

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TWO-WAY IS BETTER THAN ONE: BIDIRECTIONAL ALIGNMENT WITH CYCLE CONSISTENCY FOR EX- EMPLAR-FREE CLASS-INCREMENTAL LEARNING

Anonymous authors

Paper under double-blind review

## ABSTRACT

Continual learning (CL) seeks models that acquire new skills without erasing prior knowledge. In exemplar-free class-incremental learning (EFCIL), this challenge is amplified because past data cannot be stored, making representation drift for old classes particularly harmful. Prototype-based EFCIL is attractive for its efficiency, yet prototypes drift as the embedding space evolves; thus, projection-based drift compensation has become a popular remedy. We show, however, that existing one-directional projections introduce systematic bias: they either retroactively distort the current feature geometry or align past classes only locally, leaving cycle inconsistencies that accumulate across tasks. We introduce bidirectional projector alignment during training: two maps, old→new and new→old, are trained during each new task with stop-gradient gating and a cycle-consistency objective so that transport and representation co-evolve. Analytically, we prove that the cycle loss contracts the singular spectrum toward unity in whitened space and that improved transport of class means/covariances yields smaller perturbations of classification log-odds, preserving old-class decisions and directly mitigating catastrophic forgetting. Empirically, across standard EFCIL benchmarks, our method achieves unprecedented reductions in forgetting while maintaining very high accuracy on new tasks, consistently outperforming state-of-the-art approaches.

## 1 INTRODUCTION

Continual learning (CL) studies models that learn from a stream of tasks without retraining from scratch or erasing prior knowledge (Parisi et al., 2019; Lange et al., 2022; Zenke et al., 2017). A widely used protocol is *class-incremental learning* (CIL), where tasks introduce disjoint labels and the learner must recognize all seen classes at test time without task identifiers. While rehearsal with stored exemplars often curbs forgetting (Lopez-Paz & Ranzato, 2017; Riemer et al., 2018; Pham et al., 2021; Caccia et al., 2021; Wang et al., 2022b; Yang et al., 2023), privacy or memory constraints motivate the *exemplar-free* variant (EFCIL), which prohibits retaining raw inputs. Among the many directions to mitigate forgetting (Zenke et al., 2017; Lopez-Paz & Ranzato, 2017; Schwarz et al., 2018; Aljundi et al., 2018; Riemer et al., 2018; Serra et al., 2018; Saha et al., 2020; Pham et al., 2021; Caccia et al., 2021; Deng et al., 2021; Cha et al., 2021; Wang et al., 2022a;b; Slim et al., 2022; Wang et al., 2023; Yang et al., 2023; Shi & Wang, 2023; Wang et al., 2024), prototype-based EFCIL has emerged as a compelling compromise: the model caches compact class statistics (means/covariances), and inference proceeds via nearest-prototype or Bayes scores—achieving strict no-memory operation with modest compute.

The core difficulty in prototype-based EFCIL is representation drift: as the backbone adapts to new tasks, the embedding geometry shifts and previously cached statistics become stale, biasing predictions toward recent classes. Existing EFCIL solutions to drift largely follow two routes that differ in how they balance stability and plasticity.

**Covariance and geometry modeling.** This route improves robustness by shaping the feature geometry or the decision metric, commonly keeping the backbone partially/fixed to limit drift. FeTrIL (Petit et al., 2023) freezes the backbone and translates features to synthesize pseudo-features for past classes, trading some plasticity for stability. FeCAM (Goswami et al., 2023) argues that Euclidean metrics are suboptimal under non-stationarity and adopts anisotropic (Mahalanobis) scoring

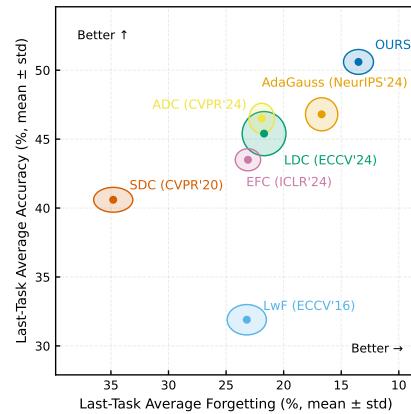
with class-wise covariances, typically with a frozen extractor. PASS (Zhu et al., 2021) strengthens old-class representations via prototype augmentation and self-supervision without exemplars. These methods effectively mitigate forgetting by stabilizing or re-weighting the geometry, but they largely *avoid cross-space transport*; the price of stability is potentially limited adaptation to new tasks.

**Prototype drift compensation.** A second—and increasingly dominant—route retains backbone plasticity and explicitly *transports* outdated prototypes into the current space. SDC (Yu et al., 2020) projects new features toward the old space and updates old prototypes accordingly. ADC (Goswami et al., 2024) estimates drift adversarially by pushing new samples toward old prototypes, then “resurrects” past classes. LDC (Gomez-Villa et al., 2024) replaces hand-crafted updates with a learnable drift module that scales across regimes. EFC (Magistri et al., 2024) performs affinity-weighted, class-wise shifts that update prototypes in tandem with classifier training. AdaGauss (Rypeść et al., 2024) follows the learned-projector path but transports full Gaussian class statistics (means and covariances) into the new space for Bayesian inference rather than only moving class means. Despite strong performance, the prevailing paradigm here is *two-stage*: first train on the new task (often with regularization/distillation), then learn a post-hoc adapter (old→new). This paradigm leaves residual inconsistencies between spaces: transport is optimized only after the fact, and cycle errors accumulate over tasks.

**Our idea: from two-stage to *near* single-stage transport.** Motivated by the limitations of two-stage drift compensation, we propose bidirectional cycle consistency that evolves adapter training *into* the main task optimization so that transport and representation co-evolve. Concretely, during each new task we jointly learn two maps— $A : z_{\text{old}} \rightarrow z_{\text{new}}$  and  $D : z_{\text{new}} \rightarrow z_{\text{old}}$ —with *stop-gradient* targets to prevent retrograde updates on the evolving representation and a *cycle-consistency* objective that regularizes the pair toward a near-bijection on the data support. Analytically, we show that the cycle loss in whitened space equals  $\|\tilde{A}\tilde{D} - I\|_F^2$  and contracts the singular spectrum of  $\tilde{A}\tilde{D}$  toward one; and that smaller alignment/cycle errors yield tighter bounds on the perturbation of classification log-odds, preserving old-class decisions. After the main stage, a brief consolidation fine-tune is applied; inference uses a Gaussian Bayes classifier built from transported old-class statistics and freshly estimated current-task statistics.

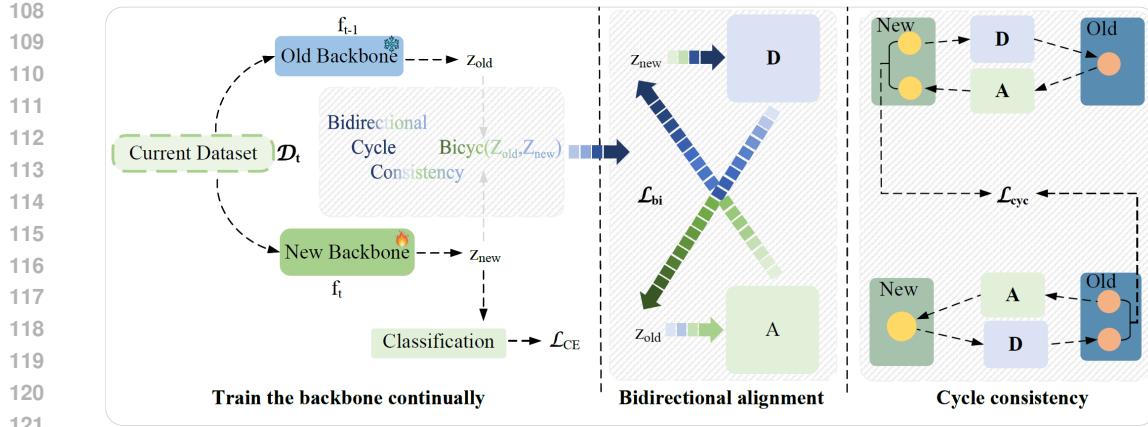
## Contributions.

- **Bidirectional cycle consistency within training.** We formulate paired projections  $A$  (old → new) and  $D$  (new → old) learned *during* the task, with stop-gradient gating and a cycle loss that enforces near-inverse behavior on-support—addressing the asymmetry and post-hoc mismatch of prior two-stage, one-way pipelines.
- **Geometry-preserving transport for drift mitigation.** Our transport keeps old-class geometry stable as the backbone changes, yielding reduced recency bias and higher knowledge retention.
- **Theory-grounded alignment.** We prove that minimizing the cycle loss contracts the singular spectrum toward unity in whitened space and derive bounds linking mean/covariance transport errors to classification log-odds stability, explaining the observed reduction in forgetting.
- **Near single-stage pipeline with strong results.** By collapsing adapter learning into the main stage (with a short consolidation fine-tune), our method strikes an excellent balance between preserving stability (i.e., preventing drift) and maintaining plasticity, substantially reducing forgetting and maintaining or improving new-task accuracy across CIFAR-100, TinyImageNet, ImageNet-100, and CUB-200 under multiple splits. We discuss limitations in the experiments section.



**Figure 1.** CIFAR-100 ( $T=10$ ): Our training algorithm yields solid performance gains over state-of-the-art EFCIL methods.

Despite strong performance, the prevailing paradigm here is *two-stage*: first train on the new task (often with regularization/distillation), then learn a post-hoc adapter (old→new). This paradigm leaves residual inconsistencies between spaces: transport is optimized only after the fact, and cycle errors accumulate over tasks.



**Figure 2. Overview.** (1) **Train:** the current backbone  $f_t$  learns on  $\mathcal{D}_t$  (producing  $z_{\text{new}}$ , while frozen  $f_{t-1}$  provides  $z_{\text{old}}$ ) with task loss  $\mathcal{L}_{\text{CE}}$ . (2) **Bidirectional alignment:** jointly learn a distiller  $D: z_{\text{new}} \rightarrow z_{\text{old}}$  and an adapter  $A: z_{\text{old}} \rightarrow z_{\text{new}}$  using  $\mathcal{L}_{\text{bi}}$ . (3) **Cycle consistency:** enforce  $A \circ D \approx I$  and  $D \circ A \approx I$  with  $\mathcal{L}_{\text{cyc}}$ , yielding near-bijective, geometry-preserving transport. Old Gaussian prototypes are mapped forward by  $A$ , and all classes are evaluated in the *new* space.

## 2 PRELIMINARIES

### 2.1 PROBLEM DEFINITION

Continual learning (CL) aims to train a model on a stream of tasks while preserving previously acquired knowledge. In the **class-incremental** scenario considered here, each task  $t \in \{1, \dots, T\}$  introduces a disjoint label set  $\mathcal{C}_t$  with  $\mathcal{C}_i \cap \mathcal{C}_j = \emptyset$  for  $i \neq j$ . After learning task  $t$ , the model must recognize any class in  $\mathcal{C}_{1:t} := \bigcup_{i=1}^t \mathcal{C}_i$  without a task identifier at test time.

Let  $f_t: \mathcal{X} \rightarrow \mathbb{R}^d$  denote the feature extractor after completing the first  $t$  tasks. During training on task  $t$ , the learner has access only to  $\mathcal{D}_t = \{(x_i, y_i) \mid y_i \in \mathcal{C}_t\}$ . The absence of any prior-task data defines the exemplar-free class-incremental setting.

### 2.2 PROTOTYPE-BASED EXEMPLAR-FREE CIL

In **exemplar-free class-incremental learning (EFCIL)**, the learner is prohibited from retaining raw samples from prior tasks. In the absence of replayed data, a common strategy is to summarize past knowledge with *prototypes*—one representative feature mean per seen class. Focusing on a single transition  $t-1 \rightarrow t$ , after completing task  $t-1$  the learner stores for each class  $c \in \mathcal{C}_{1:t-1}$  the prototype.

$$\boldsymbol{\mu}_c^{t-1} = \frac{1}{|\mathcal{D}_c|} \sum_{x \in \mathcal{D}_c} f_{t-1}(x), \quad (1)$$

where  $\mathcal{D}_c$  collects all examples of class  $c$  encountered up to step  $t-1$ . This summary is compact—its memory scales as  $\mathcal{O}(|\mathcal{C}_{1:t-1}| d)$  for feature dimension  $d$ —and can be used at inference time either directly with a nearest-class-mean rule or to regularize subsequent training.

**Prototype drift.** When adapting the backbone from  $f_{t-1}$  to  $f_t$  on  $\mathcal{D}_t$ , the representation changes to fit the new classes and, as a side effect, the geometry of the feature space shifts. Hence, prototypes computed under  $f_{t-1}$  become stale once  $f_t$  is deployed. Denote the updated class mean, its vector displacement, and its norm by

$$\boldsymbol{\mu}_c^t = \frac{1}{|\mathcal{D}_c|} \sum_{x \in \mathcal{D}_c} f_t(x), \quad \Delta_c^t = \boldsymbol{\mu}_c^t - \boldsymbol{\mu}_c^{t-1}, \quad \delta_c^t = \|\Delta_c^t\|_2. \quad (2)$$

Larger  $\delta_c^t$  indicates stronger prototype drift, which biases decisions toward recently learned classes. Because no earlier samples are retained,  $\boldsymbol{\mu}_c^t$  cannot be recomputed exactly; mitigating or compensating for this drift under the exemplar-free constraint motivates the two-stage strategy below.

### 2.3 PRIOR DRIFT COMPENSATION PARADIGM

A widely adopted recipe to handle prototype drift in EFCIL proceeds in two stages.

162 **Stage I: in-task regularization (backward alignment via  $D$ ).** During task  $t$ , the old backbone  
 163  $f_{t-1}$  is frozen and used as a teacher, while the current backbone  $f_t$  is trained on the new data  $\mathcal{D}_t$   
 164 as the student. Let  $g$  denote the classifier head (shared or task-specific). For each  $x \in \mathcal{D}_t$  we  
 165 define  $z_{\text{old}} = f_{t-1}(x)$ ,  $z_{\text{new}} = f_t(x)$  and the corresponding logits  $\ell_{\text{old}} = g(z_{\text{old}})$ ,  $\ell_{\text{new}} = g(z_{\text{new}})$ .  
 166 The student is optimized with the usual cross-entropy on new labels and a distillation/regularization  
 167 term that constrains either features or logits relative to the teacher:

$$\mathcal{L}_{\text{SI}} = \mathbb{E}_{(x,y) \in \mathcal{D}_t} \left[ \text{CE}(\ell_{\text{new}}, y) + \lambda D(\phi_{\text{new}}(x), \phi_{\text{old}}(x)) \right], \quad (3)$$

170 where  $\phi$  is either  $z$  (feature) or  $\ell$  (logit), and  $D$  stands for a distillation/regularization operator with  
 171  $\lambda > 0$  balancing the terms. This stage constrains the update of  $f_t$  using only  $\mathcal{D}_t$ , thereby limiting the  
 172 growth of  $\delta_c^t$  for past classes.

173 **Stage II: post-hoc prototype transport (adapter learning).** After training  $f_t$ , both  $f_{t-1}$  and  $f_t$   
 174 are frozen and an adapter  $A$  is learned on  $\mathcal{D}_t$  to map old features into the new space. Concretely,  $A$   
 175 is fitted on paired features  $(f_{t-1}(x), f_t(x))$  by minimizing

$$\min_A \mathbb{E}_{x \in \mathcal{D}_t} \|A(f_{t-1}(x)) - f_t(x)\|_2^2, \quad (4)$$

178 with  $A$  instantiated as a global translation operator, a class-conditioned translation, or a learnable  
 179 MLP/linear projector (details vary across works; see Appendix A.1). Once trained,  $A$  is applied to  
 180 the cached prototypes from prior steps to relocate them into the current feature space:

$$\tilde{\mu}_c^t = A(\mu_c^{t-1}), \quad c \in \mathcal{C}_{1:t-1}. \quad (5)$$

183 These transported prototypes  $\{\tilde{\mu}_c^t\}$  are then used by the classifier at inference under  $f_t$ , effectively  
 184 compensating for the shift induced by the update from  $f_{t-1}$  to  $f_t$ .

185 **Our Research Objective.** In the two-stage paradigm, the regularization term in Stage I (often a  
 186 distillation loss) pulls the new encoder  $f_t$  toward the frozen teacher  $f_{t-1}$ , whereas the Stage II  
 187 adapter transports old prototypes forward from the space of  $f_{t-1}$  to that of  $f_t$ . Functionally, these  
 188 two modules act in opposite directions; structurally, a prior work (Rypeść et al., 2024) instantiates  
 189 the distiller with *the same architecture* as the adapter but applies it in the reverse direction ( $z_{\text{new}} \rightarrow$   
 190  $z_{\text{old}}$  vs.  $z_{\text{old}} \rightarrow z_{\text{new}}$ ). Our objective is to make this duality explicit already in Stage I: we co-learn  
 191 a forward adapter  $A$  and a backward distiller  $D_t$  during Stage I, enforcing *bidirectional alignment*  
 192 and *cycle consistency* in both function (mutual inverses on features) and structure (mirrored/tied  
 193 parameters), so that prototype transport becomes more accurate by design.

### 3 METHODOLOGY

#### 3.1 SETUP

198 Let  $f_{t-1}$  be the frozen old backbone from task  $t-1$  and  $f_t$  the backbone being trained at task  $t$ . For  
 199 an input  $x$ ,

$$z_{\text{old}} = f_{t-1}(x) \in \mathbb{R}^d, \quad z_{\text{new}} = f_t(x) \in \mathbb{R}^d.$$

200 Unless otherwise noted, evaluation is performed *in the new feature space* of  $f_t$  using a Bayes classifier  
 201 (see Appendix A.2), with class statistics estimated from  $\mathcal{D}_t$  (new classes) or transported into the  
 202 new space (old classes). We instantiate two lightweight maps: a **distiller**  $D : \mathbb{R}^d \rightarrow \mathbb{R}^d$  (new  $\rightarrow$  old)  
 203 and an **adapter**  $A : \mathbb{R}^d \rightarrow \mathbb{R}^d$  (old  $\rightarrow$  new), implemented as linear layers or shallow MLPs. We use  
 204 the stop-gradient operator  $\text{stopgrad}(\cdot)$  throughout.

#### 3.2 JOINT TRAINING WITH BIDIRECTIONAL CYCLE CONSISTENCY

208 We train  $f_t$ ,  $A$ , and  $D$  jointly on  $\mathcal{D}_t$ , combining standard classification with teacher-student regularization  
 209 and our bidirectional/cycle consistency. Let  $g$  be the task-specific classifier head with logits  
 210  $\ell_{\text{new}} = g(z_{\text{new}})$ . For brevity, we denote the bidirectional alignment + consistency cycle module as  
 211 **Bicyc**( $z_{\text{old}}, z_{\text{new}}$ ) (see Fig. 2).

