Not All Bits Are Equal: Scale-Dependent Memory
Optimization Strategies for Reasoning Models

Junhyuck Kim”*, Ethan Ewer™; Taehong Moon”, Jongho Park’, Dimitris Papailiopoulos®-™
FKRAFTON, “University of Wisconsin—Madison, bUc Berkeley, ™ Microsoft Research

Abstract

While 4-bit quantization has emerged as a memory-optimal choice for non-
reasoning models and zero-shot tasks across scales, we show that this universal
prescription fails for reasoning models, where the KV cache rather than model size
can dominate memory. Through systematic experiments across 1,700 inference
scenarios on AIME25 and GPQA-Diamond, we find a scale-dependent trade-off:
models with an effective size below 8-bit 4B parameters achieve better accuracy
by allocating memory to more weights rather than longer generation, while larger
models achieve better accuracy by allocating memory to longer generations. This
scale threshold also determines when parallel scaling becomes memory-efficient
and whether KV cache eviction outperforms KV quantization. Our findings show
that memory optimization for LLMs cannot be scale-agnostic, while providing
principled guidelines: for small reasoning models, prioritize model capacity over
test-time compute, while for larger ones, maximize test-time compute. Our results
suggest that optimizing reasoning models for deployment requires fundamentally
different strategies from those established for non-reasoning models.

AIME25 — Total Memory vs. Accuracy (Qwen3)

o] ® 32B
® 14B /
® 3B - il
60 [
4B ’
£]
1.7B £ 1
504
- 0.6B 4
é/ . IS
> 401 @ 16-bit
8 A Sbit 3
5 W 4-bit
830-
<

e 2k tokens
@ 30k tokens

1)
S

10 50

5
Total Memory (Weight + KV Cache) [GB]

Figure 1: Memory vs. Accuracy for serial test-time scaling on AIME2S. The plot illustrates the
trade-off between pass@ 1 accuracy and total memory (weights + KV cache) for the Qwen3 family.
Model weights are quantized to 4- and 8-bit using GPTQ. Along each curve, the KV cache grows
as the generation length increases via budget forcing. For models effectively smaller than an 8-bit
4B, increasing the token budget to saturation is memory-inefficient. Furthermore, for mathematical
reasoning, higher weight precision (8- and 16-bit) proves more memory-efficient than 4-bit.

*This work was done during an internship at KRAFTON.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Efficient Reasoning.

1 Introduction

Prior memory—performance trade-off studies on Large Language Models (LLMs) for non-reasoning
models have focused mostly on compressing model weights, since the model weights generally
consume far more GPU memory than the Key-Value (KV) cache [1H3]]. Modern reasoning models,
however, generate substantially more tokens, causing the proportionally increasing KV cache to
become a significant bottleneck. For instance, a Qwen3-4B model with 4-bit weights occupies
2.49 GB, but its KV cache for a 32k-token generation requires 4.42 GB (=~ 1.8 the weights). This
bottleneck is magnified in batched inference: with model weights amortized, the aggregated KV
cache becomes the primary memory constraint. With the KV cache becoming a dominant component
of memory, it is unclear whether the results established for non-reasoning models still hold for
long-generation reasoning tasks.

In this work, we aim to investigate the general principles of memory compression for reasoning
models. In addition to the conventional factors of model size and weight precision, our analysis
incorporates three other factors that distinctly affect memory—accuracy trade-offs for reasoning
models: , parallel scaling, and KV cache compression. Overall, we ask the question:

Under a fixed memory budget, how should one balance
model size, weight precision, test- and parallel-time compute, and KV cache compression
to maximize accuracy on reasoning tasks?

We conduct an empirical study on the Qwen3 model family (0.6B to 32B) [4]] across two benchmarks:
AIME and GPQA-Diamond. Our investigation spans over 1,700 different scenarios, exploring 4-bit
and 8-bit GPTQ weight quantization [2], reasoning token budgets from 2k to 30k, parallel scaling
via majority voting with up to 16 samples, and two approaches to KV cache compression: eviction,
using R-KV [5] and StreamingLLLM [6l], and quantization with HQQ [7]]. While our findings do not
provide specific prescriptions for all tasks or models, we present general principles to consider for
memory-efficient reasoning models with minimal loss of accuracy.

