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ABSTRACT

Recent advancements in Vision-Language Models (VLMs) have led to the emer-
gence of Vision-Language Generalists (VLGs) capable of understanding and gen-
erating both text and images. However, seamlessly generating an arbitrary se-
quence of text and images remains a challenging task for the current VLGs. One
primary limitation lies in applying a unified architecture and the same set of pa-
rameters to simultaneously model discrete text tokens and continuous image fea-
tures. Recent works attempt to tackle this fundamental problem by introducing
modality-aware expert models. However, they employ identical architectures to
process both text and images, disregarding the intrinsic inductive biases in these
two modalities. In this work, we introduce MODALITY-SPECIALIZED SYNER-
GIZERS (MOSS), a novel design that efficiently optimizes existing unified archi-
tectures of VLGs with modality-specialized adaptation layers, i.e., a Convolu-
tional LoRA for modeling the local priors of image patches and a Linear LoRA
for processing sequential text. This design enables more effective modeling of
modality-specific features while maintaining the strong cross-modal integration
gained from pretraining. In addition, to improve the instruction-following capa-
bility on interleaved text-and-image generation, we introduce LEAFINSTRUCT,
the first open-sourced interleaved instruction tuning dataset comprising 184,982
high-quality instances on more than 10 diverse domains. Extensive experiments
show that VLGs integrated with MOSS achieve state-of-the-art performance, sig-
nificantly surpassing baseline VLGs in complex interleaved generation tasks. Fur-
thermore, our method exhibits strong generalizability on different VLGs.1

1 INTRODUCTION

As multimodal learning research advances, there is a growing trend of building Vision-Language
Generalists (VLGs) (Sun et al., 2023b; 2024; Koh et al., 2023; Aghajanyan et al., 2022; Li et al.,
2023b; Dong et al., 2024; Team, 2024) that can comprehend and generate interleaved text and im-
ages, where multiple text segments and images are presented in arbitrary sequences. Compared
with previous Vision-Language Models (VLMs) (Alayrac et al., 2022; Li et al., 2023c; Liu et al.,
2023c; Fu et al., 2024; Qi et al., 2024b) that can only generate text and diffusion models (Ramesh
et al., 2021; Rombach et al., 2022) that can only produce images, such VLGs enable a wider ar-
ray of applications that require the simultaneous generation of both images and text, such as script
generation (Qi et al., 2024a), visual storytelling (Huang et al., 2016), and many others.

Despite these recent advancements, one notable issue of existing VLGs is that they often fail to pro-
duce coherent and high-quality interleaved text and images. As shown in the top example in Figure 1,
current state-of-the-art VLG, e.g., Emu2 (Sun et al., 2024), still suffers from poor text and image
quality, including heavy repetition in text and unnatural distortions in the image. We attribute this
issue to a fundamental challenge: existing VLGs use the same architecture (i.e., transformer back-
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Instruction: I need to clean cloudy glasses. Context: I have finished 
these steps: Acquire a soft, clean cloth <IMG>. Use a cleaner <IMG>.
Clean with dish soap and warm water <IMG>. What should I do next?

Instruction: Describe the new features of the latest mountain bike.
Context: Last year’s top sales now has an aluminum model <IMG>. 

The new Slash 9.9 bike has an upgraded drivetrain <IMG> … <IMG>
Output: The Slash
9.9 is available in 

27.5-inch and 29-inch 
wheel sizes. The Slash 9.9 
is available in 27.5-inch 
and 29-inch wheel sizes
<IMG>.

Output: how to clean glasses with a 
cloth and a drop of dish soap <IMG>.

Inferior Text and Image Quality

Weak Instruction-Following Capability

Figure 1: Failure cases of existing VLGs (Emu2 at the top and GILL at the bottom). The output text
with inferior quality is highlighted with underline. The regions that impede output images’ quality
are highlighted with red bounding boxes.

bone) with the same set of parameters to process both text and images, which may not be sufficient
to model the distinct inductive biases in each modality given their intrinsic discrepancy. For ex-
ample, text follows a linear, left-to-right sequence, whereas images are inherently two-dimensional,
composed of local priors in adjacent patches. Previous studies show that the transformer architec-
ture (Vaswani et al., 2017) predominantly employed in current LLMs and VLGs excels at sequence
modeling. But compared with convolutional architectures, transformer is less effective at modeling
local priors of adjacent image patches, which is crucial for various vision tasks (Zhong et al., 2024;
Chen et al., 2023d). Thus, applying a unified architecture with the same set of parameters can result
in poorer performance in mixed-modal generation, such as producing images with local inconsis-
tency and distortion among adjacent patches. Recently, several works (Akbari et al., 2023; Ye et al.,
2024) have proposed modality-aware expert models as an attempt to tackle this problem. However,
they still apply the same architecture to process both text and images, ignoring the inherent discrep-
ancies between these two modalities. These challenges underscore the need for careful architectural
design and specialized allocation of model parameters tailored to each modality.

Another critical challenge is existing VLGs (Sun et al., 2023b; 2024) often fail to adhere to human
instructions to perform interleaved generation tasks. In the bottom example in Figure 1, GILL (Koh
et al., 2023) failed to accurately follow the instruction and the context to complete the next step
for “clear cloudy glasses”. Instead, GILL produces unhelpful text that is repetitive with the input
and an image irrelevant to the task. While existing VLGs are often pretrained on interleaved docu-
ments (Zhu et al., 2023c), they are only instruction-tuned for single-modality generation, e.g., either
text or image generation, leading to a weak instruction-following capability of interleaved gener-
ation. Moreover, there is a lack of large-scale instruction-following data specifically designed for
interleaved generation, making the interleaved instruction tuning not scalable and less feasible.

To address these fundamental challenges, we first propose MODALITY-SPECIALIZED SYNERGIZ-
ERS (MOSS), a novel framework that introduces modality-specialized parameters to seamlessly
handle the inductive biases of different modalities within the unified architectures of VLGs. As
lightweight adaptation layers, our proposed MOSS is generic and can be integrated into most, if not
all, existing VLGs without requiring expensive pre-training. Specifically, for images, we introduce
Convolutional Low-Rank Adaptation (Convolutional LoRA) layers to better model the local prior
of image patches. For text, we employ a separate set of Linear Low-Rank Adaptation (LoRA) lay-
ers, acknowledging the distinct sequential modeling process of text compared to images. During
finetuning, both modality-specialized architectures are zero-initialized and progressively fine-tuned
to learn their modality-specific features, while the VLG’s parameters remain frozen, maintaining
strong cross-modal integration gained from massive pre-training. Our design allows each modality
to have a better representation of modality-specific features with its own specialized parameters and
optimal architectural design. Additionally, to improve VLG’s instruction-following capabilities un-
der diverse interleaved generation scenarios, we introduce LEAFINSTRUCT, the first open-sourced
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high-quality interleaved instruction tuning data with 184,982 instances spanning more than 10 do-
mains. To obtain high-quality instruction data at scale, we develop a rigorous automatic pipeline.