212 **Bidirectional alignment.** We seek (i) *backward compatibility* by making  $z_{\text{new}}$  projectable to the  
 213 old space via  $D$ , and (ii) a *forward* map  $A$  that transports old prototypes into the current space used  
 214 for evaluation—without dragging  $f_t$  backward. Concretely,

$$\mathcal{L}_{\text{bi}} = \|D(z_{\text{new}}) - z_{\text{old}}\|_2^2 + \|A(z_{\text{old}}) - \text{stopgrad}(z_{\text{new}})\|_2^2. \quad (6)$$

216 The first term updates  $f_t$  and  $D$  (feature-level distillation, new→old). The second term up-  
 217 dates  $A$  only (detached target), so  $A$  *chases* the evolving new space (old→new) without reduc-  
 218 ing the plasticity of  $f_t$ . In a linear–Gaussian view, minimizing equation 6 reduces transport er-  
 219 rors  $\varepsilon_{\text{old} \rightarrow \text{new}} = \mathbb{E}\|A(z_{\text{old}}) - z_{\text{new}}\|^2$  and  $\varepsilon_{\text{new} \rightarrow \text{old}} = \mathbb{E}\|D(z_{\text{new}}) - z_{\text{old}}\|^2$ , which bound prototype  
 220 mean/covariance mismatch after transport and help control margin drift.

221 **Cycle consistency.** While  $\mathcal{L}_{\text{bi}}$  aligns both directions, it does not by itself prevent degeneracies  
 222 (e.g., rank loss in weakly correlated directions). We therefore add a cycle loss that nudges the  
 223 compositions toward identity on the data support:

$$\mathcal{L}_{\text{cyc}} = \|A(D(z_{\text{new}})) - \text{stopgrad}(z_{\text{new}})\|_2^2 + \|D(A(z_{\text{old}})) - \text{stopgrad}(z_{\text{old}})\|_2^2. \quad (7)$$

226 Targets are detached, so  $\mathcal{L}_{\text{cyc}}$  *stabilizes*  $(A, D)$  without pulling  $f_t$ . Spectrally, enforcing  $A \circ D \approx I$  and  
 227  $D \circ A \approx I$  contracts the singular values of the composed transports toward 1, curbing rank/energy loss  
 228 and promoting near-isometric geometry preservation. Thus  $\mathcal{L}_{\text{bi}}$  lowers transport error (alignment)  
 229 while  $\mathcal{L}_{\text{cyc}}$  regularizes the transport *operators* (near-bijection); together they yield faithful prototype  
 230 transport and empirically reduce forgetting without sacrificing plasticity. We denote the weighted  
 231 sum of the bidirectional alignment and cycle-consistency losses by:

$$\mathbf{Bicyc}(z_{\text{old}}, z_{\text{new}}) := \lambda_{\text{bi}} \mathcal{L}_{\text{bi}} + \lambda_{\text{cyc}} \mathcal{L}_{\text{cyc}} \quad (8)$$

232 We analyze the cycle objective under centered features and full-rank covariances on the data support,  
 233 passing to whitened variables  $\tilde{z}_{\text{old}} = \Sigma_{\text{old}}^{-1/2} z_{\text{old}}$  and  $\tilde{z}_{\text{new}} = \Sigma_{\text{new}}^{-1/2} z_{\text{new}}$ . In this space  $\mathbb{E}[\tilde{z}_{\text{new}} \tilde{z}_{\text{new}}^\top] =$   
 234  $I$ , and the expected cycle error equals the squared Frobenius distance of  $\tilde{A} \tilde{D}$  to  $I$ . We now state the  
 235 resulting contraction property.

236 **Theorem 1 (Cycle contraction).** Let  $\Sigma_{\text{old}} = \mathbb{E}[z_{\text{old}} z_{\text{old}}^\top]$  and  $\Sigma_{\text{new}} = \mathbb{E}[z_{\text{new}} z_{\text{new}}^\top]$  be full-rank on the  
 237 data support and define whitened variables  $\tilde{z}_{\text{old}} = \Sigma_{\text{old}}^{-1/2} z_{\text{old}}$ ,  $\tilde{z}_{\text{new}} = \Sigma_{\text{new}}^{-1/2} z_{\text{new}}$  with induced maps  
 238  $\tilde{A} = \Sigma_{\text{new}}^{-1/2} A \Sigma_{\text{old}}^{1/2}$  and  $\tilde{D} = \Sigma_{\text{old}}^{-1/2} D \Sigma_{\text{new}}^{1/2}$ . Let  $M := \tilde{A} \tilde{D} - I$ . If the features are centered, then:

$$\mathbb{E} \|M \tilde{z}_{\text{new}}\|_2^2 = \|M\|_F^2. \quad (9)$$

239 By Mirsky/Hoffman–Wielandt (Horn & Johnson, 2013)  $\sum_{k=1}^d (\sigma_k(\tilde{A} \tilde{D}) - 1)^2 \leq \|M\|_F^2$  and  
 240 hence  $\max_k |\sigma_k(\tilde{A} \tilde{D}) - 1| \leq \|M\|_F$ . In particular, if  $\|M\|_2 < 1$  then  $1 - \|M\|_2 \leq \sigma_k(\tilde{A} \tilde{D}) \leq$   
 241  $1 + \|M\|_2$  and  $\kappa(\tilde{A} \tilde{D}) \leq \frac{1 + \|M\|_2}{1 - \|M\|_2}$ . Consequently, minimizing  $\mathcal{L}_{\text{cyc}}$  drives the singular values of  $\tilde{A} \tilde{D}$   
 242 toward 1 on the data support, preventing rank loss and preserving geometry. Proof in Appendix A.3.

243 **Corollary 2 (Decision stability for classification).** Let old-class statistics be transported as  $\hat{\mu}_c^t =$   
 244  $A \mu_c^{t-1}$  and (for linear  $A$ )  $\hat{\Sigma}_c^t = A \Sigma_c^{t-1} A^\top$ . Assume evaluation uses the Bayes rule with Gaussian  
 245 class-conditionals  $(\mu_c^t, \Sigma_c^t)$  and priors  $\pi_c$ , with log-scores  $\ell_c(x)$  as in Appendix A.2. Define mean  
 246 transport errors  $\delta_c := \|\hat{\mu}_c^t - \mu_c^t\|_{(\Sigma_c^t)^{-1}}$ . If the alignment error  $\varepsilon_{\text{old} \rightarrow \text{new}}^2 = \mathbb{E}\|A z_{\text{old}} - z_{\text{new}}\|_2^2$  and the  
 247 cycle error  $\varepsilon_{\text{cyc,new}}^2 = \mathbb{E}\|AD z_{\text{new}} - z_{\text{new}}\|_2^2$  are small, then:

$$\delta_c \lesssim \sqrt{\varepsilon_{\text{old} \rightarrow \text{new}}^2}, \quad \|\hat{\Sigma}^t - \Sigma^t\|_2 \lesssim C_1 \sqrt{\varepsilon_{\text{old} \rightarrow \text{new}}^2} + C_2 \varepsilon_{\text{cyc,new}}. \quad (10)$$

248 For any class pair  $(i, j)$  and any  $x$ , let  $m_{ij}(x) := |\ell_i(x) - \ell_j(x)|$  be the Bayes margin. Then the  
 249 induced change in log-odds satisfies  $|\hat{\ell}_i - \hat{\ell}_j| - |\ell_i - \ell_j| \lesssim C_\mu(\delta_i + \delta_j) + C_\Sigma \|\hat{\Sigma}^t - \Sigma^t\|_2$ .  
 250 Consequently, if  $C_\mu(\delta_i + \delta_j) + C_\Sigma \|\hat{\Sigma}^t - \Sigma^t\|_2 < m_{ij}(x)$ , the Bayes decision between  $i$  and  $j$  at  $x$   
 251 remains unchanged after transport. Proof in Appendix A.4.

252 **Pitfall of anti-collapse loss.** For features  $z \in \mathbb{R}^{B \times S}$ , let  $\Sigma = \frac{1}{B-1}(z - \bar{z})^\top (z - \bar{z})$ . The AdaGauss  
 253 anti-collapse loss (Rypeść et al., 2024) is

$$\mathcal{L}_{\text{ac}} = -\frac{1}{S} \sum_{i=1}^S \min(\text{chol}(\Sigma)_{ii}, \beta). \quad (11)$$

254 In practice, mini-batch  $\Sigma$  can be non-SPD or rank-deficient, causing Cholesky failures and poten-  
 255 tially inflating scale near ill-conditioning. We enforce SPD via symmetrization and shrinkage, with  
 256 a jittered Cholesky and eigenvalue flooring as fallback:

$$\tilde{\Sigma} = \frac{1}{2}(\Sigma + \Sigma^\top), \quad \hat{\Sigma} = \tilde{\Sigma} + \lambda \frac{\text{tr}(\tilde{\Sigma})}{S} I + \varepsilon I, \quad (12)$$

270 Table 1: Average incremental ( $A_{\text{inc}}$ ) and last-task average ( $A_{\text{last}}$ ) accuracy (%), mean  $\pm$  std. over five runs) on  
 271 CIFAR-100 and TinyImageNet when training the feature extractor from scratch. Best results are **bold**.

| Method                        | CIFAR-100                      |                                |                                |                                | TinyImageNet                   |                                |                                |                                |
|-------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
|                               | T=10                           |                                | T=20                           |                                | T=10                           |                                | T=20                           |                                |
|                               | $A_{\text{last}}$              | $A_{\text{inc}}$               | $A_{\text{last}}$              | $A_{\text{inc}}$               | $A_{\text{last}}$              | $A_{\text{inc}}$               | $A_{\text{last}}$              | $A_{\text{inc}}$               |
| EWC                           | 30.9 $\pm$ 1.9                 | 50.4 $\pm$ 1.7                 | 17.0 $\pm$ 1.6                 | 34.2 $\pm$ 2.1                 | 18.5 $\pm$ 1.8                 | 34.3 $\pm$ 2.3                 | 11.3 $\pm$ 1.9                 | 26.8 $\pm$ 2.5                 |
| LwF <sub>ECCV16</sub>         | 31.9 $\pm$ 1.1                 | 51.8 $\pm$ 1.5                 | 17.6 $\pm$ 1.2                 | 39.2 $\pm$ 1.7                 | 27.1 $\pm$ 1.5                 | 39.6 $\pm$ 2.0                 | 15.2 $\pm$ 1.6                 | 31.5 $\pm$ 2.1                 |
| SDC <sub>CVPR20</sub>         | 40.6 $\pm$ 0.9                 | 56.2 $\pm$ 1.3                 | 32.3 $\pm$ 1.0                 | 46.6 $\pm$ 1.4                 | 29.5 $\pm$ 1.1                 | 43.8 $\pm$ 1.5                 | 26.3 $\pm$ 1.2                 | 40.6 $\pm$ 1.7                 |
| PASS <sub>CVPR21</sub>        | 30.8 $\pm$ 1.2                 | 48.3 $\pm$ 1.1                 | 17.6 $\pm$ 0.8                 | 31.1 $\pm$ 1.3                 | 24.5 $\pm$ 0.6                 | 39.5 $\pm$ 1.0                 | 18.5 $\pm$ 1.4                 | 30.4 $\pm$ 1.9                 |
| FeTrIL <sub>WACV23</sub>      | 34.9 $\pm$ 0.5                 | 51.2 $\pm$ 1.1                 | 23.3 $\pm$ 1.4                 | 37.9 $\pm$ 1.2                 | 31.0 $\pm$ 0.9                 | 45.3 $\pm$ 1.8                 | 25.9 $\pm$ 1.2                 | 39.9 $\pm$ 1.2                 |
| FeCAM <sub>NeurIPS23</sub>    | 32.4 $\pm$ 0.5                 | 48.7 $\pm$ 0.9                 | 21.1 $\pm$ 1.0                 | 34.5 $\pm$ 1.3                 | 30.9 $\pm$ 0.9                 | 44.9 $\pm$ 1.4                 | 24.9 $\pm$ 0.8                 | 37.9 $\pm$ 1.4                 |
| EFC <sub>ICLR24</sub>         | 43.5 $\pm$ 0.8                 | 58.1 $\pm$ 1.2                 | 32.4 $\pm$ 0.9                 | 47.0 $\pm$ 1.3                 | 34.5 $\pm$ 1.1                 | 47.9 $\pm$ 1.5                 | 28.4 $\pm$ 1.2                 | 42.1 $\pm$ 1.6                 |
| ADC <sub>CVPR24</sub>         | 46.5 $\pm$ 1.2                 | 61.4 $\pm$ 1.6                 | 35.1 $\pm$ 1.4                 | 51.7 $\pm$ 1.8                 | 32.3 $\pm$ 1.5                 | 43.0 $\pm$ 1.9                 | 18.1 $\pm$ 1.6                 | 36.0 $\pm$ 2.1                 |
| LDC <sub>ECCV24</sub>         | 45.4 $\pm$ 1.6                 | 59.5 $\pm$ 1.9                 | 35.5 $\pm$ 1.9                 | 51.9 $\pm$ 2.3                 | 34.2 $\pm$ 1.1                 | 46.8 $\pm$ 1.6                 | 24.9 $\pm$ 2.2                 | 38.2 $\pm$ 2.7                 |
| AdaGauss <sub>NeurIPS24</sub> | 46.8 $\pm$ 1.2                 | 60.9 $\pm$ 1.0                 | 37.9 $\pm$ 1.0                 | 54.4 $\pm$ 0.8                 | 32.9 $\pm$ 0.9                 | 45.8 $\pm$ 1.3                 | 27.5 $\pm$ 1.2                 | 39.5 $\pm$ 1.1                 |
| DPCR <sub>ICML2025</sub>      | <b>50.2<math>\pm</math>0.7</b> | <b>62.8<math>\pm</math>1.1</b> | <b>39.8<math>\pm</math>1.2</b> | <b>54.8<math>\pm</math>0.9</b> | <b>34.3<math>\pm</math>1.8</b> | <b>46.9<math>\pm</math>0.9</b> | <b>25.6<math>\pm</math>0.7</b> | <b>39.3<math>\pm</math>0.6</b> |
| Ours                          | <b>50.6<math>\pm</math>0.9</b> | <b>64.2<math>\pm</math>1.3</b> | <b>41.5<math>\pm</math>1.1</b> | <b>56.5<math>\pm</math>1.3</b> | <b>35.4<math>\pm</math>0.8</b> | <b>49.1<math>\pm</math>1.4</b> | <b>30.2<math>\pm</math>1.1</b> | <b>44.2<math>\pm</math>1.3</b> |

290 and, for very small batches, we optionally use a diagonal approximation  $\hat{\Sigma}_{\text{diag}} = \text{diag}(\text{diag}(\hat{\Sigma}))$ .  
 291 The robust objective is

$$\mathcal{L}_{\text{ac}}^{\text{rob}} = -\frac{1}{S} \sum_{i=1}^S \min(\text{chol}(\hat{\Sigma})_{ii}, \beta). \quad (13)$$

296 **Total Stage-I loss and gradient routing.** Combining the classification, cycle, and anti-collapse  
 297 terms yields:

$$\mathcal{L}_{\text{total}} = \underbrace{\mathcal{L}_{\text{CE}}(\ell_{\text{new}}, y)}_{\text{learn new classes}} + \text{Bicyc}(z_{\text{old}}, z_{\text{new}}) + \alpha \mathcal{L}_{\text{ac}}^{\text{rob}}. \quad (14)$$

300 Here,  $\mathcal{L}_{\text{CE}}$  and the first term of equation 6 update  $f_t$  (and  $D$ ); the second term of equation 6 updates  
 301  $A$  only (detached target); and equation 7 stabilizes  $(A, D)$  without reducing the plasticity of  $f_t$ .  
 302 Importantly, if gradients from the adapter are allowed to flow into  $f_t$ ,  $A$  and  $D$  become adversarial,  
 303 severely weakening  $D$ ’s regularization and causing sharp performance drops. After Stage I, we  
 304 freeze  $f_{t-1}$ ,  $f_t$ , and  $D$ , and perform a low-learning-rate fine-tuning of  $A$  on  $\mathcal{D}_t$  to sharpen transport  
 305 without re-optimizing from scratch.

## 4 EXPERIMENTS

308 **Baselines.** We benchmark our approach against a broad set of exemplar-free class-incremental learning  
 309 (EFCIL) methods. Classic regularization baselines—EWC (Kirkpatrick et al., 2017) and LwF (Li  
 310 & Hoiem, 2016)—are executed using the reference OCL implementation (Mai et al., 2022). Contem-  
 311 porary state-of-the-art approaches—SDC (Yu et al., 2020), PASS (Zhu et al., 2021), FeTrIL (Pe-  
 312 tit et al., 2023), FeCAM (Goswami et al., 2023), EFC (Magistri et al., 2024), ADC (Goswami et al.,  
 313 2024), LDC (Gomez-Villa et al., 2024), and AdaGauss (Rypešć et al., 2024)—are run with the au-  
 314 thors’ public codebases as distributed via FACIL (Masana et al., 2023), PyCIL (Zhou et al., 2023),  
 315 or the official repositories. Unless otherwise noted, we preserve the original data augmentations and  
 316 default hyper-parameters reported by each paper.

317 **Implementation details and reproducibility.** We build on the public AdaGauss codebase and add  
 318 the components introduced in this work. Unless stated otherwise, all experiments use a ResNet-18  
 319 backbone trained from scratch (He et al., 2016) with a batch size of 256 images per iteration, fol-  
 320 lowing AdaGauss. For CIFAR-100 (Krizhevsky, 2009), TinyImageNet (Le & Yang, 2015), and  
 321 ImageNet-100 (Deng et al., 2009), we train for 200 epochs using SGD (fixed learning rate  $1 \times 10^{-1}$ ,  
 322 weight decay  $5 \times 10^{-4}$ ). For CUB-200 (Wah et al., 2011), we adopt a split learning rate:  $1 \times 10^{-2}$   
 323 for the backbone and  $1 \times 10^{-1}$  for the heads. The distiller and adapter are trained with learning rate  
 324  $5 \times 10^{-2}$  and weight decay  $1 \times 10^{-4}$ . In the from-scratch regime we set  $\lambda_{\text{bi}}=5$  and  $\lambda_{\text{cyc}}=1$ ; the

324  
 325 Table 2: Average incremental ( $A_{\text{inc}}$ ) and last-task average ( $A_{\text{last}}$ ) accuracy (%), mean  $\pm$  std. over five runs) on  
 326 ImageNet-100 and CUB-200. Best results are **bold**.  $^{\dagger}$ : results excerpted from (Gomez-Villa et al., 2024).  $^{\ddagger}$ :  
 327 results excerpted from (He et al., 2025).