Our contributions. In Section 4], we investigate how to allocate memory between model weights
and the KV cache under serial test-time scaling. For example, which setting leads to higher accuracy:
a 32B 8-bit LLM with less KV cache (i.e., less test-time compute), or a 32B 4-bit LLM with more
KV cache? We find that there is no optimal strategy that is universal across scale: for models with
effective size (parameters X bits per weight) below 8-bit 4B (~ 4.2 GB), allocating more memory to
model weights yields larger gains, whereas above this threshold, memory is better spent increasing
the test-time budget until performance saturates.

We also discover that the choice of weight precision depends on the nature of the task. For knowledge-
intensive reasoning, 4-bit weight quantization is broadly memory-optimal, consistent with established
findings on the effectiveness of 4-bit or lower precision for zero-shot, non-reasoning models [, [2, [8]].
For mathematical reasoning, however, the higher fidelity of 8- or 16-bit model weights with smaller
KV caches often provides stronger performance, suggesting that intricate computational tasks are
more sensitive to loss in precision.

Orthogonal to longer generations, increasing the number of generations can yield substantial gains [9],
yet its memory efficiency remains underexplored. Parallel scaling via majority voting on top of
serial scaling introduces another trade-off: a larger KV cache proportional to group size for higher
accuracy, assuming a batched inference setting. This strategy is only more memory-efficient than
serial scaling for models with an effective size at or above 8-bit 4B. Interestingly, for such models,
the memory-optimal group size also increases with the total memory budget.

In Section [5} we investigate how KV cache compression affects the memory—accuracy trade-off
by considering both KV cache eviction and quantization methods. Across model sizes and weight
precisions, both eviction and quantization advance their Pareto frontiers beyond the baseline without
cache compression. The choice of compression method should be dictated by effective size: eviction
offers a better memory trade-off for small models (effective size below 8-bit 4B), while both strategies
are competitive for larger models.

Overall, the memory-optimal strategy for reasoning models is not universal, but is instead mainly
governed by the model’s effective size. We summarize our main empirical findings as follows:

1. For models effectively smaller than 8-bit 4B, it is more memory-efficient to allocate memory
to more weights than to longer generations, while larger models benefit more from longer
generations.

2. 4-bit weights are broadly memory-optimal for the knowledge-intensive task (GPQA-
Diamond), while 8-bit or 16-bit weights are more memory-efficient for the mathematical
reasoning task (AIME25).

3. Parallel scaling only improves the memory—accuracy trade-off for models effectively larger
than 8-bit 4B. The memory-optimal group size increases with the memory budget.

4. Weight quantization alone is not sufficient for memory-optimal reasoning; compressing the
KV cache leads to more memory-efficient reasoning.

5. KV cache eviction provides a better memory—accuracy trade-off than KV cache quantization
for models with an effective size smaller than an 8-bit 4B model.

2 Background

Weight-only quantization. Weight-only post-training quantization replaces full-precision weights
with low-bit representations without retraining, reducing memory usage. Weight-only quantization
allows lower bit-widths compared with weight-activation quantization, as it is more robust to quanti-
zation error [10]]. However, weight-only quantization requires dequantization before multiplying with
activations, so it does not reduce computational cost during inference. Any speedup instead comes
from reduced memory movement. In this work, we adopt GPTQ [2], a weight-only quantization
method that minimizes layer-wise quantization error using a small calibration set and updates weights
using inverse-Hessian information.

KYV cache quantization. KV cache quantization stores key and value tensors at reduced preci-
sion to lower the memory footprint and memory bandwidth during decoding. Unlike weight-only
quantization, KV quantization is applied online at inference. During prefill, the KV tensors for the
entire input context are quantized and cached in low precision. During decode, the cached tensors
are dequantized on the fly for attention computations. Prior work conventionally maintains a small
full-precision buffer for the most recent tokens, appending new key and value tensors to this buffer
during decoding. In this work, we use per-channel symmetric quantization of both keys and values
with an HQQ backend [[7]], a fast, calibration-free quantization method that is particularly well-suited
for online KV cache quantization.

