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École Polytechnique Fédérale de Lausanne (EPFL)
Lausanne, Switzerland
{jeff.guo,philippe.schwaller}@epfl.ch

ABSTRACT

Generative molecular design has moved from proof-of-concept to real-world ap-
plicability, as marked by the surge in very recent papers reporting experimental
validation. Key challenges in explainability and sample efficiency present oppor-
tunities to enhance generative design to directly optimize expensive high-fidelity
oracles and provide actionable insights to domain experts. Here, we propose Beam
Enumeration to exhaustively enumerate the most probable sub-sequences from
language-based molecular generative models and show that molecular substruc-
tures can be extracted. When coupled with reinforcement learning, extracted sub-
structures become meaningful, providing a source of explainability and improv-
ing sample efficiency through self-conditioned generation. Beam Enumeration is
generally applicable to any language-based molecular generative model and no-
tably further improves the performance of the recently reported Augmented Mem-
ory algorithm, which achieved the new state-of-the-art on the Practical Molec-
ular Optimization benchmark for sample efficiency. The combined algorithm
generates more high reward molecules and faster, given a fixed oracle budget.
Beam Enumeration shows that improvements to explainability and sample effi-
ciency for molecular design can be made synergistic. The code is available at
https://github.com/schwallergroup/augmented_memory.

1 INTRODUCTION

Molecular discovery requires identifying candidate molecules possessing desired properties amidst
an enormous chemical space (Sanchez-Lengeling & Aspuru-Guzik (2018). Generative molecular
design has become a popular paradigm in drug discovery, offering the potential to navigate chemical
space more efficiently with promise for accelerated discovery. Very recently, efforts have come to
fruition and a large number of works have reported experimental validation of generated inhibitors,
notably for both distribution learning (Merk et al. (2018); Moret et al. (2021); Grisoni et al. (2021);
Yu et al. (2021); Eguida et al. (2022); Li et al. (2022); Tan et al. (2021); Jang et al. (2022); Chen et al.
(2022); Hua et al. (2022); Song et al. (2023); Moret et al. (2023); Ballarotto et al. (2023) and goal-
directed generation (Korshunova et al. (2022); Yoshimori et al. (2021); Zhavoronkov et al. (2019);
Ren et al. (2023); Li et al. (2023); Salas-Estrada et al. (2023) approaches. Perhaps now more than
ever, existing challenges in explainability and sample efficiency offer an avenue to propel generative
molecular design towards outcomes that are not yet possible. Specifically, if one can elucidate why
certain substructures or molecules satisfy a target objective, the model’s knowledge can be made
actionable, for example, in an interplay with domain experts. Moreover, sample efficiency concerns
with how many experiments, i.e., oracle calls, are required for a model to optimize the target objec-
tive. This is a pressing problem as the most informative high-fidelity oracles are computationally
expensive, e.g., molecular dynamics (MD) for binding energy prediction (Wang et al. (2015); Moore
et al. (2023). If a generative model can directly optimize these expensive oracles, the capabilities of
generative design can be vastly advanced.
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In this work, we propose Beam Enumeration to exhaustively enumerate the most probable token
sub-sequences in language-based molecular generative models and show that valid molecular sub-
structures can be extracted from these partial trajectories. We demonstrate that the extracted sub-
structures are informative when coupled with reinforcement learning (RL) and show that this infor-
mation can be made actionable to self-condition the model’s generation by only evaluating sampled
molecules containing these substructures with the oracle. The results show significantly enhanced
sample efficiency with an expected small trade-off in diversity. Beam Enumeration jointly addresses
explainability and sample efficiency. Our contribution is as follows:

1. We propose Beam Enumeration as a task-agnostic method to exhaustively enumerate sub-
sequences and show that molecular substructures can be extracted.

2. We demonstrate that during the course of RL, extracted substructures are on track to yield
high rewards and can be used for self-conditioned molecular generation. We extract struc-
tural insights from these substructures, thereby providing a source of explainability.

3. We perform exhaustive hyperparameter investigations (2,224 experiments and 144 with
molecular docking) and provide insights on the predictable behavior of Beam Enumeration
and recommend default hyperparameters for out-of-the-box applications.

4. We introduce a new metric: Oracle Burden, which measures how many oracle calls are
required to generate N unique molecules above a reward threshold as one is often interested
in identifying a small set of excellent candidate molecules amongst many good ones.

5. We combine Beam Enumeration with the recently reported Augmented Memory (Guo &
Schwaller (2023) optimization algorithm and show that the sample efficiency becomes suf-
ficient (up to a 29-fold increase) to find high reward molecules satisfying a docking objec-
tive with only 2,000 oracle calls in three drug discovery case studies.

2 RELATED WORK

Sample Efficiency in Molecular Design. Tailored molecular generation is vital for practical ap-
plications as every use case requires optimizing for a bespoke property profile. Over the past sev-
eral years, so-called goal-directed generation has been achieved using a variety of architectures, in-
cluding Simplified molecular-input line-entry system (SMILES) (Weininger (1988)-based recurrent
neural networks (RNNs) (Olivecrona et al. (2017); Popova et al. (2018); Segler et al. (2018); Goel
et al. (2021), generative adversarial networks (GANs) (Goodfellow et al. (2014); Sanchez-Lengeling
et al. (2017); Guimaraes et al. (2018), variational autoencoders (VAEs) (Kingma & Welling (2022);
Gómez-Bombarelli et al. (2018); Zhavoronkov et al. (2019), graph-based models (You et al. (2019);
Jin et al. (2020); Mercado et al. (2021c); Atance et al. (2022), GFlowNets (Bengio et al. (2021a), and
genetic algorithms (Fu et al. (2022a). However, while all methods can be successful in optimizing
for various properties, the oracle budget, i.e., how many oracle calls (computational calculations)
were required to do so, is rarely reported. To address this, Gao et al. (Gao et al. (2022) proposed the
Practical Molecular Optimization (PMO) benchmark, which assesses 25 models across 23 tasks and
enforces a budget of 10,000 oracle calls. Recently, Guo et al. proposed Augmented Memory (Guo
& Schwaller (2023), which uses a language-based molecular generative model and achieves the new
state-of-the-art on the PMO benchmark. In this work, Beam Enumeration is proposed as an addi-
tion to language-based molecular generative models, and we show that coupling it with Augmented
Memory drastically improves the sample efficiency.

Explainability for Molecules. Explainable AI (XAI) (Gohel et al. (2021) to interpret and explain
model predictions is a vital component for decision-making. Existing methods include Gradient-
weighted Class Activation Mapping (Grad-CAM) (Selvaraju et al. (2017), which uses gradient-based
heat maps for convolutional layers and Local Interpretable Model-agnostic Explanations (LIME)
(Ribeiro et al. (2016), which uses a locally interpretable model. Other methods include permutation
importance (Altmann et al. (2010), which measures the performance change when shuffling feature
values, and SHAP values (Shapley (1953), which measure the average contribution of each feature
to the model’s prediction. For molecules, the Molecular Model Agnostic Counterfactual Expla-
nations (MMACE) (Wellawatte et al. (2022) method was proposed to search for the most similar
counterfactual (model predicts the opposite label) molecule. Recently, the pBRICS (Vangala et al.
(2023) algorithm was proposed to decompose a molecule into functional groups and then applying
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Figure 1: Beam Enumeration overview. a. The proposed method proceeds via 4 steps: 1. generate
batch of molecules. 2. filter molecules based on pool to enforce substructure presence, discarding
the rest. 3. compute reward 4. update the model. After updating the model, if the reward has
improved for consecutive epochs, execute Beam Enumeration. b. Beam Enumeration sequentially
enumerates the top k tokens by probability for N beam steps, resulting in an exhaustive set of token
sub-sequences. c. All valid substructures (either by the Structure or Scaffold criterion) are extracted
from the sub-sequences. The most frequent substructures are used for self-conditioned generation.

Grad-CAM to explain matched molecular pairs (MMPs), i.e., pairs of molecules differing by a single
chemical group. In the context of generative models, previous works have explicitly addressed ex-
plainability (Guo et al. (2022); Fu et al. (2022b) and jointly with sample efficiency (Fu et al. (2022b).
In this work, we aim to make explainability actionable during a generative design experiment.

To achieve this, we introduce Beam Enumeration, which extracts molecular substructures directly
from the model’s token sampling probabilities and derives explainability from a generative proba-
bilistic perspective that is modulated by reward feedback. Our approach is based on the fact that
during a successful optimization trajectory, it must become increasingly likely to generate desir-
able molecules. It is thus reasonable to hypothesize that the most probable substructures are on
track to receiving high reward. We verify this statement in the Results section and show that Beam
Enumeration can also jointly address explainability and sample efficiency.

3 PROPOSED METHOD: BEAM ENUMERATION

In this section, each component of Beam Enumeration (Fig. 1) is described: the base molecular gen-
erative model, the Beam Enumeration algorithm, and how Beam Enumeration harnesses the model’s
built-in explainability which can be used to improve sample efficiency through self-conditioned gen-
eration (further details on Beam Enumeration are presented in Appendix A).

Autoregressive Language-based Molecular Generative Model. The starting point of Beam Enu-
meration is any autoregressive language-based molecular generative model. The specific model
used in this work is Augmented Memory (Guo & Schwaller (2023) which recently achieved the new
state-of-the-art performance on the PMO (Gao et al. (2022) benchmark for sample efficiency, out-
performing modern graph neural network-based approaches (Fu et al. (2020); Xie et al. (2021) and
GFlowNets (Bengio et al. (2021b). Augmented Memory builds on REINVENT (Olivecrona et al.
(2017); Blaschke et al. (2020) which is a SMILES-based (Weininger (1988) RNN using long-short-
term memory (LSTM) cells (Hochreiter & Schmidhuber (1997). The optimization process is cast
as an on-policy RL problem. We define the state space, St, as all intermediate token sequences and
the action space, At(st), as the token sampling probabilities (conditioned on a given state). At(st)
is given by the policy, πθ, which is parameterized by the RNN. The objective is to iteratively update
the policy such that token sampling, At(st), yields trajectories (SMILES) with increasing reward.
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Formally, sampling a SMILES, x, is given by the product of conditional state probabilities (Equation
1), and the token sampling is Markovian:

P (x) =

T∏
t=1

P (st | st−1, st−2, . . . , s1) (1)

The Augmented Likelihood is defined, (Equation 2) where the Prior is the pre-trained model and S
is the objective function which yields a reward given a SMILES, x.

log πθAugmented
= log πθPrior

+ σS(x) (2)

The policy is directly optimized by minimizing the squared difference between the Augmented
Likelihood and the Agent Likelihood given a sampled batch, B, of SMILES constructed following
the actions, a ∈ A∗ (Equation 3):

L(θ) =
1

|B|

[ ∑
a∈A∗

(log πθAugmented
− log πθAgent

)

]2

(3)

Minimizing L(θ) is equivalent to maximizing the expected reward as shown previously (Guo &
Schwaller (2023); Fialková et al. (2022).

Beam Enumeration. Beam Enumeration is proposed based on two facts: firstly, on a successful
optimization trajectory, the model’s weights must change such that it becomes increasingly likely
to generate high reward molecules. Secondly, generation involves sampling from conditional prob-
ability distributions. It is therefore reasonable to assume that the highest probability trajectories are
more likely to yield high reward. Correspondingly, Beam Enumeration (Fig. 1) enumerates the top
k tokens (by probability) sequentially for N beam steps (as it is infeasible to sample the full trajec-
tories due to combinatorial explosion), resulting in an exhaustive set of token sub-sequences. We
show that meaningful molecular substructures can be extracted from these sub-sequences, which
we harness and demonstrate how it can be made actionable. We note the closest work to ours is
the application of Beam Search (Graves (2012); Boulanger-Lewandowski et al. (2013) for molecu-
lar design (Moret et al. (2021) to find the highest probability trajectories. Our work differs as the
objective is not to find a small set of the most probable sequences. Rather, we exhaustively enu-
merate the highest probability sub-sequences to extract molecular substructures for self-conditioned
generation. We further detail the differences to Beam Search in Appendix G.