| Method                         | ImageNet-100                       |                                                                        |                                |                                | CUB-200                        |                                |                                |                                |
|--------------------------------|------------------------------------|------------------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
|                                | T=10                               |                                                                        | T=20                           |                                | T=10                           |                                | T=20                           |                                |
|                                | $A_{\text{last}}$                  | $A_{\text{inc}}$                                                       | $A_{\text{last}}$              | $A_{\text{inc}}$               | $A_{\text{last}}$              | $A_{\text{inc}}$               | $A_{\text{last}}$              | $A_{\text{inc}}$               |
| EWC                            | 25.1 $\pm$ 2.8                     | 40.6 $\pm$ 3.3                                                         | 13.7 $\pm$ 2.1                 | 29.2 $\pm$ 2.5                 | 15.8 $\pm$ 0.7                 | 32.6 $\pm$ 0.5                 | 12.3 $\pm$ 0.8                 | 27.2 $\pm$ 0.6                 |
| LwF <sub>ECCV16</sub>          | 33.4 $\pm$ 2.2                     | 51.5 $\pm$ 1.6                                                         | 18.6 $\pm$ 1.6                 | 41.3 $\pm$ 1.9                 | 30.4 $\pm$ 1.1                 | 46.1 $\pm$ 1.0                 | 19.4 $\pm$ 1.6                 | 34.7 $\pm$ 1.8                 |
| SDC <sub>CVPR20</sub>          | 35.4 $\pm$ 1.9                     | 50.1 $\pm$ 1.6                                                         | 19.4 $\pm$ 1.0                 | 36.5 $\pm$ 1.4                 | 50.3 $\pm$ 1.3                 | 60.5 $\pm$ 1.2                 | 27.9 $\pm$ 1.4                 | 40.1 $\pm$ 1.6                 |
| PASS <sub>CVPR21</sub>         | 26.4 $\pm$ 1.3                     | 45.7 $\pm$ 0.2                                                         | 14.4 $\pm$ 1.2                 | 31.7 $\pm$ 0.4                 | 27.0 $\pm$ 0.9                 | 42.3 $\pm$ 0.9                 | 18.1 $\pm$ 1.2                 | 36.9 $\pm$ 1.1                 |
| FeTrIL <sub>WACV23</sub>       | 36.2 $\pm$ 1.2                     | 52.6 $\pm$ 0.6                                                         | 26.6 $\pm$ 1.5                 | 42.4 $\pm$ 2.1                 | 36.9 $\pm$ 0.7                 | 48.2 $\pm$ 0.6                 | 34.6 $\pm$ 1.0                 | 45.3 $\pm$ 0.9                 |
| FeCAM <sub>NeurIPS23</sub>     | 38.7 $\pm$ 1.0                     | 54.8 $\pm$ 0.5                                                         | 29.0 $\pm$ 1.3                 | 44.6 $\pm$ 2.0                 | 40.2 $\pm$ 0.8                 | 54.9 $\pm$ 1.0                 | 36.2 $\pm$ 1.1                 | 48.9 $\pm$ 1.3                 |
| EFC <sub>ICLR24</sub>          | 50.9 $\pm$ 1.1                     | 61.3 $\pm$ 1.2                                                         | 38.6 $\pm$ 1.2                 | 50.5 $\pm$ 1.5                 | 51.0 $\pm$ 0.6                 | 63.3 $\pm$ 0.7                 | <b>46.1<math>\pm</math>1.0</b> | <b>59.3<math>\pm</math>1.3</b> |
| ADC <sub>CVPR24</sub>          | 38.3 $\pm$ 1.2                     | 55.5 $\pm$ 1.5                                                         | 25.1 $\pm$ 1.3                 | 43.4 $\pm$ 1.7                 | 49.5 $\pm$ 0.9                 | 58.8 $\pm$ 1.1                 | 35.4 $\pm$ 1.4                 | 48.3 $\pm$ 1.4                 |
| LDC <sub>ECCV24</sub>          | 51.4 $\dagger$ $\pm$ 1.2 $\dagger$ | <b>69.4<math>\dagger</math><math>\pm</math>0.6<math>\dagger</math></b> | 28.5 $\pm$ 1.7                 | 46.5 $\pm$ 2.7                 | 47.5 $\pm$ 0.7                 | 55.7 $\pm$ 1.3                 | 27.2 $\pm$ 1.1                 | 39.8 $\pm$ 2.1                 |
| AdaGauss <sub>NeurIPS24</sub>  | 51.1 $\pm$ 1.2                     | 65.0 $\pm$ 1.4                                                         | 42.6 $\pm$ 1.6                 | 57.4 $\pm$ 1.9                 | 52.9 $\pm$ 0.8                 | 63.4 $\pm$ 1.3                 | 45.0 $\pm$ 1.3                 | 57.0 $\pm$ 1.0                 |
| <b>DPCR<sub>ICML2025</sub></b> | <b>49.9<math>\pm</math>0.8</b>     | <b>64.8<math>\pm</math>1.1</b>                                         | <b>37.3<math>\pm</math>1.6</b> | <b>54.7<math>\pm</math>0.7</b> | —                              | —                              | —                              | —                              |
| Ours                           | <b>52.7<math>\pm</math>0.9</b>     | 66.8 $\pm$ 1.4                                                         | <b>43.8<math>\pm</math>1.4</b> | <b>58.2<math>\pm</math>1.8</b> | <b>53.7<math>\pm</math>0.7</b> | <b>64.0<math>\pm</math>0.8</b> | 43.7 $\pm$ 1.4                 | 55.9 $\pm$ 1.2                 |

344 Table 3: Last-task average forgetting ( $F_{\text{last}}$ ) (%), mean  $\pm$  std. over five runs) of drift compensation methods  
 345 when training the feature extractor from scratch. Best results are **bold**.

| Method                        | CIFAR-100                      |                                | TinyImageNet                   |                                | ImageNet-100                   |                                | CUB-200                        |                                |
|-------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
|                               | T=10                           |                                | T=20                           |                                | T=10                           |                                | T=20                           |                                |
|                               | $F_{\text{last}}$              |
| LwF <sub>ECCV16</sub>         | 23.2 $\pm$ 1.7                 | 31.2 $\pm$ 1.8                 | 21.9 $\pm$ 1.9                 | 33.5 $\pm$ 2.4                 | 42.1 $\pm$ 2.3                 | 48.1 $\pm$ 2.2                 | 16.5 $\pm$ 1.1                 | 21.7 $\pm$ 1.4                 |
| SDC <sub>CVPR20</sub>         | 34.8 $\pm$ 1.7                 | 35.9 $\pm$ 1.9                 | 25.1 $\pm$ 1.4                 | 29.4 $\pm$ 2.1                 | 44.6 $\pm$ 2.0                 | 54.4 $\pm$ 2.3                 | 10.9 $\pm$ 1.3                 | 17.3 $\pm$ 1.1                 |
| EFC <sub>ICLR24</sub>         | 23.1 $\pm$ 1.1                 | 24.7 $\pm$ 1.8                 | 23.5 $\pm$ 2.4                 | 30.1 $\pm$ 3.0                 | 21.5 $\pm$ 1.9                 | 23.8 $\pm$ 2.5                 | <b>10.7<math>\pm</math>0.7</b> | <b>14.8<math>\pm</math>1.7</b> |
| ADC <sub>CVPR24</sub>         | 21.9 $\pm$ 1.1                 | 31.0 $\pm$ 1.6                 | 30.2 $\pm$ 2.0                 | 36.8 $\pm$ 1.9                 | 32.4 $\pm$ 1.6                 | 33.4 $\pm$ 1.8                 | 12.8 $\pm$ 1.1                 | 21.3 $\pm$ 1.5                 |
| LDC <sub>ECCV24</sub>         | 21.7 $\pm$ 1.9                 | 25.6 $\pm$ 2.3                 | 24.7 $\pm$ 2.5                 | 30.7 $\pm$ 2.1                 | 25.7 $\pm$ 1.7                 | 32.9 $\pm$ 2.3                 | 13.6 $\pm$ 1.2                 | 23.9 $\pm$ 1.8                 |
| AdaGauss <sub>NeurIPS24</sub> | 16.7 $\pm$ 1.4                 | 21.0 $\pm$ 1.5                 | 18.7 $\pm$ 1.2                 | 23.1 $\pm$ 1.0                 | 20.6 $\pm$ 0.9                 | 22.9 $\pm$ 1.1                 | 11.6 $\pm$ 0.7                 | 16.9 $\pm$ 1.3                 |
| Ours                          | <b>13.5<math>\pm</math>1.3</b> | <b>16.6<math>\pm</math>0.9</b> | <b>12.0<math>\pm</math>0.9</b> | <b>18.9<math>\pm</math>1.1</b> | <b>18.2<math>\pm</math>1.6</b> | <b>20.8<math>\pm</math>1.4</b> | 11.3 $\pm$ 0.9                 | 17.5 $\pm$ 1.3                 |

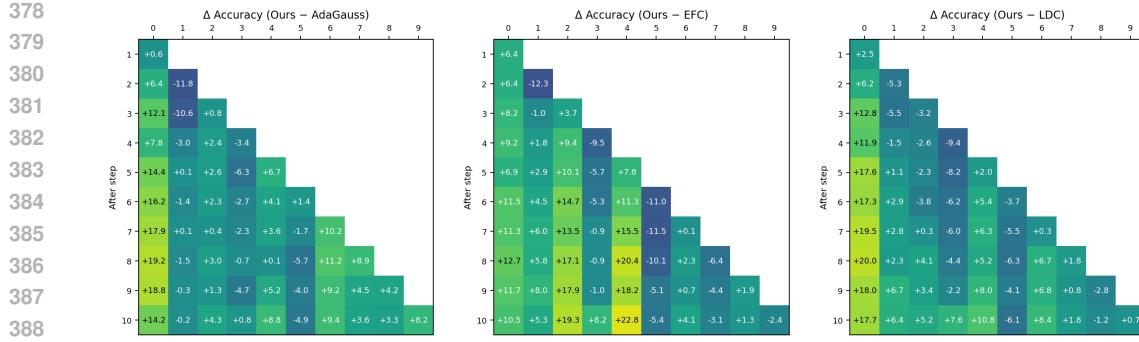
358 learning rate is decayed by a factor of 10 at epochs  $\{60, 120, 180\}$ . After Stage I, we fine-tune the  
 359 adapter for 30 epochs using SGD (initial learning rate  $1 \times 10^{-2}$ , weight decay  $5 \times 10^{-4}$ ).

360 All other hyperparameters follow AdaGauss verbatim. In particular, we adopt its default settings  
 361 for prototype storage and sampling, and therefore do not discuss additional computational overhead.  
 362 For completeness, we note that the public AdaGauss code reports TinyImageNet results averaged  
 363 over splits formed from the *first* 100 classes, which is slightly misaligned with common balanced  
 364 partitions. To enable an apples-to-apples comparison, our tables present the corrected numbers under  
 365 the standard balanced partitioning.

366 **Evaluation metrics.** We report three standard measures: the *last-task average accuracy*  $A_{\text{last}}$ ,  
 367 its running mean, the *average incremental accuracy*  $A_{\text{inc}}$  and the *last-task average forgetting*  
 368  $F_{\text{last}}$ . Dataset specifics, hyper-parameter schedules, and metric definitions are provided in the Ap-  
 369 pendix A.7.

#### 4.1 MAIN RESULTS

370 Tables 1 and 2 report training-from-scratch results on balanced CIFAR-100, TinyImageNet,  
 371 ImageNet-100, and CUB-200 (mean $\pm$ std over five runs). **CIFAR-100:** compared to AdaGauss,  
 372 we gain **+3.8/+3.3** pp at  $T=10$  and **+3.6/+2.1** pp at  $T=20$ . **DPCR<sup>‡</sup>** is competitive, but our method  
 373 still slightly leads on all CIFAR-100 settings (e.g., **+0.4/+1.4** pp at  $T=10$  and **+1.7/+1.7** pp at  $T=20$ ).  
 374 **TinyImageNet:** improvements over AdaGauss are **+2.5/+3.3** pp at  $T=10$  and **+2.7/+4.7** pp at  
 375  $T=20$ ; the margins over the second-best (EFC) are **+0.9/+1.2** pp ( $T=10$ ) and **+1.8/+2.1** pp ( $T=20$ ).  
 376 **DPCR** again trails our method, with gaps of about **+1.1/+2.2** pp at  $T=10$  and **+4.6/+4.9** pp at  $T=20$ .



**Figure 3.** CIFAR-100 ( $T=10$ ): Per-step, per-task accuracy gains ( $\Delta$ , percentage points) of **Ours** over AdaGauss, EFC, and LDC. Improvements concentrate on earlier tasks, indicating stronger retention and reduced forgetting.

**ImageNet-100:** vs. AdaGauss we obtain **+1.6/+1.8** pp at  $T=10$  and **+1.2/+0.8** pp at  $T=20$ ; at  $T=10$  our  $A_{\text{last}}$  is best (runner-up LDC $^\dagger$ , +1.3 pp), while  $A_{\text{inc}}$  is 2.6 pp below the best (LDC $^\dagger$ ). **Under our protocol, DPCR $^\ddagger$  is clearly weaker than AdaGauss and ours:** at  $T=10$  it trails our method by about 2.8/2.0 pp in  $A_{\text{last}}/A_{\text{inc}}$  (and is already slightly below AdaGauss by 1.2/0.2 pp), while at  $T=20$  the gap to ours further widens to 6.5/3.5 pp (with AdaGauss still ahead of DPCR by 5.3/2.7 pp). For  $T=20$  we achieve the best  $A_{\text{last}}$  and  $A_{\text{inc}}$  (runner-up AdaGauss: +1.2/+0.8 pp). Under our protocol, rerunning public LDC code at  $T=10$  yields  $A_{\text{last}}=41.7 \pm 1.5\%$  and  $A_{\text{inc}}=58.7 \pm 1.7\%$ . **CUB-200 (ImageNet pre-trained):** our performance is close to AdaGauss (vs. AdaGauss: +0.8/+0.6 pp at  $T=10$ ,  $-1.3/-1.1$  pp at  $T=20$ ), while on the 20-split setting we trail EFC by 2.4/3.4 pp. DPCR does not report its CUB-200 hyperparameter configuration under our training protocol, so the corresponding entries are marked “–” in Table 2. With a pretrained backbone, practitioners typically adopt a very low backbone learning rate, which keeps cross-task feature drift small and thus limits the incremental gains of our method.

**Per-step advantage on CIFAR-100 ( $T=10$ ).** As shown in Figure 3, across three baselines, our method shows consistently positive accuracy gain throughout training, with the *largest gains on older tasks* (lower-right region in each heatmap). Against EFC, margins often exceed **+15–20** pp at mid/late steps; versus LDC, we sustain **+6–11** pp on most old tasks; and relative to AdaGauss we obtain **+5–10** pp improvements that persist to the final step. The concentration of positive  $\Delta$  on early tasks indicates **significantly smaller forgetting**: accuracy on initial tasks decays far less under ours while recent tasks remain competitive, yielding a superior plasticity–stability trade-off.

#### 4.2 ADVANCE IN FORGETTING

As shown in Table 3, across the three **balanced, training-from-scratch** datasets, our method achieves the **lowest forgetting**. On **CUB-200**, however, most methods fine-tune from a **pretrained backbone**, so the gaps in forgetting are much smaller than in the from-scratch regime.

#### 4.3 EFFECT OF $\mathcal{L}_{\text{BI}}$ AND $\mathcal{L}_{\text{CYC}}$

Notably, our approach delivers **especially strong preservation of prior knowledge** when training from scratch.

As summarized in Table 4, on CIFAR-100 enabling either loss improves both  $A_{\text{last}}$  and  $A_{\text{inc}}$  over the AdaGauss baseline, and enabling both yields the best results across the 10- and 20-task splits. This pattern matches the roles established in Sec. 3:  $\mathcal{L}_{\text{bi}}$  (Eq. 6) reduces the new→old feature-transport errors that bound prototype mean/covariance mismatch, while  $\mathcal{L}_{\text{cyc}}$  (Eq. 7) contracts the spectrum of  $AD$  toward 1, mitigating rank loss and promoting near-isometric transport. Used together, they simultaneously lower transport error and preserve geometry, explaining consistent gains in  $A_{\text{last}}$  and  $A_{\text{inc}}$ . Empirical diagnostics corroborate this: Figs. 4 and 5 (CIFAR-100,  $T=10$ ) show lower symmetric KL between transported and ground-truth class Gaussians and singular-value spectra

Table 4: CIFAR-100: Contributions of  $\mathcal{L}_{\text{bi}}$  and  $\mathcal{L}_{\text{cyc}}$ .

| Components | $T=10$                    |                            | $T=20$                           |                                  |
|------------|---------------------------|----------------------------|----------------------------------|----------------------------------|
|            | $\mathcal{L}_{\text{bi}}$ | $\mathcal{L}_{\text{cyc}}$ | $A_{\text{last}}(\%)$            | $A_{\text{inc}}(\%)$             |
| ×          | ×                         |                            | $46.8 \pm 1.2$                   | $60.9 \pm 1.0$                   |
| ✓          | ×                         |                            | $49.4 \pm 1.0$                   | $63.1 \pm 1.1$                   |
| ×          | ✓                         |                            | $47.8 \pm 1.1$                   | $61.8 \pm 1.0$                   |
| ✓          | ✓                         |                            | <b><math>50.6 \pm 0.9</math></b> | <b><math>64.2 \pm 1.3</math></b> |
|            |                           |                            | <b><math>41.5 \pm 1.1</math></b> | <b><math>56.5 \pm 1.3</math></b> |

432  
433  
434  
435  
436

(a) Direct prototype projection vs. projection with post-training adapter fine-tuning. Arrows indicate the preferred direction.

| Ablation                   | T=10                       |                              | T=20                       |                              |
|----------------------------|----------------------------|------------------------------|----------------------------|------------------------------|
|                            | $A_{\text{last}} \uparrow$ | $F_{\text{last}} \downarrow$ | $A_{\text{last}} \uparrow$ | $F_{\text{last}} \downarrow$ |
| Direct projection          | 49.9                       | 15.2                         | 38.9                       | 17.6                         |
| + fine tuning (vs. Direct) | +0.7                       | -1.7                         | +2.6                       | -1.0                         |

441

of  $AD$  that are tighter and more concentrated at 1 than AdaGauss, indicating better distributional transport and more stable decision boundaries.

442

#### 4.4 ABLATION: DIRECT PROJECTION VS. POST-TRAINING FINE-TUNING.

443

The adapter learned via bidirectional cycle consistency can be used *as is* to map old-class prototypes into the new space. We compare this “Direct projection” with an additional *post-training* fine-tuning of the adapter. On CIFAR-100, direct projection achieves  $A_{\text{last}}=49.9$  and  $F_{\text{last}}=15.2$  at 10 -task split, and  $A_{\text{last}}=38.9$  and  $F_{\text{last}}=17.6$  at 20 -task split. Fine-tuning yields consistent gains: +0.7 points in  $A_{\text{last}}$  and -1.7 in  $F_{\text{last}}$  at 10 -task split, and a larger +2.6 / -1.0 at 20-task split. These results indicate that while the cycle-consistent adapter already provides a strong zero-shot projection, a brief post-training adjustment further aligns prototypes to the new feature geometry—an effect that becomes more pronounced as the task sequence lengthens.

444

#### 4.5 ABLATION: ADAPTER/DISTILLER ARCHITECTURE

445

Because our method learns bidirectional maps between old and new feature spaces, the adapter/distiller architecture directly affects performance. Beyond the linear or shallow MLP adapters common in prior work, we test lightweight but richer alternatives—cross-attention and sparse MoE—to probe whether conditional/nonlinear mappings better track representation drift. Table 5b reports CIFAR-100 results for the 10- and 20-task splits. Across both splits, multilayer adapters consistently outperform a single linear map: relative to an MLP baseline, the linear variant lowers  $A_{\text{last}}$  by 3.5–4.2 points and increases  $F_{\text{last}}$  by 1.2–1.3 points. Within the multilayer family, cross-attention favors stability, reducing forgetting ( $\Delta F_{\text{last}} = -0.7$  to  $-1.0$ ) at the expense of accuracy ( $\Delta A_{\text{last}} = -2.7$  to  $-6.0$ ), whereas sparse MoE delivers the largest forgetting gains ( $-3.6$  to  $-4.9$ ) with only moderate accuracy drops ( $-2.8$  to  $-3.7$ ). A single global affine transform, a linear adapter would suffice; the observed trade-offs instead point to content-dependent, anisotropic drift, which conditional/nonlinear adapters model more faithfully. All variants share identical training schedules; a parameter-matched linear control is a natural follow-up to isolate capacity from architecture.

