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Abstract

Dynamic treatment regimes (DTRs) are critical
to precision medicine, optimizing long-term out-
comes through personalized, real-time decision-
making in evolving clinical contexts, but re-
quire careful supervision for unsafe treatment
risks. Existing efforts rely primarily on clinician-
prescribed gold standards despite the absence of a
known optimal strategy, and predominantly using
structured EHR data without extracting valuable
insights from clinical notes, limiting their reliabil-
ity for treatment recommendations. In this work,
we introduce SAFER, a calibrated risk-aware
tabular-language recommendation framework for
DTR that integrates both structured EHR and clin-
ical notes, enabling them to learn from each other,
and addresses inherent label uncertainty by as-
suming ambiguous optimal treatment solution for
deceased patients. Moreover, SAFER employs
conformal prediction to provide statistical guar-
antees, ensuring safe treatment recommendations
while filtering out uncertain predictions. Exper-
iments on two publicly available sepsis datasets
demonstrate that SAFER outperforms state-of-
the-art baselines across multiple recommendation
metrics and counterfactual mortality rate, while
offering robust formal assurances. These find-
ings underscore SAFER’s potential as a trustwor-
thy and theoretically grounded solution for high-
stakes DTR applications.
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1. Introduction
How can we enable models to recognize when they are
uncertain about their predictions? Safely providing person-
alized, sequential treatment recommendations that adapt to
a patient’s evolving clinical state is a longstanding challenge
in optimizing outcomes in high-stakes healthcare scenarios.
In this work, we address this challenge within the frame-
work of dynamic treatment regimes (DTRs) (Robins, 1986;
Murphy, 2003; Chakraborty & Moodie, 2013; Tsiatis et al.,
2019). Crucial for real-world decision-making, resource
allocation, and reducing trial-and-error treatments (Mur-
phy, 2005; Laber et al., 2014), DTR requires more precise,
adaptive, and safe control over treatment strategies while
minimizing risks in critical clinical contexts.

Recent advances in deep learning (DL) have significantly
improved DTR frameworks by addressing key challenges
such as patient heterogeneity, temporal dependencies, and
the high-dimensional clinical data (Kosorok & Laber, 2019;
Moodie et al., 2007). DL offers distinct advantages for DTR,
including the ability to integrate heterogeneous data sources,
such as electronic health records (EHRs) and temporal pat-
terns, while capturing complex dependencies over time (Yu
et al., 2021; Ching et al., 2018; Olawade et al., 2024; Mel-
nychuk et al., 2022). However, a major challenge in current
DTR approaches is the absence of optimal treatment strate-
gies, particularly for understudied diseases, critically ill or
deceased patients as their outcomes may not reliably in-
dicate the most appropriate clinical actions (Robins et al.,
2000; Schulam & Saria, 2017; Chapfuwa et al., 2021). This
inherent label uncertainty in DTR remains underexplored,
limiting the robustness of existing models. Furthermore,
most approaches lack theoretical guarantees on their rec-
ommendation quality, leaving practitioners without princi-
pled mechanisms for error rate control (e.g. Benjamini &
Hochberg, 1995; Lei et al., 2018; Bates et al., 2023; Jin &
Candès, 2023).

Additionally, many existing methods (e.g., Murphy, 2005;
Laber et al., 2014; Bica et al., 2020) rely primarily on struc-
tured EHR data while underutilizing the valuable textual
information contained in clinical notes, which often cap-
ture critical insights into a patient’s history and physician
assessments. However, integrating clinical notes into DTR
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remains a challenge due to difficulties in establishing a uni-
fied embedding space that preserves inter-modality context,
temporal alignment, and domain semantics. Prior work,
such as Choi et al. (2017); Shang et al. (2019a), has ex-
plored representation learning for medication recommenda-
tion, but these approaches still rely heavily on medical code
representations derived from structured EHR data.

We address these challenges through two key desiderata:
(i) uncertainty control—the DTR model should quantify
prediction uncertainty and provide statistically guaranteed
control over the uncertainty discovery threshold specified
by the user, and (ii) comprehensive information fusion—the
model should integrate all available patient data, ensuring
no critical information is overlooked. Together, we refer to
these principles as “risk awareness”.

In this work, we propose SAFER, a Calibrated Risk-Aware
multimodal framework for DTR that enhances the robust-
ness of DTR frameworks. The overall pipeline is depicted
in Figure 1. SAFER introduces several key innovations:

1. Multimodal Representation Learning. SAFER inte-
grates both structured EHR data and unstructured clinical
notes using a novel Transformer-based architecture to learn
a unified sequential patient representation. A self-attention
mechanism captures inter-modality temporal dependencies,
while cross-attention extracts contextual information across
modalities (Section 4.1).

2. Uncertainty-Aware Training. SAFER accounts for
label uncertainty by assuming ambiguous treatment labels
particularly for deceased patients. By recognizing that label
uncertainty is systematic and predictable, we introduce an
uncertainty quantification module that assigns per-label risk
scores and incorporates them into a risk-aware loss function
for interactive training (Section 4.2).

3. Theoretical Guarantees on Prediction Reliability.
Given the critical need for error control in high-stakes sce-
narios, We derive theoretical guarantees on calibrated rec-
ommendations by innovatively employing a conformal infer-
ence framework (Vovk et al., 2005; Benjamini & Hochberg,
1995) to control the expected proportion of unreliable pre-
dictions (i.e., FDR) at decision time (Section 5).

4. Empirical Validation. We evaluate SAFER on real-
world EHR benchmarks, demonstrating consistent improve-
ments over state-of-the-art DTR methods across multiple
recommendation metrics and reductions in counterfactual
mortality rates.1

Together, these advancements establish SAFER as a multi-
modal, risk-aware DTR framework with strong theoretical
foundations and superior empirical performance.

1Our code and dataset are avaliable at
https://github.com/yishanssss/SAFER.

2. Related Works
Dynamic treatment regimes. Prescribing medications in
response to the dynamic states of patients is a challeng-
ing task. Over the past decade, to model complex, high-
dimensional, and temporal healthcare data, researchers have
leveraged various deep learning-based approaches to im-
prove treatment recommendations, including RNNs and
their variants (e.g., Choi et al., 2016; Bajor & Lasko, 2017;
Jin et al., 2018), attention networks and transformer-based
models (e.g., Peng et al., 2021; Wu et al., 2022), deep re-
inforcement learning (DRL) techniques (e.g., Bothe et al.,
2013; Komorowski et al., 2018; Raghu et al., 2017; Saria,
2018; Wang et al., 2018; Zhang et al., 2017), convolutional
neural networks (CNNs) (e.g., Suo et al., 2017; Cheng et al.,
2020; Su et al., 2022), and generative adversarial networks
(GANs) (e.g., Wang et al., 2021a;b). Despite these advance-
ments, assessing the effectiveness and ensuring reliable in-
ference for data-driven DTR approaches remains a signifi-
cant challenge due to variability in evaluating the quality of
suggested prescriptions (Hussein et al., 2012; Chakraborty
et al., 2014). For instance, while DRL excels in learning
optimal DTRs by discovering dynamic policies, inconsis-
tencies in reward design, policy evaluation, and MDP for-
mulations often hinder standardized and rigorous healthcare
applications (Luo et al., 2024). We hypothesize that these
challenges can be mitigated by modeling predictive uncer-
tainty and generating selective candidates via conformal
inference, while providing statistical guarantees.