Probabilistic Explainability. Here, we describe how probabilistic explainability can be extracted
from the exhaustive set of token sub-sequences. Usually, token sequences are only translated into
SMILES once the sequence is complete, i.e., the “end” token has been sampled. We hypothesized
that molecular substructures can be extracted from a given sub-sequence by iteratively consider-
ing every (sub)-sub-sequence (Fig. 1). For example, given the sub-sequence “ABCD”, the set of
(sub)-sub-sequences are: “A”, “AB”, “ABC”, and “ABCD”. In practice, we only consider (sub)-sub-
sequences with at least three characters (“ABC” and “ABCD”) since each character loosely maps to
one atom and three is approximately the minimum for meaningful functional groups, e.g., “C=O”,
a carbonyl. It is expected that not every sub-sequence possesses (sub)-sub-sequences mapping to
valid molecular substructures. Still, we show that a sufficient signal can be extracted (Appendix C).
Finally, we implement two types of substructures: Scaffold, which extracts the Bemis-Murcko (Be-
mis & Murcko (1996) scaffold and Structure, which extracts any valid substructure. In the Results
section, we discuss the predictable difference in behavior.

Self-conditioned Generation. The sub-sequences were enumerated by taking the most probable k
tokens, and the model’s weights should be updated such that high reward molecules are increasingly
likely to be generated. Correspondingly, it is reasonable to posit that the most frequent molecular
substructures are on track to becoming high reward full molecules and that the substructures them-
selves possess properties aligned with the target objective. Beam Enumeration saves a Pool of these
substructures and filters future sampled batches of molecules to contain them, discarding those that
do not. Effectively, the generative process is self-conditioned as the model will only be updated by
generated molecules containing the extracted substructures (Fig. 1).
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4 METRICS

Sample Efficiency Metrics. We define two metrics to assess sample efficiency: Generative Yield
(referred to as Yield from now on) and Oracle Burden. Yield (Equation 4) is defined as the number
of unique generated molecules above a reward threshold, where g ∈ G are the molecules in the
generated set, I is the indicator function which returns 1 if the reward, R(g), is above a threshold, T .
Yield is a useful metric for drug discovery as it is ubiquitous to triage the generated set (thus, a higher
Yield is desirable) and prioritize molecules, e.g., based on synthetic feasibility, for experimental
validation or more expensive computational oracles.

Generative Y ield =

G∑
g=1

I[R(g)>T ] (4)

Oracle Burden (Equation 5) is defined as the number of oracle calls (c) required to generate N unique
molecules above a reward threshold. This is a direct measure of sample efficiency as high reward
molecules satisfy the target objective, and the metric becomes increasingly important with expensive
high-fidelity oracles. In this work, all Oracle Burden metrics are computed by not allowing more
than 10 molecules to possess the same Bemis-Murcko (Bemis & Murcko (1996) scaffold, thus also
explicitly considering diversity in the generated set.

Oracle Burden = c |
G∑

g=1

I[R(g)>T ] = N (5)

5 RESULTS AND DISCUSSION

Figure 2: Illustrative experiment with the following multi-parameter optimization objective: max-
imize tPSA, molecular weight <350 Da, number of rings ≥ 2. a. Augmented Memory (Guo &
Schwaller (2023) reward trajectory with annotated top-4 (excluding benzene) most frequent molec-
ular substructure scaffolds at varying epochs using Beam Enumeration. b. Examples of molecules
with high reward.

We first design an illustrative experiment to demonstrate the feasibility of Beam Enumeration to
extract meaningful substructures and, in turn, enable self-conditioned generation. Next, three drug
discovery case studies to design inhibitors against dopamine type 2 receptor (DRD2) (Wang et al.
(2018), MK2 kinase (Argiriadi et al. (2010), and acetylcholinesterase (AChE) (Kryger et al. (1999)
were performed to demonstrate real-world application. The key result we convey is that Beam
Enumeration can be added directly to existing algorithms, and it both provides structural insights
into why certain molecules receive high rewards and improves sample efficiency to not only generate
more high reward molecules, but also faster, given a fixed oracle budget.
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Table 1: Illustrative experiment: Beam Enumeration improves the sample efficiency of Augmented
Memory. All experiments were run for 100 replicates with an oracle budget of 5,000 calls, and
reported values are the mean and standard deviation. Scaffold and Structure indicate the type of
substructure, and the number after is the Structure Minimum Size. Parentheses after Oracle Burden
denote the cut-off number of molecules. Parentheses after values represent the number of unsuc-
cessful replicates (for achieving the metric).

Metric Augmented Memory
Beam Scaffold 15 Beam Structure 15 Beam Scaffold Beam Structure Baseline

Generative Yield>0.7 (↑) 1757 ± 305 1669 ± 389 1117 ± 278 864 ± 202 496 ± 108

Generative Yield>0.8 (↑) 819 ± 291 700 ± 389 425 ± 256 199 ± 122 85 ± 56

Oracle Burden>0.7 (1) (↓) 577 ± 310 616 ± 230 1037 ± 414 897 ± 347 1085 ± 483
Oracle Burden>0.7 (10) (↓) 947 ± 350 926 ± 332 1881 ± 259 1745 ± 292 2392 ± 216
Oracle Burden>0.7 (100) (↓) 1530 ± 468 1547 ± 513 2736 ± 335 2713 ± 402 3672 ± 197

Oracle Burden>0.8 (1) (↓) 1311 ± 628 1401 ± 695 2423 ± 487 2295 ± 482 3164 ± 492
Oracle Burden>0.8 (10) (↓) 1794 ± 617 (1) 2009 ± 804 (1) 3124 ± 497 3241 ± 492 4146 ± 326
Oracle Burden>0.8 (100) (↓) 2704 ± 689 (1) 2943 ± 811 (6) 3973 ± 592 (6) 4415 ± 437 (20) 4827 ± 170 (69)

5.1 ILLUSTRATIVE EXPERIMENT

Extracted Substructures are Meaningful. The illustrative experiment aims to optimize the follow-
ing multi-parameter optimization (MPO) objective: maximize topological polar surface area (tPSA),
molecular weight (MW) <350 Da, and number of rings≥ 2. This specific MPO was chosen because
it is plausible to predict what structural features would be necessary to optimize the objective: rings
saturated with heteroatoms. Due to constraining the molecular weight, the model cannot just learn
to generate large molecules that would, on average, possess a higher tPSA. Augmented Memory
(Guo & Schwaller (2023) was used to optimize the MPO objective. The reward trajectory tends
towards 1, indicating the model gradually learns to satisfy the target objective, as desired (Fig. 2)
Next, we investigate the top k and N beam steps parameters for Beam Enumeration and show that
while the majority of sub-sequences do not possess valid substructures, a meaningful signal can
still be extracted (Appendix C). We hypothesize that the optimal parameters are using a low top
k as we are interested in the most probable sub-sequences and large N beam steps, which would
enable extracting larger (and potentially more meaningful) substructures. Fig. 2 shows the top four
substructures from Beam Enumeration at varying epochs. As hypothesized, the substructures are in-
formative when considering the MPO objective: the most frequent substructures gradually become
rings saturated with heteroatoms, which possess a high tPSA.

Self-conditioned Generation Improves Sample Efficiency. Thus far, the results only show that
Beam Enumeration can extract meaningful molecular substructures. To enable self-conditioned
generation, a criterion is required to decide when to execute Beam Enumeration. We consider when
extracted substructures would be meaningful and propose to execute Beam Enumeration when the
reward improves for Patience number of successive epochs (to mitigate sampling stochasticity). We
combine Beam Enumeration with Augmented Memory (Guo & Schwaller (2023) and perform an
exhaustive hyperparameter grid search (with replicates) using Yield and Oracle Burden as the per-
formance metrics (Appendix A). The results elucidate the behavior of Beam Enumeration with three
key observations: firstly, Structure extraction is much more permissive compared to Scaffold and
often leads to small functional groups, e.g., carbonyl, being the most frequent substructures which
diminish the sample efficiency benefits (Appendix C). Secondly, enforcing larger substructures to
be extracted (Structure Minimum Size) improves performance across all hyperparameter combina-
tions. This reinforces that extracted substructures are meaningful as larger substructures heavily
bias molecular generation during self-conditioning. If they were not meaningful, sample efficiency
would not improve (and would likely be detrimental). Thirdly, Structure extraction while enforc-
ing a higher Structure Minimum Size prevents small functional group extraction which significantly
enhances performance.

We perform five experiments (N=100 replicates each) based on the optimal hyperparameters identi-
fied from the grid search: Augmented Memory (Guo & Schwaller (2023) (baseline) and Augmented
Memory with Beam Enumeration (Scaffold and Structure with and without Structure Minimum Size
= 15). Table 1 shows that Beam Enumeration drastically improves the Yield and Oracle Burden
compared to the baseline at both the >0.7 and >0.8 reward thresholds, particularly when Structure
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Figure 3: Three drug discovery case studies showing the top generated molecule (triplicate exper-
iments) using Augmented Memory (Guo & Schwaller (2023) with Beam Enumeration Structure
Minimum Structure Size = 15 and the reference ligand. Extracted substructures from Beam Enu-
meration are highlighted. The multi-parameter optimization objective is: Minimize Vina score,
maximize QED, and molecular weight <500 Da. The values, with the Synthetic Accessibility (SA)
score (Ertl & Schuffenhauer (2009) are annotated. a. Dopamine type 2 receptor (Wang et al. (2018).
b. MK2 kinase (Argiriadi et al. (2010). c. Acetylcholinesterase (Kryger et al. (1999).

Minimum Size = 15 is enforced. We highlight that the improved sample efficiency is especially
significant as baseline Augmented Memory could not find 100 molecules >0.8 reward in 69/100
replicates. The results are further compared using Welch’s t-test, and all p-values are significant at
the 95% confidence level (Appendix C).

5.2 DRUG DISCOVERY CASE STUDIES

The positive results from the illustrative experiment suggest that Beam Enumeration can be applied
to real-world drug discovery case studies to design inhibitors against DRD2 which is implicated in
neurodegenerative diseases (Wang et al. (2018), MK2 kinase which is involved in pro-inflammatory
responses (Argiriadi et al. (2010), and AChE which is a target of interest against Alzheimer’s disease
(Kryger et al. (1999). Following Guo et al. (Guo et al. (2021b); Guo & Schwaller (2023), we for-
mulate the following MPO objective: minimize the AutoDock Vina (Trott & Olson (2010) docking
score as a proxy for binding affinity, maximize the Quantitative Estimate of Druglikeness (QED)
(Bickerton et al. (2012) score, and constrain MW <500 Da. The QED and MW objectives prevent
the generative model from exploiting the weaknesses of docking algorithms to give inflated docking
scores to large, lipophilic molecules, which can be promiscuous binders (Arnott & Planey (2012).
Moreover, an oracle budget of 5,000 Vina calls was enforced which is almost half the budget of the
original Augmented Memory (Guo & Schwaller (2023) work (9,600).
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Since the observations made from the illustrative experiment hyperparameter grid search may not
be generalizable to docking tasks, we perform an additional hyperparameter grid search (with repli-
cates). The results (Appendix D) show that the optimal hyperparameters from the illustrative experi-
ment are also the optimal hyperparameters across all three drug discovery case studies. We designate
these the default hyperparameters and demonstrate the applicability of Beam Enumeration to both
Augmented Memory (Guo & Schwaller (2023) and REINVENT (Olivecrona et al. (2017); Blaschke
et al. (2020) which is the second most (behind Augmented Memory) sample efficient model in the
PMO (Gao et al. (2022) benchmark.