KYV cache eviction. On the other hand, KV cache eviction has also emerged as a critical optimization
strategy, reducing KV cache size and the cost of attention computation. Specifically for reasoning
models, we consider dynamic eviction policies that continuously evict the KV cache during decoding.
Early work, such as StreamingLLLM [6], employs a sliding-window mechanism that preserves the most
recent key and value tensors, in addition to the initial sequence tokens known as the attention sink.
More recently, R-KV [5] proposes redundancy-aware selection for reasoning models: it estimates
token importance and redundancy during decoding and jointly selects non-redundant, informative
tokens to retain, reporting near-baseline accuracy with a small fraction of the KV cache. In Section[3]
we study how these eviction policies, together with KV cache quantization, shift the trade-off frontiers.

Test-time scaling. We scope this work to test-time scaling methods that do not rely on external
models such as verifiers or process reward models. Reasoning models are typically trained to
produce an extended chain-of-thought, continuing generation with planning and reflection to improve
performance [[11} 12} 4]. We refer to this as serial scaling. Muennighoff et al. [[13]] introduces budget
forcing to scale serial responses beyond the model’s natural length for higher accuracy. When the
model attempts to stop, a short cue is appended to continue decoding to a specified token budget.
Another line of work, parallel scaling, generates multiple independent reasoning trajectories [9]].
In its simplest form, without any external model, majority voting selects the final answer as the
most frequent among the independently sampled outputs [14]. Further related work is discussed in

Appendix

3 Experimental Setup

We systematically explore the memory—accuracy trade-offs by measuring how accuracy and memory
footprints are affected by five key factors: the number of parameters (/V), weight precision (Pyy),
test-time token budget (1), sampling group size (G, with G > 1 indicating multiple samples for
majority voting), and KV cache compression strategy (7, €.g., eviction or quantization).

The memory cost is given by
M = Mweights(N7 PW) + Mkv(Na R Ta G)a

where M yeights is the memory footprint of the weights, roughly proportional to IV - Pyy,. Note that
throughout the paper, we use model size to refer to the number of parameters IV and effective size
or scale to refer to the memory footprint of the weights, Myeights. My is the KV cache memory,
which is roughly proportional to N, G, and T', except when 7y, = eviction, where the cost becomes
constant beyond a certain token budget. Please refer to Appendix |B| for the exact memory cost
equations and Table[I] for model-specific values.

Table 1: Memory footprints of evaluated models.

Model Model Weight (GB) KYV Cache (GB)
4-bit 8-bit 16-bit | 2k tokens 18k tokens 30k tokens 30k tokens x 16 samples

Qwen3-0.6B | 0.50 0.71 1.40 0.21 1.92 3.20 51.27
Qwen3-1.7B | 1.26 1.93 3.78 0.21 1.92 3.20 51.27
Qwen3-4B 249 419 749 0.27 2.47 4.12 65.91
Qwen3-8B 568 894 1526 0.27 2.47 4.12 65.91
Qwen3-14B | 9.30 1550 27.51 0.31 275 4.58 73.24
Qwen3-32B | 18.01 32.66 61.02 0.49 4.39 7.32 117.19

Models. We experiment with the Qwen3 model family [4], which ranges from 0.6B to 32B
parameters, offering a wide range of model sizes and thus making it well-suited for a fine-grained
systematic study across scales.

Tasks. Experiments are conducted on challenging benchmarks representing complementary diffi-
culty profiles. AIME25 [15]] is a competition-level mathematical benchmark that stresses multi-step
reasoning. In contrast, GPQA-Diamond [16] emphasizes scientific knowledge and integrated reason-
ing across domains such as chemistry, biology, and physics [[17]].

Inference details. Unless otherwise specified, we report accuracy averaged over 32 generations
per instance, sampling with temperature 0.6. Following Muennighoff et al. [13]], for serial scaling
with budget forcing, if generation terminates earlier than the desired token budget, we replace the
end-of-sequence token with the prompt Wait and continue decoding until the target budget is
reached. When the desired budget is met, we inject the prompt **Final Answer**\n\\boxed{.
We evaluate token budgets from 2k to 30k in 4k increments.

4 Test-Time Scaling with Weight-Only Quantization

When aiming for the best performance under limited memory, how should memory be allocated
between model weights and KV cache? Additionally, when allocating space for model weights, is it
better to use more parameters at lower precision or fewer parameters at higher precision?

To answer these questions, we study test-time scaling across different model sizes (/V) and weight
precisions (Py, € {4,8,16}) by varying the test-time token budget (T'). We use GPTQ to quantize
models to 4- and 8-bit precision. For this analysis, we fix 7y, to keep all cache entries (no eviction, at
full precision) and first present results for a sampling group size of G = 1. We later discuss parallel
scaling with G > 1 and other 7y, policies.