To validate the effectiveness and generalizability of our method and dataset, we adopt our method on
two different VLG backbones with discrete and continuous image token spaces, and conduct exten-
sive experiments on multiple datasets. The results demonstrate that the VLGs instruction-tuned with
our method achieves state-of-the-art performance across most evaluation aspects. Particularly, our
method can produce interleaved content with better quality, including text quality, image coherence,
text-image consistency, and helpfulness. In summary, our contributions are threefold. First, we
introduce MOSS, a novel design that enhances VLGs to generate interleaved content with modality-
specialized parameters and adaptation architectures. To the best of our knowledge, we are the first
to apply different adaptation architectures within an autoregressive generative model to improve
interleaved generation. Second, to fill the blank in existing resources and improve the instruction-
following capability of VLGs, we introduce the first open-sourced large-scale instruction-tuning
dataset across diverse domains. Third, by instruction-tuning existing VLGs with a small num-
ber of parameters, we achieve significant performance improvement on most aspects of evaluation
benchmarks, outperforming existing open-source baselines by 34.7% on InterleavedBench. We also
demonstrate that our approach can effectively generalize to different VLG backbones.

2 RELATED WORK

Interleaved Vision-Language Models There are two popular formulations for VLGs: The first
leverages VQGAN (Esser et al., 2021) to quantize an image into a long sequence of discrete tokens
and add the vocabulary in VQGAN’s codebook into the vocabulary of LLMs (Aghajanyan et al.,
2022; Yu et al., 2023; Yasunaga et al., 2023; Team, 2024; Jin et al., 2023). In this way, the LLMs are
trained with a unified autoregressive objective to predict image tokens or text tokens. The predicted
image tokens are fed into a VQGAN decoder to reconstruct images. The second formulation em-
ploys the CLIP image encoder to transform images into sequences of continuous embeddings (Koh
et al., 2023; Tang et al., 2023; Zhu et al., 2023b; Sun et al., 2023b; 2024; Li et al., 2024b; Wu et al.,
2023; Tian et al., 2024), which are then concatenated with text embeddings in their original order.
Compared to the first approach, this formulation often requires shorter sequences to represent an im-
age and generally yields superior performance. Our proposed method requires minimal assumptions
on VLG’s architectures and can be applied to many of the existing transformer-based VLGs.

Visual Instruction Tuning Xu et al. (2023) propose MultiInstruct, the first human-label visual
instruction tuning dataset to improve the generalizability of VLMs. LLaVA (Liu et al., 2023c)
leverages GPT-4 to convert image captions from existing annotations into three tasks, including
visual dialogues, visual question answering, and detail captions. Following studies either utilize
proprietary LLMs (Dai et al., 2023; Ye et al., 2023; Yin et al., 2023; Liu et al., 2023b; Li et al., 2023a;
Lyu et al., 2023; Zhu et al., 2023a; Wang et al., 2023; Chen et al., 2023b; Zhang et al., 2024) or
human efforts (Liu et al., 2023b; Xu et al., 2024) to augment visual instruction tuning tasks. Several
studies target specific aspects of VLMs’ capability, such as domain and instruction bias (Avrahami
et al., 2022; Liu et al., 2023a), object grounding (Chen et al., 2023a), and OCR (Zhang et al., 2023b;
Hu et al., 2023). Instruction tuning has also been widely applied to other vision-language tasks, such
as image editing (Brooks et al., 2023a) and interleaved text-image understanding (Jiang et al., 2024).
Hu et al. (2024) finetune a model that can follow multimodal instructions to generate desired images.
However, most existing instruction-tuning datasets only consider the tasks where the outputs are in
a single modality, i.e., either text or image. To facilitate the training and enhance the instruction-
following capabilities for VLGs, we curated LEAFINSTRUCT, the first instruction-tuning dataset
tailored for interleaved text-image generation across diverse domains, where the inputs and outputs
can contain interleaved text and multiple images.

Parameter-Efficient Finetuning (PEFT) PEFT methods (Hu et al., 2021; Li & Liang, 2021;
Karimi Mahabadi et al., 2021; Zaken et al., 2022; Jia et al., 2022; Lian et al., 2022; Jie & Deng,
2022; Liu & Huang, 2023; Liu et al., 2022; Chen et al., 2023d; Zhong et al., 2024) aim to adapt pre-
trained large models to various downstream tasks and have become prevalent in instruction tuning.
Typically, these methods involve freezing the pretrained large models while finetuning a minimal set
of newly introduced parameters. Recent studies (Wang et al., 2022; Zadouri et al., 2023; Lin et al.,
2024; Shen et al., 2024) propose to combine PEFT methods with Mixture-of-Experts to mitigate
task interference and enhance performance, particularly in visual instruction tuning where models
need to process inputs from two modalities. Our proposed MOSS is the first PEFT method that
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Figure 2: An autoregressive VLG with our proposed MOSS added to its linear layers. The linear
LoRA on the left side is specialized to generate text tokens and the Convolutional LoRA on the
right side is specialized to generate image patches. On the right handside, we show the details of
convolutional operation applied to autoregressively generate image tokens. Best viewed in color.

utilizes two distinct LoRA architectures—linear and convolutional—for text and image generation
within autoregressive VLGs.

3 BACKGROUND: AUTOREGRESSIVE VISION-LANGUAGE GENERALISTS

Existing autoregressive VLGs can be broadly classified into two categories: those that represent each
image as a sequence of discrete tokens (Yasunaga et al., 2023; Aghajanyan et al., 2022; Team, 2024),
and those that represent each image as a sequence of continuous vectors (Sun et al., 2023b; 2024).
However, despite these differences in image representation, their underlying model architectures and
formulations for vision-language generation remain largely similar. Thus, we do not differentiate
them in the following formulation.

Model Architecture Autoregressive VLGs typically comprise three components: an image en-
coder (e.g., CLIP (Sun et al., 2023a) or VQ-VAE encoder (Gafni et al., 2022)), a decoder-only large
language model (LLM), and an image decoder (e.g., a diffusion model (Podell et al., 2023) or VQ-
VAE decoder (Gafni et al., 2022)). Given a sequence of interleaved text segments and images, the
image encoder processes each image into a sequence of image tokens. These image tokens are then
concatenated with the text tokens in their original order and input into the LLM. The LLM autore-
gressively predicts the next token, which could be either text or image. Finally, the image decoder
takes in the predicted image tokens and reconstructs the target image.

Training Objective The training objective of VLGs can be loosely defined in the following unified
autoregressive manner.

argmax
θ

D

∑
N

∑
n=1

Pθ(sn∣s1, s2, ..., sn−1) (1)

where θ denotes the model parameters, N denotes the input sequence length, D denotes the training
dataset, and si denotes a text token or an image-patch embedding. This unified objective is optimized
through two types of losses: (1) If the image is represented as discrete tokens, the CrossEntropy loss
is employed to minimize the divergence between the predicted probability distribution of the image
or text tokens and the ground truth distribution; (2) If the image is encoded as continuous vectors,
the mean-squared-error (MSE) loss is used to minimize the difference between the predicted and
actual image embeddings.
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4 MODALITY-SPECIALIZED SYNERGIZERS (MOSS)

In this section, we first detail the two modality-specialized adaptations in MOSS: Linear LoRA for
text tokens and Convolutional LoRA for image tokens. We then describe the process of synergisti-
cally integrating these adaptations into autoregressive VLGs to perform interleaved generation.