Qualitative Inspection: Why Were These Molecules Generated? We first show that Augmented
Memory with Beam Enumeration generates molecules that satisfy the MPO objective (Fig. 3). We
emphasize that results were not cherry-picked and the three generated examples shown are the top
1 (by reward) across triplicate experiments. All molecules possess better Vina scores and higher
QED than the reference molecules, as desired. Fig. 3 shows the highlighted substructures extracted
using Structure extraction with Structure Minimum Size = 15 with three key observations: firstly,
”uncommon” molecular substructures may be extracted such as the bridged cycle against DRD2.
The exact substructure extracted was an amide bond with a long carbon chain which implicitly
enforces the bridged cycle, and the Vina pose shows that it fits in the binding cavity with no clashes,
despite being a bulky group. Secondly, bicylic or double-ring systems are often extracted (for all
case studies), forming central scaffolds of the full molecule. Thirdly, scaffolds with branch points,
i.e., a central ring with single carbon bond extensions, are often extracted (for all case studies).
These substructures are particularly interesting as they heavily bias what can be generated in the
remaining portion of the full molecule. An exemplary example of this is in the first generated
molecule against MK2, where the branch points are effectively a part of two other ring systems
(Fig. 3). Beam Enumeration can provide insights into the tolerability and suitability of certain
substructures in the context of the full molecules (see Appendix D for more examples of extracted
substructures). Finally, we posit that the extreme bias of Structure extraction is the reason why it
can be more performant than Scaffold. Overall, the extracted substructures are meaningful and act
both as a source of generative explainability and can self-direct the generative model into specific
regions of chemical space with high reward.

Quantitative Analysis: Sample Efficiency. Next, we reinforce results from previous work show-
ing that Augmented Memory (Guo & Schwaller (2023) is significantly more sample efficient than
REINVENT (Olivecrona et al. (2017); Blaschke et al. (2020) (Table 2). Notably, the Yield of Aug-
mented Memory is much greater than REINVENT at both the >0.7 and >0.8 reward thresholds,
indicating that more high reward molecules are generated. Moreover, Augmented Memory has a
lower Oracle Burden than REINVENT in all cases, except for Oracle Burden>0.8 (1) for DRD2 and
AChE where there is essentially no difference. The reason for this is because molecules with >0.8
reward were already generated at epoch 1, indicating the pre-trained model (trained on ChEMBL
(Gaulton et al. (2012a)) is a good Prior for these case studies. By contrast, the MK2 case study is
considerably more challenging as extremely few >0.8 reward molecules are generated under a 5,000
oracle calls budget. Augmented Memory significantly outperforms REINVENT as the latter could
not find 10 molecules with reward >0.8 (Table 2).

Subsequently, we demonstrate that Beam Enumeration can be applied out-of-the-box on top of Aug-
mented Memory and REINVENT. Firstly, the addition of Beam Enumeration improves the sample
efficiency of both base algorithms, as evidenced by the Yield and Oracle Burden metrics in Table
2 with a small trade-off in diversity (Appendix D). However, the benefits are more pronounced in
Augmented Memory as observed by the Yield>0.8 improving by >4x in all cases (MK2 improves by
29x) and the Oracle Burden >0.8 (10 and 100) over halved in most cases. Notably, for MK2 Oracle
Burden >0.8 (100), baseline Augmented Memory could not accomplish the task while Beam Enu-
meration is successful in almost under 2,000 oracle calls (Table 2). These findings are in agreement
with the original Augmented Memory (Guo & Schwaller (2023) work in that the algorithm is much
more data efficient and capitalizes on learning from high reward molecules via experience replay
(Lin (1992). Beam Enumeration decreases the diversity of the generated set (as measured by Int-
Div1Polykovskiy et al. (2020b), but finds considerably more unique scaffolds above the 0.8 reward
threshold (up to 19x) (Appendix D). With many unique scaffolds built around (often) central sub-
structures, the generated set could conceivably provide insights into structure-activity relationships.
These results demonstrate that the combined algorithm achieves both exploration and exploitation.
Overall, the results show that Beam Enumeration is task-agnostic and can be applied on top of ex-
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isting algorithms to improve their sample efficiency. The combined algorithms generate more high
reward molecules and faster, even in challenging (MK2) scenarios under a limited oracle budget.
Furthermore, in reference to all the Oracle Burden metrics (Table 2), Augmented Memory with
Beam Enumeration can identify a small set of excellent (high reward) candidate molecules in under
2,000 oracle calls and in some cases, even under 1,000 oracle calls.

Table 2: Drug discovery case studies: effect of Beam Enumeration on sample efficiency. All exper-
iments were run in triplicate with an oracle budget of 5,000 calls and reported values are the mean
and standard deviation. Scaffold and Structure indicate the type of substructure (Structure Minimum
Size = 15) extracted. The Generative Yield and Oracle Burden are reported at varying reward thresh-
olds. Parentheses after Oracle Burden denote the cut-off number of molecules. Best performance is
bolded with the exception of Oracle Burden (1) (DRD2/AChE) which have essentially identical per-
formance due to the pre-trained model. * and ** denote one and two replicates were unsuccessful,
respectively.

Metric Target Augmented Memory REINVENT
Beam Beam Baseline Beam Beam Baseline

Structure 15 Scaffold 15 Structure 15 Scaffold 15

Generative Yield>0.7 (↑)
DRD2 3474 ± 158 3412 ± 95 2513 ± 442 2392 ± 699 2686 ± 235 1879 ± 16
MK2 3127 ± 138 2584 ± 443 1446 ± 173 1822 ± 444 1553 ± 391 879 ± 10
AChE 3824 ± 162 3902 ± 189 3288 ± 85 2511 ± 369 2684 ± 242 2437 ± 53

Generative Yield>0.8 (↑)
DRD2 1780 ± 439 1607 ± 379 363 ± 195 417 ± 275 687 ± 366 102 ± 6
MK2 987 ± 211 523 ± 438 34 ± 13 179 ± 241 19 ± 7 2 ± 0
AChE 2059 ± 327 2124 ± 326 556 ± 47 323 ± 58 310 ± 207 147 ± 11

Oracle Burden>0.8 (1) (↓)
DRD2 126 ± 90 83 ± 29 187 ± 51 63 ± 0 127 ± 52 168 ± 149
MK2 736 ± 166 1221 ± 564 1360 ± 543 1110 ± 268 808 ± 524 1724 ± 802
AChE 105 ± 29 63 ± 0 62 ± 0 62 ± 0 84 ± 29 83 ± 29

Oracle Burden>0.8 (10) (↓)
DRD2 582 ± 83 571 ± 104 711 ± 120 1099 ± 930 604 ± 71 883 ± 105
MK2 1122 ± 154 2426 ± 1525 3833 ± 394 1778 ± 0∗∗ 3891 ± 631 Failed
AChE 462 ± 25 418 ± 27 380 ± 0 441 ± 132 421 ± 120 481 ± 108

Oracle Burden>0.8 (100) (↓)
DRD2 1120 ± 194 1056 ± 146 2558 ± 30∗ 1928 ± 117∗ 2109 ± 1090 4595 ± 0∗∗

MK2 2189 ± 181 2676 ± 403∗ Failed 3208 ± 0∗∗ Failed Failed
AChE 1110 ± 265 884 ± 162 2021 ± 89 3073 ± 427 3596 ± 678 3931 ± 286

6 CONCLUSION

In this work, we propose Beam Enumeration to exhaustively enumerate sub-sequences from
language-based molecular generative models and show that substructures can be extracted, provid-
ing a source of generative explainability. Next, we show that the extracted molecular substructures
can be used to self-condition the generative model to only perform oracle evaluation for molecules
possessing these substructures (discarding the rest). We show that Beam Enumeration can be cou-
pled with existing RL-based algorithms including Augmented Memory (Guo & Schwaller (2023)
and REINVENT (Olivecrona et al. (2017); Blaschke et al. (2020) to improve their sample effi-
ciency. Moreover, enforcing the extraction of larger substructures improves performance across all
hyperparameter combinations. We believe this is a particularly interesting observation as it demon-
strates the model’s remarkable robustness and tolerability to extreme bias. Subsequently, in three
drug discovery case studies to design molecules that dock well, the addition of Beam Enumeration
to Augmented Memory and REINVENT substantially improves sample efficiency as assessed by
the Yield (number of unique molecules generated above a reward threshold) and Oracle Burden
(number of oracle calls required for the model to generate N unique molecules above a reward
threshold) with a small trade-off in diversity (which is expected). The extracted substructures them-
selves provide valuable structural insights, often enforcing the generation of specific cyclic systems
and scaffolds with branch points which impose an overall molecular geometry that complements the
protein binding cavity. Beam Enumeration shows that improvements to explainability and sample
efficiency for molecular design can be made synergistic. The improvements in the latter will en-
able more expensive high-fidelity oracles to be explicitly optimized. We note, however, that sparse
reward environments (Korshunova et al. (2022) remain a difficult optimization task. Finally, Beam
Enumeration is a task-agnostic method and can be combined with recent work integrating active
learning with molecular generation to further improve sample efficiency (Dodds et al. (2024); Kyro
et al. (2023). If the benefits can be synergistic, we may approach sufficient sample efficiency to
directly optimize expensive state-of-the-art (in predictive accuracy) physics-based oracles such as
MD simulations (Wang et al. (2015); Moore et al. (2023). Excitingly, this would in turn enhance
explainability as high-fidelity oracles are inherently more informative.
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7 REPRODUCIBILITY STATEMENT

The code is provided in the GitHub link in the Abstract and also provided here: https:
//github.com/schwallergroup/augmented_memory. In the repository, there are pre-
pared configuration files that can be directly run to reproduce all experiments in this work.
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A APPENDIX

The Appendix contains further experiments, ablation studies, experiment hyperparameters, and al-
gorithmic details.

A BEAM ENUMERATION

This section contains full details on Beam Enumeration including hyperparameters, design deci-
sions, and pseudo-code.

A.1 ALGORITHM OVERVIEW

Figure A4: Beam Enumeration overview. a. The proposed method proceeds via 4 steps: 1. generate
batch of molecules. 2. filter molecules based on pool to enforce substructure presence, discarding
the rest. 3. compute reward 4. update the model. After updating the model, if the reward has
improved for consecutive epochs, execute Beam Enumeration. b. Beam Enumeration sequentially
enumerates the top k tokens by probability for N beam steps, resulting in an exhaustive set of token
sub-sequences. c. All valid substructures (either by the Structure or Scaffold criterion) are extracted
from the sub-sequences. The most frequent substructures are used for self-conditioned generation.
This overview figure is the same as in the main text.

Beam Enumeration (Fig. A4) is an algorithm that extracts molecular substructures from a generative
model’s weights for self-conditioned generation. The problem set-up is any molecular design task
to optimize for a target property profile, e.g., high predicted solubility and binding affinity. When
molecular generative models are coupled with an optimization algorithm, it should be increasingly
likely to generate desirable molecules, i.e., molecules that possess the target property profile.