Risk-aware treatment recommendation. To the best of
our knowledge, this work is the first to incorporate uncer-
tainty modeling and employ conformal prediction (CP) into
DTR research. Several studies have integrated drug-drug
interaction knowledge to optimize personalized medica-
tion combinations and minimize adverse outcomes. (Shang
et al., 2019b; Wu et al., 2022; Tan et al., 2022; Yang et al.,
2021). In contrast, we incorporate an uncertainty quantifi-
cation module to improve both the accuracy and safety of
DTRs, ensuring statistically reliable treatment recommenda-
tions. As a pivotal role in optimization and decision-making
process, prior work has utilized uncertainty quantification
in computer vision (Liu et al.; Harakeh et al., 2020), im-
age/video restoration (Shao et al., 2023; Dorta et al., 2018),
natural language processing (Chen et al., 2015; Lin et al.,
2023; Ren et al., 2023), bioinformatics (Xia et al., 2020;
Bian et al., 2020), etc. In the healthcare domain, (Chua
et al., 2023; Liu et al., 2024) exemplifies recent efforts to
address prediction uncertainty in clinical machine learning
models. While our framework is specifically designed for
DTR prediction with rigorous theoretical guarantees via CP,
we emphasize a complementary but distinct focus on label
uncertainty in dynamic treatment regimes. We draw further
inspiration from selective prediction, particularly CP-based
selection (Bates et al., 2023; Jin & Candès, 2023; Gui et al.,
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Figure 1. The overall framework of SAFER.

2024), to develop an end-to-end safe DTR framework with
formal assurances.

Clinical notes combined with EHR. Clinical notes, central
to patient care, capture physicians’ thought processes, obser-
vations, and treatment rationale often absent from structured
EHR data (Sheikhalishahi et al., 2019; Rosenbloom et al.,
2011). Integrating clinical notes with structured EHRs has
demonstrated improved predictive performance in biomedi-
cal research, enabling more comprehensive patient modeling
(Gao et al., 2024; Lyu et al., 2023). However, current DTR
research largely ignores clinical notes due to challenges like
data heterogeneity, unstructured text processing, and the
absence of standard tools, with most representation learning
frameworks relying on structured medical codes (Choi et al.,
2017; Shang et al., 2019b). This work bridges these gaps by
incorporating clinical notes into DTR frameworks through
a novel transformer-based multimodal fusion approach to
enhance decision-making accuracy and reliability.

3. Problem Setup
3.1. Risk-aware Dynamic Treatment Prediction

We aim to model dynamic treatment prediction using two
complementary data sources: structured electronic health
records (EHR) E = {E1,E2 . . . ,EN} and unstructured
clinical notes O = {O1,O2 . . . ,ON}. For each patient i,
where i ∈ {1, . . . , N}, structured data Ei are represented
as a sequence of tabular records {e1i , e2i , . . . , eTi }, while
unstructured data Ci consist of a sequence of clinical notes
{o1

i ,o
2
i , . . . ,o

T
i }. Each vector eti ∈ RdE represents the

tabular features at time step t, where t ∈ 1, . . . , T and dE

denotes the dimensionality of the tabular covariates. Sim-
ilarly, ot

i corresponds to the clinical note associated with
patient i at time step t. By integrating these two modali-
ties, we aim to predict the medications to be administered
in the next clinical decision window, i.e., time step T + 1,
enhancing treatment recommendations with both numerical
clinical metrics and rich textual context.

A significant challenge in DTR lies in uncertainty associated
with treatment labels, particularly for negative trajectories
(i.e., patient states resulting in adverse outcomes). Specifi-
cally, patients with negative outcomes during hospital stay
often exhibit unstable and irregular medication patterns,
leading to label ambiguity. While some studies in recom-
mendation disregard negative trajectories (e.g., Sun et al.,
2021; Ye et al., 2024; 2025), others, like Wang et al. (2020),
incorporate this information to refine learned policies and
avoid repeating errors. Similarly, we retain negative trajec-
tories but attribute their ambiguity to two primary cases: (1)
appropriate treatments were administered but were insuffi-
cient to prevent death, and (2) the likelihood that incorrect
treatments contributed to adverse outcomes. In contrast,
patients with positive outcomes generally display labels
that more reliably represent effective clinical decisions. We
adopt above assumptions throughout this work.

We propose addressing label uncertainty by explicitly esti-
mating an uncertainty score κi for each candidate through
an uncertainty quantification module. SAFER fine-tunes
the model with awareness of candidates whose pseudo-
annotations may lack reliability. The uncertainty score is
integrated into a novel risk-aware loss function, mitigating
the influence of uncertain optimal treatment labels.
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3.2. Conformal Inference for FDR Control

In high-stakes domains such as treatment recommendation,
it is vital to provide calibrated predictions and control the
rate of incorrect decisions. To achieve this, we adopt a
conformal inference procedure (Vovk et al., 1999; 2005;
Shafer & Vovk, 2008) that selects a subset of plausible
prediction candidates with a statistical coverage guarantee.
We assume access to a calibration set

Zcal =
{
(xi, yi)

}n

i=1
,

where each xi is an input embedding and yi an observed
treatment label. All pairs (xi, yi) are drawn i.i.d. from
the same distribution as the training data set which used
to train a predictor f : X → Y . We then have m new
test samples {xn+j}mj=1 with true but unobserved labels
{yn+j}mj=1, each drawn i.i.d. from the same (unknown)
data-generating process.

To address the risk of recommending incorrect treatments,
we compute an uncertainty score κi for each patient i ∈
[n + m ] via an “uncertainty map” module, and convert
these scores into conformal p-values (e.g. Vovk et al., 1999;
2005; Bates et al., 2023; Jin & Candès, 2023; Liang et al.,
2024) to control false discovery rate (FDR). The FDR is
defined as

FDR = E
[V
R

]
,where R = (total # of rejections),

V = (# of false rejections).

Concretely, we define a null hypothesis

Hj : κj ≥ c, j = 1, . . . ,m, (1)

for each test sample j, and reject (i.e., recommend) a subset
S ⊆ {1, . . . ,m} of hypotheses while ensuring FDR ≤
α, where α ∈ (0, 1) is a user-specified tolerance, c is a
predefined uncertainty threshold.

This setup can be viewed as a standard multiple testing
problem (Benjamini & Hochberg, 1995; 1997; Benjamini
& Yekutieli, 2001; Efron, 2012) with m null hypotheses
H1, . . . ,Hm. We compute a conformal p-value pj for each
Hj and apply an FDR-controlling procedure (e.g., Ben-
jamini & Hochberg, 1995) to obtain a set S with the desired
error rate α. In binary classification tasks, the FDR serves
as an analog to Type-I error control(Hastie, 2009). For re-
gression problems with continuous responses, controlling
errors is appropriate when each selected candidate incurs
a comparable cost. This approach is particularly crucial
in scenarios like medical decision-making and knowledge
retrieval, where the cost of committing a type-I error can be
significant and should be a primary consideration. In high-
stakes clinical settings, a falsely recommended treatment
can lead to adverse outcomes. By constraining FDR ≤ α,

clinicians can trust that the expected fraction of incorrect rec-
ommendations remains safely bounded, thereby enhancing
patient safety in the automated decision-making process.