4.1 LINEAR LOW-RANK ADAPTATION (LORA)

LoRA (Hu et al., 2021) is a parameter-efficient finetuning method that freezes the pretrained model
parameters and injects low-rank decomposable matrices into the layers of transformers. Formally,
given the weights in a linear layer W ∈ Rdout×din , LoRA modifies the weights by adding a decom-
posable weight matrix ∆W to W. Thus, for a vector h ∈ Rdin , the modified linear transformation
T ∶ Rd

in → Rd
out becomes:

T (h) = h(W +∆W)⊺ = hW
⊺
+ h∆W

⊺ (2)

∆W is decomposed into two low-rank matrices, i.e., LoRA A: WA ∈ Rr×din and LoRA B:
WB ∈ Rdout×r satisfying the low-rank constraint r ≪ min(dout, din). The final expression is

T (h) = hW
⊺
+ αhW

⊺
AW

⊺
B (3)

where α ∈ R is a hyper-parameter.

4.2 CONVOLUTIONAL LOW-RANK ADAPTATION (CONVOLUTIONAL LORA)

We propose Convolutional LoRA, a variant of LoRA specifically designed for modeling the local
structure of image hidden states during image generation, by improving the architecture proposed in
Zhong et al. (2024). Detailed empirical comparison between two Convolutional LoRAs can be found
in Table 10 in Appendix C.3. The previous approach first reduces the dimension of input features and
then performs the convolution operation within a lower-dimension space. Since dimension reduction
can cause information loss, the convolution within a reduced dimension can be less effective at
modeling the local priors of image patches. On the contrary, our method performs convolution in
the original input feature space and the dimension is deducted during the convolution process, which
alleviates the information loss issue in the previous design.

Specifically, our approach consists of a convolutional LoRA A layer, i.e., Convk×k, where the kernel
size is k×k, the number of input channels is cin, and the number of output channels is r, as well as a
LoRA B: WB ∈ RCout×r. Given the 2D feature I ∈ RH×W×Cin of an image, where H denotes the
height, W denotes the width, and Cin denotes the number of channels of I, the convolutional LoRA
A projects down its number of channels to r and simultaneously performs convolution operation.
Then the LoRA B projects its number of channels up to Cout. The equation 3 becomes:

T̃ (I) = IW
⊺
+ αConvk×k(I)W

⊺
B (4)

where α is a hyper-parameter.

4.3 INTEGRATING MOSS INTO VLGS

As shown in Figure 2, we propose to integrate two types of adaptations into VLGs, i.e., us-
ing Linear LoRA for text generation and Convolutional LoRA for image generation. For-
mally, let W ∈ Rdout×din be the weights of any linear layer in a LLM, and let H =

[ht
1, ...,h

t
m,h

i
m+1,h

i
m+2, ...,h

i
m+(H×W ), ...,h

t
N] ∈ RN×din denotes the hidden states of a se-

quence of interleaved text and images, where a subscript indicates position of a hidden state and the
superscript indicate if a hidden state is decoded into a text token (t) or decoded into an image-patch
embedding (i). We untie H into text hidden states Ht

= [ht
1,h

t
2, ...,h

t
m,h

t
m+(H×W )+1, ...,h

t
N] and

image hidden states H
i
= [[hi

m+1, ...,h
i
m+(H×W )], [hi

n+1, ...,h
i
n+(H×W )], ...], where m + 1 and

n + 1 denote the starting positions of two subsequences of image hidden states. Each subsequence
of a single image has a fixed length of H × W and we reshape the hidden states of each image in
H

i into a 2D structure. Hence, the dimension of Hi becomes B ×H ×W ×Cin, where B denotes
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the number of images in the sequence H. We feed H
t into the Equation 3 to get Ĥt

= T (Ht) and
H

i into Equation 4 to get Ĥi
= T̃ (Hi).

It is non-trivial to integrate convolutional operation in auto-regressive model and to the best of our
knowledge, we are the first to incorporate the convolutional architecture to improve interleaved
generation. The right part of Figure 2 visualizes the convolutional operation applied to a sequence
of image patches. The squares on the left denote the reshaped 2-dimensional input image patches
and the larger blue squares denote the 2×2 convolution kernels. The number on each square denotes
the original positions of a patch in the image sequence. For demonstration purposes, we draw image
patches with H = 3 and W = 3. Note that the current hidden state of an image patch can only
depend on previous hidden states since we use the autoregressive architecture. Thus, when applying
the convolution operation on an image patch, the kernel only covers neighboring patches on the top
and left sides of a patch. For example, the new hidden state of patch 9 is computed from patches:
5, 6, 8, and 9. To preserve the shape (H×W ) of the input image patches, we pad the reshaped image
hidden states with zero vectors on the top and left sides, as shown by the grey squares in Figure 2.
Finally, we assemble Ĥ

i and Ĥ
t back to their original sequence to form Ĥ.

5 INTERLEAVED INSTRUCTION TUNING WITH LEAFINSTRUCT

Existing interleaved vision-language models (Sun et al., 2023b; 2024; Dong et al., 2024) predom-
inantly follow the training procedures that they are first pretrained on massive corpora of inter-
leaved data such as MMC4 (Zhu et al., 2023c) and other resources and then finetuned on a mix
of high-quality datasets, such as visual instruction tuning data in Liu et al. (2023c) and Instruct-
Pix2Pix (Brooks et al., 2023b). However, one significant limitation of these instruction-tuning
datasets is that the outputs are typically in a single modality, e.g., either text or image, which hinders
the instruction-following capability of VLGs especially in generating interleaved text and images
specified by the given instructions.

5.1 DATASET: LEAFINSTRUCT

To bridge the gap between limited existing resources and the practical need for improving interleaved
generation models, we curated LEAFINSTRUCT, the first comprehensive instruction tuning dataset
for interleaved text-and-image generation. Each instance in our dataset consists of (1) a detailed
instruction, (2) an input context with interleaved text and images, and (3) a ground-truth output also
with interleaved text and images. We show an example of LeafInstruct in Figure 6, and compare it
with other representative instruction-based datasets.

Dataset construction We construct a diverse instruction-tuning data collection from large-scale
web resources and academic datasets, including MMDialog (Feng et al., 2023), VIST (Huang et al.,
2016), WikiWeb2M (Burns et al., 2023) and YouCook2 (Zhou et al., 2018). Since the original data
sources can be noisy, we meticulously devised an automatic data annotation pipeline to ensure the
high quality of our curated data. We include the details on dataset construction in Appendix B. We
also conducted a rigorous human assessment of our dataset (see Section 7).

Dataset Statistics After applying our rigorous data processing pipeline, we totally obtain 184,982
high-quality instances out of more than 7 million source samples. Our dataset covers a wide range
of realistic instruction-tuning tasks, including multimodal document completion, multimodal dia-
logue, visual storytelling, multimodal script generation, and knowledge-intensive generation. In
Appendix B, we show the domain distribution of LEAFINSTRUCT in Figure 7 and compare our
dataset with existing datasets in Table 4. These analyses effectively demonstrate the diversity and
the novelty of our dataset.

