nothing, and do so
in a way that keeps the singular values of that map close to 1.”

Geometrically, this means that A and D jointly behave like a near-isometry on the data support:
they preserve distances and angles up to a small distortion factor. Corollary 2 then takes a classi-
fier’s perspective. If our transport faithfully preserves (i) class means and (ii) the main anisotropies
encoded by covariances, then the quadratic Bayes scores change only slightly. As long as this score
perturbation is smaller than the margin between classes, their relative order does not flip and the old
decision boundary is preserved. In short:

• Lbi keeps A and D centered on the correct old/new features (low transport error).

• Lcyc keeps their composition close to an isometry (no rank collapse or extreme stretching).

• Together, they stabilize margins and explain why we see lower forgetting in Tables 1–3 and
Figs. 3–5.

Why CUB-200 shows smaller gains: the role of learning rates. The same intuition also clarifies
why our improvements on CUB-200 are modest and sometimes negative relative to EFC (Table 2).
By design, D is meant to be a regularizer for the backbone, not a replacement encoder: its learning
rate should not dominate that of ft, so that ft can still adapt while D gently pulls it toward the old
space. If D is trained much faster than ft, D will effectively learn to project any new representation
back toward the old one, and the backbone will stop learning—D becomes a projector rather than a
regularizer.

In the from-scratch regimes (CIFAR-100, TinyImageNet, ImageNet-100), we use a relatively large
learning rate that is shared between the backbone and the bidirectional projector (i.e., A and D).
Representation drift across tasks is substantial in this setting, so D can act as a meaningful regular-
izer and the joint training of (A,D) has room to improve transport and reduce forgetting. In contrast,
on CUB-200 we follow the common practice of fine-tuning from an ImageNet-pretrained ResNet-18
with a very low backbone learning rate: the backbone drifts only slightly, and for stability we must
keep the learning rates of D and A low as well. In this low-drift, low-step-size regime, D cannot
play an aggressive regularizing role without freezing ft, and the pair (A,D) ends up very close to
the AdaGauss baseline behavior. As a result, our method behaves almost identically to AdaGauss
on CUB-200, and the small differences at T=20 are largely within run-to-run variability rather than
systematic gains or losses.

Takeaway. Conceptually, D is a feature-level distiller that keeps ft close to ft−1, A is its for-
ward counterpart used for prototype transport, and the cycle loss gently forces A and D to agree
as near-inverses on the data manifold without engaging in adversarial dynamics. This design is
most beneficial exactly in the regimes where representation drift is non-negligible and the backbone
is allowed to move (our from-scratch experiments); in low-drift fine-tuning settings such as CUB-
200, the theory predicts—and our results confirm—that the incremental benefit over AdaGauss will
naturally be smaller.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

B.5 ON ADAGAUSS, FULL-COVARIANCE PROTOTYPES, AND THE NEED FOR ROBUSTNESS

AdaGauss and full-covariance prototypes. AdaGauss is an exemplar-free CIL method that rep-
resents each class c with a Gaussian prototype N (µc,Σc) and uses these Gaussians both for classi-
fication (via a Bayes classifier) and for Gaussian sampling to train the prototype adapter. To make
this feasible and numerically stable, AdaGauss introduces an anti-collapse loss that regularizes the
class-wise covariance matrices through a Cholesky factorization of Σc. Intuitively, this loss discour-
ages rank-deficient or nearly singular covariances and encourages well-spread, anisotropic feature
distributions, which improves the separability of classes in the embedding space.

Why dimensionality reduction is necessary. The Cholesky-based anti-collapse term and Gaussian
sampling both require each Σc to be symmetric positive-definite, which in turn demands that the
empirical covariance be full rank and well-conditioned. In the exemplar-free, incremental setting,
the number of available samples per class is limited at each stage; if one were to keep the feature di-
mension at 512 (the standard ResNet-18 penultimate layer size), ensuring full-rank, positive-definite
covariances across all classes becomes difficult or even impossible in practice, and Cholesky decom-
positions may fail or become unstable. To address this, AdaGauss applies a learned linear reduction
layer after the ResNet-18 backbone, mapping 512 → 64. This projection increases the effective
sample-to-dimension ratio for each class, yielding more reliable covariance estimates and more
stable Cholesky factors, while still preserving enough discriminative information for downstream
classification.