446

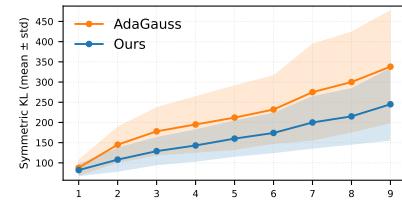
#### 4.6 PROTOTYPE DRIFT FROM ORACLE MEANS ON CIFAR-100

447

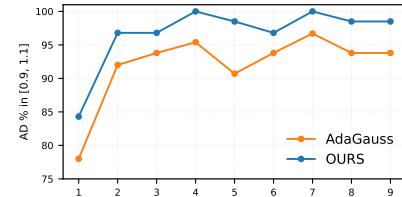
To assess how well each method preserves old-class geometry, Fig. 6 reports prototype drift on CIFAR-100 with the 10-task split. After training Task 9, we freeze the backbone and, for every old class  $c$ , compute the maintained prototype  $\hat{\mu}_c$  and an *oracle* prototype  $\mu_c^*$  given by the empirical feature mean of all samples of class  $c$  under the final backbone. The drift for class  $c$  is defined as  $\|\hat{\mu}_c - \mu_c^*\|_2$ .

(b) Adapter/Distiller Architectures: MLP shows absolute scores, others report  $\Delta$  vs. MLP

| Ablation       | T=10                       |                              | T=20                       |                              |
|----------------|----------------------------|------------------------------|----------------------------|------------------------------|
|                | $A_{\text{last}} \uparrow$ | $F_{\text{last}} \downarrow$ | $A_{\text{last}} \uparrow$ | $F_{\text{last}} \downarrow$ |
| MLP            | 50.6                       | 13.5                         | 41.5                       | 16.6                         |
| Linear         | -3.5                       | +1.2                         | -4.2                       | +1.3                         |
| CrossAttention | -2.7                       | -0.7                         | -6.0                       | -1.0                         |
| MoE            | -3.7                       | -3.6                         | -2.8                       | -4.9                         |

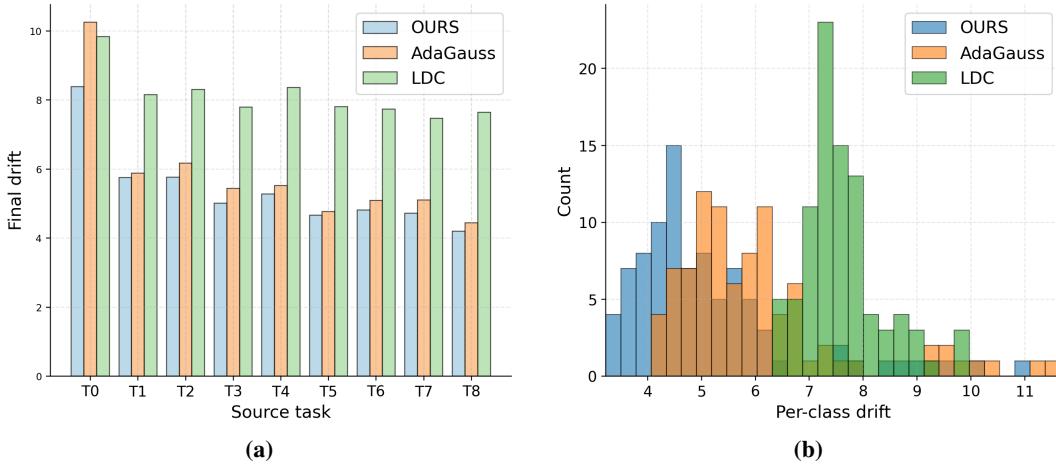


**Figure 4. Task-0 stability via SymKL** (↓). On the fixed task-0 data, we compare Gaussian fits from models after  $t=1 \dots 9$  to the task-0 reference using symmetric KL (Eqs. 30–31); mean $\pm$ std over classes. Our method maintains a smaller divergence—i.e., a closer match to the original distribution—than AdaGauss.



**Figure 5. Near-isometry on task-0 under continual updates.** AD-% in  $[0.9, 1.1]$  for models after  $t=1 \dots 9$ ; our method consistently preserves geometry better than AdaGauss.

If new and old features differed by a single global affine transform, a linear adapter would suffice; the observed trade-offs instead point to content-dependent, anisotropic drift, which conditional/nonlinear adapters model more faithfully. All variants share identical training schedules; a parameter-matched linear control is a natural follow-up to isolate capacity from architecture.



**Figure 6.** CIFAR-100 ( $T=10$ ). Drift between maintained prototypes and oracle prototypes (empirical class means) after completing Task 9. For each of the 90 old classes (Tasks 0–8), we measure the  $\ell_2$  distance in feature space between the maintained prototype and its oracle prototype. (a) Per-source-task average drift for the three methods. (b) Histogram of per-class drift over all old classes.

Panel 6a averages this drift over the ten classes of each source task, while Figure 6b plots the full per-class distribution over all 90 old classes. Our method yields both lower average drift and a tighter distribution at small values than AdaGauss and LDC, indicating less accumulated distortion of old-class prototypes.

#### 4.7 PARAMETER OVERHEAD IN THE 64-DIMENSIONAL SETTING

**Setup.** Following AdaGauss (Rypeść et al., 2024), all experiments use a ResNet-18 backbone followed by a  $512 \rightarrow 64$  linear reduction and a two-layer MLP projector  $D$  (new  $\rightarrow$  old) in the  $S=64$  space. Our bidirectional variant simply adds a second MLP  $A$  (old  $\rightarrow$  new) with the *same* architecture. Both  $A$  and  $D$  are MLPs  $\mathbb{R}^S \rightarrow \mathbb{R}^{mS} \rightarrow \mathbb{R}^S$  with width multiplier  $m=32$  (hidden size  $mS=2048$ ).

**Parameter count.** A two-layer MLP with biases in this setting has

$$\#\text{params}_{\text{MLP}} = 2mS^2 + (m+1)S \Rightarrow \#\text{params}_{\text{MLP}} = 264,256$$

for  $S=64$ ,  $m=32$ . Thus AdaGauss already uses one such projector  $D$  ( $\approx 0.26\text{M}$  parameters), and our bidirectional version adds *one more* ( $A$ ), for an extra

$$\Delta \#\text{params} = 264,256$$

on top of the published AdaGauss model. Since a standard ResNet-18 backbone has about 11M parameters, the additional adapter increases the total parameter count by **only**  $\approx 2.4\%$ . (We use this shared 64-dimensional configuration in all experiments and please refer to Sec. B.5 and Sec.B.6 for a more comprehensive explanation.)

## 5 CONCLUSIONS, LIMITATIONS, AND FUTURE WORKS

**Conclusions.** We presented a bidirectional drift-compensation framework for exemplar-free class-incremental learning that jointly learns old to new and new to old projectors with stop-gradient gating and cycle consistency. Our analysis links least-squares projectors to CCA and shows how reducing alignment and cycle error stabilizes prototype margins. Experiments across standard EFCIL benchmarks demonstrate the new state-of-the-art forgetting reduction while maintaining excellent new-task accuracy.

**Limitations.** The current formulation assumes centered features, and second-order (Gaussian) prototype statistics; its theory is local to small alignment errors on the data support. The method may be sensitive to covariance estimation and hyperparameters in low-data regimes.

**Future works.** We plan to develop uncertainty-aware and class-imbalance-robust prototype transport, and derive non-asymptotic generalization/forgetting bounds beyond Gaussian assumptions. We also plan to integrate test-time adaptation and multi-modal backbones under strict memory budgets.

540 REFERENCES  
541

542 Gabriel Aguiar, Bartosz Krawczyk, and Alberto Cano. A survey on learning from imbalanced  
543 data streams: taxonomy, challenges, empirical study, and reproducible experimental framework.  
544 *Mach. Learn.*, 113(7):4165–4243, 2024.

545 Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.  
546 Memory aware synapses: Learning what (not) to forget. In *ECCV*, 2018.

547 Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuytelaars, Joelle Pineau, and Eugene Belilovsky.  
548 New insights on reducing abrupt representation change in online continual learning. In *ICLR*,  
549 2021.

550 Hyuntak Cha, Jaeho Lee, and Jinwoo Shin. Co2l: Contrastive continual learning. In *ICCV*, 2021.

551 Hao Chen and Yin Xia. A normality test for high-dimensional data based on the nearest neighbor  
552 approach. *Journal of the American Statistical Association*, 118(541):719–731, 2023. doi: 10.  
553 1080/01621459.2021.1953507.

554 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for  
555 contrastive learning of visual representations. In *ICML*, 2020a.

556 Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum  
557 contrastive learning. *arXiv preprint arXiv:2003.04297*, 2020b.

558 Danruo Deng, Guangyong Chen, Jianye Hao, Qiong Wang, and Pheng-Ann Heng. Flattening sharp-  
559 ness for dynamic gradient projection memory benefits continual learning. *NeurIPS*, 2021.

560 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale  
561 hierarchical image database. In *CVPR*, pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

562 Bruno Ebner and Norbert Henze. Tests for multivariate normality—a critical review with emphasis  
563 on weighted  $l^2$ -statistics. *TEST*, 29(4):845–892, 2020. doi: 10.1007/s11749-020-00740-0.

564 William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter  
565 models with simple and efficient sparsity. *Journal of Machine Learning Research*, 23(120):1–39,  
566 2022.

567 Alex Gomez-Villa, Dipam Goswami, Kai Wang, Bagdanov Andrew, Bartłomiej Twardowski, and  
568 Joost van de Weijer. Exemplar-free continual representation learning via learnable drift compen-  
569 sation. In *ECCV*, 2024.

570 Dipam Goswami, Yuyang Liu, Bartłomiej Twardowski, and Joost van de Weijer. Fecam: Feature  
571 covariance and mahalanobis metric for incremental learning. In *Neurips*, 2023.

572 Dipam Goswami, Albin Soutif-Cormerais, Yuyang Liu, Sandesh Kamath, Bartłomiej Twardowski,  
573 and Joost van de Weijer. Resurrecting old classes with new data for exemplarfree continual learn-  
574 ing. In *CVPR*, 2024.

575 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-  
576 nition. In *CVPR*, 2016.

577 Run He, Di Fang, Yicheng Xu, Yawen Cui, Ming Li, Cen Chen, Ziqian Zeng, and Huiping Zhuang.  
578 Semantic shift estimation via dual-projection and classifier reconstruction for exemplar-free class-  
579 incremental learning. In *ICML*, 2025.

580 Roger A. Horn and Charles R. Johnson. *Matrix Analysis*. Cambridge University Press, 2nd edition,  
581 2013.

582 Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron  
583 Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. In *NeurIPS*, 2020.

584 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, and et al. Overcoming catastrophic forgetting  
585 in neural networks. In *Proceedings of the National Academy of Sciences*, 2017.

594 Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University  
 595 of Toronto, 2009.

596

597 Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis, Gregory G.  
 598 Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification  
 599 tasks. *IEEE Trans. Pattern Anal. Mach. Intell.*, 44(7):3366–3385, 2022.

600

601 Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. *CS231N*, 2015.

602

603 Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting  
 604 out-of-distribution samples and adversarial attacks. In Samy Bengio, Hanna M. Wallach, Hugo  
 605 Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), *Advances in Neu-  
 606 ral Information Processing Systems 31: Annual Conference on Neural Information Processing  
 607 Systems 2018, NeurIPS 2018, December 3–8, 2018, Montréal, Canada*, pp. 7167–7177, 2018.

608

609 Zhizhong Li and Derek Hoiem. Learning without forgetting. In *ECCV*, 2016.

610

611 Lei Liu, Li Liu, and Yawen Cui. Prior-free balanced replay: Uncertainty-guided reservoir sampling  
 612 for long-tailed continual learning. In Jianfei Cai, Mohan S. Kankanhalli, Balakrishnan Prab-  
 613 hakaran, Susanne Boll, Ramanathan Subramanian, Liang Zheng, Vivek K. Singh, Pablo César,  
 614 Lexing Xie, and Dong Xu (eds.), *Proceedings of the 32nd ACM International Conference on  
 615 Multimedia, MM 2024, Melbourne, VIC, Australia, 28 October 2024 - 1 November 2024*, pp.  
 616 2888–2897. ACM, 2024.

617

618 Xialei Liu, Yu-Song Hu, Xu-Sheng Cao, Andrew D Bagdanov, Ke Li, and Ming-Ming Cheng. Long-  
 619 tailed class incremental learning. In *European Conference on Computer Vision*, pp. 495–512,  
 620 2022.

621

622 David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.  
 623 *NeurIPS*, 2017.

624

625 Simone Magistri, Tomaso Trinci, Albin Soutif-Cormerais, Joost van de Weijer, and Andrew D.  
 626 Bagdanov. Elastic feature consolidation for cold start exemplarfree incremental learning. In  
 627 *ICLR*, 2024. URL <https://openreview.net/forum?id=7D9X2cFnt1>.

628

629 Simone Magistri, Tomaso Trinci, Albin Soutif-Cormerais, Joost van de Weijer, and Andrew D. Bag-  
 630 danov. Efc++: Elastic feature consolidation with prototype re-balancing for cold start exemplar-  
 631 free incremental learning, 2025. URL <https://arxiv.org/abs/2503.10439>.

632

633 Zheda Mai, Ruiwen Li, Jihwan Jeong, David Quispe, Hyunwoo Kim, and Scott Sanner. Online  
 634 continual learning in image classification: An empirical survey. *Neurocomputing*, 469:28–51,  
 635 2022. ISSN 0925-2312. doi: <https://doi.org/10.1016/j.neucom.2021.10.021>. URL <https://www.sciencedirect.com/science/article/pii/S0925231221014995>.

636

637 Marc Masana, Xialei Liu, Bartłomiej Twardowski, Mikel Menta, Andrew D. Bagdanov, and Joost  
 638 van de Weijer. Class-incremental learning: Survey and performance evaluation on image clas-  
 639 sification. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(5):5513–5533,  
 640 2023. doi: 10.1109/TPAMI.2022.3213473.

641

642 German Ignacio Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter. Con-  
 643 tinual lifelong learning with neural networks: A review. *Neural Networks*, 113:54–71, 2019.

644

645 Grégoire Petit, Adrian Popescu, Hugo Schindler, David Picard, and Bertrand Delezoide. Fetril:  
 646 Feature translation for exemplar-free class-incremental learning. In *WACV*, January 2023.

647

648 Quang Pham, Chenghao Liu, and Steven Hoi. Dualnet: Continual learning, fast and slow. *NeurIPS*,  
 649 2021.

650

651 Siddueshwar Raghavan, Jiangpeng He, and Fengqing Zhu. DELTA: decoupling long-tailed online  
 652 continual learning. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR  
 653 2024 - Workshops, Seattle, WA, USA, June 17-18, 2024*, pp. 4054–4064. IEEE, 2024.

648 Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald  
 649 Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing interference.  
 650 In *ICLR*, 2018.

651 Grzegorz Rypeś, Sebastian Cygert, Tomasz Trzcinski, and Bartłomiej Twardowski. Task-recency  
 652 bias strikes back: Adapting covariances in exemplar-free class incremental learning. *NeurIPS*,  
 653 2024.

654 Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning. In  
 655 *ICLR*, 2020.

656 Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska, Yee Whye  
 657 Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework for continual  
 658 learning. In *ICML*, 2018.

659 Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic  
 660 forgetting with hard attention to the task. In *ICML*, 2018.

661 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and  
 662 Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In  
 663 *ICLR*, 2017.

664 Haizhou Shi and Hao Wang. A unified approach to domain incremental learning with memory:  
 665 Theory and algorithm. In *NeurIPS*, 2023.

666 Habib Slim, Eden Belouadah, Adrian Popescu, and Darian Onchis. Dataset knowledge transfer for  
 667 class-incremental learning without memory. In *WACV*, 2022.

668 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,  
 669 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *NeurIPS*, 2017.

670 Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd  
 671 birds-200-2011 dataset. 2011.

672 Liyuan Wang, Xingxing Zhang, Qian Li, Jun Zhu, and Yi Zhong. Coscl: Cooperation of small  
 673 continual learners is stronger than a big one. In *ECCV*, 2022a.

674 Zhenyi Wang, Li Shen, Le Fang, Qiuling Suo, Donglin Zhan, Tiehang Duan, and Mingchen Gao.  
 675 Meta-learning with less forgetting on large-scale non-stationary task distributions. In *ECCV*,  
 676 2022b.

677 Zhenyi Wang, Yan Li, Li Shen, and Heng Huang. A unified and general framework for continual  
 678 learning. In *ICLR*, 2024.

679 Zifeng Wang, Zheng Zhan, Yifan Gong, Yucai Shao, Stratis Ioannidis, Yanzhi Wang, and Jennifer  
 680 Dy. Dualhsic: Hsic-bottleneck and alignment for continual learning. In *ICML*, 2023.

681 Shixiong Xu, Gaofeng Meng, Xing Nie, Bolin Ni, Bin Fan, and Shiming Xiang. Defying im-  
 682 balanced forgetting in class incremental learning. In Michael J. Wooldridge, Jennifer G. Dy,  
 683 and Sriraam Natarajan (eds.), *Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI  
 684 2024, Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence, IAAI 2024,  
 685 Fourteenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2014, February  
 686 20-27, 2024, Vancouver, Canada*, pp. 16211–16219. AAAI Press, 2024.

687 Enneng Yang, Li Shen, Zhenyi Wang, Tongliang Liu, and Guibing Guo. An efficient dataset con-  
 688 densation plugin and its application to continual learning. *NeurIPS*, 2023.

689 Lu Yu, Bartłomiej Twardowski, Xialei Liu, Luis Herranz, Kai Wang, Yongmei Cheng, Shangling  
 690 Jui, and Joost van de Weijer. Semantic drift compensation for class-incremental learning. In  
 691 *CVPR*, 2020.

692 Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.  
 693 In *ICML*, 2017.

702 Da-Wei Zhou, Fu-Yun Wang, Han-Jia Ye, and De-Chuan Zhan. Pycil: a python toolbox for class-  
 703 incremental learning. *SCIENCE CHINA Information Sciences*, 66(9):197101, 2023. doi: <https://doi.org/10.1007/s11432-022-3600-y>.  
 704

705 Fei Zhu, Xu-Yao Zhang, Chuang Wang, Fei Yin, and Cheng-Lin Liu. Prototype augmentation and  
 706 self-supervision for incremental learning. In *CVPR*, 2021.

707 Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation  
 708 using cycle-consistent adversarial networks. In *ICCV*, 2017.

## 712 A APPENDIX

714 This document provides additional experimental results, more details of our approach (proof of  
 715 theorems, metric calculation, etc.), organized as follows:

- 717 • §A.1. Prototype Drift Compensation: A Transport Perspective
- 718 • §A.2. Bayes Classifier in the New Feature Space
- 719 • §A.3. Proof of Theorem 1
- 720 • §A.4. Proof of Corollary 2
- 721 • §A.5. Pseudo-code for Our Algorithm
- 722 • §A.6. Experimental Setup
- 723 • §A.7. Accuracy Metrics
- 724 • §A.8. Distribution-Similarity Evaluation Metrics
- 725 • §A.9. Additional Visualizations
- 726 • §A.10. Additional Details on Distiller/Adapter Architecture Ablations
- 727 • §A.11. Limitations of ImageNet-1K Experiments
- 728 • §A.12. LLM Usage Disclosure

### 734 A.1 PROTOTYPE-DRIFT COMPENSATION: A TRANSPORT PERSPECTIVE

736 In the main paper, we adopt a vectorial notion of prototype drift. For each previously-seen class  
 737  $c \in \mathcal{C}_{1:t-1}$ , the backbone update from  $f_{t-1}$  to  $f_t$  induces the feature-mean displacement  
 738

$$739 \Delta_c^t = \mu_c^t - \mu_c^{t-1}, \quad \delta_c^t = \|\Delta_c^t\|_2, \quad (15)$$

740 where  $\mu_c^t = \frac{1}{|\mathcal{D}_c|} \sum_{x \in \mathcal{D}_c} f_t(x)$  is the (unknown) class mean under the updated encoder  $f_t$ . Because  
 741 EFCIL forbids storing past raw samples,  $\mu_c^t$  cannot be recomputed exactly, and cached prototypes  
 742  $\mu_c^{t-1}$  become stale once  $f_t$  is deployed.