Beam Enumeration is proposed based on two facts:

1. On a successful optimization trajectory, the model’s weights must change such that desir-
able molecules are more likely to be generated, on average.

2. The act of generating molecules in an autoregressive manner involves sequentially sam-
pling from conditional probability distributions.

In this work, Beam Enumeration is applied to a language-based autoregressive generative model
operating on the simplified molecular-input line-entry system (SMILES) (Weininger (1988) rep-
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resentation. The optimization algorithm is Augmented Memory (Guo & Schwaller (2023) which
builds on REINVENT (Olivecrona et al. (2017); Blaschke et al. (2020) and casts the optimization
process as an on-policy reinforcement learning (RL) problem. Following RL terminology, sampling
from the generative model involves sampling trajectories, which in this case, are SMILES, and the
desirability of the corresponding molecule is given by the reward.

The underlying hypothesis of Beam Enumeration is that during the RL optimization process, partial
trajectories provide a source of signal that can be exploited. Usually, full trajectories are sampled
which map to a complete SMILES sequence that can be translated to a molecule. Our assumption
is that partial trajectories (partial SMILES sequence) can be mapped to molecular substructures (a
part of the full molecule). This statement is not guaranteed as SMILES and molecules are discrete
and small perturbations often leads to invalid SMILES. We prove this assumption in Section C by
showing that although the vast number of partial trajectories do not map to valid SMILES, the raw
number is sufficient to extract a meaningful signal. Correspondingly, Beam Enumeration leverages
partial trajectories on the assumption that molecular substructures are on track to becoming full
molecules that would receive high reward.

A.2 ENUMERATING PARTIAL TRAJECTORIES

In order to extract molecular substructures, a set of partial trajectories must be sampled from the
generative model. Recalling the fact that on a successful optimization trajectory, it must become
increasingly likely to generate desirable molecules, partial trajectories are sampled by enumerating
the top k tokens, based on the conditional probability. Therefore, the process of enumerating par-
tial trajectories involves sequentially extending each token sequence by their next top k probable
tokens, resulting in the total number of partial trajectories as 2N where N is the number of beam
steps, i.e., how many tokens in the partial trajectory. We note that taking the top k most proba-
ble tokens does not guarantee that the partial trajectories are indeed the most probable, as paying a
probability penalty early can lead to higher probabilities later. However, our assumption is that on
average, this leads to a set of partial trajectories that are at the very least, amongst the most probable.
Moreover, there is a practical limit to how many partial trajectories are sampled due to exponential
growth which makes scaling quickly computationally prohibitive. In the later section, we discuss
this thoroughly. Finally, from here, partial trajectories will be referred to as token sub-sequences.

A.3 EXTRACTING MOLECULAR SUBSTRUCTURES

Given a set of token sub-sequences, the goal is to extract out the most frequent molecular substruc-
tures. This is done by taking each sequence, considering every (sub)-sub-sequence, and counting
the number of valid substructures (Fig. A). For example, given the sub-sequence “ABCD”, the set of
(sub)-sub-sequences are: “A”, “AB”, “ABC”, and “ABCD”. In practice, we only consider (sub)-sub-
sequences with at least three characters (“ABC” and “ABCD”) since each character loosely maps to
one atom and three is approximately the minimum for meaningful functional groups, e.g., “C=O”, a
carbonyl. The set of most frequent substructures is assumed to be on track to receive a high reward.

A.4 DEFINING MOLECULAR SUBSTRUCTURES: Scaffold VS. Structure

As shown in Fig. A, molecular substructures can be defined on the Scaffold or Structure level.
The former extracts the Bemis-Murcko (Bemis & Murcko (1996) scaffold while the latter extracts
any valid structure. The any valid structure is an important distinction as our experiments find that
extracting by Structure leads to the most frequent molecular substructures being small functional
groups that do not have corresponding scaffolds. By contrast, extracting the scaffold always leads to
ring structures. Moreover, extracting specifically the Bemis-Murcko scaffold is important as heavy
atoms, e.g., nitrogen, are important for biological activity. Consequently, extracted substructures are
also enforced to contain at least one heavy atom as we find that benzene, perhaps unsurprisingly, is
commonly the most frequent substructure. See Section B for more details on the differing behavior
of ‘Scaffold’ vs. ‘Structure’.
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A.5 SELF-CONDITIONED GENERATION

Self-conditioned generation is achieved by filtering sampled batches of molecules from the gener-
ative model to only keep the ones that possess at least one of the most frequent substructures. The
effect is that the generative process is self-biased to focus on a narrower chemical space which we
show can drastically improve sample efficiency at the expense of some diversity, which is acceptable
when expensive high-fidelity oracles are used: we want to identify a small set of excellent candidate
molecules under minimal oracle calls.

A.6 PROBABILISTIC EXPLAINABILITY

The set of most frequent molecular substructures should be meaningful as otherwise, the model’s
weights would not have been updated such that these substructures have become increasingly likely
to be generated. We verify this statement in the illustrative experiment in the main text and in
Section C. In the drug discovery case studies (Appendix D), the extracted substructures are more
subtle in why they satisfy the target objective but certainly must possess meaning, however subtle,
as otherwise, they would not receive a high reward. In the main text, we show that extracted sub-
structures form core scaffolds and structural motifs in the generated molecules that complement the
protein binding cavity. Finally, we emphasize that the correctness and usefulness of this explainabil-
ity deeply depends on the oracle(s) being optimized for. The extracted substructures do not explain
why the generated molecules satisfy the target objective. Rather, they explain why the generated
molecules satisfy the oracle. The assumption in a generative design task is that optimizing the or-
acle is a good proxy for the target objective, e.g., generating molecules that dock well increases
the likelihood of the molecules being true binders. This observation directly provides additional
commentary on why sample efficiency is so important: the ability to directly optimize expensive
high-fidelity oracles would inherently enhance the correctness of the extracted substructures.

B BEAM ENUMERATION: FINDINGS FROM HYPERPARAMETER SCREENING

In this section, we introduce all seven hyperparameters of Beam Enumeration and then present
results on an exhaustive hyperparameter search which elucidates the behavior and interactions of
all the hyperparameters. In the end, we present our analyses and provide hyperparameter recom-
mendations for Beam Enumeration which can serve as default values to promote out-of-the-box
application.

B.1 BEAM ENUMERATION HYPERPARAMETERS

Beam k. This hyperparameter denotes how many tokens to enumerate at each step. Given that our
hypothesis is that the most probable sub-sequences yield meaningful substructures, we fix Beam k
to 2. A larger value would also decrease the number of Beam Steps possible as the total number of
sub-sequences is kN and the exponential growth quickly leads to computational infeasibility.

Beam Steps N. This hyperparameter denotes how many token enumeration steps to execute and is
the final token length of the enumerate sub-sequences. This parameter leads to exponential growth
in the number of sequences which can quickly become computationally prohibitive. An important
implication of this hyperparameter is that larger Beam Steps means that larger substructures can be
extracted. In our experiments, we find that enforcing size in the extracted substructures can dras-
tically improve sample efficiency with decreased diversity as the trade-off. We thoroughly discuss
this in a later sub-section. Finally, in our experiments, the upper-limit investigated is 18 Beam Steps.

Substructure Type. This hyperparameter has two possible values: Scaffold or Structure. Scaf-
fold extracts Bemis-Murcko (Bemis & Murcko (1996) scaffolds while Structure extracts any valid
substructure.

Structure Structure Minimum Size. This hyperparameter enforces the partial SMILES to contain
at least a certain number of characters. In effect, this enforces extracted molecular substructures
to be larger than a Structure Minimum Size. From the illustrative experiment in the main text and
Section C, Structure extraction often leads to small functional groups being the most frequent in
the sub-sequences. By enforcing a minimum structure size, Structure extraction leads to partial
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structures which may carry more meaning. We find that this hyperparameter greatly impacts sample
efficiency and we present all our findings in a later sub-section.

Pool Size. This hyperparameter controls how many molecular substructures to keep track of. These
pooled substructures are what is used to perform self-conditioning. The hypothesis is that the most
frequent ones carry the most meaning and thus, a very large pool size may not be desired.

Patience. This hyperparameter controls how many successive reward improvements are required
before Beam Enumeration executes and molecular substructures are extracted. Recalling the first
fact in which Beam Enumeration was proposed on: On a successful optimization trajectory, the
model’s weights must change such that desirable molecules are more likely to be generated, on
average. Patience is effectively an answer to ”when would extracted substructures be meaningful?”
Too low a patience and stochasticity can lead to negative effects while too high a patience diminishes
the benefits of Beam Enumeration on sample efficiency.

Token Sampling Method. This hyperparameter has two possible values: ”topk” or ”sample” and
denotes how tokens sub-sequences are enumerated. ”topk” takes the top k most probable tokens at
each Beam Step while ”sample” samples from the distribution just like during batch generation. Our
results show interesting observations surrounding this hyperparameter as ”sample” can work just as
well and sometimes even better than taking the ”topk”. These results were unexpected as the under-
lying hypothesis is that the most probable sub-sequences lead to the most useful substructures being
extracted. However, our findings are not in contradiction as sampling the conditional probability
distributions would still lead to sampling the top k tokens, on average. Moreover, after extensive
experiments, we find that ”sample” leads to more variance in performance across replicates which is
in agreement with the assumption that sampling the distributions can lead to more improbable struc-
tures. We thoroughly discuss our findings in a later sub-section where we provide hyperparameter
recommendations and analyses to the effects of tuning each hyperparameter.

B.2 HYPERPARAMETERS: GRID SEARCH

We performed two exhaustive hyperparameter grid searches on the illustrative experiment which has
the following multi-parameter optimization (MPO) objective: maximize topological polar surface
area (tPSA), molecular weight <350 Da, number of rings ≥ 2 with an oracle budget of 5,000. The
first grid search investigated the following hyperparameter combinations:

• Beam K = 2

• Beam Steps = [15, 16, 17, 18]

• Substructure Type = [Scaffold, Structure]

• Pool Size = [3, 4, 5]

• Patience = [3, 4, 5]

• Token Sampling Method = [’topk’, ’sample’]

All hyperparameter combinations (144) were tried and run for 10 replicates each for statistical
reproducibility, total of 1,440 experiments. Next, an additional grid search was performed with
the following hyperparameter combinations:

• Beam K = 2

• Beam Steps = [17, 18]

• Substructure Type = [Scaffold, Structure]

• Structure Structure Minimum Size = [10, 15]

• Pool Size = [4, 5]

• Patience = [4, 5]

• Token Sampling Method = [’topk’, ’sample’]

We take the general trends from the first grid search and narrow down the most optimal hyperpa-
rameters to further investigate Substructure Type and structure Structure Minimum Size. As from
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before, all hyperparameter combinations (64) were tried and run for 10 replicates each for
statistical reproducibility, total of 640 experiments.

The following heatmaps performance by the Generative Yield and Oracle Burden (10) metrics at
the >0.8 reward threshold and under a 5,000 oracle budget. The Generative Yield measures how
many unique molecules above 0.8 reward were generated. The Oracle Burden (10) measures how
few oracle calls were required to generate 10 molecules above 0.8 reward.

B.3 ANALYSIS OF GRID SEARCH RESULTS

In this section, we summarize our analysis on the grid search experiments. Unless stated, each bullet
point means the observation was observed for both Generative Yield and Oracle Burden (10). For
example the point: Scaffold >Structure means Scaffold is generally more performant than Structure
across all hyperparameters on both the Generative Yield and Oracle Burden (10).