Why dimensionality reduction alone is still not sufficient. However, as we highlight in our “Pitfall
of anti-collapse loss” discussion, even after projecting to S=64 the mini-batch covariance

Σ =
1

B − 1
(z − z̄)⊤(z − z̄)

can still be non-SPD or severely ill-conditioned in realistic EFCIL regimes (e.g., small B, highly
correlated features, or class imbalance). This leads to Cholesky failures and, more subtly, to in-
flated scales near ill-conditioning. For this reason we go beyond the original AdaGauss design and
introduce a robust variant of the anti-collapse loss: we explicitly enforce SPD via symmetrization
and shrinkage, add a jitter term, and fall back to diagonal or eigenvalue-floored covariances when
necessary (see “Pitfall of anti-collapse loss” and Eqs. (11)–(13) in the main paper). In other words,
the 512→64 reduction is a necessary step to make full-covariance modeling viable in EFCIL, but it
is not sufficient on its own to guarantee numerical robustness; our modifications are precisely aimed
at closing this remaining gap.

Connection to common practice: projectors after ResNet. Placing a learnable projector after a
ResNet encoder to obtain a lower-dimensional feature space is common practice in modern repre-
sentation learning. For example, SimCLR (Chen et al., 2020a) and MoCo v2 (Chen et al., 2020b)
append a projection head after a ResNet backbone to map high-dimensional penultimate features
into a lower-dimensional embedding space for contrastive learning, and supervised contrastive learn-
ing (Khosla et al., 2020) adopts a similar ResNet+projector architecture. These works provide in-
dependent evidence that: (i) projecting 512-dimensional ResNet features into a lower-dimensional
space (e.g., 128 or 64) is fully compatible with strong classification performance, and (ii) the pro-
jector is an integral part of the representation, not a crude post-processing step.

Implications for our method. Our implementation follows the public AdaGauss codebase and
retains this 512→64 projection. All Gaussian prototypes, anti-collapse losses, and transport maps
are therefore defined in the same S = 64 feature space. In the next subsection, we quantify the
incremental parameter and compute the overhead of adding our bidirectional projector on top of this
existing 64-dimensional design.

B.6 PARAMETER AND COMPUTE OVERHEAD IN 64-DIMENSIONAL SETTING

Setup. Following AdaGauss (Rypeść et al., 2024), we use a ResNet-18 backbone followed by
a linear reduction layer that maps 512 → 64, and already includes a single projected distiller D
(“distiller”, new→old) implemented as a two-layer MLP with GELU in this 64-dimensional space.
Our bidirectional variant keeps this setup fixed and introduces an additional adapter A (old→new)
with the same architecture. Concretely, both A and D are

z ∈ RS W1−−−→ RmS GELU−−−−→ RmS W2−−−→ RS ,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

where the width multiplier is m= 32 (hidden size mS = 2048). All overhead discussed below is
thus computed in the reduced S=64 space.

Exact parameter counts (with biases). For a two-layer MLP RS →RmS →RS with biases, the
parameter count is

#paramsMLP = (S ·mS) + (mS) + (mS · S) + S = 2mS2 + (m+ 1)S.

With S=64 and m=32 we obtain

#paramsMLP = 2 · 32 · 642 + 33 · 64 = 262,144 + 2,112 = 264,256

parameters for a single projector (A or D). The bidirectional module (two maps, A+D) therefore
contains

#paramsA+D = 528,512

parameters in total (about 2.02MiB in FP32).

For comparison, a standard ResNet-18 backbone has on the order of 11M parameters (depending
slightly on the classifier head). Thus, relative to the published AdaGauss configuration:

• The original ADAGAUSS baseline already includes one such MLP projector D (≈ 264k
parameters).

• Our bidirectional extension adds only one extra MLP A, i.e., an additional

∆#params = 264,256

parameters on top of ADAGAUSS, which is roughly

264,256

11,000,000
≈ 2.4%

of the ResNet-18 backbone size.

In other words, the extra adapter introduced by our method increases the overall parameter count by
only a small single-digit percentage relative to the backbone.