744 Under our Stage-I/Stage-II paradigm, Stage I regularization constrains the update using only  $\mathcal{D}_t$ :

$$746 \mathcal{L}_{S1} = \mathbb{E}_{(x,y) \in \mathcal{D}_t} \left[ \text{CE}(g(f_t(x)), y) + \lambda D(\phi_{\text{new}}(x), \phi_{\text{old}}(x)) \right], \quad (16)$$

748 with  $\phi \in \{f(\cdot), g \circ f(\cdot)\}$  and  $D$  a generic distillation/regularizer. Stage II then learns a forward  
 749 adapter  $A_t$  (frozen  $f_{t-1}, f_t$ ) by aligning paired features  $(f_{t-1}(x), f_t(x))$  on  $\mathcal{D}_t$ , and transports old  
 750 prototypes:

$$751 A_t \in \arg \min_A \mathbb{E}_{x \in \mathcal{D}_t} \|A(f_{t-1}(x)) - f_t(x)\|_2^2, \quad \tilde{\mu}_c^t = A_t(\mu_c^{t-1}). \quad (17)$$

752 This transport view unifies existing drift-compensation recipes—each can be seen as instantiating  
 753 either a global/class-wise translation  $A_t(z) = z + \hat{\Delta}^t$  or a learned projector  $A_t$  applied to cached  
 754 prototypes.

756 **Transport-based summary of prior methods.** Below we cast representative EFCIL approaches  
 757 as special cases of Eq. equation 17. For consistency, we denote the encoders by  $f_{t-1}$  and  $f_t$  (some  
 758 works write  $F_{t-1}, F_t$ ) and use  $\mathcal{D}_t$  for the current-task data.

759 

- 760 • **Semantic Drift Compensation (SDC)** (Yu et al., 2020). SDC estimates a *global* shift from  
 761 new-task samples and uses it as a translation adapter:

762 
$$\bar{\Delta}^t = \frac{1}{|\mathcal{D}_t|} \sum_{x \in \mathcal{D}_t} (f_t(x) - f_{t-1}(x)), \quad A_t(z) = z + \bar{\Delta}^t, \quad \tilde{\mu}_c^t = \mu_c^{t-1} + \bar{\Delta}^t.$$
  
 763

764 

- 765 • **Adversarial Drift Compensation (ADC)** (Goswami et al., 2024). For each old class  $c$ ,  
 766 ADC selects a current-sample  $\hat{x}_c$  that is adversarially driven towards the vicinity of  $\mu_c^{t-1}$   
 767 (in the old space), and takes the resulting pairwise feature gap as a class-wise translation:

768 
$$\hat{\Delta}_c^t = f_t(\hat{x}_c) - f_{t-1}(\hat{x}_c), \quad A_t^{(c)}(z) = z + \hat{\Delta}_c^t, \quad \tilde{\mu}_c^t = \mu_c^{t-1} + \hat{\Delta}_c^t.$$
  
 769

770 

- 771 • **Learnable Drift Compensation (LDC)** (Gomez-Villa et al., 2024). LDC directly *learns* a  
 772 projector as the adapter:

773 
$$G_\theta \in \arg \min_G \mathbb{E}_{x \in \mathcal{D}_t} \|G(f_{t-1}(x)) - f_t(x)\|_2^2, \quad A_t(z) = G_\theta(z), \quad \tilde{\mu}_c^t = G_\theta(\mu_c^{t-1}).$$
  
 774

775 This captures non-linear, potentially class-dependent deformations.

776 

- 777 • **EFC (EFM-weighted transport)**. (Magistri et al., 2024) EFC computes a weighted average  
 778 of per-sample shifts using a pseudo-metric induced by the Empirical Feature Matrix  
 779  $E_{t-1}$  (estimated after task  $t-1$ ). Let  $\|v\|_E^2 := v^\top E v$ . Each  $x_i \in \mathcal{D}_t$  casts a vote for class  $c$   
 780 with weight

781 
$$w_{c,i} = \exp\left(-\frac{\|f_{t-1}(x_i) - \mu_c^{t-1}\|_{E_{t-1}}^2}{2\sigma^2}\right),$$
  
 782

783 yielding the class-wise transport

784 
$$\hat{\Delta}_c^t = \frac{\sum_{x_i \in \mathcal{D}_t} w_{c,i} (f_t(x_i) - f_{t-1}(x_i))}{\sum_{x_i \in \mathcal{D}_t} w_{c,i}}, \quad \tilde{\mu}_c^t = \mu_c^{t-1} + \hat{\Delta}_c^t.$$
  
 785

786 

- 787 • **AdaGauss.** Like LDC, AdaGauss first learns a forward projector  $G_\theta$  by aligning paired  
 788 features on  $\mathcal{D}_t$ :

789 
$$G_\theta \in \arg \min_G \mathbb{E}_{x \in \mathcal{D}_t} \|G(f_{t-1}(x)) - f_t(x)\|_2^2, \quad A_t(z) = G_\theta(z).$$
  
 790

791 Unlike LDC—which directly transports old *means* via  $\tilde{\mu}_c^t = G_\theta(\mu_c^{t-1})$ —AdaGauss  
 792 models each old class as a Gaussian and transports the *distribution* by Monte Carlo  
 793 push-forward (see Alg. 1, Stage II):

794 
$$u_m \sim \mathcal{N}(\mu_c^{t-1}, \Sigma_c^{t-1}), \quad v_m = G_\theta(u_m) = A_t(u_m), \quad m = 1, \dots, M,$$
  
 795

796 followed by re-estimation in the new space:

797 
$$\tilde{\mu}_c^t = \frac{1}{M} \sum_{m=1}^M v_m, \quad \tilde{\Sigma}_c^t = \frac{1}{M-1} \sum_{m=1}^M (v_m - \tilde{\mu}_c^t)(v_m - \tilde{\mu}_c^t)^\top.$$
  
 798

799 When  $G_\theta$  (equivalently  $A_t$ ) is affine, this reduces in closed form to pushing moments  
 800  $(\tilde{\mu}_c^t, \tilde{\Sigma}_c^t) = (A\mu_c^{t-1} + b, A\Sigma_c^{t-1}A^\top)$ .

## 801 A.2 BAYES CLASSIFIER IN THE NEW FEATURE SPACE.

802 Let  $z = f_t(x) \in \mathbb{R}^d$  be the feature of an input  $x$  at task  $t$  and let each seen class  $c \in \mathcal{C}_{1:t}$  be  
 803 represented in the *new* space by a Gaussian prototype  $\mathcal{N}(\mu_c, \Sigma_c)$  (means and covariances trans-  
 804 ported/estimated as in Sec. A.1). The Bayes score is the class conditional quadratic form

805 
$$s_c(x) = (z - \mu_c)^\top \Sigma_c^{-1} (z - \mu_c), \quad (18)$$
  
 806

807 and the *task agnostic* prediction (TAg) is

808 
$$\hat{y}_{\text{TAg}}(x) = \arg \min_{c \in \mathcal{C}_{1:t}} s_c(x). \quad (19)$$
  
 809

810 When a task aware (Taw) report is required, we restrict the argmin to the current task’s label set  $\mathcal{C}_t$ :

811 
$$\hat{y}_{\text{Taw}}(x) = \arg \min_{c \in \mathcal{C}_t} s_c(x). \quad (20)$$
  
 812

810 A.3 PROOF OF THEOREM 1  
811812 *Proof of Theorem 1 (Cycle contraction).* Let  $M := \tilde{A}\tilde{D} - I$  and note that by definition of whitening,  
813  $\mathbb{E}[\tilde{z}_{\text{new}}\tilde{z}_{\text{new}}^\top] = I$  (features are taken to be centered; otherwise replace  $z$  by its centered version). Then

814 815 
$$\mathbb{E}\|M\tilde{z}_{\text{new}}\|_2^2 = \mathbb{E}[\tilde{z}_{\text{new}}^\top M^\top M\tilde{z}_{\text{new}}] = \text{Tr}(M^\top M \mathbb{E}[\tilde{z}_{\text{new}}\tilde{z}_{\text{new}}^\top]) = \text{Tr}(M^\top M) = \|M\|_F^2, \quad (21)$$

816 which yields the stated identity.  
817818 For the consequence, write the singular values of  $\tilde{A}\tilde{D}$  as  $\{\sigma_k\}_{k=1}^d$ . Since  $M = \tilde{A}\tilde{D} - I$ , Weyl's  
819 inequality gives  $\max_k |\sigma_k - 1| \leq \|M\|_2 \leq \|M\|_F$ . Thus minimizing  $\mathcal{L}_{\text{cyc}} = \mathbb{E}\|M\tilde{z}_{\text{new}}\|_2^2 = \|M\|_F^2$   
820 forces  $\|M\|_F \rightarrow 0$ , hence  $\sigma_k \rightarrow 1$  for all  $k$ . In particular, when the loss is small, all singular values  
821 of  $\tilde{A}\tilde{D}$  lie in a tight neighborhood of 1, preventing rank/energy loss and preserving local geometry  
822 on the data support.  $\square$ 823 A.4 PROOF OF COROLLARY 2  
824825 *Proof of Corollary 2 (Decision stability for classification).* Fix a class  $c$  and abbreviate  $\mu = \mu_c^t$ ,  
826  $\Sigma = \Sigma_c^t$ ,  $\tilde{\mu} = \tilde{\mu}_c^t$ ,  $\tilde{\Sigma} = \tilde{\Sigma}_c^t$ ,  $\Delta\mu := \tilde{\mu} - \mu$ ,  $\Delta\Sigma := \tilde{\Sigma} - \Sigma$ . The Bayes log-score is  
827  $\ell_c(x) = \log \pi_c - \frac{1}{2} \log \det \Sigma - \frac{1}{2} (x - \mu)^\top \Sigma^{-1} (x - \mu)$ . A first-order expansion in  $(\Delta\mu, \Delta\Sigma)$   
828 gives the perturbation  
829

830 831 
$$\tilde{\ell}_c(x) - \ell_c(x) = -\frac{1}{2} \text{Tr}(\Sigma^{-1} \Delta\Sigma) + \frac{1}{2} (x - \mu)^\top \Sigma^{-1} \Delta\Sigma \Sigma^{-1} (x - \mu) + \Delta\mu^\top \Sigma^{-1} (x - \mu) + R_c(x), \quad (22)$$
  
832

833 where  $R_c(x) = O(\|\Delta\Sigma\|_2^2 + \|\Delta\mu\|_{\Sigma^{-1}}^2)$  by the identities  $\log \det(\Sigma + \Delta\Sigma) = \log \det \Sigma +$   
834  $\text{Tr}(\Sigma^{-1} \Delta\Sigma) + O(\|\Delta\Sigma\|_2^2)$  and  $(\Sigma + \Delta\Sigma)^{-1} = \Sigma^{-1} - \Sigma^{-1} \Delta\Sigma \Sigma^{-1} + O(\|\Delta\Sigma\|_2^2)$ .  
835836 Taking absolute values and applying Cauchy–Schwarz and spectral norm bounds,  
837

838 839 
$$|\tilde{\ell}_c(x) - \ell_c(x)| \leq C_\Sigma^{(1)} \|\Delta\Sigma\|_2 + C_\Sigma^{(2)} \|\Delta\Sigma\|_2 \|x - \mu\|_{\Sigma^{-1}}^2 \quad (23)$$
  
840 
$$+ \|\Delta\mu\|_{\Sigma^{-1}} \|x - \mu\|_{\Sigma^{-1}} + O(\|\Delta\Sigma\|_2^2 + \|\Delta\mu\|_{\Sigma^{-1}}^2),$$
  
841

842 for constants  $C_\Sigma^{(1)}, C_\Sigma^{(2)}$  depending only on  $\|\Sigma^{-1}\|_2$  (and dimension via standard inequalities). For  
843 a pair  $(i, j)$ , the log-odds perturbation satisfies by triangle inequality  
844

845 846 
$$|(\tilde{\ell}_i - \tilde{\ell}_j) - (\ell_i - \ell_j)| \leq C_\mu (\|\Delta\mu_i\|_{(\Sigma_i^t)^{-1}} + \|\Delta\mu_j\|_{(\Sigma_j^t)^{-1}}) + C_\Sigma (\|\Delta\Sigma_i\|_2 + \|\Delta\Sigma_j\|_2) + O(\cdot), \quad (24)$$
  
847

848 where  $C_\mu, C_\Sigma$  absorb bounded factors of  $\|x - \mu_c^t\|_{(\Sigma_c^t)^{-1}}$  on the evaluation support. Now set  $\delta_c :=$   
849  $\|\tilde{\mu}_c^t - \mu_c^t\|_{(\Sigma_c^t)^{-1}}$  and invoke the transport-fidelity bounds used in the corollary,  
850

851 852 
$$\delta_c \lesssim \sqrt{\varepsilon_{\text{old} \rightarrow \text{new}}^2}, \quad \|\tilde{\Sigma}^t - \Sigma^t\|_2 \lesssim C_1 \sqrt{\varepsilon_{\text{old} \rightarrow \text{new}}^2} + C_2 \varepsilon_{\text{cyc,new}}, \quad (25)$$
  
853

854 to obtain  
855

856 857 
$$|(\tilde{\ell}_i - \tilde{\ell}_j) - (\ell_i - \ell_j)| \lesssim C_\mu (\delta_i + \delta_j) + C_\Sigma \|\tilde{\Sigma}^t - \Sigma^t\|_2. \quad (26)$$
  
858

859 If the right-hand side is strictly smaller than the Bayes margin  $m_{ij}(x) := |\ell_i(x) - \ell_j(x)|$ , then  
860 the sign of the log-odds is unchanged and the Bayes decision between  $i$  and  $j$  at  $x$  is preserved, as  
861 claimed.  $\square$ 862 A.5 PSEUDO-CODE FOR OUR ALGORITHM  
863864 Algorithm 1 specifies the end-to-end procedure for each task  $t$ : it learns the current backbone  $f_t$   
865 under classification with bidirectional alignment and cycle consistency (via  $A$  and  $D$ ), and updates  
866 the class prototypes by transporting stored Gaussians into the current feature space for inference.

---

864 **Algorithm 1** Bidirectional Cycle Consistency (EFCIL)

865

866 **Inputs:** Task stream  $\{\mathcal{D}_t\}_{t=1}^T$ ; old backbone  $f_{t-1}$  (frozen); current backbone  $f_t$  (learnable); classifier head  $g$ ;

867 adapter  $A : \mathbb{R}^d \rightarrow \mathbb{R}^d$  (old  $\rightarrow$  new); distiller  $D : \mathbb{R}^d \rightarrow \mathbb{R}^d$  (new  $\rightarrow$  old);

868 hyperparameters  $\lambda_{\text{bi}}, \lambda_{\text{cyc}}, \alpha$ ; learning rates  $\eta, \eta_A, \eta_D$ ; batch size  $B$ ;

869 per-class sample count  $M$  for distribution transport.

870 **Outputs:** Trained  $f_t, A, D$  for each  $t$ ; transported *means & covariances* for inference.

871 **Initialization:** Copy  $f_t \leftarrow f_{t-1}$ ; randomly initialize  $A, D$ ; freeze  $f_{t-1}$ .

872 **for**  $t = 1, \dots, T$  **do**

873   **# Stage I: Joint training on current task  $\mathcal{D}_t$**

874   **while** not converged **do**

875     Sample minibatch  $\{(x, y)\}_{b=1}^B \sim \mathcal{D}_t$ .

876      $z_{\text{old}} \leftarrow f_{t-1}(x)$  ▷ no gradient

877      $z_{\text{new}} \leftarrow f_t(x)$

878      $\ell_{\text{new}} \leftarrow g(z_{\text{new}})$

879     **Bidirectional alignment:**

880      $\mathcal{L}_{\text{bi}} \leftarrow \|D(z_{\text{new}}) - z_{\text{old}}\|_2^2 + \|A(z_{\text{old}}) - z_{\text{new}}^{(\text{detach})}\|_2^2$

881     **Cycle consistency:**

882      $\mathcal{L}_{\text{cyc}} \leftarrow \|A(D(z_{\text{new}})) - z_{\text{new}}^{(\text{detach})}\|_2^2 + \|D(A(z_{\text{old}})) - z_{\text{old}}^{(\text{detach})}\|_2^2$

883     **Classification:**  $\mathcal{L}_{\text{CE}} \leftarrow \text{CE}(\ell_{\text{new}}, y)$

884     **Robust anti-collapse on features:**

885      $\Sigma \leftarrow \frac{1}{B-1}(z_{\text{new}} - \bar{z})(z_{\text{new}} - \bar{z})^\top$ ;  $\tilde{\Sigma} \leftarrow \frac{1}{2}(\Sigma + \Sigma^\top)$ ;  $\hat{\Sigma} \leftarrow \tilde{\Sigma} + \lambda \frac{\text{tr}(\tilde{\Sigma})}{d} I + \varepsilon I$

886      $\mathcal{L}_{\text{ac}}^{\text{rob}} \leftarrow -\frac{1}{d} \sum_{i=1}^d \min(\text{chol}(\hat{\Sigma})_{ii}, \beta)$

887     **Total:**  $\mathcal{L} \leftarrow \mathcal{L}_{\text{CE}} + \lambda_{\text{bi}} \mathcal{L}_{\text{bi}} + \lambda_{\text{cyc}} \mathcal{L}_{\text{cyc}} + \alpha \mathcal{L}_{\text{ac}}^{\text{rob}}$

888     **end while**

889   **# Stage II: Distribution transport via sampling + adapter fine-tuning**

890   Freeze  $f_{t-1}, f_t, D$ ; fine-tune  $A$  on  $\mathcal{D}_t$  with a small LR by minimizing  $\|A(z_{\text{old}}) - z_{\text{new}}^{(\text{detach})}\|_2^2$ .

891   **for** each old class  $c \in \mathcal{C}_{1:t-1}$  **do**

892     Load stored stats  $(\mu_c^{t-1}, \Sigma_c^{t-1})$ .

893     **Sample old features:** draw  $U = \{u_m\}_{m=1}^M \sim \mathcal{N}(\mu_c^{t-1}, \Sigma_c^{t-1})$ .

894     **Push-forward to new space:**  $V = \{v_m\}_{m=1}^M$  with  $v_m \leftarrow A(u_m)$ .

895     **Re-estimate in new space:**

896      $\tilde{\mu}_c^t \leftarrow \frac{1}{M} \sum_{m=1}^M v_m$ ,  $\tilde{\Sigma}_c^t \leftarrow \frac{1}{M-1} \sum_{m=1}^M (v_m - \tilde{\mu}_c^t)(v_m - \tilde{\mu}_c^t)^\top$ .

897     **end for**

898   Estimate new-class stats under  $f_t$  from  $\mathcal{D}_t$ :  $(\mu_c^t, \Sigma_c^t)$  for all  $c \in \mathcal{C}_t$ .