5.2 INSTRUCTION TUNING FOR INTERLEAVED GENERATION

With our curated LEAFINSTRUCT, we enable large-scale interleaved instruction tuning so that the
model can learn how to follow human instructions to generate desired interleaved text and images.
To preserve the VLG’s capability obtained from pre-training, we only fine-tuned the modality-
specialized adaptation layers, and the remaining parameters in the VLGs are kept frozen.
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Specifically, as shown on the right side of Figure 6, given the task instruction and the interleaved
context as inputs, the model is trained to autoregressively generate interleaved text tokens and images
with two alternative generation modes for text and images, respectively. We use a special token
<IMG> to indicate where an image occurs in the interleaved sequence. The training process is
as follows: (1) The model is set to the text generation mode by default. During this mode, the
hidden states of newly generated tokens are always routed to linear LoRA, and only the parameters
in the linear LoRA are optimized. (2) After the <IMG> token is generated, the model switches
to image generation mode. The VLG takes in the updated context ended with <IMG> and is
trained to generate a fixed-length (H ×W ) sequence of image patch embeddings autoregressively.
All the hidden states of generated image embeddings are routed to Convolutional LoRA and only
the parameters in the Convolutional LoRA are fine-tuned. (3) When the generation of an image is
finished, the model is trained to predict an end-of-image token </IMG>, and the model will resume
the text generation mode. This process will be iterated until the training on a sequence is finished.

Interleaved Inference The inference procedure of our framework is largely identical to the in-
struction tuning, where two generation processes iterate alternatively. The only key difference is
that the fine-tuned VLGs will automatically determine when to generate a text segment or an image
at their own discretion. The iterative generation process terminates when the model produces the
end-of-generation token </s> at the end of a response. Note that although our inference process is
designed for interleaved generation, we can also handle the cases where the outputs only contain
text or images, enabling a wide range of applications.

6 EXPERIMENTS

6.1 EXPERIMENT SETUP

Evaluation Benchmarks We evaluate the interleaved generation capability of our method on In-
terleavedBench (Liu et al., 2024b). InterleavedBench is a comprehensive dataset specifically tai-
lored for interleaved evaluation. InterleavedBench covers a diverse array of tasks, where the eval-
uation data are either curated by the authors (e.g., document completion), or re-annotated based
on subsets of well-established academic evaluation benchmarks, including visual storytelling from
VIST (Huang et al., 2016), activity generation from ActivityNet (Krishna et al., 2017), script gener-
ation from WikiHow (Yang et al., 2021), image editing from MagicBrush (Zhang et al., 2023a), and
multi-concept image composition from CustomDiffusion (Kumari et al., 2023). We include more
details on evaluation benchmarks in Appendix C.1.

Evaluation Metrics We adopt InterleavedEval (Liu et al., 2024b), a strong reference-free evalua-
tion metric to conduct a holistic assessment of the quality of interleaved generation. InterleavedEval
prompts GPT-4o to score an interleaved output from five aspects, including Text Quality, Percep-
tual Quality, Image Coherence, Text-Image Coherence (TIC), and Helpfulness. For each aspect, the
GPT-4o outputs a discrete score from {0, 1, 2, 3, 4, 5}, where 0 is the worst and 5 is the best. We re-
fer to the original paper (Liu et al., 2024b) for a detailed definition of each score and each evaluation
aspect. We also have an additional evaluation on image editing on the full test set of MagicBrush
using well-established metrics, including CLIPScore (Hessel et al., 2021) and DINO (Caron et al.,
2021) in Table 5 in Appendix C.2.

Implementation Details To demonstrate the generalizability of our method, we adopt our
MOSS to two representative autoregressive VLG backbones, i.e., Emu2 (Sun et al., 2024) and
Chameleon (Team, 2024), and fine-tune them on our LEAFINSTRUCT dataset. The rank number of
all the LoRA is set to 256 by default. Note that for the Chameleon model, we adopt the implementa-
tion in Chern et al. (2024) since the original model and checkpoints are not publicly available. More
implementation details including hyperparameters and GPU setups can be found in Appendix A.1.

Baselines For fair comparisons, we primarily compare our methods with current state-of-the-art
open-source VLGs, including GILL (Koh et al., 2023), MiniGPT-5 (Zheng et al., 2023a), Pre-
trained Emu2, and Chameleon. We also report the performance of pipelines based on proprietary
models, including Gemini 1.5 (Reid et al., 2024)+SDXL (Podell et al., 2023) and GPT-4o (Ope-
nAI, 2024)+DALLE 3 (Betker et al.). For these baselines, we first prompt the VLMs (e.g., GPT-4o)
to generate text along with image captions, and then feed the image captions to a separate image
generation model (e.g., DALLE). We report these performances only for reference purposes.
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Table 1: Main results of interleaved generation on InterleavedBench. We show the performance
of pipelines based on proprietary models (Top), open-source VLGs (Middle), and the VLGs trained
with our MOSS and LEAFINSTRUCT (Bottom), respectively. Note that the scale is from 0 to 5 (5
is the best). We also report the percentage of improvement in our method over the original VLG
backbone in the parentheses. The best results are highlighted in bold.

Model Text Quality Perceptual Quality Image Coherence TIC Helpfulness
Proprietary Models
Gemini1.5 + SDXL 3.37 4.34 3.34 3.98 3.28
GPT-4o + DALL·E 3 3.16 4.44 3.13 4.39 3.46

Open-Source Models
MiniGPT-5 1.31 3.44 2.06 2.66 1.76
GILL 1.44 4.02 2.12 2.69 1.53
Emu2 1.33 2.29 1.71 1.22 1.87
Chameleon 3.33 0.67 0.28 0.47 1.43

Emu2 + MOSS (Ours) 2.61 (+96.2%) 3.62 (+58.1%) 3.41 (+99.4%) 3.54 (+190.2%) 2.71 (+44.9%)
Chameleon + MOSS (Ours) 2.98 (-10.5%) 2.25 (+235.8%) 1.05 (+275%) 1.7 (+261.7%) 1.82 (+27.3%)

6.2 MAIN RESULTS

Quantitative Results Table 1 presents the main results of our method in comparison to the base-
lines. We have the following findings. Firstly, our approach is highly effective and efficient when
it is adapted to existing VLGs. Applying our MOSS to VLGs achieved significant improvement
over their original performance on all evaluation aspects. For example, compared with the original
Emu2 model, Emu2+MOSS achieved a performance gain of up to 190.2% (on Text-Image Coher-
ence) and 97.76% on the average of 5 aspects, almost doubling the overall performance. Secondly,
our method beats the previous open-sourced state-of-the-art (i.e., GILL) by a large margin, i.e.,
34.7% on the average of 5 aspects. Particularly, the outputs of our method have better coherence
across images (w/ 37.8% improvement in Image Coherence) and between text and images (w/ 31.6%
improvement in Text-Image Coherence). Our method also exhibits better instruction-following ca-
pability and is able to generate more helpful content given the 11.5% improvement in Helpfulness.
Thirdly, it is worth noting that the Chameleon baseline achieves good performance on Text Quality
but extremely poor performance on image-related aspects. We observed that Chameleon usually
generates long and comprehensive text responses with no image output, thus leading to poor perfor-
mance on image-related aspects. We hypothesize the reason lies in the lack of instruction tuning on
interleaved generation with both text and images. From Table 1, our approach improves the original
Chameleon by a significant margin, especially on image-related aspects. This shows that our inter-
leaved instruction tuning can effectively enhance a VLG that was previously poor at mixed-modal
generation. We noticed that adding MOSS in Chameleon can cause a slight performance drop in
text quality. We discuss the details of this problem in Appendix C.3, conduct an additional human
evaluation of text quality, and present the results and findings in Table 11. Fourthly, there remains a
notable gap between open-sourced VLGs and the pipeline approaches based on proprietary models,
indicating building a powerful and general-purpose open-sourced VLGs is still challenging.