4. Method
4.1. Dynamic Treatment Prediction

In practice, clinicians typically rely on both structured data
and clinical notes to monitor disease progression and guide
treatment decisions (Assale et al., 2019; Gangavarapu et al.,
2020). Hence to mimic the real-world clinician decision-
making process and recommend treatments at the next time
step, we construct a unified time-series representation of
the patient health embeddings by integrating these comple-
mentary data sources. To be more specific, given a patient
i represented by their multimodal electronic health record
sequence ri = {(e1i ,o1

i ), (e
2
i ,o

2
i ), . . . , (e

T
i ,o

T
i )}, where

eti ∈ RdE and ot
i ∈ RdC denote the structured EHR data

and clinical notes at time t, our goal is to predict a treatment
recommendation ŷT+1

i for the next time step T + 1.

Inter-modality Temporal Dependency. We first project
the information from each data source into dense latent
spaces. Specifically, we use BioClinicalBERT 2 to encode
clinical notes, modeled as XW (Alsentzer et al., 2019),
which provides superior performance in encoding clinical
text due to its bidirectional attention mechanism and domain-
specific pretraining on large-scale biomedical and clinical
corpora (Huang et al., 2023; Hu et al., 2024; Zhang et al.,
2022). On the other hand, tabular data is encoded as XC

with normalization and one-hot encoding.

For a patient pi, the sequence of each modality is aligned
with the timestamps. The embedding layers f : XA →
RT×dk are then applied to each modality, where A ∈
{E,O} and dk is model dimensionality. To capture tem-
poral dependencies within each modality, masked self-
attention mechanisms are applied as,

SA
i = Softmax

(
(XA

i W
Q
A)(XA

i W
K
A )⊤ +M√

dk

)
XA

i W
V
A+PE.

(2)
where M ∈ RT×T is the causal mask matrix, and PE ∈
RT×dk is the sinusoidal position encoding.

Cross-modality information integration. To effectively in-
tegrate information from different data sources, we design a
cross-attention mechanism that enables different sequences
to learn contextual information from each other, which can
be formulated as,

Hi =

(
softmax

(
SO
i W

Q
E(SE

i W
K
E )T√

dk

)
SE
i W

Q
E

)
(3)

⊕

(
softmax

(
SE
i W

Q
O(SE

i W
K
O )T√

dk

)
SE
i W

V
O

)
. (4)

2https://huggingface.co/emilyalsentzer/Bio ClinicalBERT
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where SE
i and SO

i are temporal-aware representations for
each modality, and ⊕ denotes the concatenation operation.
After integrating the static information embedding xD

i , the
final representation is given by hi = HT

i ⊕ xD
i , where

hi ∈ R3dk represents the unified patient embeddings.

Subsequently, a feedforward network-based classification
layer is applied to produce a probability distribution over
medication classes for the next time step, as fθ : H → R|Y|.
The model is trained using cross-entropy loss to minimize
prediction error across all instances.

4.2. Risk-Aware Fine-Tuning

After the dynamic treatment prediction module converges,
we introduce a risk-aware fine-tuning procedure to account
for label uncertainty as stated in Section 3.1, assuming reli-
able labels for surviving patients while uncertain labels for
deceased patients. However, training exclusively on surviv-
ing patients significantly discards valuable information. To
mitigate this, we treat labels for deceased patients as pseudo-
labels and propose an uncertainty module to incorporate the
brought risky information effectively.

Uncertainty Estimation. Here, we refine predictions for
surviving patients by introducing a multilayer perceptron-
based module fϕ. This module takes the patient embeddings
hi, learned in the previous stage, as input to generate a new
predictive distribution for each surviving patient. The uncer-
tainty module is trained exclusively on surviving patients
using cross-entropy loss to minimize the prediction error.

Since predictions have been refined for surviving patients,
who exhibit more stable patterns and have reliable labels,
the KL divergence between the logits before and after re-
finement can capture the distributional difference between
surviving and deceased patients. This divergence, as shown
in the equation below, can be interpreted as a measure of
uncertainty for deceased patients.

During model inference, we quantify the predictive uncer-
tainty by computing the KL divergence between the output
distributions of the two modules fθ and fϕ as follows,

κi = DKL (pθ(hi) ∥ pϕ(hi)) =

L∑
l=1

pθ(ŷi = l|hi) ln
pθ(ŷi = l|hi)

pϕ(ŷi = l|hi)
,

(5)
where p(hi) = Softmax(f(hi)) denotes the predicted prob-
ability distributions from both module, and ŷi represents the
predicted class.

Theorem 4.1. Let h− ∼ P−(h) and h+ ∼ P+(h) denote
the latent representations of survivors and deceased patients
respectively. Under the following conditions,

1. DKL(P
−(h) ∥ P+(h)) > 0, i.e. P− ̸= P+

2. fϕ is L-Lipschitz continuous over latent representation
space H, where h ∈ H,

that is there exists a constant c > 0, such that

Eh∼P− [κi]− Eh∼P+ [κi] ≥ c > 0. (6)

The proof details can be found in Appendix A.1. Hence
in this regard, such KL divergence can capture the distri-
butional difference between survival and deceased patients,
served as a valid measure of uncertainty where κi represents
the prediction uncertainty.
Remark 4.2. A Lipschitz-constrained student (e.g. weight
decay plus spectral normalisation) is a standard practice
when one wishes to avoid uncontrolled extrapolation out-
side the training manifold. In our approach, we rely on the
multilayer perceptron-based architecture, which inherently
exhibits Lipschitz continuity when the activation functions
are smooth and bounded, and the model’s weights are ap-
propriately regularized (Gouk et al., 2021).

Risk-aware Loss Function. The uncertainty term is in-
corporated into the loss function during fine-tuning. For
surviving patients, uncertainty remains minimal, enabling
the training process to prioritize these samples. Conversely,
for deceased patients, the loss function penalizes significant
deviations, ensuring the model effectively captures risk. The
modified loss function is defined as follows,

L = − 1

N

N∑
i=1

(1− κ̂i)

L∑
l=1

yi log pθ(ŷi = l|hi)+γκ2
i , (7)

where κ̂i is the normalized uncertainty term and γ controls
the regularization strength, penalizing overconfident predic-
tions for high-risk cases.

5. Conformal Selection and FDR Control
We begin by fitting our risk-aware model on the training
set. Subsequently, for calibration sample {(xi, yi)}ni=1 and
unlabeled test data {xn+j}mj=1, we compute the predicted
uncertainty score κ̂i = κ̂(xi), for every i ∈ [n+m ]. Here,
κ̂ : X → R is an uncertainty score predictor that depends
on the patient health trajectory (e.g., time-series of clinical
measurements), rather than on the observed treatment label
yi. As described in the previous section, κ(xi) captures a
“label mismatch risk” based on the distributional divergence
between an refined module and a fine-tuned module. Cru-
cially, this score does not require knowledge of the final
treatment yi. We require that κ̂ is computed in the same
way for calibration and test samples. This consistent def-
inition of κ across calibration and test sets preserves the
exchangeability necessary for valid conformal inference.