899   Build a new prototype collection using  $\{(\tilde{\mu}_c^t, \tilde{\Sigma}_c^t)\}_{c \in \mathcal{C}_{1:t-1}}$  and  $\{(\mu_c^t, \Sigma_c^t)\}_{c \in \mathcal{C}_t}$ .

900   Store  $\{(\mu_c^t, \Sigma_c^t)\}_{c \in \mathcal{C}_{1:t}}$  for the next task.

901   **end for**

---

## A.6 EXPERIMENTAL SETUP

902 We utilize a workstation equipped with an NVIDIA RTX 6000 Ada GPU and a Xeon Gold 6448Y

903 CPU to run all the experiments.

904 **Datasets.** We evaluate our method on four canonical continual-learning benchmarks CIFAR-100, TinyImageNet, ImageNet-100 and CUB-200. Each benchmark is instantiated with multiple class-incremental task splits so that every training image is seen exactly once; only the granularity of the partition changes. We use the official train/val (or test) partitions supplied with each dataset.

905

906

907

908

909

910

911

912

913

914

915

916

917

- **CIFAR-100** consists of 50,000 training and 10,000 test images of size  $32 \times 32$  drawn from 100 classes.
- **Tiny-ImageNet** contains 100,000 training and 10,000 validation images at  $64 \times 64$  resolution spanning 200 classes.
- **ImageNet-100** (also referred to as **ImageNet-Subset**) includes 130,000 training and 5,000 validation images at the original ImageNet resolution of  $224 \times 224$  for 100 classes.
- **CUB-200** comprises 11,788 bird photographs—5,994 for training and 5,794 for testing—covering 200 fine-grained species. All images are center-cropped and resized to  $224 \times 224$  to match ImageNet preprocessing.

918 **Testing.** All results are reported with a test batch size of 512 and no test-time augmentations. The  
 919 code will be made publicly available at the time of publication.  
 920

921 **A.7 ACCURACY METRICS**  
 922

923 We evaluate continual learning along three complementary axes: (i) aggregate predictive performance  
 924 on seen tasks, (ii) distributional alignment between stored prototypes and the current test  
 925 distribution, and (iii) near-isometry of the learned transport between old and new representations.  
 926 This subsection formalizes the first axis.

927 We report the **last-task average accuracy**  $A_{\text{last}}$ , its running mean **average incremental accuracy**  
 928  $A_{\text{inc}}$ , and the **last-task average forgetting**  $F_{\text{last}}$ . Let  $a_i^{(K)}$  denote accuracy on task  $i$  after training up  
 929 to task  $K$ , and let  $|\mathcal{C}_i|$  be the number of classes introduced at step  $i$ . Then  
 930

$$931 A_{\text{last}} = \frac{\sum_{i=1}^K |\mathcal{C}_i| a_i^{(K)}}{\sum_{i=1}^K |\mathcal{C}_i|}, \quad A_{\text{inc}} = \frac{1}{K} \sum_{j=1}^K A_{\text{last}}^{(j)}, \quad F_{\text{last}} = \frac{\sum_{i=1}^K |\mathcal{C}_i| f_i^{(K)}}{\sum_{i=1}^K |\mathcal{C}_i|}, \quad (27)$$

933 where  $f_i^{(K)} = [\max_{1 \leq j \leq K} a_i^{(j)} - a_i^{(K)}]_+$  and  $A_{\text{last}}^{(j)}$  is  $A_{\text{last}}$  evaluated at step  $j$ . Here  $A_{\text{last}}$  summarizes  
 934 performance at the current step with class-count weighting,  $A_{\text{inc}}$  averages this summary over training  
 935 steps to reflect stability over time, and  $F_{\text{last}}$  quantifies degradation on past tasks.  
 936

937 **A.8 DISTRIBUTION-SIMILARITY EVALUATION METRICS**  
 938

939 To study prototype drift, we compare stored Gaussian prototypes to test-time class statistics under  
 940 the current backbone. Let  $f_\theta(\cdot) \in \mathbb{R}^S$  denote the feature map, and for each class  $c$  let  $(\hat{\mu}_c, \hat{\Sigma}_c)$  be  
 941 the stored prototype. Given a held-out set  $\mathcal{D}_c^{\text{test}}$ , we compute

$$942 \mu_c^* = \frac{1}{|\mathcal{D}_c^{\text{test}}|} \sum_{x \in \mathcal{D}_c^{\text{test}}} f_\theta(x), \quad \Sigma_c^* = \text{Cov}\{f_\theta(x) : x \in \mathcal{D}_c^{\text{test}}\} \in \mathbb{R}^{S \times S}.$$

945 For numerical stability, all expressions involving covariances use Tikhonov regularization  $\tilde{\Sigma} :=$   
 946  $\Sigma + \varepsilon I$  with a small  $\varepsilon > 0$ .

947 We report three per-class discrepancies that emphasize complementary aspects of drift; lower values  
 948 are better.  
 949

950 **(1) Prototype Mean Drift (μ-L2).** Translation of class centers:

$$951 \mu\text{-L2}_c = \|\hat{\mu}_c - \mu_c^*\|_2. \quad (28)$$

953 **(2) Covariance Drift (Frobenius).** Change in intra-class shape/volume:

$$954 \Sigma\text{-F}_c = \|\hat{\Sigma}_c - \Sigma_c^*\|_F = \sqrt{\text{tr}[(\hat{\Sigma}_c - \Sigma_c^*)^\top (\hat{\Sigma}_c - \Sigma_c^*)]}. \quad (29)$$

957 **(3) Symmetric KL Between Gaussians.** A joint measure capturing center shift, anisotropy, and  
 958 volume differences:

$$959 D_{\text{KL}}(\mathcal{N}(\mu_1, \Sigma_1) \| \mathcal{N}(\mu_2, \Sigma_2)) = \frac{1}{2} \left[ \text{tr}(\Sigma_2^{-1} \Sigma_1) + (\mu_2 - \mu_1)^\top \Sigma_2^{-1} (\mu_2 - \mu_1) - S + \ln \frac{\det \Sigma_2}{\det \Sigma_1} \right],$$

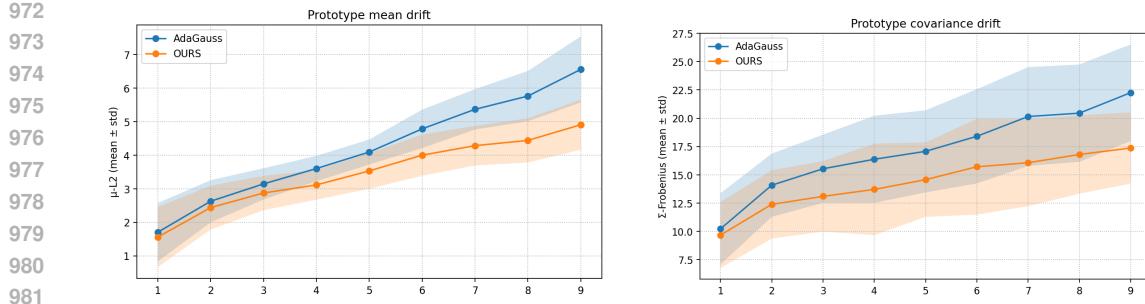
961 with  $S$  the feature dimension and inverses/determinants taken on regularized covariances. We report  
 962 the bi-directional form:

$$964 \text{SymKL}_c = D_{\text{KL}}\left(\mathcal{N}(\hat{\mu}_c, \tilde{\Sigma}_c) \| \mathcal{N}(\mu_c^*, \tilde{\Sigma}_c^*)\right) + D_{\text{KL}}\left(\mathcal{N}(\mu_c^*, \tilde{\Sigma}_c^*) \| \mathcal{N}(\hat{\mu}_c, \tilde{\Sigma}_c)\right). \quad (31)$$

966 **Aggregation over a Class Set.** For any per-class statistic  $m_c \in \{\mu\text{-L2}_c, \Sigma\text{-F}_c, \text{SymKL}_c\}$  and  
 967 class set  $\mathcal{C}$  (e.g., a task slice), we report its mean and dispersion:

$$968 \bar{m} = \frac{1}{|\mathcal{C}|} \sum_{c \in \mathcal{C}} m_c, \quad \text{std}(m) = \sqrt{\frac{1}{|\mathcal{C}|} \sum_{c \in \mathcal{C}} (m_c - \bar{m})^2}. \quad (32)$$

971 Unless stated otherwise, results are shown as  $\bar{m} \pm \text{std}(m)$  per incremental stage, where smaller  
 972 values indicate closer alignment between stored prototypes and test-time distributions.



972  
973  
974  
975  
976  
977  
978  
979  
980  
981  
982  
983 **Figure 7. CIFAR-100 ( $T=10$ ): Prototype drift on task-0 under continual updates (↓).** Using the fixed task-0 validation split, for each step  $t=1 \dots 9$  we evaluate the model trained up to step  $t$ . Left: prototype mean drift  $\mu$ -L2 (Eq. 28); Right: covariance drift  $\Sigma$ -Frobenius (Eq. 29). Curves show mean $\pm$ std over classes (Eq. 32); smaller is better. OURS exhibits consistently lower center and covariance drift than AdaGauss, indicating closer alignment to the original task-0 distribution.

#### 988 A.8.1 AD-% IN [0.9, 1.1]

989 Finally, to probe geometry preservation of the old $\leftrightarrow$ new mapping, we measure the fraction of singular values of the composed map that lie in a tight unit band. Consistent with Sec. A.1, let  $f_{t-1}$  and  $f_t$  be the frozen previous and current encoders at task  $t$ , and let  $A_t$  (old $\rightarrow$ new) and  $D_t$  (new $\rightarrow$ old) be the learned maps. On a held-out split  $\mathcal{V}_t$  restricted to the newly introduced classes  $\mathcal{C}_t$ , extract paired features

$$z_{\text{old}} = f_{t-1}(x) \in \mathbb{R}^S, \quad z_{\text{new}} = f_t(x) \in \mathbb{R}^S, \quad x \in \mathcal{V}_t, \quad y(x) \in \mathcal{C}_t,$$

990 stack them as  $Z_{\text{old}}, Z_{\text{new}} \in \mathbb{R}^{S \times N}$ , and form least-squares surrogates:

$$\hat{D}_t = (Z_{\text{old}} Z_{\text{new}}^\top) (Z_{\text{new}} Z_{\text{new}}^\top)^\dagger, \quad \hat{A}_t = (Z_{\text{new}} Z_{\text{old}}^\top) (Z_{\text{old}} Z_{\text{old}}^\top)^\dagger.$$

991 Let  $\{\sigma_i\}_{i=1}^S = \sigma(\hat{A}_t \hat{D}_t)$  be the singular values. We report

$$\text{AD-}\% \text{ in } [0.9, 1.1] = 100 \times \frac{1}{S} \sum_{i=1}^S \mathbf{1} \left\{ 0.9 \leq \sigma_i(\hat{A}_t \hat{D}_t) \leq 1.1 \right\}. \quad (33)$$

992 (If  $A_t$  or  $D_t$  is a single linear layer, its weight can replace the corresponding surrogate.)

993 **Interpretation.** Higher AD-% in [0.9, 1.1] indicates that  $A_t D_t$  is closer to an isometry with less 994 spectral shrinkage/expansion. This complements Sec. A.8: improved near-isometry typically 995 coincides with lower symmetric KL, indicating better preservation of the class-conditional 996 geometry across tasks.

#### 1000 A.9 ADDITIONAL VISUALIZATIONS

1001 Figure 7 tracks prototype drift on the fixed task-0 validation split over steps  $t=1 \dots 9$  (CIFAR-100, 1002  $T=10$ ), reporting the mean L2 shift of class centers ( $\mu$ -L2; Eq. 28) and the Frobenius change of 1003 covariances ( $\Sigma$ -Fro; Eq. 29) with mean $\pm$ std across classes; smaller is better. Our method 1004 exhibits consistently lower center and covariance drift than AdaGauss, indicating closer alignment 1005 to the original task-0 distribution, i.e., reduced degradation of old-class statistics as  $f_t$  evolves.

1006 **Relation to the main findings.** These curves complement the diagnostics in A.8: we observe both 1007 lower symmetric KL between transported and ground-truth Gaussians and a higher fraction of 1008 singular values for  $A_t D_t$  within [0.9, 1.1] (near-isometry), each pointing to better distributional 1009 transport and geometry preservation under our bidirectional + cycle training. Together, these 1010 visualizations substantiate the our narrative that mitigating prototype/covariance drift translates into 1011 more stable old-class decisions and the reduced forgetting reported in the main tables.

#### 1023 A.10 ADDITIONAL DETAILS ON DISTILLER/ADAPTER ARCHITECTURE ABLATIONS

1024 **Setup and parity.** All adapter/distiller variants in Table 5b are trained under an identical data 1025 pipeline, optimization schedule, and loss configuration; only the *architectural family* of the

1026 adapter/distiller changes. Each map takes an  $S$ -dimensional feature and returns an  $S$ -dimensional  
 1027 output. Unless noted, dropout is disabled and LayerNorms use default  $\epsilon$ .  
 1028

1029 **Linear.** A single affine projection  $W \in \mathbb{R}^{S \times S}$  without bias (i.e.,  $z \mapsto Wz$ ). This variant is  
 1030 parameter- and compute-light, and serves to illustrate the contribution of our objective under mini-  
 1031 mal capacity.

1032 **MLP (default).** Unless stated otherwise, we instantiate the adapter/distiller as a *two-layer* MLP  
 1033  $\mathbb{R}^S \rightarrow \mathbb{R}^{mS} \rightarrow \mathbb{R}^S$  with GELU nonlinearity, no residual connection, and no dropout. We set the width  
 1034 multiplier to  $m=32$  (hidden size  $32S$ ), which matches the capacity used in our main experiments.  
 1035

1036 **Cross-Attention (XAttn).** To explicitly align new and old feature spaces, we use a *single* cross-  
 1037 attention block with *pre-LayerNorm*, *8 heads*, and an FFN with *SwiGLU* and expansion  $4 \times$  (hidden  
 1038 size  $4S$ ), followed by a linear projection back to  $S$ ; dropout is disabled. Queries are produced  
 1039 from the current (student) features and keys/values from the frozen previous-task (teacher) features,  
 1040 following the standard encoder-decoder attention pattern (Vaswani et al., 2017). This provides a  
 1041 direct path for geometry transfer while keeping depth small.  
 1042

1043 **Mixture-of-Experts (MoE).** We optionally replace the projection MLP with a *sparse MoE*  
 1044 (Switch-style) comprising *4 experts*. A lightweight router (LayerNorm + linear) performs *top-1*  
 1045 routing per sample; the selected expert is a SwiGLU FFN with expansion  $4 \times$  (hidden size  $4S$ ) and  
 1046 a linear projection back to  $S$ ; dropout is disabled. This trades dense capacity for conditional com-  
 1047 putation and has been shown to be stable and efficient at shallow depth (Shazeer et al., 2017; Fedus  
 1048 et al., 2022).

1049 **Interpretation and scope.** Table 5b compares representative lightweight instantiations of Lin-  
 1050 ear/MLP/XAttn/MoE under a common training protocol. Because parameter counts and FLOPs  
 1051 naturally co-vary across families (e.g., attention projections in XAttn or conditional routing in MoE),  
 1052 the absolute margins in Table 5b are best read as evidence of cross-family robustness under standard  
 1053 small-footprint configurations, rather than as a capacity-matched ranking. To aid interpretation, we  
 1054 provide symbolic capacity accounting below, and—critically—Table 4 shows consistent gains when  
 1055 toggling  $\mathcal{L}_{\text{bi}}/\mathcal{L}_{\text{cyc}}$  at a *fixed* architecture, indicating objective-level benefits beyond raw capacity.  
 1056

1057 **Symbolic capacity accounting (per map).** Let  $S$  denote the feature dimension and  $mS$  the MLP  
 1058 hidden size. Ignoring biases, LayerNorm, and constants:

$$\begin{aligned}
 \text{Linear: } & \Theta(S^2) \\
 \text{2-layer MLP: } & \Theta(2mS^2) \quad (S \rightarrow mS \rightarrow S; \text{ default } m=32) \\
 \text{1-block XAttn: } & \underbrace{4S^2}_{\text{Q/K/V/O}} + \underbrace{8S^2}_{\text{FFN (4×)}} \approx 12S^2 \\
 \text{Sparse MoE (4 experts, top-1): } & \underbrace{\Theta(S^2)}_{\text{router}} + \underbrace{8S^2}_{\text{active expert per sample}}
 \end{aligned}$$

1059 These orders clarify that differences observed in Table 5b reflect both architectural choices and their  
 1060 typical capacity/compute footprints under small, practical configurations.  
 1061

1062 **Limitations and future work.** We refrain from drawing capacity-controlled rankings from  
 1063 Table 5b. A comprehensive study that matches parameter and FLOP budgets across Lin-  
 1064 ear/MLP/XAttn/MoE and sweeps  $S \times m$  is orthogonal to our present focus and left as informative  
 1065 future work. The intended takeaway is that our objective improves diverse families under a common  
 1066 training protocol, while capacity remains an important factor for downstream performance.  
 1067

## 1068 A.11 LIMITATIONS OF IMAGENET-1K EXPERIMENTS

1069 Under our current setup, scaling this protocol to the full 1K-class ImageNet dataset would require  
 1070 several weeks of continuous GPU time, making such an experiment unrealistic for the present study.  
 1071 Consequently, we restrict large-scale evaluation to ImageNet-100, whose class count still exposes  
 1072 the challenges of our current setup while remaining computationally feasible.  
 1073

1080 A.12 LLM USAGE DISCLOSURE  
10811082 We used ChatGPT (OpenAI) as a writing copilot to critique and polish the prose (clarity, tone, and  
1083 grammar). The model was not used to generate technical content, figures, or results, nor to design  
1084 experiments or draw conclusions. The authors take full responsibility for all claims and the accuracy  
1085 of the paper. We gratefully acknowledge ChatGPT and the OpenAI team for editorial assistance.  
10861087 B REBUTTAL APPENDIX  
10881089 B.1 PROTOTYPE-BASED EFCIL AND GAUSSIAN MODELING IN PRIOR WORK  
10901091 Prototype-based strategies are already a well-established line of work in exemplar-free class-  
1092 incremental learning (EFCIL). Broadly, existing methods differ in how they *represent* class proto-  
1093 types (means vs. Gaussians) and how they *use* them (direct classification vs. pseudo-feature rehearsal  
1094 vs. drift compensation).1095 **Mean prototypes with synthetic feature rehearsal.** Early prototype-based EFCIL methods operate  
1096 purely at the level of class means and rely on synthetic features derived from these prototypes:  
10971098 

- **PASS** stores one feature mean per class and performs prototype rehearsal by injecting  
1099 Gaussian noise around these means to synthesize pseudo-features, which are mixed with  
1100 current-task data to train the classifier; a self-supervised rotation head is added to further  
1101 stabilize the backbone.
- **FeTrIL** also stores class means, but does not train a generator; instead, it produces old-  
1102 class pseudo-features by a geometric translation of real features from the current task,  $\hat{f} =$   
1103  $f_{\text{new}} + \mu_{\text{old}} - \mu_{\text{new}}$ , and uses these translated features together with new-class features to  
1104 train a linear classifier.