Figure [I] reveals the Pareto frontier for accuracy versus total memory under serial scaling with a
full-precision KV cache. Analyzing the configurations that lie on this frontier provides practical
recommendations for optimizing model selection, weight precision, and test-time budgets within
fixed memory constraints:

P~
™
=

Pareto-Optimal Generation Length

(b)

Pareto-Optimal Effective Model Size

30k A oA a o | 7 °
- WA A ANe <) .
[}
S E A A o N at
< 20k 75} 101
& AE A 5 L e 32B
e e 14B
= A AE A S
8 = - e 8B
“T; 10k ADAMDN L AAAA ® [6-bit 4B
= L. 2 s A 8-bit 1.7B
2 A A AR B 4-bit 0.6B
25|
5 10 50 1 5 10 50
Total Memory [GB] Total Memory [GB]

Figure 2: Composition of Pareto-optimal configurations (AIME25, Qwen3). The token budget
(a) and effective model size (b) are plotted against the total memory budget for configurations on
the Pareto frontier from Figure[I] The plots illustrate a strategic shift: at lower memory budgets
(<10 GB), increasing effective model size is memory-efficient, whereas at higher budgets, increasing
the token budget becomes the dominant strategy for improving performance.

For models effectively smaller than 8-bit 4B, memory is better spent on increasing the effective
model size rather than increasing the test-time budget until saturation. While extending the
generation budget of a small model is often viewed as a way to trade higher latency for lower memory
usage compared to using a large model, our analysis reveals that this is a false economy. In fact, for
models effectively smaller than 8-bit 4B, this strategy is often suboptimal in total memory. Figure 2]
shows that for memory budgets below 8 GB, the Pareto frontier is advanced primarily by increasing
model size, not the token budget. For instance, the 1.7B model in 8-bit with a 6k token budget
outperforms the 0.6B model in 8-bit with an 18k token budget. Similarly, the 4B model in 4-bit
with a 10k token budget surpasses the 1.7B model in 8-bit with an 18k token budget, demonstrating
that choosing a model with a larger effective size is better under a similar memory budget. As our
latency analysis confirms (Appendix [C)), these configurations with larger effective sizes are also faster
because end-to-end latency is dominated by the token budget, making the choice to increase the
model’s effective size strictly dominant.

For large models with an effective size at or above 8-bit 4B, memory is more efficiently used
when increasing the test-time budget until performance saturates. In direct contrast to the
strategy for small models, extending the generation budget is a more memory-efficient way to
improve accuracy for large models. This strategic shift is clearly illustrated in Figure 2] where
for memory budgets larger than 10 GB, the best-performing configurations on the Pareto frontier
consistently feature token budgets above 20k. In this regime, increasing the token budget becomes
the dominant method for improving accuracy.

The memory-efficient allocation strategy between model weights and KV cache is scale-
dependent. For models effectively smaller than 8-bit 4B, memory is more efficiently allocated
to increasing the effective model size. For models at or above this threshold, it becomes more
memory-efficient to increase the test-time budget until performance saturates.

While our analysis mainly assumes a scenario where each inference instance uses the entire model
and KV cache, in practice, model weights can be amortized across multiple concurrent generations,
fundamentally changing the memory dynamics. Figure [3|examines how memory—accuracy trade-offs
change when model weights are shared across multiple concurrent generations. As the theoretical
batch size increases, the benefit of smaller model weights diminishes because weight costs are
amortized across more generations. We find that the 0.6B model never appears on the Pareto frontier
at a theoretical batch size of 16. The 8B and 14B models with 4-bit and 8-bit weight precision
and the 4B model with 8-bit and 16-bit precision demonstrate favorable trade-offs in the 1-4 GB
memory-per-generation region when the theoretical batch size is 16. Notably, the 8-bit 4B model
consistently lies on the Pareto frontier for the 1-2 GB region.