• For Scaffold, higher Pool, higher Patience, and higher Beam Steps improves performance
• For Structure, lower pool and lower patience improves performance
• Scaffold >Structure
• Scaffold and Structure become more performant with increasing Structure Minimum Size
• Scaffold and Structure with Structure Minimum Size: ”sample” sampling can be better than

”topk” sampling but with more variance

Based on the above analysis, we propose the optimal hyperparameters for the illustrative experiment
as:

• Scaffold
• ”topk” sampling (”sample” sampling can be more performant but exhibits higher variance)
• Patience = 5
• Pool Size = 4
• Beam Steps = 18

Finally, we provide more commentary on interesting observations from the grid search results.
Structure without Structure Minimum Size enforcing often leads to small functional groups being
the most frequent molecular substructures extracted with Beam Enumeration. Enforcing Structure
Minimum Size puts it almost on par with Scaffold, suggesting (perhaps not surprisingly) that larger
substructures can carry more meaningful information. Moreover, when using ”sample” sampling,
the generative model undergoes more ”filter rounds”. Specifically, at each epoch, the sampled batch
is filtered to contain the extracted substructures. When using ”sample” sampling, the model is more
prone to some epochs containing no molecules with the substructures. In practice, this is incon-
sequential as sampling is computationally inexpensive and a next batch of molecules can easily be
sampled. However, specifically in the Structure with ”sample” sampling and Structure Minimum
Size = 15 experiment, ”filter round” can be quite extensive, taking up to 100,000 epochs (maxi-
mum observed) for an oracle budget of 5,000 (adding about an hour to the wall time which is minor
when the oracle is expensive). This means that many epochs contained molecules without the ex-
tracted substructures. There are two observations here: firstly, ”sample” sampling can lead to more
improbable substructures which are hence less likely to be sampled and secondly, Structure with
Structure Minimum Size enforcement leads to extreme biasing (which improves sample efficiency).
We believe the remarkable tolerability of the generative model sampling to such bias is an interest-
ing observation. By contrast, Scaffold with Structure Minimum Size enforcement is not as prone
to ”filter rounds” because Scaffold ”truncates” the substructure to its central shape (scaffold). For
example, toluene (benzene with a methyl group) has a Bemis-Murcko (Bemis & Murcko (1996)
scaffold of just benzene. The consequence is that Structure leads to more extreme biasing (it is more
likely for a molecule to contain benzene than specifically toluene) which is in agreement with the
general observation that the diversity of the generated set decreases when using Structure. Overall,
both Scaffold and Structure with Structure Minimum Size enforcing exhibits the best performance
and ”sample” sampling can be more performant than ”topk” sampling but exhibits notably higher
variance.
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Figure B5: illustrative experiment Generative Yield >0.8. The IntDiv1 (Polykovskiy et al. (2020b)
is annotated.
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Figure B6: illustrative experiment Generative Yield >0.8 with Structure Minimum Size. The Int-
Div1 (Polykovskiy et al. (2020b) is annotated.
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Figure B7: illustrative experiment Generative Yield >0.8 with Structure Minimum Size and ”Sam-
ple” token sampling. The IntDiv1 (Polykovskiy et al. (2020b) is annotated.
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Figure B8: illustrative experiment Oracle Burden (10) >0.8
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Figure B9: illustrative experiment Oracle Burden (10) >0.8 with Structure Minimum Size
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Figure B10: illustrative experiment Oracle Burden (10) >0.8 with Structure Minimum Size and
”Sample” token sampling
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The set of optimal hyperparameters found here were used in drug discovery case studies. In order
to be rigorous with our investigation, we only fix the following hyperparameters:

• Patience = 5 (lower variance)
• Pool Size = 4 (lower variance, higher Yield, lower Oracle Burden)
• Beam Steps = 18 (lower variance, higher Yield, lower Oracle Burden)

with these hyperparameters, we do a small grid search (on the drug discovery case studies) by
changing the Structure Type, Token Sampling Method, and Structure Minimum Size hyperparam-
eters as the optimal hyperparameters in the illustrative experiment are not necessarily the optimal
ones in the drug discovery experiments. The purpose of this is not to necessarily report the best
performance on the drug discovery case studies but to gain insights into the optimal general
parameters such that Beam Enumeration can be used out-of-the-box. In real-world expensive
oracle settings, tuning hyperparameters is infeasible.

All results from the drug discovery case studies are shown in Section D.

B.4 BEAM ENUMERATION: RECOMMENDED DEFAULT HYPERPARAMETERS

Taking into consideration all grid search experiments for the illustrative experiment and Drug Dis-
covery case studies, the following optimal hyperparameters are recommended: Patience = 5, Pool
Size = 4, Beam Steps = 18, Structure, Structure Minimum Size = 15, ”topk” sampling.

Notable differences between the final recommended hyperparameters compared to those found from
the illustrative experiment is that Structure and ”topk” sampling are more performant than Scaffold
and ”sample” sampling. In the illustrative experiment, ”sample” sampling was sometimes more
performant than ”topk” sampling. We rationalize these observations as follows: in MPO objectives
that include physics-based oracles, structure specificity becomes increasingly important, e.g., spe-
cific chemical motifs dock well because they form interactions with the protein. Therefore, ”topk”
sampling is more robust as there is less variance in the extract substructures compared to ”sample”
sampling. We empirically observe the increased variance when using ”sample” sampling measured
by the standard deviation between replicate experiments (Appendix D). In the illustrative experi-
ment where the oracle was more permissive, i.e., any rings saturated with heteroatoms would satisfy
the MPO objective, small deviations in the extracted structure do not have as prominent an effect
as physics-based oracles which require specificity. Another observation is that Structure sampling
often extracts scaffolds with ”branch points” which enforces extreme bias that can lead to more fo-
cused chemical space exploration. We discuss this in detail in Section D and believe the insights are
generally interesting in the context of molecular optimization landscape.

Finally, we end this section by stating that we cannot try every single hyperparameter combi-
nation and the recommended values are from our grid search results which we make an effort
to be robust, given that we perform 10 replicates of each experiment. We find that the optimal
hyperparameters in the drug discovery case studies are generally the same as in the illustrative
experiment.
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B.5 PSEUDO-CODE

This section contains the pseudo-code for Beam Enumeration and Augmented Memory with Beam
Enumeration to show the integration.

B.5.1 BEAM ENUMERATION

This subsection contains the Beam Enumeration pseudo-code. The ⊕ operator denotes every ele-
ment on the left is being extended by every element on the right.

Algorithm 1: Beam Enumeration
Input: Generative Agent πθAgent , Top k, N Beam Steps
Output: Enumerated Token Sub-sequences S
Initialization:
Hidden State = None;
Sub-sequences = [Top k ¡START¿ Tokens];
Input Vector = top k number of start tokens;
for i = 1 to N do

Logits, New Hidden State← πθAgent (Input Vector, Hidden State);
TokensK ← top k tokens from Softmax(Logits);
if i = 1 then

Sub-sequences← TokensK ;
Input Vector← TokensK ;
Hidden State = New Hidden State;

else
Create empty list temp;
for each seq in Sub-sequences do

seq ← seq ⊕ TokensK ;
Append seq to temp;

Sub-sequences← temp;
Clear temp;
Input Vector← Flatten TokensK ;
Hidden State← (New Hidden State[i].repeat interleave(top k, dim = 1))i=0,1;

return Sub-sequences
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B.5.2 BEAM ENUMERATION WITH AUGMENTED MEMORY

This subsection contains the Augmented Memory pseudo-code (from Guo et al. (Guo & Schwaller
(2023)) with Beam Enumeration integrated. All Beam Enumeration operations are bolded.

Algorithm 2: Beam Enumeration Integrated with Augmented Memory
Input: Prior πPrior , Epochs N , Augmentation Rounds A, Scoring Function S, Sigma σ, Replay

Buffer Size K, Patience P
Output: Fine-tuned Agent Policy πθAgent

, Generated Molecules G
Initialization:
Generative Agent πθAgent

= πPrior ;

Diversity Filter DF ;
Replay Buffer B = {};
Substructure Pool Pool = {};
for i← 1 to N do

Sample batch of SMILES X = {x1, . . . , xb} with xi ∼ πθAgent
;

if Pool is not empty then
Filter sampled batch of SMILES to contain pooled substructures Xfiltered

;
Compute reward using the scoring function S(Xfiltered);
Modify reward based on the diversity filter DF (S(Xfiltered));
Update replay buffer Bi = TopK(Xfilteredi

∪Bi−1);
if reward has improved for P successive epochs then

Execute Beam Enumeration to update the Pool
;
(Optionally) purge replay buffer;
Compute Augmented Likelihood log πθAugmented

= log πPrior(Xfiltered) + σS(Xfiltered);

Compute loss J(θ) = (log πAugmented − log πθAgent
(Xfiltered))

2;

Update the Agent’s policy πθAgent
;

for j ← 1 to A do
Augment filtered SMILES XfilteredAugmented

;

Compute Augmented Likelihood of augmented filtered SMILES (reward is unchanged)
log πAugmented = log πPrior(XfilteredAugmented

) + σS(Xfiltered);

Compute loss J(θ)Augmented = (log πAugmented − log πθAgent
(XfilteredAugmented

))2;

Augment entire replay buffer BAugmented ;

Compute Augmented Likelihood on the augmented buffer (reward is the buffer stored
rewards) log πBuffer Augmented = log πPrior(BAugmented) + σS(B);

Compute augmented buffer loss
J(θ)Buffer Augmented = (log πBuffer Augmented − log πθAgent

(BAugmented))
2;

Concatenate the augmented sampled SMILES loss and the augmented buffer loss
J(θ)Augmented Memory = J(θ)Augmented + J(θ)Buffer Augmented ;

Update the Agent’s policy πθAgent
;
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C ILLUSTRATIVE EXPERIMENT

This section contains additional results from initial investigations into the feasibility of Beam Enu-
meration. The illustrative experiment was performed with the following multi-parameter optimiza-
tion (MPO) objective: maximize topological polar surface area (tPSA), molecular weight (MW)
<350 Da, number of rings ≥ 2.

C.1 SUBSTRUCTURE EXTRACTION

The first experiments investigated whether a sufficient substructures signal could be extracted from
enumerated sub-sequences. The two parameters of Beam Enumeration (without self-conditioning)
are top k denoting the top k number of highest probability tokens to enumerate and N number of
beam steps denoting how many steps to perform token expansion for (which is also the length of
the final sub-sequence). Our hypothesis is that a lower top k is desirable as we are interested in the
most probably substructures. Thus, the initial experiments were a grid-search with a top k of 2 and
N beam steps of [15, 16, 17, 18]. The illustrative experiment was run for 100 epochs (6,400 oracle
calls which is different from the 5,000 used in the main text experiments as this set of results is only
to demonstrate that meaningful substructures can be extracted) and Beam Enumeration was applied
at epochs 1, 20, 40, 60, 80, and 100.

Table 3: Feasibility of Beam Enumeration to extract valid substructures. Top-k = 2.
N Beam Steps Epoch 1 Epoch 20 Epoch 40 Epoch 60 Epoch 80 Epoch 100

15 2294/32768 3123/32768 5843/32768 5538/32768 5674/32768 8004/32768
(7.00%) (9.53%) (17.83%) (16.90%) (17.32%) (24.43%)

16 4789/65536 5890/65536 5771/65536 11159/65536 7657/65536 9771/65536
(7.31%) (8.99%) (8.81%) (17.03%) (11.68%) (14.91%)

17 9998/131072 15266/131072 26163/131072 24352/131072 21442/131072 31160/131072
(7.63%) (11.65%) (19.96%) (18.58%) (16.36%) (23.77%)

18 20747/262144 33969/262144 72126/262144 48417/262144 45349/262144 46994/262144
(7.91%) (12.96%) (27.51%) (18.47%) (17.30%) (17.93%)

Table 3 shows the absolute counts and percentage of sub-sequences containing valid substructures.
While the percentage may appear low, we note the absolute counts is more than enough to extract
some notion of most probable substructures. We use N beam steps of 18 for all experiments as we
hypothesize that larger substructures can carry more information. The reason the max beam steps
investigated was 18 is because of the memory overhead required for sequence expansion.