  
11061107 In both cases, prototypes are *means only*, and their primary role is to anchor synthetic samples in  
1108 feature space.1109 **Explicit Gaussian prototypes and covariance-aware classification.** A second line of work moves  
1110 beyond means and explicitly models *Gaussian* structure for each class:  
11111112 

- **FeCAM** estimates per-class means and covariances and performs Bayes/Mahalanobis clas-  
1113 sification in this Gaussian space, reporting that explicit covariance modeling outperforms  
1114 sampling from a normal distribution followed by retraining a linear classifier.
- **EFC** treats each class as a Gaussian prototype  $(\mu_c, \Sigma_c)$  and samples from these Gaussians  
1115 to perform asymmetric prototype rehearsal (PR-ACE), mixing sampled features and current  
1116 data to improve the stability–plasticity trade-off, while explicitly compensating prototype  
1117 drift across tasks.
- **AdaGauss** likewise represents each class as  $\mathcal{N}(\mu_c, \Sigma_c)$  and introduces an anti-collapse reg-  
1118 ularizer based on the Cholesky factor of  $\Sigma_c$  to prevent rank deficiency and feature collapse,  
1119 together with covariance-adaptation mechanisms that update  $(\mu, \Sigma)$  across tasks (e.g., by  
1120 transporting samples (by Gaussian Sampling on prototype’s mean and covariance) through  
1121 an adapter or via Bayes classification).

  
11241125 These methods clearly show that Gaussian prototypes and covariance-aware decisions are already a  
1126 recurring and effective design choice in EFCIL.1127 **Mean-only prototype drift compensation.** A third group of methods focuses on compensating  
1128 prototype drift but still uses *means only*. LDC stores one mean prototype per class and learns a  
1129 forward projector that maps old-space means into the new feature space after each task, thereby  
1130 correcting their positions without explicitly modeling covariance. ADC also centers its design on  
1131 means: it constructs adversarially perturbed current-task inputs whose embeddings lie near old-class  
1132 means, and uses the resulting feature displacements to estimate how old means should move in the  
1133 new space. Neither LDC nor ADC models full Gaussian structure; instead, they treat prototype drift  
as a mean-shift phenomenon.

1134  
 1135 **On suitability of Gaussian assumptions under ResNet18 backbone.** Using a standard ResNet-18  
 1136 backbone makes the Gaussian modeling assumption particularly plausible in our setting. After su-  
 1137 pervised training on natural images, the penultimate-layer features  $z = f_\theta(x)$  for a fixed class tend  
 1138 to concentrate in a relatively low-dimensional, approximately elliptical region; representation learn-  
 1139 ing has already disentangled many subconcepts and maps them into a single, well-clustered class  
 1140 manifold Lee et al. (2018). In practice, this implies that simple multivariate Gaussian descriptors—  
 1141 empirical class means  $\mu_c$  and covariances  $\Sigma_c$ —can be reliably estimated in the feature space and  
 1142 used as compact summaries of the data. Such Gaussian descriptors capture the dominant intra-class  
 1143 variability while remaining easy to update and analyze, which is particularly advantageous in an  
 1144 exemplar-free continual learning setup.

1144 **Our position.** Against this backdrop, **our work does not introduce Gaussian prototypes as a**  
 1145 **new concept.** On the contrary, we build on this existing line of Gaussian-based EFCIL (FeCAM,  
 1146 EFC, AdaGauss) and on mean-based drift compensation (LDC, ADC). Our contribution lies in how  
 1147 these prototypes are **transported across tasks**: we introduce a bidirectional projector with cycle  
 1148 consistency that jointly learns old→new and new→old mappings during training, with theoretical  
 1149 guarantees linking cycle loss to spectral contraction and classification stability. In other words,  
 1150 Gaussian prototypes and covariance modeling are established ingredients in prior work; our novelty  
 1151 is in integrating them into a principled, bidirectionally aligned transport mechanism that directly  
 1152 targets drift and cycle inconsistency, rather than in proposing Gaussians themselves.

1153

## 1154 B.2 MEASURING THE ADHERENCE OF USED DATA TO THE GAUSSIAN ASSUMPTIONS.

1155

1156 **On the suitability of multivariate normality tests.** In response to the reviewer’s suggestion, we  
 1157 note that Mardia’s multivariate normality test is not well aligned with the geometry and scale of  
 1158 continual-learning vision features. Mardia’s test relies on third- and fourth-order moments (mul-  
 1159 tivariate skewness and kurtosis), and its asymptotic calibration assumes moderate dimension and  
 1160 i.i.d. samples. In high-dimensional settings with complex dependence structures and large sample  
 1161 sizes—as in deep feature spaces of EFCIL benchmarks—this test is known to be overly restrictive  
 1162 and to reject even when deviations are mild and do not affect downstream methods Ebner & Henze  
 1163 (2020); Chen & Xia (2023). These works further report that numerical multivariate normality tests  
 1164 such as Mardia’s tend to become too restrictive for large datasets and therefore recommend graphical  
 1165 diagnostics instead of using Mardia as a hard decision rule. In addition, recent studies highlight that  
 1166 Mardia’s statistics are sensitive to sample size and dimensionality, leading to unstable or inconsistent  
 1167 normality decisions. In a machine-learning context, such strict normality tests have been repeatedly  
 1168 criticized as too restrictive for realistic data, motivating non-Gaussian or more robust alternatives.

1168 Instead of relying on a global hypothesis test that almost always rejects in our regime, we assess  
 1169 Gaussianity through a geometric, class-wise visualization in a low-dimensional embedding space.  
 1170 For a fixed subset of classes, we periodically extract their validation features across the training se-  
 1171 quence, embed them with t-SNE, and overlay the corresponding fitted class-conditional Gaussians  
 1172 by plotting their one- and two-standard-deviation ellipses. This procedure directly reveals whether  
 1173 the learned representations form compact, approximately elliptical clusters that are stable over time,  
 1174 rather than providing only a binary accept/reject decision. In the continual-learning setting, such  
 1175 snapshots are more informative: they expose how class-conditional geometry evolves across tasks  
 1176 and whether it remains compatible with an ellipsoidal (approximately Gaussian) model that under-  
 1177 lies our prototype-based design, even if strict multivariate normality is violated in the tails, as is  
 1178 typical for deep vision features.

1179

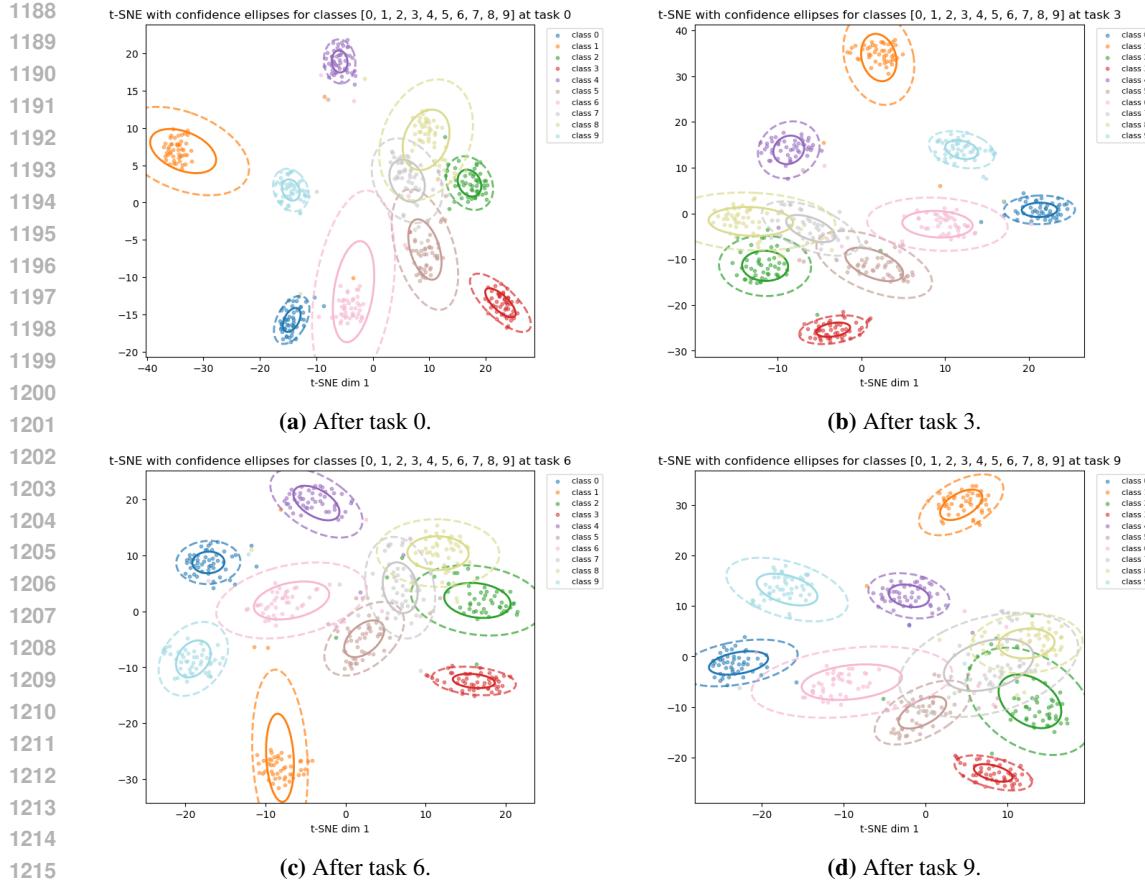
## 1180 B.3 t-SNE SNAPSHOTS OF TASK-0 CLASSES ON CIFAR-100 (10 TASKS)

1181

1182 To better understand how feature distributions evolve over time, we conduct a t-SNE study on the  
 1183 *balanced* CIFAR-100 benchmark with  $T=10$  equally sized tasks. We fix the ten classes introduced  
 1184 at task 0 and, after finishing tasks 0, 3, 6, and 9, extract their validation features and project them with  
 1185 t-SNE. For each snapshot in Figure 8, we fit a Gaussian to the features of each class and visualize  
 1186 its one- and two-standard-deviation regions with solid and dashed ellipses, respectively.

1187

1188 Across all stages, the per-class clusters remain roughly unimodal and are well covered by a single  
 1189 Gaussian, rather than fragmenting into multiple disjoint modes. This suggests that the main source of



**Figure 8.** t-SNE of task-0 classes on CIFAR-100 with  $T=10$ . We project validation features of the same ten classes after training tasks 0, 3, 6, and 9. Solid and dashed ellipses mark the one- and two-standard-deviation regions of the fitted Gaussian for each class.

error is not a gross mismatch between the Gaussian prototype assumption and the empirical feature geometry.

#### B.4 INTUITIVE VIEW OF BIDIRECTIONAL CYCLE CONSISTENCY AND LOW-DRIFT REGIMES

**From post-hoc adapters to in-task bidirectional alignment.** Most prior drift-compensation pipelines follow a two-stage pattern: during Stage I the new encoder  $f_t$  is regularized toward  $f_{t-1}$  (often via distillation), and only in Stage II is an adapter  $A$  trained *post hoc* to map old features into the new space (Sec. 2.3). Our goal in Sec. 3.2 is to make this duality explicit and move it *inside* Stage I: we jointly learn a distiller  $D: z_{\text{new}} \rightarrow z_{\text{old}}$  and an adapter  $A: z_{\text{old}} \rightarrow z_{\text{new}}$  while the backbone is still being optimized. Intuitively,  $D$  is a *feature-level projected distiller*: it pulls the current representation  $z_{\text{new}}$  toward the frozen teacher  $z_{\text{old}}$  and acts as a geometry-aware regularizer on  $f_t$ ;  $A$  is the forward transport map used at inference, learning how old features should be expressed in the evolving new space so that old prototypes remain usable under  $f_t$ . The bidirectional loss  $L_{\text{bi}}$  (Eq. 6) enforces this division of roles: (i)  $D(z_{\text{new}})$  should be close to  $z_{\text{old}}$  (backward compatibility), and (ii)  $A(z_{\text{old}})$  should chase the current  $z_{\text{new}}$  (forward transport), *without* pulling  $f_t$  backwards.

**Why this is not adversarial training.** Cycle consistency in Eq. 7 is inspired by the success of cycle-based constraints (e.g., CycleGAN (Zhu et al., 2017)), but in our case it is a *self-consistency* constraint rather than an adversarial game: applying  $D$  then  $A$  (or  $A$  then  $D$ ) should approximately return the original feature on the data support. A key design choice is that both  $L_{\text{bi}}$  and  $L_{\text{cyc}}$  are implemented with *stop-gradient targets*: the term  $\|A(z_{\text{old}}) - \text{stopgrad}(z_{\text{new}})\|^2$  updates  $A$  only, so  $A$  must follow the evolving  $f_t$  rather than dragging it; the cycle terms  $\|A(D(z_{\text{new}})) - \text{stopgrad}(z_{\text{new}})\|^2$

1242 and  $\|D(A(z_{\text{old}})) - \text{stopgrad}(z_{\text{old}})\|^2$  update  $(A, D)$  but not  $f_t$ , stabilizing the maps without reducing  
 1243 the plasticity of the backbone. Empirically, we found that *removing* these stop-gradients causes  
 1244  $A$  and  $D$  to behave almost adversarially:  $A$  pushes features in one direction,  $D$  tries to undo it,  
 1245 and the gradients from  $A$  propagate into  $f_t$  in a way that weakens  $D$ ’s regularization role. In this  
 1246 regime,  $D$  stops acting like a teacher and starts chasing  $A$  instead; both maps overfit to each other  
 1247 and accuracy collapses sharply. This failure mode is exactly why Sec. 3.2 and Eqs. 6–7 explicitly  
 1248 emphasize gradient routing:  $D$  regularizes  $f_t$ , while  $A$  and the cycle loss are trained *around* the  
 1249 evolving representation, not against it.

1250 **An intuitive reading of Theorem 1 and Corollary 2.** Theorem 1 analyzes the cycle loss in a  
 1251 whitened feature space where each side has identity covariance. In that space, the expected cycle  
 1252 error is exactly the squared Frobenius distance between the composed map  $\tilde{A}\tilde{D}$  and the identity.  
 1253 Minimizing  $L_{\text{cyc}}$  can therefore be read as:

1255 “Make the round-trip map ‘*old* → *new* → *old*’ act like doing nothing, and do so  
 1256 in a way that keeps the singular values of that map close to 1.”

1258 Geometrically, this means that  $A$  and  $D$  jointly behave like a near-isometry on the data support:  
 1259 they preserve distances and angles up to a small distortion factor. Corollary 2 then takes a classi-  
 1260 fier’s perspective. If our transport faithfully preserves (i) class means and (ii) the main anisotropies  
 1261 encoded by covariances, then the quadratic Bayes scores change only slightly. As long as this score  
 1262 perturbation is smaller than the margin between classes, their relative order does not flip and the old  
 1263 decision boundary is preserved. In short:

1264

- 1265 •  $L_{\text{bi}}$  keeps  $A$  and  $D$  *centered* on the correct old/new features (low transport error).
- 1266
- 1267 •  $L_{\text{cyc}}$  keeps their composition close to an isometry (no rank collapse or extreme stretching).
- 1268
- 1269 • Together, they stabilize margins and explain why we see lower forgetting in Tables 1–3 and  
 1270 Figs. 3–5.
- 1271

1272 **Why CUB-200 shows smaller gains: the role of learning rates.** The same intuition also clarifies  
 1273 why our improvements on CUB-200 are modest and sometimes negative relative to EFC (Table 2).  
 1274 By design,  $D$  is meant to be a *regularizer* for the backbone, not a replacement encoder: its learning  
 1275 rate should not dominate that of  $f_t$ , so that  $f_t$  can still adapt while  $D$  gently pulls it toward the old  
 1276 space. If  $D$  is trained much faster than  $f_t$ ,  $D$  will effectively learn to project any new representation  
 1277 back toward the old one, and the backbone will stop learning— $D$  becomes a projector rather than a  
 1278 regularizer.

1279 In the from-scratch regimes (CIFAR-100, TinyImageNet, ImageNet-100), we use a relatively large  
 1280 learning rate that is *shared* between the backbone and the bidirectional projector (i.e.,  $A$  and  $D$ ).  
 1281 Representation drift across tasks is substantial in this setting, so  $D$  can act as a meaningful regular-  
 1282 izer and the joint training of  $(A, D)$  has room to improve transport and reduce forgetting. In contrast,  
 1283 on CUB-200 we follow the common practice of fine-tuning from an ImageNet-pretrained ResNet-18  
 1284 with a *very low* backbone learning rate: the backbone drifts only slightly, and for stability we must  
 1285 keep the learning rates of  $D$  and  $A$  low as well. In this low-drift, low-step-size regime,  $D$  cannot  
 1286 play an aggressive regularizing role without freezing  $f_t$ , and the pair  $(A, D)$  ends up very close to  
 1287 the AdaGauss baseline behavior. As a result, our method behaves almost identically to AdaGauss  
 1288 on CUB-200, and the small differences at  $T=20$  are largely within run-to-run variability rather than  
 1289 systematic gains or losses.

1290 **Takeaway.** Conceptually,  $D$  is a feature-level distiller that keeps  $f_t$  close to  $f_{t-1}$ ,  $A$  is its for-  
 1291 ward counterpart used for prototype transport, and the cycle loss gently forces  $A$  and  $D$  to agree  
 1292 as near-inverses on the data manifold without engaging in adversarial dynamics. This design is  
 1293 most beneficial exactly in the regimes where representation drift is non-negligible and the backbone  
 1294 is allowed to move (our from-scratch experiments); in low-drift fine-tuning settings such as CUB-  
 1295 200, the theory predicts—and our results confirm—that the incremental benefit over AdaGauss will  
 1296 naturally be smaller.

1296  
1297

## B.5 ON ADAGAUSS, FULL-COVARIANCE PROTOTYPES, AND THE NEED FOR ROBUSTNESS

1298  
1299  
1300  
1301  
1302  
1303  
1304

**AdaGauss and full-covariance prototypes.** AdaGauss is an exemplar-free CIL method that represents each class  $c$  with a Gaussian prototype  $\mathcal{N}(\mu_c, \Sigma_c)$  and uses these Gaussians both for classification (via a Bayes classifier) and for Gaussian sampling to train the prototype adapter. To make this feasible and numerically stable, AdaGauss introduces an anti-collapse loss that regularizes the class-wise covariance matrices through a Cholesky factorization of  $\Sigma_c$ . Intuitively, this loss discourages rank-deficient or nearly singular covariances and encourages well-spread, anisotropic feature distributions, which improves the separability of classes in the embedding space.

1305  
1306  
1307  
1308  
1309  
1310  
1311  
1312  
1313  
1314

**Why dimensionality reduction is necessary.** The Cholesky-based anti-collapse term and Gaussian sampling both require each  $\Sigma_c$  to be symmetric positive-definite, which in turn demands that the empirical covariance be full rank and well-conditioned. In the exemplar-free, incremental setting, the number of available samples per class is limited at each stage; if one were to keep the feature dimension at 512 (the standard ResNet-18 penultimate layer size), ensuring full-rank, positive-definite covariances across all classes becomes difficult or even impossible in practice, and Cholesky decompositions may fail or become unstable. To address this, AdaGauss applies a learned linear reduction layer after the ResNet-18 backbone, mapping  $512 \rightarrow 64$ . This projection increases the effective sample-to-dimension ratio for each class, yielding more reliable covariance estimates and more stable Cholesky factors, while still preserving enough discriminative information for downstream classification.