Table 6: CIFAR-100(T=10): Sensitivity of Lbi, Lcyc, and α.

Settings T=10 T=20

Lbi Lcyc α Alast(%) Ainc(%) Alast(%) Ainc(%)

5 1 1 50.6 64.2 41.5 56.5
0 1 1 47.8 61.8 39.0 54.9
5 0 1 49.4 63.1 40.2 55.8
0 0 1 46.8 60.9 37.9 54.4
5 1 0 49.7 63.3 39.2 55.2
5 1 0.5 51.0 64.4 42.4 56.1
5 1 2 48.7 62.9 42.6 56.5

0.5 1 1 47.4 62.3 39.8 55.3
1 1 1 51.3 64.7 40.0 56.4

10 1 1 47.2 60.9 38.8 53.8
5 0.5 1 50.4 64.1 40.8 55.7
5 2 1 51.9 64.5 42.9 57.0

B.7 PARAMETER SENSITIVITY AND CHOICE OF DEFAULT HYPERPARAMETERS

In the main experiments we did not perform an extensive grid search. Instead, we chose the scales
of the bidirectional and cycle-consistency losses based on their rough magnitude: λbi=5 and λcyc=1
were selected so that the additional terms had a similar order of contribution as the task loss and KD
loss. For the anti-collapse loss we simply inherited the default scaling factor α=1 from AdaGauss.
Our modification to the anti-collapse objective is a “safer” formulation, but it does not change the
basic role or scale of this regularizer, so we kept α fixed in the original set of experiments.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

The parameter-sensitivity study in Table 6 varies λbi ∈ {0, 0.5, 1, 5, 10}, λcyc ∈ {0, 0.5, 1, 2}, and
α ∈ {0, 0.5, 1, 2}. It shows that there are alternative configurations of (λbi, λcyc, α) that can slightly
outperform our default choice on CIFAR-100. Nevertheless, for all main results we retain the orig-
inal defaults. We wish to avoid the impression that our gains are purely due to aggressive hyperpa-
rameter tuning: the proposed bidirectional module is already consistently better than the baselines
across a reasonably wide region of the hyperparameter space, and our reported improvements hold
even under this conservative, non–grid-searched setting.

B.8 CHOICE OF CLASSIFIER.

Table 7: Linear classifier vs. Bayesian classifier on CIFAR-100.

Classifier T=10 T=20

Alast ↑ Ainc ↑ Alast ↑ Ainc ↑
Bayesian 50.6 64.2 41.5 56.5
Linear (sampling) 51.1 64.7 40.8 55.7

Our main experiments use the Bayesian classifier described in Sec.A.2, which predicts by Maha-
lanobis distance to the stored Gaussian prototypes. For completeness, we additionally evaluate a
linear classifier that is trained purely from these Gaussians, as reported in Table 7. Following the
public AdaGauss implementation, we construct a synthetic training set by sampling features from
each class-wise Gaussian N (µc,Σc) and optimize a single linear head over all seen classes with
standard cross-entropy (denoted Linear (sampling)). In the EFC (Magistri et al., 2024; 2025) liter-
ature, this procedure is often referred to as Gaussian rebalancing, but conceptually it is the same
mechanism.

As shown in Table 7, the sampling-based linear head closely matches the Bayesian classifier: the
differences in Alast and Ainc on CIFAR-100 are within a fraction of a percentage point for both T=10
and T=20. This indicates that our conclusions are not sensitive to the choice between a Bayesian
classifier and a Gaussian-sampling linear head.

B.9 ADDITIONAL HALF DATASET(WARM-START) RESULTS

Table 8: Warm-start(half as first task) evaluation on CIFAR-100 and TinyImageNet with T ∈ {5, 10}. We
report last-task (Alast) and average incremental (Ainc) accuracy (%). Best results are bold.