(@ Theoretical Batch Size = 2 (®) Theoretical Batch Size = 4

70 70
601 60
;\? 50 50
N
2401 40
g
3 304 30
o
<
20 20 /
A
10 10
[|
0 0
05 1 5 10 0.5 1 5 10
(©) Theoretical Batch Size = 8 @ Theoretical Batch Size =16
70 701 @ 32B
® 14B
60 1 60 ® 8B
4B
S 501 50 178
; 0.6B
24071 40
£ ® 16-bi
3 301 30 e
% A 8-bit
201 0] W 4bit
10 10
| |
0 0
0.5 1 5 10 0.5 1 5 10
Memory Usage Per Generation [GB] Memory Usage Per Generation [GB]

Figure 3: Memory vs. Accuracy under different theoretical batch sizes (AIME25, Qwen3). Each
subplot shows memory-per-generation vs. accuracy for different theoretical batch sizes, where model
weight memory is amortized across concurrent generations. The Pareto frontier shifts as batch size
increases, revealing how model weight amortization affects the optimal memory allocation strategy.

The memory-optimal weight precision is task- and size-dependent. Returning to the trade-offs in
a single-batch inference setting (Figures[I]and 2, our findings show that for mathematical reasoning
tasks, 4-bit weight quantization is consistently memory-inefficient. On the AIME25 benchmark, 8-bit
is memory-optimal for small models (N € {0.6B, 1.7B}), as the performance gains from reallocating
memory saved by 4-bit quantization to a larger token budget are insufficient to compensate for the
accuracy loss. This inefficiency of 4-bit persists at larger IV, where 8-bit and 16-bit configurations
achieve higher accuracy at comparable memory. This is shown in Figure 2] (b), where 8- or 16-bit
weights are most often memory-optimal along the frontier for memory budgets larger than 6 GB.
Notably, the 8B model in 8-bit consistently outperforms the 14B model in 4-bit (Figure[I)), and the
32B model in 4-bit is strictly dominated by both the 14B model in 8-bit and the 8B model in 16-bit.
Such findings are in direct contrast to Dettmers and Zettlemoyer [[1]. However, we do find that for
knowledge-intensive tasks, 4-bit quantization is broadly memory-optimal. As shown in Figure [
for GPQA-Diamond, the frontier shifts to favor lower precision. This suggests that different task
types place different demands on model parameters. Mathematical reasoning may rely on numerical
precision within the weights, which is damaged by aggressive 4-bit quantization. On the other hand,
knowledge-intensive tasks prioritize maximizing the number of parameters to increase knowledge
capacity, making large 4-bit models more memory-efficient.

GPQA-Diamond — Total Memory vs. Accuracy

AIME25 — Parallel Scaling Pareto

60 ® 4B % 80 Sampling Group Size /[/,, /
° 3B ™ 1 4 8 12 16 -
4B o
'. == == == = Serial Pareto
’\3 50 1.7B vl @
< 0.6B L ‘i; 60
g g
540{ ® 16-bit i £
3 A 8-bit i g
< m 4bit . 40
30
20
20 0 : . _
1 5 10 10° 10" 10°

Total Memory (Weight + KV Cache) [GB] Total Memory (Weight + KV Cache) [GB]

Figure 4: Memory vs. Accuracy on GPQA-
Diamond (Qwen3). The memory—accuracy
trade-off for serial scaling on GPQA-Diamond.
Total memory is the sum of model weights and
KV cache. Points along each curve represent in-
creasing token budgets. 4-bit weights are broadly
memory-optimal for knowledge-intensive tasks.

Figure 5: Effect of parallel scaling on the
Pareto frontier (Qwen3). Each colored curve
represents the Pareto frontier for a specific model
size and weight precision, obtained by increasing
the sampling group size, G. The Pareto frontier
for serial scaling (G = 1) across all models is
shown as a dotted line. Parallel scaling is only
effective for large models.

For knowledge-intensive tasks, 4-bit is broadly memory-optimal. For mathematical rea-
soning tasks, higher precision is required. 8-bit is memory-optimal for small models

(N € {0.6B, 1.7B}), while both 8-bit and 16-bit are competitive at larger numbers of parame-
ters.

In addition to serial scaling by increasing the token budget, we can introduce a parallel scaling axis
by increasing the sampling group size (G). Assuming a batched inference setting, the KV cache
grows with G, in exchange for higher accuracy. This raises another key question:

When is it more memory-efficient to allocate memory to parallel samples, versus to a larger effective
model size or a longer generation length?