Conformal p-Value. Consider a test sample j ∈ [m] for
which we wish to test the hypothesis Hj : κn+j ≥ c. Then
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we define the conformal p-value

pj =

∑n
i=1 1

{
κ̂i < κ̂n+j , κi ≥ c

}
n + 1

+
Uj · (1 +

∑n
i=1 1

{
κ̂i = κ̂n+j , κi ≥ c

}
)

n + 1
. (8)

where Uj ∼ Unif(0, 1) are i.i.d. random variables used for
tie-breaking under the multiple testing setting. Intuitively,
pj measures how frequently the predicted calibration un-
certainty scores {κ̂i}ni=1 are less than or equal to the test
uncertainty score κ̂n+j , restricted to those κi ≥ c.

Traditionally, conformal p-values are constructed to be
super-uniform under the null, meaning that if the tested
label (or score) truly matches the data-generating distribu-
tion, then P

(
pj ≤ α

)
≤ α for all α ∈ [0, 1] (Vovk et al.,

2005; Lei et al., 2018). Here, the setup follows Jin & Candès
(2023), who define Hj : Yn+j ≤ cj for random hypotheses
based on unobserved labels. In the present formulation (8),
the p-value satisfies a selective guarantee (Jin & Candès,
2023), namely:

P
[(
j ∈ S

)
∧

(
pj ≤ α

)]
≤ α, ∀ α ∈ [0, 1], (9)

where S is the final selected (“rejected”) set. In other words,
the joint event that j is included in the recommendation set
and pj ≤ α occurs with probability no larger than α.

Benjamini–Hochberg (BH) Procedure. After comput-
ing conformal p-values p1, . . . , pm for the test samples, we
control the FDR via the classic Benjamini–Hochberg (BH)
algorithm (Benjamini & Hochberg, 1995). First, sort the
p-values in ascending order:

p(1) ≤ p(2) ≤ · · · ≤ p(m).

Then, let
k = max

{
r : p(r) ≤ α r

m

}
,

where α ∈ (0, 1) is the user-specified FDR threshold. If
no such r satisfies the inequality, we set k = 0. The
BH procedure “rejects” the k smallest p-values, i.e. the
set { p(1), . . . , p(k)}. Accordingly, our conformal selection
output is

S =
{
j ∈ [m] : pj ≤ p(k)

}
,

meaning we only recommend labels whose p-values rank
among these top k.

Below, we show that this procedure, using p-values of the
form (8), controls the FDR under suitable assumptions.
Theorem 5.1. Assume we have

1. The calibration data {(xi, yi)}ni=1 and test data
{xn+j}mj=1 are i.i.d., and data in {(xi, yi)}ni=1 ∪
{xn+l}l ̸=j ∪ {xn+j} are mutually independent for
any j ∈ [m].

2. There exists some M ≥ 0, such that supx κ(x) ≤ M .

Then, for any user-defined threshold α ∈ (0, 1), the BH-
based conformal selection set S satisfies

FDR : = E
[

V
max{1, R}

]
= E

[ ∑m
j=1 1{Hj is true, j∈S}

max
{
1,

∑m
j=1 1{j∈S}

}] ≤ α. (10)

The proof details are provided in Appendix A.2. By combin-
ing the conformal p-value construction in (8) with the BH
procedure, our method ensures that the expected proportion
of unreliable recommended treatments remains bounded by
α. By selecting an appropriate uncertainty score function
κ, where higher κ values correspond to lower plausibility
of the candidate label y, we enable an intuitive calculation
of conformal p-values. This framework provides a practical
safety margin for high-stakes applications, while supporting
flexible and data-driven selection of plausible labels.

6. Experiments
We empirically validate the SAFER model on two sepsis
cohorts derived from publicly available datasets, Medical
Information Mart for Intensive Care (MIMIC)-III covering
over 40,000 ICU stays (2001–2012) (Johnson et al., 2016)
and MIMIC-IV with over 65,000 ICU and 200,000 ED ad-
missions (2008–2019) (Johnson et al., 2023a;b), to evaluate
recommendation accuracy and FDR control. For this study,
we define cohorts based on the sepsis-3 criteria (Singer
et al., 2016), focusing on the early stages of sepsis man-
agement—24 hours prior to and 48 hours after sepsis onset.
The treatment selection involves intravenous fluid and vaso-
pressor dosage within a 4-hour window, mapped to a 5× 5
medical intervention space, following Komorowski et al.
(2018). Figure 2 shows the distribution of sepsis treatment
co-occurrence in the two cohorts.

Figure 2. Comparative visualization of the treatment frequency
matrix in log scale from two datasets. Panel (A) represents MIMIC-
III, while Panel (B) corresponds to MIMIC-IV.

For each patient, we extract 5 types of static demographic
variables and 44 types of time-series variables from the tab-
ular data. We set the historical sequence length to 8. All
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Table 1. The overall performance of SAFER and baseline methods. (p < 0.05)
MIMIC-III MIMIC-IV

Methods MI-AUC MA-AUC HR@3 MRR@3 ↓ Mortality MI-AUC MA-AUC HR@3 MRR@3 ↓ Mortality
LSTM 0.9122 0.7934 0.7481 0.8015 0.0915 0.9213 0.8121 0.7551 0.8066 0.1051

RETAIN 0.9257 0.8219 0.8324 0.8153 0.1994 0.9279 0.7851 0.8017 0.8052 0.1863
TAHDNet 0.9213 0.8017 0.7123 0.8109 0.2214 0.9157 0.8274 0.7554 0.8315 0.2466
Naive RL 0.7436 0.6025 0.5303 0.8891 0.0881 0.6782 0.5971 0.5068 0.8217 0.1172
SRL-RNN 0.8751 0.6215 0.7722 0.7916 0.3124 0.8781 0.6982 0.7824 0.8151 0.3219

ACIL 0.8219 0.7012 0.8013 0.8313 0.3212 0.8854 0.7135 0.8319 0.8441 0.3782
ISL 0.8903 0.7785 0.7623 0.7521 0.2783 0.8713 0.7315 0.7741 0.7229 0.3118

SAFER 0.9407 0.8672 0.8517 0.9017 0.3891 0.9356 0.8755 0. 8713 0.8698 0.4562

clinical notes were aligned to the closest timestamp. To
handle outliers, we applied the interquartile range (IQR)
method for removal and imputed missing values using the
k-nearest neighbors approach. Subsequently, all variables
were rescaled to the [0,1] interval using z-score normaliza-
tion. The two datasets were randomly split into training,
calibration (validation), and test sets in an 80%/10%/10%
ratio via patient-level splits to ensure no patient overlap,
under the assumption that the entire dataset is i.i.d. sampled
from a common distribution.