C.2 EXTRACTED SUBSTRUCTURES

To illustrate the capability of Beam Enumeration to extract meaningful substructures, Fig. C11
shows the top 5 most probable substructures at epochs 1, 20, 40, 60, 80, and 100 based on Structure
(extract any valid structure) and Scaffold (extract valid Bemis-Murcko (Bemis & Murcko (1996)
scaffold) using a top k of 2 and 18 beam steps. We make two crucial observations here. Firstly,
Structure often extracts small functional groups which makes the self-conditioned filtering much
more permissive as it is more likely for a molecule to possess a specific functional group than a
specific scaffold. Secondly, benzene appears often and perhaps unsurprisingly as it is ubiquitous
in nature. Based on these observations, we design Beam Enumeration to only extract substructures
containing at least one heteroatom on the assumption that heteroatoms are much more informative
in forming polar interactions in drug molecules, e.g., a hydrogen-bond cannot form from benzene.
Finally, the general observation is that the most probable substructures gradually contain more het-
eroatoms, as desired.

C.3 SUPPLEMENTARY MAIN TEXT RESULTS

In this section, we present the same table as the main text illustrative experiment. The only differ-
ence is that the IntDiv1 (Polykovskiy et al. (2020a) is also annotated in the table here to show that
the sample efficiency improvements of Beam Enumeration come only at a small trade-off in diver-
sity (Table 4). In agreement with our observations in the hyperparameters grid search (Appendix
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Figure C11: Substructures extracted in the illustrative example at varying epochs based on Structure
and Scaffold.
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A), Structure extraction with ’Structure Minimum Size’ enforcement leads to highly specific sub-
structures which decrease diversity relative to Scaffold extraction but with potential gains in sample
efficiency as evidenced in the drug discovery case studies (Appendix D). We further perform statis-
tical testing using Welch’s t-test to compare all metrics for Scaffold with ’Structure Minimum Size’
= 15 and Baseline Augmented Memory (Guo & Schwaller (2023). For the experiments that had
unsuccessful replicates, we use the total number of successful experiments, e.g., Oracle Burden>10
(100), the Baseline was unsuccessful in 69/100 replicates so a 31 sample size was used. Overall, all
p-values are significant at the 95% confidence level.

Table 4: Illustrative experiment: Beam Enumeration improves the sample efficiency of Augmented
Memory. All experiments were run for 100 replicates with an oracle budget of 5,000 calls and
reported values are the mean and standard deviation. Scaffold and Structure indicate the type of
substructure and the number after is the ’Structure Minimum Size’. Parentheses after Oracle Burden
denote the cut-off number of molecules. Parentheses after values represent the number of unsuc-
cessful replicates (for achieving the metric). The IntDiv1 (Polykovskiy et al. (2020b) is annotated
under each Generative Yield. Welch’s t-test is used to compare the difference between Scaffold with
’Structure Minimum Size’ = 15 and Baseline Augmented Memory (Guo & Schwaller (2023). All
p-values are significant.

Metric Augmented Memory Welch’s t-test (95%)
Beam Scaffold 15 Beam Structure 15 Beam Scaffold Beam Structure Baseline p-value (N=100)

Generative Yield>0.7 (↑) 1757 ± 305 1669 ± 389 1117 ± 278 864 ± 202 496 ± 108 2.60 ×10−75

- Diversity 0.77 ± 0.03 0.73 ± 0.04 0.79 ± 0.03 0.83 ± 0.03 0.85 ± 0.02

Generative Yield>0.8 (↑) 819 ± 291 700 ± 389 425 ± 256 199 ± 122 85 ± 56 3.70 ×10−48

- Diversity 0.73 ± 0.04 0.69 ± 0.05 0.75 ± 0.04 0.77 ± 0.04 0.78 ± 0.03

Oracle Burden>0.7 (1) (↓) 577 ± 310 616 ± 230 1037 ± 414 897 ± 347 1085 ± 483 3.06 ×10−19

Oracle Burden>0.7 (10) (↓) 947 ± 350 926 ± 332 1881 ± 259 1745 ± 292 2392 ± 216 4.99 ×10−87

Oracle Burden>0.7 (100) (↓) 1530 ± 468 1547 ± 513 2736 ± 335 2713 ± 402 3672 ± 197 2.34 ×10−86

Oracle Burden>0.8 (1) (↓) 1311 ± 628 1401 ± 695 2423 ± 487 2295 ± 482 3164 ± 492 6.07 ×10−65

Oracle Burden>0.8 (10) (↓) 1794 ± 617 (1) 2009 ± 804 (1) 3124 ± 497 3241 ± 492 4146 ± 326 6.48 ×10−79

Oracle Burden>0.8 (100) (↓) 2704 ± 689 (1) 2943 ± 811 (6) 3973 ± 592 (6) 4415 ± 437 (20) 4827 ± 170 (69) 6.17 ×10−21

C.4 BEAM ENUMERATION WORKS IN EXPLOITATION SCENARIOS

Table 5: Beam Enumeration works in exploitation scenarios. all experiments were run for 100 repli-
cates with an oracle budget of 5,000 calls and reported values are the mean and standard deviation.
Parentheses after Oracle Burden denote the cut-off number of molecules. The IntDiv1 (Polykovskiy
et al. (2020b) is annotated under each Generative Yield. Welch’s t-test is used to compare the dif-
ference between Scaffold with ’Structure Minimum Size’ = 15 and Baseline Augmented Memory
(Guo & Schwaller (2023). All p-values are significant.

Metric Augmented Memory Welch’s t-test (95%)
Beam Scaffold 15 Baseline p-value (N=100)

Generative Yield>0.7 (↑) 1325 ± 468 496 ± 108 1.54 ×10−29

- Diversity 0.76 ± 0.04 0.85 ± 0.02

Generative Yield>0.8 (↑) 601 ± 298 85 ± 56 1.35 ×10−28

- Diversity 0.70 ± 0.09 0.78 ± 0.03

Oracle Burden>0.7 (1) (↓) 626 ± 260 1085 ± 483 4.52 ×10−15

Oracle Burden>0.7 (10) (↓) 997 ± 326 2392 ± 216 2.26 ×10−80

Oracle Burden>0.7 (100) (↓) 1487 ± 352 3672 ± 197 4.01 ×10−100

Oracle Burden>0.8 (1) (↓) 1415 ± 645 3164 ± 492 2.21 ×10−53

Oracle Burden>0.8 (10) (↓) 1794 ± 553 (2) 4146 ± 326 1.14 ×10−76

Oracle Burden>0.8 (100) (↓) 2490 ± 576 (2) 4827 ± 170 (69) 1.68 ×10−25

In the main text illustrative experiment, Augmented Memory (Guo & Schwaller (2023) was used
with Selective Memory Purge activated which is the mechanism to promote chemical space explo-
ration, as described in the original work. For completeness, we show that Beam Enumeration also
works in pure exploitation scenarios where the goal is only to generate high reward molecules even
if the same molecule is repeatedly sampled (Table 5). We perform statistical testing using Welch’s
t-test to compare all metrics for Scaffold with ’Structure Minimum Size’ = 15 and Baseline Aug-
mented Memory (Guo & Schwaller (2023). For the experiments that had unsuccessful replicates,
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Figure C12: Behaviour of Beam Enumeration using Structure and Scaffold on self-conditioning.

we use the total number of successful experiments, e.g., Oracle Burden>10 (100), the Baseline was
unsuccessful in 69/100 replicates so a 31 sample size was used. Overall, all p-values are significant
at the 95% confidence level.

C.5 SELF-CONDITIONED FILTERING: Structure VS Scaffold

There is a clear discrepancy in the substructures extracted by Structure and Scaffold. In particular,
Structure substructures contain small functional groups which is much more permissive when used
as a filter criterion compared to full scaffolds. Therefore, one would expect that many molecules
in the sampled batches would be kept when using Structure Beam Enumeration. We plot the av-
erage number of molecules kept out of 64 (batch size) across the generative run when using Beam
Enumeration. Note that the experiments ran for variable epochs due to the stochasticity of Beam
Enumeration self-filtering. The number of epochs shown in C12 is the minimum number of epochs
out of 100 replicates. Therefore, the average values shown are averaged over 100 replicates. It
is evident that Structure is more lenient as many generated molecules make it through the filter
compared to Scaffold which maintains a relatively strict filter. One interesting observation is that
self-conditioning does not lead to obvious mode collapse. Self-conditioning is inherently biased
and one would be concerned that the model gets stuck at generating the same molecules repeatedly.
The fact that self-conditioning with Scaffold continues to filter throughout the entire generative run
shows that the model is continually moving to new chemical space, supporting findings from the
original Augmented Memory (Guo & Schwaller (2023) work that Selective Memory Purge (built-in
diversity mechanism) is capable of preventing mode collapse.

D DRUG DISCOVERY CASE STUDIES

This section contains information on the Autodock Vina (Trott & Olson (2010) docking protocol
from receptor grid preparation to docking execution. The Beam Enumeration hyperparameters grid
search results are presented for all three drug discovery case studies followed by analysis. Exam-
ples of extracted substructures are also shown and commentary provided to their significance and
explainability. Finally, the wall times of all experiments are presented.
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D.1 AUTODOCK VINA RECEPTOR PREPARATION AND DOCKING

All docking grids were prepared using DockStream (Guo et al. (2021a) which uses PDBFixer (East-
man et al. (2017) to refine receptor structures. The search box for all grids was 15Å x 15Å x 15Å.
Docking was also performed through DockStream and followed a two step process: conformer gen-
eration using the RDKit Universal Force Field (UFF) (Rappé et al. (1992) with the maximum con-
vergence set to 600 iterations and then Vina docking was parallelized over 36 CPU cores (Intel(R)
Xeon(R) Platinum 8360Y processors).

DRD2 - Dopamine Type 2 Receptor. The PDB ID is 6CM4 (Wang et al. (2018) and the docking
grid was centered at (x, y, z) = (9.93, 5.85, -9.58).

MK2 - MK2 Kinase. The PDB ID is 3KC3 (Argiriadi et al. (2010) and one monomer was extracted.
The docking grid for the extracted monomer was centered at (x, y, z) = (-61.62, 30.31, -21.9).

AChE - Acetylcholinesterase. The PDB ID is 1EVE (Kryger et al. (1999) and the docking grid was
centered at (x, y, z) = (2.78, 64.38, 67.97).