1315  
1316  
1317

**Why dimensionality reduction alone is still not sufficient.** However, as we highlight in our “Pitfall of anti-collapse loss” discussion, even after projecting to  $S=64$  the mini-batch covariance

$$\Sigma = \frac{1}{B-1} (z - \bar{z})^\top (z - \bar{z})$$

1320  
1321  
1322  
1323  
1324  
1325  
1326  
1327

can still be non-SPD or severely ill-conditioned in realistic EFCIL regimes (e.g., small  $B$ , highly correlated features, or class imbalance). This leads to Cholesky failures and, more subtly, to inflated scales near ill-conditioning. For this reason we go beyond the original AdaGauss design and introduce a *robust* variant of the anti-collapse loss: we explicitly enforce SPD via symmetrization and shrinkage, add a jitter term, and fall back to diagonal or eigenvalue-floored covariances when necessary (see “Pitfall of anti-collapse loss” and Eqs. (11)–(13) in the main paper). In other words, the  $512 \rightarrow 64$  reduction is a necessary step to make full-covariance modeling viable in EFCIL, but it is not sufficient on its own to guarantee numerical robustness; our modifications are precisely aimed at closing this remaining gap.

1328  
1329  
1330  
1331  
1332  
1333  
1334  
1335  
1336

**Connection to common practice: projectors after ResNet.** Placing a learnable projector after a ResNet encoder to obtain a lower-dimensional feature space is common practice in modern representation learning. For example, SimCLR (Chen et al., 2020a) and MoCo v2 (Chen et al., 2020b) append a projection head after a ResNet backbone to map high-dimensional penultimate features into a lower-dimensional embedding space for contrastive learning, and supervised contrastive learning (Khosla et al., 2020) adopts a similar ResNet+projector architecture. These works provide independent evidence that: (i) projecting 512-dimensional ResNet features into a lower-dimensional space (e.g., 128 or 64) is fully compatible with strong classification performance, and (ii) the projector is an integral part of the representation, not a crude post-processing step.

1337  
1338  
1339  
1340  
1341

**Implications for our method.** Our implementation follows the public AdaGauss codebase and retains this  $512 \rightarrow 64$  projection. All Gaussian prototypes, anti-collapse losses, and transport maps are therefore defined in the same  $S = 64$  feature space. In the next subsection, we quantify the *incremental* parameter and compute the overhead of adding our bidirectional projector on top of this existing 64-dimensional design.

1342  
1343

## B.6 PARAMETER AND COMPUTE OVERHEAD IN 64-DIMENSIONAL SETTING

1344  
1345  
1346  
1347  
1348  
1349

**Setup.** Following AdaGauss (Rypeść et al., 2024), we use a ResNet-18 backbone followed by a linear reduction layer that maps  $512 \rightarrow 64$ , and already includes a single projected distiller  $D$  (“distiller”, new $\rightarrow$ old) implemented as a two-layer MLP with GELU in this 64-dimensional space. Our bidirectional variant keeps this setup fixed and introduces an additional adapter  $A$  (old $\rightarrow$ new) with the *same* architecture. Concretely, both  $A$  and  $D$  are

$$z \in \mathbb{R}^S \xrightarrow{W_1} \mathbb{R}^{mS} \xrightarrow{\text{GELU}} \mathbb{R}^{mS} \xrightarrow{W_2} \mathbb{R}^S,$$

1350 where the width multiplier is  $m = 32$  (hidden size  $mS = 2048$ ). All overhead discussed below is  
 1351 thus computed in the reduced  $S=64$  space.  
 1352

1353 **Exact parameter counts (with biases).** For a two-layer MLP  $\mathbb{R}^S \rightarrow \mathbb{R}^{mS} \rightarrow \mathbb{R}^S$  with biases, the  
 1354 parameter count is

$$1355 \quad \# \text{params}_{\text{MLP}} = (S \cdot mS) + (mS) + (mS \cdot S) + S = 2mS^2 + (m+1)S.$$

1356 With  $S=64$  and  $m=32$  we obtain

$$1357 \quad \# \text{params}_{\text{MLP}} = 2 \cdot 32 \cdot 64^2 + 33 \cdot 64 = 262,144 + 2,112 = \mathbf{264,256}$$

1359 parameters for a *single* projector ( $A$  or  $D$ ). The bidirectional module (two maps,  $A+D$ ) therefore  
 1360 contains  
 1361

$$1362 \quad \# \text{params}_{A+D} = \mathbf{528,512}$$

1363 parameters in total (about 2.02 MiB in FP32).

1364 For comparison, a standard ResNet-18 backbone has on the order of 11M parameters (depending  
 1365 slightly on the classifier head). Thus, relative to the published AdaGauss configuration:

1366

- 1367 The original ADAGAUSS baseline already includes one such MLP projector  $D$  ( $\approx 264$ k  
 1368 parameters).
- 1369 Our bidirectional extension adds *only one extra MLP A*, i.e., an additional

$$1370 \quad \Delta \# \text{params} = \mathbf{264,256}$$

1372 parameters on top of ADAGAUSS, which is roughly

$$1373 \quad \frac{264,256}{11,000,000} \approx 2.4\%$$

1375 of the ResNet-18 backbone size.  
 1376

1377 In other words, the extra adapter introduced by our method increases the overall parameter count by  
 1378 only a small single-digit percentage relative to the backbone.  
 1379

1380 Table 6: CIFAR-100( $T=10$ ): Sensitivity of  $\mathcal{L}_{\text{bi}}$ ,  $\mathcal{L}_{\text{cyc}}$ , and  $\alpha$ .

| <b>Settings</b> | <b><math>T=10</math></b>  |                            |          | <b><math>T=20</math></b> |                      |                       |                      |
|-----------------|---------------------------|----------------------------|----------|--------------------------|----------------------|-----------------------|----------------------|
|                 | $\mathcal{L}_{\text{bi}}$ | $\mathcal{L}_{\text{cyc}}$ | $\alpha$ | $A_{\text{last}}(\%)$    | $A_{\text{inc}}(\%)$ | $A_{\text{last}}(\%)$ | $A_{\text{inc}}(\%)$ |
| 5               | 1                         | 1                          | 1        | 50.6                     | 64.2                 | 41.5                  | 56.5                 |
| 0               | 1                         | 1                          | 1        | 47.8                     | 61.8                 | 39.0                  | 54.9                 |
| 5               | 0                         | 1                          | 1        | 49.4                     | 63.1                 | 40.2                  | 55.8                 |
| 0               | 0                         | 1                          | 1        | 46.8                     | 60.9                 | 37.9                  | 54.4                 |
| 5               | 1                         | 0                          | 1        | 49.7                     | 63.3                 | 39.2                  | 55.2                 |
| 5               | 1                         | 0.5                        | 1        | 51.0                     | 64.4                 | 42.4                  | 56.1                 |
| 5               | 1                         | 2                          | 1        | 48.7                     | 62.9                 | 42.6                  | 56.5                 |
| 0.5             | 1                         | 1                          | 1        | 47.4                     | 62.3                 | 39.8                  | 55.3                 |
| 1               | 1                         | 1                          | 1        | 51.3                     | <b>64.7</b>          | 40.0                  | 56.4                 |
| 10              | 1                         | 1                          | 1        | 47.2                     | 60.9                 | 38.8                  | 53.8                 |
| 5               | 0.5                       | 1                          | 1        | 50.4                     | 64.1                 | 40.8                  | 55.7                 |
| 5               | 2                         | 1                          | 1        | <b>51.9</b>              | 64.5                 | <b>42.9</b>           | <b>57.0</b>          |

1397 **B.7 PARAMETER SENSITIVITY AND CHOICE OF DEFAULT HYPERPARAMETERS**  
 1398

1399 In the main experiments we did not perform an extensive grid search. Instead, we chose the scales  
 1400 of the bidirectional and cycle-consistency losses based on their rough magnitude:  $\lambda_{\text{bi}}=5$  and  $\lambda_{\text{cyc}}=1$   
 1401 were selected so that the additional terms had a similar order of contribution as the task loss and KD  
 1402 loss. For the anti-collapse loss we simply inherited the default scaling factor  $\alpha=1$  from AdaGauss.  
 1403 Our modification to the anti-collapse objective is a “safer” formulation, but it does not change the  
 1404 basic role or scale of this regularizer, so we kept  $\alpha$  fixed in the original set of experiments.

The parameter-sensitivity study in Table 6 varies  $\lambda_{\text{bi}} \in \{0, 0.5, 1, 5, 10\}$ ,  $\lambda_{\text{cyc}} \in \{0, 0.5, 1, 2\}$ , and  $\alpha \in \{0, 0.5, 1, 2\}$ . It shows that there are alternative configurations of  $(\lambda_{\text{bi}}, \lambda_{\text{cyc}}, \alpha)$  that can slightly outperform our default choice on CIFAR-100. Nevertheless, for all main results we retain the original defaults. We wish to avoid the impression that our gains are purely due to aggressive hyperparameter tuning: the proposed bidirectional module is already consistently better than the baselines across a reasonably wide region of the hyperparameter space, and our reported improvements hold even under this conservative, non-grid-searched setting.

## B.8 CHOICE OF CLASSIFIER.

Table 7: Linear classifier vs. Bayesian classifier on CIFAR-100.

| Classifier        | T=10                       |                           | T=20                       |                           |
|-------------------|----------------------------|---------------------------|----------------------------|---------------------------|
|                   | $A_{\text{last}} \uparrow$ | $A_{\text{inc}} \uparrow$ | $A_{\text{last}} \uparrow$ | $A_{\text{inc}} \uparrow$ |
| Bayesian          | 50.6                       | 64.2                      | 41.5                       | 56.5                      |
| Linear (sampling) | 51.1                       | 64.7                      | 40.8                       | 55.7                      |

Our main experiments use the Bayesian classifier described in Sec.A.2, which predicts by Mahalanobis distance to the stored Gaussian prototypes. For completeness, we additionally evaluate a *linear* classifier that is trained purely from these Gaussians, as reported in Table 7. Following the public AdaGauss implementation, we construct a synthetic training set by sampling features from each class-wise Gaussian  $\mathcal{N}(\mu_c, \Sigma_c)$  and optimize a single linear head over all seen classes with standard cross-entropy (denoted *Linear (sampling)*). In the EFC (Magistri et al., 2024; 2025) literature, this procedure is often referred to as **Gaussian rebalancing**, but conceptually it is the same mechanism.

As shown in Table 7, the sampling-based linear head closely matches the Bayesian classifier: the differences in  $A_{\text{last}}$  and  $A_{\text{inc}}$  on CIFAR-100 are within a fraction of a percentage point for both  $T=10$  and  $T=20$ . This indicates that our conclusions are not sensitive to the choice between a Bayesian classifier and a Gaussian-sampling linear head.

## B.9 ADDITIONAL HALF DATASET(WARM-START) RESULTS

Table 8: Warm-start(half as first task) evaluation on CIFAR-100 and TinyImageNet with  $T \in \{5, 10\}$ . We report last-task ( $A_{\text{last}}$ ) and average incremental ( $A_{\text{inc}}$ ) accuracy (%). Best results are **bold**.

| Method   | CIFAR-100         |                  |                   |                  | TinyImageNet      |                  |                   |                  |
|----------|-------------------|------------------|-------------------|------------------|-------------------|------------------|-------------------|------------------|
|          | T=5               |                  | T=10              |                  | T=5               |                  | T=10              |                  |
|          | $A_{\text{last}}$ | $A_{\text{inc}}$ | $A_{\text{last}}$ | $A_{\text{inc}}$ | $A_{\text{last}}$ | $A_{\text{inc}}$ | $A_{\text{last}}$ | $A_{\text{inc}}$ |
| EFC      | 62.0              | 68.9             | 60.9              | 68.2             | 51.3              | 57.9             | 50.4              | 57.5             |
| ADC      | 47.9              | 59.5             | 41.9              | 54.7             | 37.2              | 45.8             | 25.3              | 34.6             |
| LDC      | 50.3              | 61.3             | 43.8              | 55.3             | 38.6              | 46.2             | 26.1              | 35.4             |
| AdaGauss | 57.9              | 65.2             | 55.1              | 62.0             | 47.7              | 55.2             | 45.8              | 54.1             |
| Ours     | 61.2              | 67.5             | 58.2              | 65.5             | 49.3              | 56.3             | 46.9              | 54.8             |

Here we present the results under a warm-start scenario, where the model is first trained on a larger initial portion of the data ( $T=5$  or  $T=10$  tasks) before entering the incremental phase. This setting is analogous to the half-dataset protocol: it is easier than learning from scratch, since the feature extractor is already partially trained, but it may be closer to some practical applications. The corresponding results on CIFAR-100 and TinyImageNet are reported in Table 8. Our method consistently ranks second, while EFC achieves the best  $A_{\text{last}}$  and  $A_{\text{inc}}$  across all warm-start configurations.

This behavior is in line with our expectations and with the specific design choices in EFC. These results highlight that EFC is particularly advantaged by a large initial task.

Recall that EFC estimates an Empirical Feature Matrix  $E_t$  per task and penalizes representation drift via  $L_{\text{EFM}}(f_t, f_{t-1}) = \mathbb{E}_x[(f_t(x) - f_{t-1}(x))^\top (\lambda_{\text{EFM}} E_{t-1} + \eta I)(f_t(x) - f_{t-1}(x))]$ , with fixed  $\lambda_{\text{EFM}}$  and  $\eta$ . When the first task  $C_1$  already contains 50% of all classes, the corresponding  $E_1$  is estimated from a large and diverse subset of the full label space, and its non-zero eigenvalues span a relatively high-rank, discriminative subspace. In this regime, the anisotropic penalty  $\lambda_{\text{EFM}} E_1$  effectively “freezes” a strong initial representation  $f_1$  along most of those directions, while allowing later tasks to adjust primarily in the orthogonal complement. At the same time, EFC’s prototype-based replay (PR-ACE) maintains Gaussian prototypes  $p_c = (\mu_c, \Sigma_c)$  for each class  $c$ , and uses a prototype-heavy cross-entropy term over all classes  $C_{1:t}$ . Under warm start, this replay distribution is dominated by the numerous and well-estimated prototypes from classes in  $C_1$ . Thus, both the feature-space regularizer and the replay mechanism are strongly anchored on the large first task, which yields excellent retention for  $C_1$  and a small net performance advantage in the warm-start metric (which is itself class-weighted and therefore heavily influenced by  $|C_1|$ ).

The same mechanism, however, is less favorable in the cold-start regime used in our main paper, where each task contains only a small fraction of classes. In that setting,  $E_1$  is estimated from few classes and is therefore low-rank and less representative of the global class geometry, yet the same strong penalty  $\lambda_{\text{EFM}} E_1$  is applied from task 2 onward. This tends to anchor the backbone to a suboptimal initial representation and constrains its ability to reorganize as new classes arrive; additionally, early Gaussian prototypes are less reliable and their replay can propagate this bias across tasks. By contrast, our method is explicitly designed to maintain sufficient plasticity of the representation in the early tasks while still controlling drift, which leads to substantially better performance than EFC in the cold-start, class-incremental setting reported in the main paper. In summary, while EFC enjoys a slight advantage in the warm-start protocol—where its design is naturally aligned with a large, informative initial task—our method provides significantly stronger performance in the more challenging and practically relevant cold-start scenario.

EFC employs a strong regularization scheme, which is particularly advantageous when the first task is large and the feature space can be well shaped before incremental training. In this easier warm-start regime, the gap between our method and EFC remains moderate (typically within a few percentage points), and both clearly outperform AdaGauss and other drift-compensation baselines. However, in the more challenging learning-from-scratch setting, where the feature extractor must be learned incrementally from the very beginning, our method surpasses EFC by a substantial margin, showing that the proposed bidirectional alignment is most beneficial when representation drift is severe.

## B.10 ADDITIONAL CIFAR100 LONG-TAILED RESULTS

We follow the long-tailed CIL setup of Liu et al. (2022) and construct an ordered CIFAR-100-LT benchmark with imbalance ratio  $r=20$  (denoted CIFAR-100-LT  $r=20$ ). Here, classes are divided into head and tail groups based on their sample counts; in the ordered protocol, head classes appear in earlier tasks, whereas tail classes—with as few as 1/20 of the head-class examples—are introduced only in later tasks.

Table 9: Results on CIFAR-100-LT ( $r=20$ ) with  $T \in \{10, 20\}$ . We report last-task ( $A_{\text{last}}$ ) and average incremental ( $A_{\text{inc}}$ ) accuracy (%). Best results are **bold**.

| <b>Method</b> | $T=10$            |                  | $T=20$            |                  |
|---------------|-------------------|------------------|-------------------|------------------|
|               | $A_{\text{last}}$ | $A_{\text{inc}}$ | $A_{\text{last}}$ | $A_{\text{inc}}$ |
| EFC           | 32.1              | 46.1             | 21.7              | 38.6             |
| ADC           | 26.7              | 51.3             | 12.9              | 38.3             |
| LDC           | 25.1              | 50.2             | 10.0              | 37.5             |
| AdaGauss      | 26.9              | 51.6             | 9.1               | 36.0             |
| <b>Ours</b>   | 30.7              | 52.1             | 13.6              | 38.9             |

1512 Table 9 summarizes the results on this benchmark for  $T \in \{10, 20\}$ . We compare our method with  
 1513 several exemplar-free projection-based baselines that were not specifically designed for long-tailed  
 1514 CIL and do not include strong regularization for tail classes (ADC, LDC, AdaGauss), alongside  
 1515 EFC. A consistent pattern emerges: for the non-specialized methods, the last-task accuracy  $A_{\text{last}}$   
 1516 suffers a sharp drop once the stream reaches tail-heavy tasks, indicating that the model overfits the  
 1517 scarce tail data and catastrophically forgets earlier head and medium classes.

1518 Long-tail continual learning with an ordered sequence of tasks, where head classes appear in early  
 1519 tasks and tail classes are introduced later, is conceptually very close to the warm-start protocol,  
 1520 in which the first task already contains a large, informative subset of classes. In both cases, the  
 1521 early tasks are dominated by head classes with many examples, so the backbone and any feature-  
 1522 consolidation mechanism are primarily shaped by these high-frequency classes and later tasks  
 1523 mainly fine-tune in their orthogonal complement. This is precisely the regime in which EFC is  
 1524 theoretically advantaged: its Empirical Feature Matrix is estimated on a large, diverse block of  
 1525 head classes, and its prototype-based replay is dominated by well-estimated prototypes from those  
 1526 classes, yielding strong retention for the initial head block.

1527 Overall, long-tailed class-incremental learning constitutes a related but distinct setting from the  
 1528 balanced benchmarks studied in this paper. It is a mature domain, studied on its own and originating  
 1529 from imbalanced data streams (Aguiar et al., 2024). Long-tailed streams typically require dedicated  
 1530 mechanisms (e.g., tailored re-weighting (Raghavan et al., 2024), debiasing (Liu et al., 2024), or tail-  
 1531 aware regularization (Xu et al., 2024)) to simultaneously protect head classes from forgetting and  
 1532 prevent overfitting on rare classes. Our method is not explicitly engineered for this regime, so we  
 1533 view CIFAR-100-LT  $r=20$  primarily as a stress test demonstrating that our bidirectional alignment  
 1534 remains competitive even under strong imbalance. A systematic treatment of exemplar-free long-  
 1535 tailed CIL is complementary to our main contribution and we leave it as an interesting direction for  
 1536 future work.

1537 **We thank the reviewers and readers for their careful reading of the appendix.**

1538  
 1539  
 1540  
 1541  
 1542  
 1543  
 1544  
 1545  
 1546  
 1547  
 1548  
 1549  
 1550  
 1551  
 1552  
 1553  
 1554  
 1555  
 1556  
 1557  
 1558  
 1559  
 1560  
 1561  
 1562  
 1563  
 1564  
 1565