The effectiveness of parallel scaling is scale-dependent. For systematic evaluation, we use budget
forcing to control the token budget for each of the GG parallel samples and use majority voting to
select the final answer. Figure [5]shows how parallel scaling affects the memory—accuracy trade-off.
The dotted line marks the Pareto frontier from serial scaling alone. Each colored curve represents
the frontier for a specific model configuration as the group size, G, is increased (see Appendix [D}
Figure|10| for a per-model breakdown). For models effectively smaller than 8-bit 4B, parallel scaling
is memory-inefficient, as its configurations lie below the frontier established by serial scaling alone.
However, for large models, parallel scaling improves the trade-off, and the memory-optimal group size
G on the global Pareto frontier increases with the memory budget. While group sizes of 4 < G < 8
are memory-optimal in the 16.4-28.9 GB range; for budgets above 28.9 GB, the frontier is pushed by
even larger groups (G > 8).

For models effectively smaller than 8-bit 4B, serial scaling alone provides a better memory—
accuracy trade-off than parallel scaling. For models effectively larger than this threshold,
parallel scaling improves the trade-off, and the memory-optimal group size G on the global
Pareto frontier increases with the memory budget.

S Test-Time Scaling with Weight and KV Cache Compression

Our analysis so far shows that while allocating more tokens generally improves accuracy, it is not
always memory-efficient, especially for effectively small models where the KV cache can dominate
total memory. While compressing the KV cache via quantization or eviction can reduce this footprint,
it comes at a potential accuracy cost. This raises the following question:

How do KV cache compression strategies—eviction and quantization—alter the overall
memory—accuracy trade-off, and which approach leads to stronger reasoning?

To answer this, we evaluate both compression strategies across model sizes and weight precisions. For
eviction, we use R-KV with target KV budgets of 2k, 4k, and 8k tokens. For KV cache quantization,
we use symmetric per-channel quantization to 2-, 4-, and 8-bit precisions with a group size of 64
and a full-precision residual buffer of 128 tokens. The results are averaged over 8 generations per
instance. We first show that both methods are broadly beneficial and then provide a detailed analysis
to determine which strategy is optimal under different conditions.

AIME25 — Total Memory vs. Accuracy

70 KV Strategy - ="
= = Full KV Cache =T
60 - 7,
Eviction //
§ 501 === Quantization //,/
240 4
& v’/
330 ol
<“£ V4
20 77
27
-‘I
101 ,;7’
—
01 -
10° 10'

Total Memory (Model Size + KV Cache) [GB]

Figure 6: Memory vs. Accuracy by KV cache compression strategy (AIME25, Qwen3). The
plot shows the Pareto frontiers of KV cache compression across model sizes and weight precisions
under serial scaling with budget forcing. Eviction uses R-KV with token budgets of 2k, 4k, and
8k. Quantization is symmetric per-channel (group size 64) at 2-, 4-, and 8-bit. Faint background
lines show curves for individual (model size, weight precision, KV strategy) configurations. Both
compression strategies consistently improve the memory—accuracy trade-off.

KYV cache eviction and quantization consistently advance the Pareto frontier across all tested
model sizes and weight precisions. Our first key finding, illustrated in Figure[d] is that the aggregate
Pareto frontiers for both quantization and eviction decisively advance beyond a baseline without
compression for models with 4-bit, 8-bit, and 16-bit weights. This improvement demonstrates that
these strategies enable either higher accuracy at the same memory budget or the same accuracy at a
lower memory cost, regardless of the model weight precision. The benefits are especially pronounced
in the low-memory regime below 10 GB, where smaller models are most constrained by the KV
cache. This indicates that even when model weights are aggressively compressed, the KV cache
contains significant redundancies that can be exploited. Our results, therefore, establish KV cache
compression as an essential and broadly beneficial strategy for the memory-efficient deployment of
reasoning models.

Weight quantization alone is not sufficient for memory-optimal reasoning. KV cache compres-
sion advances the memory—accuracy frontier across all weight precisions.

Having established that KV cache compression is broadly beneficial, we now analyze which compres-
sion strategy, quantization or eviction, is preferable for a given model size N and weight precision

Py . Figure[7] shows the resulting memory—accuracy trade-offs, where each strategy shapes the
curves differently. Quantization reduces the memory cost per token, shifting the curves leftward,
typically with some accuracy degradation. Eviction, in contrast, enforces a fixed memory ceiling
for the KV cache, resulting in characteristic vertical curves where accuracy improves while memory
usage remains constant.