D.2 BEAM ENUMERATION HYPERPARAMETERS GRID SEARCH RESULTS

We performed an additional hyperparameter grid search on all three drug discovey case studies
based on the insights drawn from the illustrative experiment grid search results. We fix the following
hyperparameters:

• Beam K = 2
• Beam Steps = 18
• Pool Size = 4
• Patience = 5

and vary the following:

• Optimization Algorithm = [Augmented Memory (Guo & Schwaller (2023), REINVENT
(Olivecrona et al. (2017); Blaschke et al. (2020)]

• Substructure Type = [Scaffold, Structure]
• Structure Minimum Size = [10, 15]
• Token Sampling Method = [”topk”, ”sample”]

All hyperparameter combinations (8) were tried and run for 3 replicates each for statistical
reproducibility, total of 144 experiments. There are two main results we want to convey: firstly,
the optimal hyperparameters are the same for all three drug discovery case studies and only the
Substructure Type differs between the optimal hyperparameters here and the illustrative experiment.
Secondly, Beam Enumeration is a task-agnostic general method that can be applied to existing algo-
rithms including Augmented Memory (Guo & Schwaller (2023) and REINVENT (Olivecrona et al.
(2017); Blaschke et al. (2020). At the end of this section, we present these hyperparameters and
designate these the default values. All grid search results are now presented in following tables:

Based on the results from the hyperparameters grid search in the drug discovery case studies, we
make two key observations: firstly, Structure extraction with ’Structure Minimum Size’ = 15 is now
the most performant, on average (for both Augmented Memory (Guo & Schwaller (2023) and REIN-
VENT (Olivecrona et al. (2017); Blaschke et al. (2020)). This is in contrast to Scaffold extraction
in the illustrative experiment which we rationalize through the permissive nature of the experiment
compared to the docking experiments which require structure specificity. Previously, small devia-
tions in the substructures may not have a significant impact on the reward. In physics-based oracles
such as Vina (Trott & Olson (2010) docking used here, small substructure differences can have an
enormous impact on the outcome since the pose requires specific complementary to the protein bind-
ing site. The second observation we make which is in agreement with the illustrative experiment
is that ”sample” token sampling has more variance and does not perform better than ”topk”. The
rationale is the same in that docking requires specificity and lower probability substructures exhibit
more variable performance. Based on all the observations from the illustrative experiment and the
drug discovery case studies, we designate the following default hyperparameter values:
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Table 6: DRD2 (Wang et al. (2018) case study hyperparameters grid search results for Augmented
Memory (Guo & Schwaller (2023). All experiments were run in triplicate and the reported values
are the mean and standard deviation. ”Sample” denotes ”sample” token sampling. All metrics are for
the reward threshold >0.8. The IntDiv1 (Polykovskiy et al. (2020b) is annotated under Generative
Yield. * and ** denote one and two replicates were unsuccessful, respectively.

Experiment Generative Unique Oracle Oracle Oracle
Augmented Memory DRD2 Yield Scaffolds Burden (1) Burden (10) Burden (100)
Baseline 363 ± 195 322 ± 166 187 ± 51 711 ± 120 2558 ± 30∗

- Diversity 0.802 ± 0.019
Scaffold 957 ± 75 749 ± 62 82 ± 29 668 ± 25 1818 ± 107
- Diversity 0.765 ± 0.006
Scaffold Size 15 1607 ± 379 1023 ± 351 83 ± 29 571 ± 104 1056 ± 146
- Diversity 0.724 ± 0.027
Scaffold Sample 948 ± 123 776 ± 128 126 ± 89 505 ± 17 1746 ± 20
- Diversity 0.734 ± 0.018
Scaffold Sample Size 15 1552 ± 106 1274 ± 154 84 ± 29 598 ± 110 1511 ± 416
- Diversity 0.660 ± 0.041
Structure 887 ± 112 711 ± 133 63 ± 0 595 ± 63 1862 ± 154
- Diversity 0.764 ± 0.008
Structure Size 15 1780 ± 439 1323 ± 368 126 ± 90 582 ± 83 1120 ± 194
- Diversity 0.699 ± 0.020
Structure Sample 912 ± 86 757 ± 30 63 ± 0 583 ± 37 2132 ± 148
- Diversity 0.767 ± 0.015
Structure Sample Size 15 1752 ± 105 1352 ± 180 188 ± 103 776 ± 129 1289 ± 193
- Diversity 0.641 ± 0.059

Table 7: DRD2 (Wang et al. (2018) case study hyperparameters grid search results for REINVENT
(Olivecrona et al. (2017); Blaschke et al. (2020). All experiments were run in triplicate and the
reported values are the mean and standard deviation. ”Sample” denotes ”sample” token sampling.
The IntDiv1 (Polykovskiy et al. (2020b) is annotated under Generative Yield. All metrics are for the
reward threshold >0.8. * and ** denote one and two replicates were unsuccessful, respectively.

Experiment Generative Unique Oracle Oracle Oracle
REINVENT DRD2 Yield Scaffolds Burden (1) Burden (10) Burden (100)
Baseline 102 ± 6 101 ± 6 168 ± 149 883 ± 105 4595 ± 0∗∗

- Diversity 0.833 ± 0.001
Scaffold 190 ± 32 184 ± 32 63 ± 1 836 ± 178 3516 ± 575
- Diversity 0.814 ± 0.007
Scaffold Size 15 687 ± 366 377 ± 204 127 ± 52 604 ± 71 2109 ± 1090
- Diversity 0.730 ± 0.013
Scaffold Sample 176 ± 86 149 ± 49 105 ± 59 720 ± 121 3875 ± 883
- Diversity 0.801 ± 0.030
Scaffold Sample Size 15 363 ± 249 225 ± 144 84 ± 30 754 ± 183 3170 ± 1188
- Diversity 0.704 ± 0.044
Structure 184 ± 14 183 ± 14 104 ± 31 897 ± 100 3426 ± 282
- Diversity 0.817 ± 0.006
Structure Size 15 417 ± 275 290 ± 178 63 ± 0 1099 ± 930 1928 ± 117∗

- Diversity 0.730 ± 0.014
Structure Sample 169 ± 24 167 ± 24 126 ± 52 711 ± 179 3568 ± 440
- Diversity 0.826 ± 0.003
Structure Sample Size 15 261 ± 225 182 ± 132 209 ± 128 840 ± 107 3690 ± 1266∗

- Diversity 0.734 ± 0.057

• Beam K = 2

• Beam Steps = 18

• Pool Size = 4

• Patience = 5

• Substructure Type = Structure

• Structure Minimum Size = 15

• Token Sampling Method = ”topk”
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Table 8: MK2 (Argiriadi et al. (2010) case study hyperparameters grid search results for Augmented
Memory (Guo & Schwaller (2023). All experiments were run in triplicate and the reported values
are the mean and standard deviation. ”Sample” denotes ”sample” token sampling. All metrics are for
the reward threshold >0.8. The IntDiv1 (Polykovskiy et al. (2020b) is annotated under Generative
Yield. * and ** denote one and two replicates were unsuccessful, respectively.

Experiment Generative Unique Oracle Oracle Oracle
Augmented Memory MK2 Yield Scaffolds Burden (1) Burden (10) Burden (100)
Baseline 34 ± 13 32 ± 12 1360 ± 543 3833 ± 394 Failed
- Diversity 0.794 ± 0.008
Scaffold 179 ± 63 131 ± 16 1163 ± 457 2550 ± 148 4421 ± 344
- Diversity 0.743 ± 0.038
Scaffold Size 15 523 ± 438 330 ± 269 1221 ± 564 2426 ± 1525 2676 ± 403∗

- Diversity 0.676 ± 0.016
Scaffold Sample 106 ± 71 87 ± 58 1005 ± 573 3296 ± 1181 4592 ± 334∗

- Diversity 0.722 ± 0.017
Scaffold Sample Size 15 379 ± 357 257 ± 227 983 ± 540 1846 ± 680 3244 ± 1133∗

- Diversity 0.653 ± 0.026
Structure 66 ± 18 59 ± 20 1246 ± 716 2708 ± 232 Failed
- Diversity 0.769 ± 0.029
Structure Size 15 987 ± 211 610 ± 117 736 ± 166 1122 ± 154 2189 ± 181
- Diversity 0.704 ± 0.030
Structure Sample 40 ± 15 34 ± 11 1119 ± 1183 3516 ± 506 Failed
- Diversity 0.784 ± 0.024
Structure Sample Size 15 129 ± 52 117 ± 50 1208 ± 660 2799 ± 476 4037 ± 0∗∗

- Diversity 0.671 ± 0.073

Table 9: MK2 (Argiriadi et al. (2010) case study hyperparameters grid search results for REINVENT
(Olivecrona et al. (2017); Blaschke et al. (2020). All experiments were run in triplicate and the
reported values are the mean and standard deviation. ”Sample” denotes ”sample” token sampling.
All metrics are for the reward threshold >0.8. The IntDiv1 (Polykovskiy et al. (2020b) is annotated
under Generative Yield. * and ** denote one and two replicates were unsuccessful, respectively.

Experiment Generative Unique Oracle Oracle Oracle
REINVENT MK2 Yield Scaffolds Burden (1) Burden (10) Burden (100)
Baseline 2 ± 0 2 ± 0 1723 ± 802 Failed Failed
- Diversity 0.424 ± 0.031
Scaffold 7 ± 2 7 ± 2 1272 ± 884 4948 ± 0∗∗ Failed
- Diversity 0.704 ± 0.051
Scaffold Size 15 19 ± 7 18 ± 7 808 ± 524 3891 ± 631 Failed
- Diversity 0.674 ± 0.065
Scaffold Sample 6 ± 2 6 ± 2 1427 ± 343 Failed Failed
- Diversity 0.677 ± 0.075
Scaffold Sample Size 15 4 ± 2 3 ± 1 2600 ± 1455 Failed Failed
- Diversity 0.653 ± 0.026
Structure 3 ± 1 3 ± 1 2571 ± 1155 Failed Failed
- Diversity 0.571 ± 0.112
Structure Size 15 179 ± 241 70 ± 87 1110 ± 268 1778 ± 0∗∗ 3208 ± 0∗∗

- Diversity 0.670 ± 0.020
Structure Sample 1 ± 0 1 ± 0 1737 ± 1595 Failed Failed
- Diversity 0.192 ± 0.271
Structure Sample Size 15 8 ± 5 7 ± 4 1943 ± 1153 4851 ± 0∗∗ Failed
- Diversity 0.357 ± 0.255

D.3 EXAMPLES OF EXTRACTED SUBSTRUCTURES: Structure EXTRACTION WITH
’STRUCTURE MINIMUM SIZE’ = 15

In this section, the top substructures at the end of the generative experiments (using Augmented
Memory (Guo & Schwaller (2023)) are shown for all three drug discovery case studies (3 replicates).
All experiments are for Structure extraction with ’Structure Minimum Size’ = 15. The extracted
substructures are commonly scaffolds with ”branch points”, i.e., a central scaffold with single carbon
bond extensions outward, which heavily bias generation. We posit that this may be a reason why
Structure extraction can be more performant than Scaffold, as observed in the hyperparameters grid
search in the previous subsection.
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Figure D13: Augmented Memory (Guo & Schwaller (2023) DRD2 (Wang et al. (2018) substructures
with Structure extraction and ’Structure Minimum Size’ = 15 after 5,000 oracle calls.

Figure D14: Augmented Memory (Guo & Schwaller (2023) MK2 (Argiriadi et al. (2010) substruc-
tures with Structure extraction and ’Structure Minimum Size’ = 15 after 5,000 oracle calls.
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Table 10: AChE (Kryger et al. (1999) case study hyperparameters grid search results for Augmented
memory (Guo & Schwaller (2023). All experiments were run in triplicate and the reported values are
the mean and standard deviation. ”Sample” denotes ”sample” token sampling. All metrics are for
the reward threshold >0.8. The IntDiv1 (Polykovskiy et al. (2020b) is annotated under Generative
Yield. * and ** denote one and two replicates were unsuccessful, respectively.