Method
CIFAR-100 TinyImageNet

T=5 T=10 T=5 T=10

Alast Ainc Alast Ainc Alast Ainc Alast Ainc

EFC 62.0 68.9 60.9 68.2 51.3 57.9 50.4 57.5
ADC 47.9 59.5 41.9 54.7 37.2 45.8 25.3 34.6
LDC 50.3 61.3 43.8 55.3 38.6 46.2 26.1 35.4
AdaGauss 57.9 65.2 55.1 62.0 47.7 55.2 45.8 54.1
Ours 61.2 67.5 58.2 65.5 49.3 56.3 46.9 54.8

Here we present the results under a warm-start scenario, where the model is first trained on a larger
initial portion of the data (T= 5 or T= 10 tasks) before entering the incremental phase. This setting
is analogous to the half-dataset protocol: it is easier than learning from scratch, since the feature
extractor is already partially trained, but it may be closer to some practical applications. The corre-
sponding results on CIFAR-100 and TinyImageNet are reported in Table 8. Our method consistently
ranks second, while EFC achieves the best Alast and Ainc across all warm-start configurations.

This behavior is in line with our expectations and with the specific design choices in EFC. These
results highlight that EFC is particularly advantaged by a large initial task.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Recall that EFC estimates an Empirical Feature Matrix Et per task and penalizes representation
drift via LEFM(ft, ft−1) = Ex[(ft(x)−ft−1(x))

⊤(λEFMEt−1+ηI)(ft(x)−ft−1(x))], with fixed
λEFM and η. When the first task C1 already contains 50% of all classes, the corresponding E1 is
estimated from a large and diverse subset of the full label space, and its non-zero eigenvalues span
a relatively high-rank, discriminative subspace. In this regime, the anisotropic penalty λEFME1

effectively “freezes” a strong initial representation f1 along most of those directions, while allowing
later tasks to adjust primarily in the orthogonal complement. At the same time, EFC’s prototype-
based replay (PR-ACE) maintains Gaussian prototypes pc = (µc,Σc) for each class c, and uses a
prototype-heavy cross-entropy term over all classes C1:t. Under warm start, this replay distribution
is dominated by the numerous and well-estimated prototypes from classes in C1. Thus, both the
feature-space regularizer and the replay mechanism are strongly anchored on the large first task,
which yields excellent retention for C1 and a small net performance advantage in the warm-start
metric (which is itself class-weighted and therefore heavily influenced by |C1|).
The same mechanism, however, is less favorable in the cold-start regime used in our main paper,
where each task contains only a small fraction of classes. In that setting, E1 is estimated from few
classes and is therefore low-rank and less representative of the global class geometry, yet the same
strong penalty λEFME1 is applied from task 2 onward. This tends to anchor the backbone to a
suboptimal initial representation and constrains its ability to reorganize as new classes arrive; addi-
tionally, early Gaussian prototypes are less reliable and their replay can propagate this bias across
tasks. By contrast, our method is explicitly designed to maintain sufficient plasticity of the represen-
tation in the early tasks while still controlling drift, which leads to substantially better performance
than EFC in the cold-start, class-incremental setting reported in the main paper. In summary, while
EFC enjoys a slight advantage in the warm-start protocol—where its design is naturally aligned
with a large, informative initial task—our method provides significantly stronger performance in the
more challenging and practically relevant cold-start scenario.

EFC employs a strong regularization scheme, which is particularly advantageous when the first
task is large and the feature space can be well shaped before incremental training. In this easier
warm-start regime, the gap between our method and EFC remains moderate (typically within a few
percentage points), and both clearly outperform AdaGauss and other drift-compensation baselines.
However, in the more challenging learning-from-scratch setting, where the feature extractor must be
learned incrementally from the very beginning, our method surpasses EFC by a substantial margin,
showing that the proposed bidirectional alignment is most beneficial when representation drift is
severe.

B.10 ADDITIONAL CIFAR100 LONG-TAILED RESULTS

We follow the long-tailed CIL setup of Liu et al. (2022) and construct an ordered CIFAR-100-LT
benchmark with imbalance ratio r=20 (denoted CIFAR-100-LT r=20). Here, classes are divided
into head and tail groups based on their sample counts; in the ordered protocol, head classes appear in
earlier tasks, whereas tail classes—with as few as 1/20 of the head-class examples—are introduced
only in later tasks.

Table 9: Results on CIFAR-100-LT (r=20) with T ∈ {10, 20}. We report last-task (Alast) and average incre-
mental (Ainc) accuracy (%). Best results are bold.