The uncertainty score κi quantifies the model’s confidence
in its treatment predictions. Once the uncertainty scores are
computed for the training set, we train the uncertainty score
predictor κ̂ on the calibration and test sets using standard
machine learning models leveraging the full embedding fea-
ture space X . Model performance is assessed by evaluating
the average FDR across 500 independent experiments. Ap-
pendix C.3 provides a sensitivity analysis of several hyper-
parameters, including the length of historical information,
hidden dimension, and γ in the loss function.

6.1. Evaluation Metrics

To evaluate the performance of SAFER and other baselines,
we report MRR@3 and HR@3 for treatment ranking, as
well as Micro AUC and Macro AUC for assessing predic-
tive performance in the multiclass classification setting of
DTR. Additionally, we report the counterfactual mortality
rate reduction, which is a measure of how recommended
treatments might have improved survival outcomes relative
to real-world clinical actions (Laine et al., 2020; Kusner
et al., 2017; Valeri et al., 2016), to validate the effectiveness
of the recommended treatment as part of an offline value
estimation. The details for valid counterfactual mortality
rate calculation are provided in Appendix B.

6.2. Baseline Methods

For validating the effectiveness of SAFER, we selected sev-
eral baseline methods for comparison. The baselines can be
categorized as sequential embedding based and reinforce-
ment learning based approaches.

Sequential embedding methods include: LSTM (Hochreiter
& Schmidhuber, 1997), widely used time-series prediction
model; RETAIN (Choi et al., 2016), a two-level neural
attention-based model that highlights key visit sequences
for treatment prediction; TAHDNet (Su et al., 2022), a hi-
erarchical temporal dependency network for dynamic treat-
ment prediction. Reinforcement learning based methods
include Naive Baseline for RL(Luo et al., 2024), a simple
rule-based approach for benchmarking RL algorithms. SRL-
RNN (Wang et al., 2018), which integrates supervised learn-
ing with RL using survival signals as rewards. ACIL (Wang
et al., 2020), an adversarial imitation learning approach that
optimizes treatment by learning from both successful and
failed trajectories. ISL (Jiang et al., 2023), a prototype-
based model ensuring treatment actions align with learned
representations. For fair comparison, all methods use the
same data sources. Methods lacking native text process-
ing capabilities incorporate BioClinicalBERT embeddings
for clinical notes. Given our assumption that only surviv-
ing patients have fully reliable labels, we conduct primary
evaluations on this subset, while assessing generalization
to deceased patients through counterfactual mortality rate
analysis across the entire dataset population.

6.3. Overall Performance

Table 1 shows the overall performance of our proposed
SAFER and baseline methods. Our analysis reveals several
key observations as follows.

First, RL methods demonstrate consistent underperformance
on classification benchmarks in general, especially with
the macro-AUC metric on MIMIC-III revealing a 16.6%
deficit compared to sequence-based counterpart baselines on
average. This probably stems from severe class imbalance
of treatment label (Class 0 takes 61.2% percent), where
sparse disease-specific reward signals prove insufficient for
distinguishing between classes. Consequently, RL agents
fail to develop discriminative policies, resulting even worse
performance compared with simple baselines in mortality
prediction. While imitation learning approaches partially
mitigate this issue, their performance remains suboptimal
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Table 2. The performance of SAFER and its variants. (p < 0.05)
MIMIC-III MIMIC-IV

Variants MI-AUC MA-AUC HR@3 MRR@3 ↓ Mortality MI-AUC MA-AUC HR@3 MRR@3 ↓ Mortality
SAFER-F 0.9059 0.7140 0.7254 0.8067 0.2402 0.8853 0.6851 0.7199 0.7542 0.2315
SAFER-N 0.8655 0.7651 0.7523 0.7803 0.2951 0.8897 0.7841 0.7553 0.8029 0.3875
SAFER-U 0.9188 0.8237 0.8321 0.8769 0.2982 0.9231 0.8317 0.8451 0.8544 0.3765

SAFER 0.9407 0.8672 0.8517 0.9017 0.3891 0.9356 0.8755 0.8713 0.8698 0.4562

Figure 3. FDR and power curves across different target α level and varies uncertainty threshold c on MIMIC-III with Ridge Regression.

Figure 4. FDR and power curves across different target α level and varies uncertainty threshold c on MIMIC-IV with Ridge Regression.

due to high patient heterogeneity in treatment responses.

Second, while sequence embedding-based methods excel in
classification tasks, their effectiveness declines in ranking
metrics compared to RL approaches. This is probably be-
cause embedding methods, while capturing global patterns,
fail to distinguish fine-grained treatment efficacy differences.
RL methods, by contrast, explicitly optimize treatment poli-
cies using reward signals tied to cure outcomes, enabling dif-
ferentiated pattern learning across survival and death trajec-
tories. Traditional embedding approaches indiscriminately
encode all treatment sequences, introducing uncertainty due
to distribution shifts between surviving and deceased pa-
tients, ultimately reducing performance in fine-grained rank-
ing. However, our SAFER model, though embedding-based,
effectively mitigates this issue.

Finally, our proposed method demonstrates superior per-
formance across both classification and ranking metrics by
effectively modeling EHR data sequences across multiple
modalities and integrating label uncertainty from deceased
patients. This results in more robust and generalizable pre-
dictions. Beyond these metrics, we further analyze the im-
pact of our model on counterfactual mortality rate reduction.
Overall, sequential embedding-based methods tend to un-

derperform compared to RL methods in this aspect, as they
indiscriminately encode all treatment sequences rather than
learning distinct treatment strategies tailored to different
patient outcomes. However, our risk-aware fine-tuning mod-
ule significantly mitigates this limitation by incorporating
uncertainty information and applying a penalty mechanism
to focus training on reliable labels. As a result, SAFER
achieves a substantial reduction in mortality rate, show-
casing the effectiveness of our approach in recommending
treatments with valuable real-world meanings.

6.4. FDR Control

SAFER strictly controls the FDR. Figure 3 and Fig-
ure 4 present the realized FDR and power curves for
SAFER on MIMIC-III & IV respectively at various tar-
get FDR levels α ∈ {0.05, 0.10, . . . , 0.95} across differ-
ent uncertainty thresholds c. Here, power is defined as
E
[ ∑m

j=1 1{Hj is false, j∈S}

max
{
1,

∑m
j=1 1{Hj is false}

}]. The uncertainty score pre-

dictor κ̂ is trained with all feature embeddings via Ridge
Regression. Results trained from additional regression pre-
dictors are provided in Appendix C.2. The results show that
SAFER maintains strict control over the FDR at the speci-
fied level α, which stabilizes as α increases. Also, the power
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curve asymptotically converges to one with increasing α, in-
dicating that SAFER selects all confident candidates without
exceeding the FDR constraint.

Choice of Uncertainty Score Threshold. The performance
of SAFER depends on the choice of the uncertainty thresh-
old c, evaluated over c ∈ {0.1, 0.2, 0.3, 0.4}. As c increases,
both FDR and power stabilize more quickly, converging to
a constant value and one respectively. For c = 0.1, the FDR
curve remains steady, and power remains close to zero until
α = 0.7. In contrast, the FDR reaches a constant value
of 0.1 even at α = 0.1 with power as high as 1. SAFER
employs KL-divergence to quantify model prediction un-
certainty while there is no universally accepted threshold
to determine when two distributions differ meaningfully.
Therefore, as illustrated in Figure 3 and Figure 4, we pro-
vide a practical guideline for selecting the uncertainty score
threshold in real-world applications.