Experiment Generative Unique Oracle Oracle Oracle
Augmented Memory AChE Yield Scaffolds Burden (1) Burden (10) Burden (100)
Baseline 556 ± 47 544 ± 50 62 ± 0 380 ± 0 2021 ± 89
- Diversity 0.838 ± 0.002
Scaffold 1058 ± 102 1006 ± 113 62 ± 0 430 ± 90 1469 ± 56
- Diversity 0.823 ± 0.005
Scaffold Size 15 2124 ± 326 1523 ± 260 63 ± 0 418 ± 27 884 ± 162
- Diversity 0.752 ± 0.029
Scaffold Sample 1187 ± 48 1075 ± 39 84 ± 29 409 ± 77 1519 ± 141
- Diversity 0.806 ± 0.003
Scaffold Sample Size 15 1295 ± 126 1168 ± 143 188 ± 103 602 ± 108 1440 ± 115
- Diversity 0.750 ± 0.021
Structure 992 ± 64 946 ± 52 105 ± 59 558 ± 94 1635 ± 81
- Diversity 0.823 ± 0.005
Structure Size 15 2059 ± 327 1552 ± 344 105 ± 29 462 ± 25 1110 ± 265
- Diversity 0.735 ± 0.017
Structure Sample 831 ± 126 790 ± 130 62 ± 1 357 ± 29 1617 ± 220
- Diversity 0.841 ± 0.003
Structure Sample Size 15 1277 ± 526 1031 ± 421 127 ± 52 800 ± 342 1879 ± 531
- Diversity 0.657 ± 0.070

Table 11: AChE (Kryger et al. (1999) case study hyperparameters grid search results for REINVENT
(Olivecrona et al. (2017); Blaschke et al. (2020). All experiments were run in triplicate and the
reported values are the mean and standard deviation. ”Sample” denotes ”sample” token sampling.
The IntDiv1 (Polykovskiy et al. (2020b) is annotated under Generative Yield. All metrics are for the
reward threshold >0.8. * and ** denote one and two replicates were unsuccessful, respectively.

Experiment Generative Unique Oracle Oracle Oracle
REINVENT AChE Yield Scaffolds Burden (1) Burden (10) Burden (100)
Baseline 147 ± 11 146 ± 11 83 ± 29 481 ± 108 3931 ± 286
- Diversity 0.852 ± 0.004
Scaffold 245 ± 50 244 ± 50 63 ± 0 566 ± 136 3360 ± 164
- Diversity 0.844 ± 0.003
Scaffold Size 15 310 ± 207 227 ± 159 84 ± 29 421 ± 120 3596 ± 678
- Diversity 0.744 ± 0.038
Scaffold Sample 257 ± 77 252 ± 76 63 ± 0 480 ± 60 2946 ± 460
- Diversity 0.847 ± 0.004
Scaffold Sample Size 15 310 ± 92 271 ± 70 148 ± 28 673 ± 107 2881 ± 475
- Diversity 0.759 ± 0.039
Structure 356 ± 22 351 ± 24 63 ± 0 294 ± 28 2284 ± 238
- Diversity 0.841 ± 0.002
Structure Size 15 323 ± 58 284 ± 71 62 ± 0 441 ± 132 3073 ± 427
- Diversity 0.795 ± 0.009
Structure Sample 213 ± 26 206 ± 22 84 ± 30 558 ± 222 3073 ± 279
- Diversity 0.844 ± 0.005
Structure Sample Size 15 316 ± 253 190 ± 146 125 ± 50 561 ± 140 2683 ± 320∗

- Diversity 0.721 ± 0.111

D.4 WALL TIMES

The wall times for all drug discovery case studies with every algorithm is presented in Table 12. The
reported values are averaged over 3 replicates. In general, adding Beam Enumeration to the base
Augmented Memory (Guo & Schwaller (2023) and REINVENT (Olivecrona et al. (2017); Blaschke
et al. (2020) algorithms increased wall times but only slightly and it is negligible when considering
expensive oracles. An interesting observation is that ”sample” token sampling increases wall time
variance. This is because less probable substructures lead to more ”filter rounds’, i.e., epochs where
all the sampled molecules are discarded as none of them contain the Beam Enumeration extracted
substructures. In addition, REINVENT generally has longer wall times even though the oracle bud-
get is the same. The reason for this is because REINVENT optimizes the structure components of
the MPO objective: QED (Bickerton et al. (2012) and MW constraint to a lesser extent. Conse-
quently, REINVENT generates larger molecules, on average, which take longer to dock with Vina
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Figure D15: Augmented Memory (Guo & Schwaller (2023) AChE (Kryger et al. (1999) substruc-
tures with Structure extraction and ’Structure Minimum Size’ = 15 after 5,000 oracle calls.

Table 12: Wall times for all drug discovery case studies hyperparameters grid search using Aug-
mented Memory (Guo & Schwaller (2023) and REINVENT (Olivecrona et al. (2017); Blaschke
et al. (2020). ”Sample” denotes ”sample” token sampling. All experiments were run in triplicate
and the values are the mean and standard deviation.

Target Experiment Augmented Memory Wall Time REINVENT Wall Time
DRD2 Baseline 14h 0m ± 1h 26m 16h 36m ± 0h 55m

Scaffold 12h 58m ± 1h 11m 17h 9m ± 1h 28m
Scaffold Size 15 12h 56m ± 0h 46m 16h 51m ± 1h 58m
Scaffold Sample 12h 11m ± 0h 24m 16h 32m ± 1h 3m
Scaffold Sample Size 15 13h 32m ± 0h 50m 16h 26m ± 2h 58m
Structure 14h 30m ± 0h 51m 22h 5m ± 1h 52m
Structure Size 15 14h 54m ± 2h 24m 24h 33m ± 5h 8m
Structure Sample 13h 58m ± 0h 51m 20h 5m ± 1h 42m
Structure Sample Size 15 14h 52m ± 1h 32m 19h 52m ± 3h 22m

MK2 Baseline 10h 46m ± 0h 3m 15h 19m ± 0h 34m
Scaffold 11h 0m ± 0h 28m 16h 21m ± 0h 53m
Scaffold Size 15 11h 22m ± 2h 30m 16h 38m ± 1h 33m
Scaffold Sample 12h 56m ± 0h 36m 15h 49m ± 0h 36m
Scaffold Sample Size 15 11h 52m ± 1h 5m 16h 28m ± 0h 33m
Structure 12h 29m ± 0h 19m 19h 40m ± 1h 55m
Structure Size 15 11h 22m ± 1h 17m 18h 39m ± 1h 33m
Structure Sample 12h 22m ± 0h 28m 18h 12m ± 0h 57m
Structure Sample Size 15 12h 37m ± 0h 47m 16h 6m ± 1h 37m

AChE Baseline 10h 6m ± 0h 39m 14h 12m ± 0h 59m
Scaffold 11h 46m ± 0h 51m 15h 10m ± 1h 4m
Scaffold Size 15 11h 10m ± 0h 44m 15h 52m ± 1h 4m
Scaffold Sample 10h 55m ± 0h 44m 15h 27m ± 0h 57m
Scaffold Sample Size 15 10h 24m ± 0h 17m 14h 53m ± 0h 53m
Structure 13h 0m ± 0h 47m 19h 10m ± 0h 22m
Structure Size 15 11h 26m ± 0h 51m 18h 30m ± 0h 20m
Structure Sample 11h 23m ± 0h 22m 15h 36m ± 0h 20m
Structure Sample Size 15 17h 56m ± 4h 27m 19h 16m ± 2h 43m

(Trott & Olson (2010). This observation is in agreement with the original Augmented Memory work
which compared to REINVENT.
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E AUGMENTED MEMORY AND REINVENT MODEL HYPERPARAMETERS

Table 13: LSTM model hyperparameters for Augmented Memory (Guo & Schwaller (2023) and
REINVENT (Olivecrona et al. (2017); Blaschke et al. (2020)

Cell Type LSTM

Number of Layers 3

Embedding Layer Size 256

Dropout 0

Training Batch Size 128

Sampling Batch Size 64

Learning Rate 0.001

The same pre-trained prior on ChEMBL (Gaulton et al. (2012b) was used for Augmented Memory
(Guo & Schwaller (2023) and REINVENT (Olivecrona et al. (2017); Blaschke et al. (2020). All
shared hyperparameters (sampling batch size and learning rate) are the same. Default additional
hyperparameters for Augmented Memory were used based on the original work (Guo & Schwaller
(2023): two augmentation rounds and using Selective Memory Purge to prevent mode collapse.
Experience replay (Lin (1992); Blaschke et al. (2020) was kept default in REINVENT (randomly
sample 10 molecules out of 100 from the replay buffer at each epoch).

F BEAM ENUMERATION: BEYOND LANGUAGE-BASED FORMULATIONS

This section discusses potential extensions of Beam Enumeration to other classes of molecular gen-
erative models beyond language-based formulations.

F.1 DIRECT APPLICATION

Beam Enumeration enumerates from local probability distributions and is thus well-suited for au-
toregressive models. Correspondingly, autoregressive molecular generative models are not limited
to language-based formulations. As a concrete example, GraphINVENT (Mercado et al. (2021b;a)
generates molecular graphs and has been coupled with RL (Atance et al. (2022). During the opti-
mization process, instead of token probabilities being updated, graph action probabilities are tuned,
which denote discrete actions to construct the molecular graph, such as adding a node or edge.
Beam Enumeration can be directly applied by exhaustively enumerating the most probable set of
graph actions and extracting substructures (conditional on the molecular graph being valid).

F.2 APPLYING OBSERVED FINDINGS

Many generative models construct a substructure ”vocabulary” such that the optimization process is
defined by how to combine these building blocks (Jin et al. (2018); Guo et al. (2022). This is similar
to token sampling, except the ”tokens” are now ”words” (groups of atoms). The empirical results
from Beam Enumeration show that substructure biasing is beneficial, even early in a generative
experiment when the model has not necessarily learned to generate favorable molecules. Given a
promising seed molecule, existing models such as the JT-VAE (Jin et al. (2018) and the Data Efficient
Graph Grammar (DEG) (Guo et al. (2022) models can be used to propose local neighbourhood
expansions. Scoring these molecules enable the possibility of iteratively performing substructure
(of increasing size) biasing, effectively leveraging both the advantages of the learned ”vocabulary”
of building blocks, and the iterative construction of increasingly favorable substructures. Results in
this work suggest that this can be performant as enforcing larger substructure size always improved
sample efficiency (up to a size of 15 in this work).
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G BEAM ENUMERATION VS. BEAM SEARCH

Beam Enumeration is distinct from Beam Search (Graves (2012); Boulanger-Lewandowski et al.
(2013). In this section, we contrast the behavior point-by-point.

Objective: Beam Search approximates finding the highest probability sequences by maintaining a
”width” of the top k candidates at each step. The number of sequences decoded via Beam Search is
exactly k. By contrast, Beam Enumeration exhaustively enumerates the top k tokens at each step to
extract substructures, such that the total number of sub-sequences is kBeam Steps.

Search Space: Beam Search keeps the top k candidates globally, pruning less probable sequences.
Beam Enumeration keeps the top k local candidates per sub-sequence.

Termination: Beam Search terminates when a sequence ends or a maximum length is reached.
Beam enumeration does a pre-defined number of steps, controlled by Beam Steps.

Use of results: Beam Search returns the highest probability candidates for direct use (for instance,
as full decoded molecules in Moret et al. (2021). Beam Enumeration uses the enumerated sub-
sequences to extract molecular substructures for self-conditioned generation.

In summary, Beam Enumeration performs local, exhaustive enumeration of sub-sequences to extract
meaningful substructures, while Beam Search approximates finding a set of globally optimal (by
probability) sequences. The exhaustive sub-sequence enumeration enables probabilistic extraction
of knowledge from the model.
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