Method
T=10 T=20

Alast Ainc Alast Ainc

EFC 32.1 46.1 21.7 38.6
ADC 26.7 51.3 12.9 38.3
LDC 25.1 50.2 10.0 37.5
AdaGauss 26.9 51.6 9.1 36.0
Ours 30.7 52.1 13.6 38.9

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 9 summarizes the results on this benchmark for T ∈ {10, 20}. We compare our method with
several exemplar-free projection-based baselines that were not specifically designed for long-tailed
CIL and do not include strong regularization for tail classes (ADC, LDC, AdaGauss), alongside
EFC. A consistent pattern emerges: for the non-specialized methods, the last-task accuracy Alast
suffers a sharp drop once the stream reaches tail-heavy tasks, indicating that the model overfits the
scarce tail data and catastrophically forgets earlier head and medium classes.

Long-tail continual learning with an ordered sequence of tasks, where head classes appear in early
tasks and tail classes are introduced later, is conceptually very close to the warm-start protocol,
in which the first task already contains a large, informative subset of classes. In both cases, the
early tasks are dominated by head classes with many examples, so the backbone and any feature-
consolidation mechanism are primarily shaped by these high-frequency classes and later tasks
mainly fine-tune in their orthogonal complement. This is precisely the regime in which EFC is
theoretically advantaged: its Empirical Feature Matrix is estimated on a large, diverse block of
head classes, and its prototype-based replay is dominated by well-estimated prototypes from those
classes, yielding strong retention for the initial head block.

Overall, long-tailed class-incremental learning constitutes a related but distinct setting from the
balanced benchmarks studied in this paper. It is a mature domain, studied on its own and originating
from imbalanced data streams (Aguiar et al., 2024). Long-tailed streams typically require dedicated
mechanisms (e.g., tailored re-weighting (Raghavan et al., 2024), debiasing (Liu et al., 2024), or tail-
aware regularization (Xu et al., 2024)) to simultaneously protect head classes from forgetting and
prevent overfitting on rare classes. Our method is not explicitly engineered for this regime, so we
view CIFAR-100-LT r=20 primarily as a stress test demonstrating that our bidirectional alignment
remains competitive even under strong imbalance. A systematic treatment of exemplar-free long-
tailed CIL is complementary to our main contribution and we leave it as an interesting direction for
future work.

We thank the reviewers and readers for their careful reading of the appendix.

29

	Introduction
	Preliminaries
	Problem Definition
	Prototype-Based Exemplar-Free CIL
	Prior Drift Compensation Paradigm

	Methodology
	Setup
	Joint Training with Bidirectional Cycle Consistency

	Experiments
	Main Results
	Advance in Forgetting
	Effect of L_bi and L_cyc
	Ablation: direct projection vs. post-training fine-tuning.
	Ablation: Adapter/Distiller Architecture
	Prototype drift from oracle means on CIFAR-100
	Parameter overhead in the 64-dimensional setting

	Conclusions, Limitations, and Future Works
	Appendix
	Prototype-Drift Compensation: A Transport Perspective
	Bayes classifier in the new feature space.
	Proof of Theorem 1
	Proof of Corollary 2
	Pseudo-code for Our Algorithm
	Experimental Setup
	Accuracy Metrics
	Distribution-Similarity Evaluation Metrics
	AD-% in [0.9,1.1]

	Additional Visualizations
	Additional Details on Distiller/Adapter Architecture Ablations
	Limitations of ImageNet-1K Experiments
	LLM Usage Disclosure

	Rebuttal Appendix
	Prototype-Based EFCIL and Gaussian Modeling in Prior Work
	Measuring the adherence of used data to the Gaussian assumptions.
	t-SNE snapshots of task-0 classes on CIFAR-100 (10 tasks)
	Intuitive view of bidirectional cycle consistency and low-drift regimes
	On AdaGauss, Full-Covariance Prototypes, and the Need for Robustness
	Parameter and Compute Overhead in 64-dimensional Setting
	Parameter sensitivity and choice of default hyperparameters
	Choice of classifier.
	Additional Half Dataset(Warm-start) Results
	Additional CIFAR100 Long-tailed Results