6.5. Ablation Study

We conduct ablation studies to validate the contribution of
key components in SAFER, as demonstrated in Table 2.

The first variant, SAFER-F, removes the risk-aware fine-
tuning process, directly using the initial prediction module
for inference. This leads to notable performance degrada-
tion, especially in Macro-AUC and counterfactual mortality
rate on MIMIC-IV, which has a high proportion of deceased
patients. This confirms our hypothesis that accounting forla-
bel uncertainty is crucial for robust decision-making.

For the second variant SAFER-N, we remove clinical notes,
but relying only on structured EHR data. Performance dete-
riorates significantly across all metrics, demonstrating that
structured data alone fails to capture essential contextual
cues from clinical narratives, highlighting the importance
of textual information in modeling temporal dependencies.

Finally, SAFER-U removes the fine-tuning step and mit-
igates uncertainty by training only on surviving patients.
Even within the survival subset, its performance remains
inferior to SAFER, with a marked decline in counterfactual
mortality rate. These findings emphasize the importance of
incorporating deceased patients in training and validate our
approach to handling the uncertainty they introduce.

7. Conclusion
We have introduced SAFER, an end-to-end multimodal
DTR framework that delivers reliable treatment recom-
mendations with uncertainty quantification and theoretical
guarantees. Compared with existing DTR frameworks, we
provide a solution that may be more suitable to high-stakes
scenarios, ensuring safer and more trustworthy decision-
making. It outperforms SOTA baselines across multiple
recommendation metrics while achieving the greatest reduc-

tion in mortality rates. These results underscore SAFER’s
potential for trustworthy and risk-aware decision support in
real-world clinical settings.

While this work primarily addresses inherent label uncer-
tainty, real-world clinical data present broader challenges,
including missing labels, latent confounders, and comorbidi-
ties. Tackling these complexities is essential for developing
more generalizable and clinically grounded DTR frame-
works. Future research can also build upon our approach
to alternative error control notions beyond FDR, further
improving the robustness and safety of treatment recom-
mendations.
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A. Technical Proofs
A.1. Lower-Bound Proof for Theorem 4.1.

Restate of Theorem 4.1. We have two latent-representation distributions P−(h) and P+(h) over the same latent space
H, corresponding to deceased and surviving patients, respectively. Let h− ∼ P−(h) and h+ ∼ P+(h). We define the
predictive uncertainty at h as

κ(h) = DKL

(
pθ(y | h)

∥∥∥ pϕ(y | h)
)
,

where pθ is the “teacher” module’s distribution and pϕ is the “student” module’s distribution (trained with risk-aware
fine-tuning). The theorem claims that under:

1. DKL

(
P−(h) ∥P+(h)

)
> 0, i.e. P− ̸= P+,

2. fϕ is L-Lipschitz continuous over H (so pϕ(y | h) cannot sharply change as h varies),

we have
Eh∼P− [κ(h)] > Eh∼P+ [κ(h)] with a strictly positive lower bound.

Proof of Theorem 4.1. Since DKL

(
P− ∥P+

)
> 0, there must be at least one measurable subset G ⊆ H on which P−

places strictly greater mass than P+ (or vice versa). Concretely, there exists ϵ > 0 such that

P−(G)− P+(G) ≥ ϵ.

Since if no such region existed, P− would equal P+ almost everywhere, contradicting DKL(P
−∥P+) > 0.

Also as we have
κ(h) = DKL

(
pθ(y | h) ∥ pϕ(y | h)

)
.

If pϕ is L-Lipschitz in h, then as h varies within a small neighborhood, the entire predicted distribution pϕ(y | h) cannot
drastically jump to match pθ(y | h) perfectly, unless the underlying latent distributions P−, P+ are aligned. Since
P− ̸= P+, there is a region G in latent space where pϕ cannot “annihilate” the mismatch in pθ. That is on a measurable set
G ⊂ H, the teacher predictions differ from the student by at least a fixed amount:

∥pθ(· | h)− pϕ(· | h)∥1 ≥ δ for all h ∈ G, (2)

with constants δ > 0. Hence, κ(h) is bounded away from zero on some portion of G with nontrivial measure under P−,

Eh∼P− [κ(h)] =

∫
H
κ(h) dP−(h) ≥

∫
G
κ(h) dP−(h) ≥ 1

2
δ2P−(G). (6)

Where the second inequality follows from Pinsker’s inequality which stated in many standard results (e.g., (Sriperumbudur
et al., 2009; Tsybakov & Tsybakov, 2009)).

Split the survivor expectation into the same region G and its complement:

Eh∼P+ [κ(h)] =

∫
G
κ(h) dP+(h)︸ ︷︷ ︸

(a)

+

∫
H\G

κ(h) dP+(h)︸ ︷︷ ︸
(b)

.

For the first term (a), we can control κ by Lipschitzness. Fix h ∈ G and pick h′ with P+-density such that d(h, h′) ≤ r for
a radius r > 0 (possible because supp(P+) = H in practice). Applying assumption 1 and again Pinsker’s inequality,

κ(h) ≤ DKL (pθ ∥ pϕ(· | h′)) + CL2r2,

where C is an absolute constant. Choosing r small makes this term negligible compared with δ. Denote the resulting bound
by ε1. For the second term (b), as the global survivor risk can be tuned at most ε, therefore (b) ≤ ε.
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Collecting the two parts we have
Eh∼P+ [κ(h)] ≤ ε+ ε1.

Subtract this from the lower bound of Eh∼P− [κ(h)]:

Eh∼P− [κ(h)]− Eh∼P+ [κ(h)] ≥ 1

2
δ2P−(G)− (ε+ ε1)

=

(
1

2
δ2π − (ε+ ε1)

)
︸ ︷︷ ︸

=:c

.

Where π := P−(G)− P+(G) > 0 from the first assumption and δ > 0, we can easily pick training and regularisation so
that ε, ε1 are small enough, hence c > 0.

Putting it together,
Eh∼P− [κ(h)]− Eh∼P+ [κ(h)] ≥ c > 0

with an explicit constant c = 1
2δ

2π − ε− ε1. This establishes that deceased-patient latents (drawn from P−) systematically
lead to higher KL-based uncertainty κ(·) than do survivor latents from P+, giving a strict positive gap on average. Hence
the theorem’s statement follows.