Figure 3: Per-task performance averaged
on 5 aspects on InterleavedBench.

Per-task Performance We also show the average
performance on each task on InterleavedBench in
Figure 3. Specifically, our method (i.e., Emu2-
MOSS) outperforms the baselines on most tasks, of-
ten by a large margin. For subject-driven genera-
tion, the slightly lower performance of our approach
compared to other baselines is due to its poorer per-
ceptual quality. We included more detailed justifi-
cations for this result in the following section. We
report the per-task performance on all aspects in Fig-
ure 9 in Appendix C.5. In addition, we include more
results on well-established benchmarks of image-
understanding, text-to-image generation, and image-
editing in Table 5, 6, 7, 8, and 9 in Appendix C.2.

Qualitative Results To better interpret the results,
we conducted a qualitative analysis on several open-
sourced baselines and our MOSS in Figure 4. Our findings are as follows. Firstly, our method
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Input Emu2 Emu2+MoSS (Ours) 

Instruction: Complete a 
travel story. Context: I visited 
the countryside for the 
weekend <IMG>.

Output: I was so excited to 
visit the country side for the 
weekend <IMG>. I was so 
excited to visit the country 
side for the weekend.

Output: I went to the 
countryside and saw many 
beautiful flowers <IMG>. I
also saw many beautiful 
buildings <IMG>.

Instruction: Describe a team’s 
success in University Rover 
Challenge. Context: During 
the challenge, the PCz Team 
placed the second <IMG>.

Output: Describe a 
team’s success in 
University Rover 
Challenge <IMG>.

Output: 16 teams from 10 
countries competed in the 
University Rover Challenge. 
<IMG>

Instruction: Tell me what should 
do next to plan vegan healthy 
meals. Context: I’ve done: I had 
oatmeal with fruit <IMG> and a 
tofu scramble for breakfast in the 
morning <IMG>.

MiniGPT-5

Output: <IMG>

Output: <IMG>

Output: After you 
eat breakfast make 
sure to have 
enough food for 
dinner <IMG>.

Output: Eat vegan cereal 
with a non-dairy milk for 
a quick breakfast <IMG>.

Output: Have a good vegan 
meal for lunch <IMG>.

Instruction: Help me modify 
this picture <IMG> and change 
the bus into a train.

GILL

Output: the gardens 
<IMG>

Output: The team’s rover 
is an autonomous vehicle 
that can across the surface 
of the moon. <IMG>

Output: the tofu 
scramble <IMG>

Output: a bus on the 
road <IMG>Output: <IMG> Output: The train is on its 

track <IMG>.Output: <IMG>

Figure 4: Qualitative results of MOSS based on Emu2 and open-source baselines. The <IMG>

tokens denote the images’ positions in the interleaved sequences.

demonstrates better helpfulness and instruction-following capabilities. For example, in the first row
in Figure 4, our method generates a more coherent visual story with more diverse content given
the input. In the third row, our approach provides a more natural and reasonable next step for
the user, i.e., have a good vegan lunch, while other baselines either jump to dinner (MiniGPT-5)
or stick to breakfast (Emu2). Secondly, we observed that poor text quality is a common issue
for many baselines. For instance, MiniGPT-5 often fails to generate explanatory text while GILL
usually generates a short caption, e.g., the gardens in the first row and the tofu scramble in the third
row, instead of generating useful content to solve the task. Thirdly, neither GILL nor MiniGPT-5
can preserve the visual appearance of the entities and scenes in the input images. Our approach,
on the contrary, faithfully retains most visual characteristics, leading to significantly better Image
Coherence. Finally, as shown in the fourth row in Figure 4, for tasks such as image editing or image
composition, although MiniGPT-5 and GILL can sometimes generate images with better perceptual
quality, the image contents are often irrelevant to the task, ignoring input instructions and context.
In contrast, our method strives to adhere to instructions and can better condition its generation on
the provided image. Due to the complexity of the task, our model may produce images with lower
perceptual quality and noticeable distortions. However, when taking Helpfulness into account, the
images generated by our model can be considered as the better ones compared with the baselines.
We present additional qualitative results of Chameleon + MOSS in Figure 8 in Appendix C.4.

7 DISCUSSIONS

Comparison between MOSS and other PEFT Methods To directly validate the performance
improvement brought by our proposed MOSS, we fine-tuned Emu2 using (1) traditional linear
LoRA (Hu et al., 2021) and (2) Mixture-of-Expert (MoE) LoRA (Shen et al., 2024), with the re-
sults presented in Table 2. In traditional linear LoRA, text and images share the same low-rank
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Table 2: Comparison between MOSS and existing PEFT methods, i.e., traditional linear LoRA,
and Mixture-of-Expert (MoE) LoRA. Mixture-of-Expert LoRA uses two different sets of linear
LoRA for images and text, respectively. The rank number is set to 256 for all methods in this table.

Model Text Quality Image Quality Image Coherence TIC Helpfulness
Emu2 1.33 2.29 1.71 1.22 1.87
+ LoRA 1.77 2.38 1.99 2.04 1.64
+ MoE-LoRA 1.98 3.28 2.66 2.62 2.01
+ MOSS (Ours) 2.61 3.62 3.41 3.54 2.71

adaptation parameters, while in MoE-LoRA, two different sets of linear LoRA are used for images
and text respectively. The routing strategy in MoE-LoRA is based on the output modality of each
hidden state, i.e., whether the hidden state is used to generate text or image. From Table 2, we
effectively verify the benefits of using separate parameters for image and text. MOSS significantly
outperforms the MoE-LoRA across all aspects, especially the image-related aspects such as Image
Coherence and Text-Image Coherence (TIC). The conclusions from the results are two-fold. First,
it shows that introducing modality-specialized architecture and parameters can effectively improve
interleaved text-and-image generation. Second, it verifies that convolutional LoRA can improve
image generation by better modeling the local priors of images. Additionally, we compare the com-
putational cost of using MOSS and LoRA in Appendix C.3.

32 64 128 256
Rank

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

LoRA
MoE-LoRA
MoSS

Figure 5: Performance averaged on 5 aspects
with different rank numbers.

Effect of Rank Number To investigate how the
number of rank r can affect the performance,
we show the performance averaged on 5 aspects
on InterleavedBench with the rank number equals
(32, 64, 128, 256) comparing LoRA, MoE-LoRA,
and our MOSS in Figure 5. Our approach consis-
tently outperforms LoRA and MoE-LoRA across all
rank numbers, and as the rank number increases, the
gap between MOSS and previous methods consis-
tently grows larger. This proves the effectiveness
and generalizability of MOSS across different rank
sizes. Based on this experiment, we set the rank
number of our approach to 256 by default. We in-
clude more results on the effect of rank in LoRA in
Table 13, 14, and 15 in Appendix C.6.

Quality Assessment of LEAFINSTRUCT To verify our LEAFINSTRUCT dataset is of high quality,
we conduct a rigorous human evaluation using the multi-aspect evaluation criteria in InterleavedE-
val (Liu et al., 2024b). Specifically, we use a scale of 0 to 3 in the evaluation, where 0 is the lowest
score while 3 is the highest. We randomly sampled 200 instances from LEAFINSTRUCT and asked
two human annotators with expertise in NLP and multimodal research to rate each instance from 5
aspects. We report the averaged scores from two annotators in Table 3. We show that the sampled in-
stances consistently achieved almost full scores across all 5 aspects, which effectively demonstrated
that our curated dataset is of high quality.