Remark A.1. By forcing pϕ to remain continuous with respect to h, we guarantee that if latent embeddings of deceased
patients differ significantly from those of survivors, the student’s predicted distributions cannot “collapse” to match the
teacher’s everywhere in H. Hence, the KL uncertainty κ(h) for h− ∼ P− stays measurably larger on average than for
h+ ∼ P+, ensuring EP− [κ] > EP+ [κ] by at least a positive margin.
Remark A.2. δ can be estimated on a validation split by the empirical minimum teacher–student ℓ1 gap over high-mortality
clusters; π follows from any two-sample test on the latent representations; ε is the held-out risk of the student model on
survivors.
Remark A.3. Tighter bounds. One may replace Pinsker’s inequality by the Bretagnolle–Huber inequality or by Csiszár–
Kullback–Pinsker to sharpen c. The qualitative conclusion of strict positivity remains unchanged.
Remark A.4. If the student is Bayes-optimal for P+ (in the limit of infinite positive data) and the teacher is Bayes-optimal
for the mixture,then EP+ [κ] = 0 exactly, and the proof simplifies to analysing P− only, yielding c = 1

2δ
2P−(G).

A.2. FDR Control Proof of Theorem 5.1

Restate of Theorem 5.1. Let κ : X → R be an uncertainty function, and supx κ(x) ≤ M for some M ≥ 0. We have n i.i.d.
calibration samples {(xi, yi)}ni=1 and m i.i.d. test inputs {xn+j}mj=1, all mutually independent in the sense that any subset
excluding index j is jointly independent of the data at index j. For each test point j we define a null hypothesis

Hj : κn+j ≥ c,

and the conformal p-value pj as in (8), namely

pj =

∑n
i=1 1

{
κ̂i < κ̂n+j , κi ≥ c

}
+ 1

n + 1
+

Uj ·
(
1 +

∑n
i=1 1

{
κ̂i = κ̂n+j , κi ≥ c

})
n + 1

,

where Uj ∼ Unif(0, 1) are i.i.d. tie-breaking variables. Let the Benjamini–Hochberg (BH) procedure at level α ∈ (0, 1) be
applied to {pj}mj=1, producing a selection (rejection) set S. Denote R = |S| and

V =

m∑
j=1

1
{
j ∈ S, Hj is true

}
,

the number of false rejections. Then under the above assumptions, the false discovery rate (FDR) is

FDR = E
[

V

max{1, R}

]
≤ α.

15



Risk-Aware Dynamic Treatment Regimes

Proof of Theorem 5.1. We define the nonconformity score J as

J(x, y) = κ(x) + 2M · 1{ y ≥ c}.

Thus, if y < c (i.e., if the label is “below” the critical threshold c), J(x, y) = κ(x). On the other hand, if y ≥ c, then
J(x, y) = κ(x) + 2M . The nonconformity score J(x, y) preserves the monotonicity property in terms of y. Thus if we
define Ji = J(xi, yi), Ĵi = J(xi, c) for every i ∈ [n+m], the conformal p-value defined in Equation (8) converts to

pj =

∑n
i=1 1

{
Ji < Ĵn+j

}
n + 1

+
Uj · (1 +

∑n
i=1 1

{
Ji = Ĵn+j

}
)

n + 1
,

as defined in Jin & Candès (2023). To ensure the completeness of the proof, we adapt major proof procedures from Theorem
3 in Jin & Candès (2023) as following.

Using J(·, ·) in a standard conformal scheme (Vovk et al., 2005; Lei et al., 2018), we obtain p-values p1, . . . , pm of the
Equation (8) (including Uj for tie-breaking). By exchangeability of calibration and test data, plus the monotonicity of J ,
each pj is “selectively super-uniform” with respect to its null Hj (Jin & Candès, 2023); that is, for every α ∈ [0, 1],

P
[
(j ∈ S) ∧ (pj ≤ α)

]
≤ α.

Roughly, this property ensures that pj behaves conservatively if Hj is true. Moreover, one typically invokes a PRDS
condition (Positive Regression Dependence on a Subset) or mutual independence across {pj}mj=1 to ensure the BH procedure
can be applied with classical guarantees (Benjamini & Yekutieli, 2001; Efron, 2012).

Then under i.i.d. sampling {(xi, yi)}ni=1 plus {xn+j}mj=1 and monotonic J , the random variables p1, . . . , pm exhibit either
independence or positive correlation that meets PRDS assumptions (see, e.g., Bates et al., 2023; Jin & Candès, 2023). Hence,
each true null label j effectively satisfies pj ∼ selective super-uniform with respect to Hj .

Finally, we show FDR ≤ α once BH is applied to the p-values (p1, . . . , pm) at level α. Let S = { j : pj ≤ p(k)} denote
the BH rejection set, where

k = max
{
r : p(r) ≤ α r

m

}
.

Define indicator random variables Rj = 1{j ∈ S} and Tj = 1{Hj is true}. Then

FDR = E
[ ∑m

j=1 Tj Rj

max{1,
∑m

j=1 Rj}

]
= E

[ 1

max{1,
∑

j Rj}

m∑
j=1

Tj Rj

]
.

From the property of BH under PRDS super-uniform p-values (Benjamini & Hochberg, 1995; Benjamini & Yekutieli, 2001;
Bates et al., 2023; Jin & Candès, 2023), we have

E
[
Tj Rj

]
≤ αE

[
Rj

]
,

summing over j and employing the usual BH bounding technique, it follows that

FDR = E
[ ∑m

j=1 Tj Rj

max{1,
∑

j Rj}

]
≤ α.

In short, the fraction of wrongly rejected true nulls among all rejections remains at or below α in expectation. This completes
the proof.

B. Counterfactual Mortality Calculation
Suppose Mi represents the mortality event, Mi(y) refers to the potential outcome under the treatment arm Yi = y, and
Xi ∈ RT×dk is the measured counfounders for the i-th patient. To estimate the effectiveness of our recommended treatment
plans, we evaluate the model with the reduction in counterfactual mortality rate, we train an additional LSTM-based neural
network as a counterfactual mortality prediction model. During training, this model takes patient features and ground-truth
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treatments as input and is optimized using Binary Cross Entropy (BCE) loss to predict the probability of death as a binary
classification task. During inference, the trained model estimates a counterfactual mortality rate by applying the model to
patient features combined with the recommended treatment (i.e., the treatment predicted by our DTR model). The decrease
in mortality rate is then defined as the difference between this estimated counterfactual mortality and the actual observed
mortality rate under standard clinical practice. This analysis is based on the following assumptions regarding potential
outcomes:

(B1) No interference. Mi(Yi) depends only on Yi.

(B2) No hidden variability. Each unit has unique Mi(y).

(B3) Ignorability / No Unmeasured Confounding. Conditioned on the measured covariates Xi, the potential outcomes
Mi(y) are independent of the assigned treatment. That is,{

Mi(y)
}
y∈Y ⊥ Yi | Xi.

(B4) Positivity (Overlap). Every treatment arm y has a nonzero probability of being assigned given Xi, so P (Yi = y |
Xi) > 0 for all y ∈ Y .

We maintain the classic stable unit treatment value (SUTVA) assumption (Rubin, 1980) that no interference between
units in (B1) and no hidden variations of treatments occur in (B2), If patient i actually receives treatment y, then the
observed mortality Mi coincides with the potential outcome Mi(y), which allows us to assume that M =

∑
y YM(y)

almost surely. (B3) is a standard assumption on the ignorability of treatment assignment (Shi et al., 2023). Together,
these assumptions allow us to view Mi(y) as a well-defined counterfactual, enabling estimation of counterfactual mortality
under different model-predicted treatments. Under these assumptions, we have µ⋆

y(X) = E{M | Y = y,X}, where
µ⋆
y(X) = E{M(y) | X}.
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C. Experiment Details
C.1. Dataset Details

Dataset Statistical Table 3 shows the statistical details of the two cohort datasets we use.

Dataset #Survival #Deceased #Avg Len #Avg Notes
MIMIC-III 3118 427 11.75 40.65
MIMIC-IV 19450 3786 11.50 29.08

Table 3. The dataset statistics.

Attribute Table 4 presents the attributes used in our experiments.

Attribute Type Attribute Name
Demographics Gender, Age, Re admission, Weight kg, Height cm

Vital Signals

GCS, RASS, HR, SysBP, MeanBP, DiaBP, RR, Temp C, CVP, PAPsys, PAPmean, PAPdia, CI, SVR
FiO2 1, O2flow, PEEP, TidalVolume, MinuteVentil, PAWmean, PAWpeak, PAWplateau, Potassium, Sodium, Chloride,

Glucose, BUN, Creatinine, Magnesium, Calcium, , SGOT, SGPT, Total bili, Direct bili, Total protein, Albumin,
Troponin, CRP, Hb, Ht, RBC count, WBC count, Platelets count, PTT, PT, ACT, INR, Arterial pH, paO2, paCO2,
Arterial BE, Arterial lactate, HCO3, ETCO2, SvO2, mechvent, extubated, Shock Index, PaO2 FiO2, SOFA, SIRS

Table 4. The attribute used in the experiments.

The label frequency on suvivor subset. Since we evaluate most metrics on the survivor subset, we also report the label
frequency on the survivor subset as Figure 5 shows. In our experiments, we follow established protocols from prior sepsis
treatment studies (e.g., Komorowski et al., 2018) by discretizing the intravenous fluid and vasopressor dosages into 5 bins
each. Specifically, any absence of medication constitutes the zero bin, while the remaining dosages are partitioned into four
additional bins according to empirical quantiles. This results in a 5 × 5 grid, forming 25 discrete treatment classes, where
each class corresponds to a unique combination of fluid and vasopressor dosage levels (i.e., (fluid bin) × (vasopressor bin)).
The distribution of these treatment classes are visualized in Figure 2 of the manuscript.

(a) MIMIC-III (b) MIMIC-IV

Figure 5. Comparative visualization of the treatment frequency matrix in log scale from the survivor subset of two datasets. Panel (A)
represents MIMIC-III, while Panel (B) corresponds to MIMIC-IV.

C.2. FDR Control

In this section, we present the FDR control results using Linear Regression on the MIMIC-III dataset (Figure 6) and the
MIMIC-IV dataset (Figures 7), further validating the effectiveness of our FDR control mechanism.

C.3. Parameter Sensitivity

In this section, we discuss the sensitivity of SAFER to on three key hyperparameters, the historical information sequence
length L, the hidden dimensionality dh and the risk regularization coefficient γ in the loss function. We report Macro-AUC

18



Risk-Aware Dynamic Treatment Regimes

(a) c = 0.1 (b) c = 0.2 (c) c = 0.3 (d) c = 0.4

Figure 6. FDR and power curves across different target α level with Linear Regression on MIMIC-III.

(a) c = 0.1 (b) c = 0.2 (c) c = 0.3 (d) c = 0.4

Figure 7. FDR and power curves across different target α level with Linear Regression on MIMIC-IV.

and the reduction in counterfactual mortality rate, two core evaluation metrics that reflect recommendation accuracy and
treatment effectiveness.

To ensure fair comparison and robustness, we perform a grid search over a predefined range of values for each parameter
while holding others fixed. The selected values correspond to those that jointly optimize both performance metrics on the
validation set.

Historical sequence length L: Figure 8 illustrates that SAFER’s performance improves significantly as the sequence length
increases initially, before stabilizing at a consistent level. This trend likely occurs because shorter sequences lack sufficient
information for accurate predictions. To ensure a fair comparison across datasets, we set the sequence length to 8 for all
experiments.

(a) AUC (b) ↓ Mortality Rate

Figure 8. The performance of SAFER under different historical information seqeunce length L

Hidden dimensionality hd: Figure 9 illustrates the performance of SAFER across different hidden dimensionalities hd,
showing that both low and excessively high dimensions degrade model performance. A lower-dimensional representation
leads to information loss, while a higher dimension increases model complexity, making proper dimensionality selection
crucial. Since the model’s performance remains stable for hd = 128, 256, 512, we choose 128 to reduce model parameters
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(a) AUC (b) ↓ Mortality Rate

Figure 9. The performance of SAFER under different hidden dimensionality hd

(a) AUC (b) ↓ Mortality Rate

Figure 10. The performance of SAFER under different γ value in loss function

and improve computational efficiency.

γ in the Loss Function: Figure 10 illustrates the performance of SAFER under different γ values, guiding the selection
of an optimal γ. A small γ leads to decreased performance, confirming the necessity of incorporating this penalty term.
However, an excessively large γ is also detrimental, as it shifts the model’s focus away from the supervised signal during
training, ultimately reducing overall performance.

These findings support the stability of SAFER under moderate hyperparameter variation, and highlight the importance of
risk-aware fine-tuning in achieving consistent improvements in both predictive accuracy and patient safety.

C.4. Case Study

Figure 11. Trends in uncertainty scores over time.

To further illustrate the interpretability of SAFER’s uncertainty estimates, we select a subset of 10 surviving and 10 deceased
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patients with comparable sequence lengths. At each timestamp, we predict the subsequent treatment target using varying
historical windows and compute the corresponding uncertainty scores. As shown in Figure 11, the average uncertainty
scores for surviving patients remain low and stable throughout the clinical timeline. In contrast, deceased patients exhibit a
distinct upward trend in uncertainty as their condition deteriorates.

This divergence reflects a growing difference in predictive stability between the two cohorts. For surviving patients, the
model consistently maintains high confidence, likely due to regular disease progression and coherent treatment-response
patterns. Conversely, the increasing uncertainty observed among deceased patients suggests a transition into more complex
or irregular clinical dynamics, where prediction becomes inherently more difficult.

The elevated uncertainty in deceased trajectories may arise from two primary sources: (1) ambiguous treatment behaviors
driven by rapid physiological decline or emergent interventions; and (2) limited representational coverage of similar
deteriorating cases in the training distribution, resulting in increased epistemic uncertainty. These observations align with
our core modeling assumption that treatment labels for deceased patients are more likely to be noisy or unreliable due to
outcome ambiguity and clinical variability.

Notably, these temporal uncertainty trends provide a form of counterfactual interpretability. By capturing the divergence in
predictive confidence over time, SAFER not only differentiates between stable and high-risk trajectories but also offers
a potential mechanism for proactive clinical risk detection. In practice, this trajectory-level uncertainty signal could be
leveraged to identify patients transitioning into unfamiliar or high-risk states, thereby enabling timely human intervention.

In summary, this analysis underscores the utility of SAFER’s uncertainty estimates as both a diagnostic and interpretive tool,
particularly in high-stakes clinical environments where model trustworthiness and actionable risk awareness are essential.
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