Table 3: Human evalution of randomly sampled instances from LeafInstruct. Note that the scale is
from 0 to 3 (Score 3 is the best), which is different from the scale used in Table 1 and Table 2.

Text Quality Perceptual Quality Image Coherence TIC Helpfulness

Score 2.89 2.96 2.77 2.87 2.71

8 CONCLUSION

We propose MODALITY-SPECIALIZED SYNERGIZERS (MOSS), a novel modality-specialized
adaptation framework tailored for VLGs. MOSS dedicates a set of linear LoRA for processing
text and a set of Convolutional LoRA for images, allowing each modality to have its own optimal
adaptation design. Besides, we propose the first interleaved instruction tuning dataset LEAFIN-
STRUCT and verify the dataset quality via rigorous human evaluation. Extensive experiments on
InterleavedBench showcase that our proposed method and dataset are highly effective, establishing
the new state-of-the-art among open-sourced VLGs in interleaved text-and-image generation.
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A MORE DETAILS OF MOSS

A.1 IMPLEMENTATION DETAILS

We leverage the Emu2 model (Sun et al., 2024), consisting of the EVA-02-CLIP-E-plus (Sun et al.,
2023a) as the image encoder, the LLaMA-33B (Touvron et al., 2023), and the SDXL (Podell et al.,
2023) as the image decoder, as our base model. The EVA-02-CLIP-E-plus and the LLaMA-33B is
connected by a linear project-up layer and the LLaMA-33B and the SDXL is connected by a linear
project-down layer. All the variants of LoRA in Section 7, including our MOSS are trained with
LEAFINSTRUCT for one epoch on 8 × A100 GPUs with learning rate 2e

−5, batch size 1 per GPU,
and a gradient accumulation step of 16. All the LoRA have a rank of 256, dropout rate of 0.05, and
the LoRA α in Section 4 is set to 2 × 128. The kernel size of MOSS is 2 × 2, the stride is set to 1.
During training, all parameters of the Emu2 model are kept frozen and only the LoRA parameters
are updated.

B MORE DETAILS OF LEAFINSTRUCT

Instruction: Describe a travel log 
during a hiking. Highlight the scene 
of plants, insect, and emphasize the 
beauty of nature.
Input Context: That beauty of 
nature in all its glory is captivating, 
with vibrant colors and delicate 
forms <IMG>. An insect seems to 
be trying to eat the plant <IMG>.

Output: The colors of nature are truly 
stunning <IMG>. A wildflower or plant 
of some sort, possibly a native species, 
stands out in the landscape <IMG>. 
There was a little ladybug in nature, its 
red shell contrasting beautifully with the 
surrounding foliage <IMG>. 

LeafInstruct (Ours)
Instruction: Here are 5 images <IMG> <IMG>
<IMG> <IMG> <IMG>, which image shows the 
following content: {caption of image 2}

M4-Instruct

Output: Image 2.

Instruction: 
Swap sunflowers 
with roses 
<IMG>.

InstructPix2Pix
Output:

Figure 6: Comparison between existing benchmarks and our LEAFINSTRUCT. In existing datasets
such as InstructPix2Pix (Brooks et al., 2023b) and Mantis-Instruct (Li et al., 2024a), the outputs are
in single modality, either text or image. On the contrary, the inputs and outputs of our LEAFIN-
STRUCT cover multiple modalities.

Table 4: Comparison between our LEAFINSTRUCT and existing instruction tuning datasets.

Dataset Name Input Text Input Images Output Text Output Images Publicly Available

LLaVA (Liu et al., 2023c) Yes Single Single No Yes
MultiInstruct (Xu et al., 2023) Yes Single Single No Yes
Vision-Flan (Xu et al., 2024) Yes Single Single No Yes
InstructPix2Pix (Brooks et al., 2023a) Yes Single No Single Yes
MagicBrush (Zhang et al., 2023a) Yes Single No Single Yes
SuTI (Chen et al., 2023c) Yes Multiple No Single No
Instruct-Imagen (Hu et al., 2024) Yes Multiple No Single No
Mantis-Instruct (Jiang et al., 2024) Yes Multiple Yes No Yes

LEAFINSTRUCT (Ours) Yes Multiple Yes Multiple Yes

B.1 MORE DETAILS IN DATASET CONSTRUCTION

We elaborate on the details of our dataset construction pipeline as follows. Firstly, we filter the
samples based on the text length, number of images, and the coherence between text and images
(measured by CLIPScore (Hessel et al., 2021)). We only keep the instances with 3 to 6 images in
total. We also discard the instances with more than 12 sentences to ensure a balanced ratio between
the number of textual sentences and images. Secondly, we leverage a state-of-the-art open-sourced
LLM (i.e., Llama-8B-Instruct) as a text filter to discard the instances with poor text quality.
Thirdly, we remove the instances with duplicate or perceptually highly similar images to ensure
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the diversity of the images. Finally, we also apply Llama3 to annotate the task instruction for each
instance based on the text content and rewrite the text if it’s too verbose to prevent the context length
from being too long.

Figure 7: Domain distribution in LeafInstruct.

Details of Text Quality Filter We use
Llama-8B-Instruct model to rate the text
quality of an instance with the following
prompt: “Imagine you are an expert data an-
notator. You are given a text material and you
need to evaluate its quality in terms of whether
it is coherent, fluent, easy to understand, and
helpful to humans. Please be critical and rate
the quality as good only when the text quality is
good in all four aspects. Output 1 if you think
the material is good after you consider all four
aspects. Output 0 if you think the material is
not good enough. Here is the text material to
be evaluated: {TEXT} Only output 0 or 1 and
do not output anything else. Your evaluation
is:” We discard the instances if the output from
Llama is 0.

Details of Image Filter We empirically found that if the images are too identical in the training
instances, the trained models tend to find a shortcut to simply copy the image during generation. To
this end, we design a filter to discard the instances with duplicate images to improve data quality.
Specifically, we leverage the LPIPS score (Zhang et al., 2018) that measures the perceptual similarity
between the images. Specifically, for each instance, we enumerate each pair of images and compute
their LPIPS score. If there is one pair with a score higher than 0.6, we discard the instance. We
determine the threshold of 0.6 by empirical trial.

Details of Instruction Annotation We also adopt Llama-8B-Instruct to annotate the task in-
struction for each instance. We devise instructions to prompt the Llama3 model to rewrite the
original text material in the pretraining dataset MMC4 into instruction-tuning instances. The in-
put context length is 2048 and the output context length is 1024. We set the temperature as 1 to
encourage the diversity of instructions. We use the following prompt: “Imagine you are an expert
instruction annotator. You are given a material. You need to read its content and output a brief
task instruction with one sentence such that another person can recover the given the material given
the instruction. The instruction you predict should be specifically tailored for creative interleaved
content generation that consists of both text and images. Now you need to annotate a concise, ac-
curate instruction for the following instance. Please only predict the instruction and do not output
anything else. Please design the instruction for the multi-modal generation task interleaved with
both text and images. Text: {TEXT} Instruction:”.

C MORE EXPERIMENT RESULTS

C.1 MORE DETAILS ON EVALUATION BENCHMARKS

InterleavedBench has two splits: a context-based split in which the input of each instance is equipped
with interleaved text and images; and a context-free split with text-only inputs. The context-based
split contains 465 instances and the text-only split contains 350 instances. We only use the context-
based split as the testing set since we mainly focus on tasks with interleaved inputs and outputs.

C.2 MORE RESULTS ON ESTABLISHED BENCHMARKS

Interleaved Generation and Image Editing Although InterleavedBench is a new evaluation bench-
mark, it also consists of testing instances from 3 well-established benchmarks including (1) visual
story completion from VIST, (2) MagicBrush, and (3) multi-concept image composition from Cus-
tomDiffusion. Below, we directly report the performance of MOSS and baselines on these three
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well-established benchmarks in Table 6, 7, 8, respectively. We also report the performance of Mag-
icBrush using established metrics in Table 5.

Table 5: Results of image editing on the full test set of MagicBrush. We show the performance of
open-source VLGs (Top), and the VLGs trained with our proposed method (Bottom), respectively.

Model CLIP-I DINO CLIP-T AVG

MiniGPT-5 72.04 41.66 25.45 46.38
GILL 72.95 43.32 24.81 47.03
SEED-X-Edit (Ge et al., 2024) 85.56 68.74 27.28 60.53

Emu2 + MOSS (Ours) 85.88 74.92 25.98 62.26

Multimodal Understanding and Text-to-Image Generation To show that our MoSS framework
can also excel on tasks requiring single modality outputs i.e., the output only contains text or an
image, we evaluate its performance on widely adopted image understanding benchmarks including
MMBench, MME, MMMU, Pope, and MM-Vet, and text-to-image generation benchmarks includ-
ing MSCOCO 30K (Lin et al., 2014), and GenEval (Ghosh et al., 2024). For MSCOCO-30K,
following the previous evaluation protocol (Sun et al., 2024), we randomly sample 30,000 captions
from the validation set of MSCOCO and generate 30,000 images. We report the FID between the
30,000 generated images and real images from the validation set of MSCOCO (Note for FID, the
lower the better). For other benchmarks, we adopt their official implementation of the evaluation.
Since LeafInstruct mainly targets tasks with interleaved outputs, we augmented it with 500,000
instances from Vision-Flan (Xu et al., 2024), a popular visual-instruction tuning dataset targeting
image understanding, and 500,000 instances from LAION-COCO2, a standard training dataset for
text-to-image generation. We finetune Emu2 with LoRA, MoE-LoRA, and MoSS on the mixed
dataset. We report their performance in Table 9.

Table 6: Performance of our MOSS, traditional linear LoRA, and Mixture-of-Expert (MoE) LoRA
using Emu2 as the backbone model on the VIST subset in InterleavedBench.

PEFT Text Quality Image Quality Image Coherence TIC Helpfulness
LoRA 0.3 0.52 0.46 0.68 0.43
MoE-LoRA 1.76 2.19 2.52 2.91 1.92
MOSS 1.73 2.87 2.54 3.30 2.26

Table 7: Performance of our MOSS, traditional linear LoRA, and Mixture-of-Expert (MoE) LoRA
using Emu2 as the backbone model on the MagicBrush subset in InterleavedBench.

PEFT Text Quality Image Quality Image Coherence TIC Helpfulness
LoRA N/A 2.33 1.48 N/A 0.93
MoE-LoRA N/A 2.85 1.54 N/A 1.08
MOSS N/A 3.43 2.03 N/A 1.27

Table 8: Performance of our MOSS, traditional linear LoRA, and Mixture-of-Expert (MoE) LoRA
using Emu2 as the backbone model on the CustomDiffusion subset in InterleavedBench.

PEFT Text Quality Image Quality Image Coherence TIC Helpfulness
LoRA N/A 2.95 1.73 N/A 1.56
MoE-LoRA N/A 3.36 1.67 N/A 1.39
MOSS N/A 3.24 2.04 N/A 1.83

2
https://huggingface.co/datasets/laion/laion-coco
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Table 9: Results on widely adopted multimodal understanding and text-to-image generation bench-
marks. Note that the FID metric on MSCOCO is the lower the better.

Model MMBench MME MMMU Pope MM-Vet MSCOCO-30K FID (↓) GenEval

Chameleon 32.7 604.5 38.8 59.8 9.7 26.7 39.0
Emu2+LoRA 54.1 1148.0 33.7 87.3 31.3 23.4 26.8
Emu2+MoE-LoRA 54.6 1170.3 34.1 88.1 31.9 22.7 28.1

Emu2+MOSS(Ours) 56.0 1278.4 35.8 87.6 34.1 18.2 28.9

From Table 9, our MoSS outperforms previous LoRA and MoE-LoRA on most of the multimodal
understanding benchmarks by a notable margin, which demonstrates that MoSS can be well general-
ized to diverse multimodal comprehension tasks. For text-to-image generation, our MoSS achieves
better performance on both benchmarks, showing the effectiveness and generalizability of our ap-
proach. Notably, our MoSS achieves significantly better FID on MSCOCO-30K, which validates
that our ConvLoRA can effectively improve the quality of generated images.

C.3 ADDITIONAL ANALYSIS

Comparison between previous and our ConvLoRA To show the benefits of our modified Con-
vLoRA architecture compared to the ConvLoRA proposed in Zhong et al. (2024) denoted as SAM-
ConvLoRA, we replace the ConvLoRA in MoSS with SAM-ConvLoRA. Specifically, we set the
rank of project-down and project-up matrices in SAM-ConvLoRA to 256 which is the same number
of ranks in our proposed MoSS-ConvLoRA, and adopt the multi-scale convolution kernels to the
size of 2x2 and 4x4. As shown in Table 10, our MoSS-ConvLoRA consistently outperforms the pre-
vious SAM-ConvLoRA on all other evaluation aspects, which demonstrates the superiority of our
proposed ConvLoRA architecture. Particularly, our MoSS-ConvLoRA achieves notably better vi-
sual qualities, including perceptual quality and image coherence, thanks to our novel design that our
convolution operation is applied to the full-rank original image features instead of low-rank image
features as in SAM-ConvLoRA.

Table 10: Comparison of two types of ConvLoRA.

Model Text Quality Image Quality Image Coherence TIC Helpfulness
MoSS w/ SAM-ConvLoRA 2.50 3.33 3.17 3.50 2.41
MoSS w/ MoSS-ConvLoRA (Ours) 2.61 3.62 3.41 3.54 2.71

Human Evaluation on Text Quality of Chameleon and Chameleon + MoSS We noticed that
adding MOSS in Chameleon can cause a slight performance drop in text quality. This is because the
original Chameleon usually generates long and verbose text responses but with no image output. On
the contrary, as the text responses in our LeafInstruct dataset are more concise to allow for including
more images, after interleaved instruction tuning, our model learns to generate more concise text re-
sponses. Specifically, the average generated word length of the original Chameleon is 653, whereas
that of Chameleon-MoSS is 166. The verbose responses from the original Chameleon are preferred
by the LLM judge due to their verbosity bias (Zheng et al., 2023b; Saito et al., 2023), leading to a
slight drop in the text quality of Chameleon-MoSS in LLM-based evaluation.

To better support this analysis, we further conduct a human evaluation of the text quality of the two
models by randomly sampling 100 instances from InterleavedBench. We ask a human annotator
to select the preferred text responses given the system outputs from two models. We report the
Win-Tie-Loss results in Table 11. Win means our Chameleon-MoSS is better than the original
Chameleon, Tie means the quality of two responses is equally good, and Loss means the original
Chameleon is better.

From Table 11, the text quality of our Chameleon-MoSS is actually better than the original
Chameleon. One issue we frequently observed in the original Chameleon is the text responses
are overly verbose and sometimes even severely repetitive. In our evaluation protocol of text quality
adopted from InterleavedEval (Liu et al., 2024b;a), such verbosity and repetitiveness are not penal-
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Table 11: Human evaluation results on text quality of the original Chameleon and our Chameleon-
MoSS. ”Win” indicates our Chameleon-MoSS’s responses are preferred by humans.

Wins Ties Losses

28 54 18

ized, making the automatic evaluation results heavily biased towards the longer responses from the
original Chameleon.

Performance of full-finetuning We compare the performance of full-parameter fine-tuning using
LEAFINSTRUCT in Table 12. The first row represents the results of fully fine-tuning Emu2 on our
proposed LEAFINSTRUCT dataset. The second row shows the results of parameter-efficient fine-
tuning Emu2 using our proposed MOSS framework. As observed, while full fine-tuning allows
Emu2 to achieve better performance on text generation, the model demonstrates inferior perfor-
mance on image generation due to its lack of inductive bias. In contrast, tuning with MOSS, which
incorporates ConvLoRA, significantly improves image generation performance, even though the
number of trained parameters in full fine-tuning is substantially larger than that of MOSS. These
results clearly highlight the advantages of integrating ConvLoRA into the transformer architecture
for processing visual information.

Table 12: Comparison between full finetuning and parameter-efficient tuning with MOSS based on
Emu2.

Model Text Quality Perceptual Quality Image Coherence TIC Helpfulness
Full Finetuning 3.20 3.21 2.98 3.60 3.23

MOSS (Ours) 2.61 3.62 3.41 3.54 2.71

Computation cost of ConvLoRA We compared the computational cost of using linear LoRA and
our ConvLoRA, respectively. We compute the inference time for generating 1,000 images for each
model. The total inference times for linear LoRA and ConvLoRA are 4,380 seconds and 5,910
seconds, respectively. The difference between the two models is around 1.5 seconds per image,
indicating the computational cost increased by ConvLoRA is not significant.

C.4 ADDITIONAL QUALITATIVE RESULTS OF CHAMELEON

We show the additional qualitative comparison between the original Chameleon and our
Chameleon+MOSS in Figure 8. From the results, most of the examples of the original Chameleon
only contain text without any image, which indicates the original Chameleon often fails to follow
the instructions to generate desired mixed-modal content. Our Chameleon+MOSS, on the contrary,
achieves much better performance as it is able to generate high-quality and coherent text and images.
These results further validate the effectiveness of our approach and its strong generalizability and
robustness when applying it to different VLGs, including Emu2 based on continuous image tokens
and Chameleon based on discrete image tokens.

C.5 PER-TASK PERFORMANCE ON EACH EVALUATION ASPECT

We report the performance on all aspects for each task in InterleavedBench in Figure 9.

C.6 MORE RESULTS ON THE EFFECT OF RANKS

We conducted experiments to show the performance of two LoRA baselines and Lateralization
LoRA on InterleavedBench with different ranks (64, 128, 256) in Table 13, 14, 15, respectively.
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Input

Instruction: Complete a 
travel story. Context: I visited 
the countryside for the 
weekend <IMG>.

Instruction: Describe a team’s 
success in University Rover 
Challenge. Context: During 
the challenge, the PCz Team 
placed the second <IMG>.

Instruction: Tell me what should 
do next to plan vegan healthy 
meals. Context: I’ve done: I had 
oatmeal with fruit <IMG> and a 
tofu scramble for breakfast in the 
morning <IMG>.

Instruction: Help me modify 
this picture <IMG> and change 
the bus into a train.

Chameleon

Output: There are many popular activities to do in the countryside, 
including hiking, biking, camping, and visiting local attractions 
like museums and castles., including cycling the ridgeway Trail 
<IMG>, camping in the yorkshire dales <IMG>, and taking a boat 
tour of the Lake District <IMG>.

Chameleon+MoSS (Ours)

Output: I've always 
wanted to visit the 
coast and see the 
ocean. I've heard great 
things about the coast 
of Maine, so I would 
like to visit there. I 
would like to go 
hiking, see some 
lighthouses, and enjoy 
the fresh seafood…

Output: The event 
challenges teams to 
design, build, and operate 
a rover that can navigate 
across a challenging 
Martian-like terrain, while 
performing tasks such as 
reconnaissance, 
exploration, and scientific 
research….

Output: Have a healthy 
snack for breakfast, 
such as apple or an 
orange, or some 
almonds or cashews.

Output: This competition 
encourages universities to design, 
build, and test rovers that can 
operate on the Martian surface, 
replicating real-world scenarios that 
engineers and scientists may 
encounter during future Mars 
missions. <IMG>

Output: Here are a few more ideas: Smoothie bowls made with 
fruit, nuts, and seeds <IMG>. Avocado toast with scrambled 
tofu <IMG>. Overnight oats made with rolled oats, milk, and 
fruit Chia seed pudding with fruit and nuts <IMG>. Muffins or 
cakes made with whole grains and plant-based milk <IMG>.

Outputs: Here's an edited 
version of the picture with the 
bus replaced by a train: <IMG>

Outputs: Of course! I'll make sure to 
do my best to assist you. <IMG>

Figure 8: Qualitative results of MOSS based on Chameleon and the original Chameleon. The
<IMG> tokens denote the images’ positions in the interleaved sequences.

Table 13: Performance of our MOSS, traditional linear LoRA, and Mixture-of-Expert (MoE) LoRA
using Emu2 as the backbone model with rank r = 64.

PEFT Text Quality Image Quality Image Coherence TIC Helpfulness
LoRA 1.7 1.6 1.81 1.90 1.39
MoE-LoRA 1.86 2.17 2.17 2.15 1.66
MOSS 1.46 2.34 2.20 2.13 1.58

Table 14: Performance of our MOSS, traditional linear LoRA, and Mixture-of-Expert (MoE) LoRA
using Emu2 as the backbone model with rank r = 128.

PEFT Text Quality Image Quality Image Coherence TIC Helpfulness
LoRA 1.25 1.43 1.61 1.79 1.30
MoE-LoRA 1.94 2.22 2.42 2.54 1.90
MOSS 1.95 2.41 2.64 2.81 2.05
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Figure 9: Per-task performance on each evaluation aspect on InterleavedBench.

Table 15: Performance of our MOSS, traditional linear LoRA, and Mixture-of-Expert (MoE) LoRA
using Emu2 as the backbone model with rank r = 256.

PEFT Text Quality Image Quality Image Coherence TIC Helpfulness
LoRA 1.77 2.38 1.99 2.04 1.64
MoE-LoRA 1.98 3.28 2.66 2.62 2.01
MOSS 2.61 3.62 3.41 3.54 2.71
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