Qwen3-14B ¢ 4-bit Qwen3-8B ¢ 16-bit
— n ——i —————
g .l-".:"f’A/A/ /".__._. 50 ,—-—l-';‘i—A/ ./°/.
70 -l 7 //]/
g A [l
5 ; 25 « /
s |/ /4
< o v u
01 _sessreee 01 _esesesee
10' L1x10" 12x10 13x10' 14x10' 1.6x10" 1.7x 10" 1.8x10° 1.9x10"
Qwen3-8B ¢ 8-bit Qwen3-4B ¢ 16-bit
2 A ———————e : it "
<5 pnnt] — 50 4"/;'/.
z e >
£ / A
5 =/ . 25 A
(3] .// A{ ———
< 0] cevessss -
9x10° 10' Lix10' 12x100 13x10 8x10° 9x10° 10'
20 Qwen3-1.7B ¢ 4-bit Qwen3-0.6B ¢ 8-bit
i a—t e S ——
= e 10 =
> P P
910 < .
5 /// /
3 Ve P
< 0 B E e N N N = 0 e e e e e e W
210" 3x10 4x10° 10° 2x10° 3x10" 4x10°
Total Memory (GB) Total Memory (GB)

—e— Full KV Cache = —&— Eviction (8k) —#&— Quantization (8-bit)
Eviction (4k) —®— Quantization (4-bit)
Eviction (2k) —#— Quantization (2-bit)

Figure 7: Per-model Memory vs. Accuracy by KV cache strategy (AIME2S5). Each plot illustrates
the memory—accuracy trade-off for a single model size and weight precision, comparing a full KV
cache baseline against R-KV eviction and symmetric per-channel quantization. Points along each
curve represent an increasing number of processed tokens via budget forcing.

Eviction is more effective than quantization for small models. For models with an effective size
smaller than an 8-bit 8B model, eviction consistently provides the best memory—accuracy trade-off.
As shown in Figure[7]for the full-precision 4B model, eviction with an 8k token budget maintains
near-lossless in maximum accuracy while substantially reducing total memory. This observation
holds across all weight precisions for the 4B model (see Appendix [E] Figure [T2]for these results).
In contrast, aggressive 4-bit KV cache quantization causes a significant drop in accuracy at these
small effective sizes. This suggests that effectively small models are more sensitive to the numerical
errors introduced by quantization, whereas eviction preserves the full precision of a smaller, more
critical set of tokens. For instance, on the 1.7B model with 4-bit weight precision, eviction achieves
the best memory trade-off while maintaining high accuracy, whereas an 8-bit quantized KV cache,
while effective, requires significantly more memory to reach a similar performance level.

Quantization becomes competitive with eviction for large models. For models with an effective
size larger than an 8-bit 8B model, the clear advantage of eviction diminishes as quantization becomes
a highly competitive strategy. On the 8B model with 16-bit weights, for example, quantization
and eviction achieve comparable memory—accuracy trade-offs. While 4-bit KV cache quantization
is competitive, eviction with smaller budgets (2k or 4k) offers a similar trade-off in low-memory
regimes. This suggests that large models, with their greater number of effective parameters, are
more robust to the precision loss from quantization. However, we find that more aggressive 2-bit
quantization still results in a significant loss of accuracy.

KV cache eviction provides a better memory—accuracy trade-off than KV cache quantization
for models with an effective size smaller than an 8-bit 8B model. For models at or above this
threshold, quantization becomes an increasingly competitive strategy.

6 Conclusion

Under real-world circumstances with fixed memory budgets, deploying reasoning models is ultimately
a problem of where to spend bytes, and practitioners are presented with a myriad of choices. Our work
reformulates test-time scaling around this constraint. We study the trade-offs in allocating memory
across model size, weight precision, KV cache compression, token budget, and sampling group size
for reasoning models. We find that the memory-optimal inference strategy for reasoning models
cannot be a one-size-fits-all prescription: instead, it depends on the model’s capacity (determined by
effective size) and the nature of the task.

For smaller model sizes (typically models under 8B), prioritizing model weights yields better memory—
accuracy trade-offs by using higher-precision 8- or 16-bit weights for mathematical reasoning and
favoring KV cache eviction over quantization. For larger models, increasing the token budget
until saturation and leveraging parallel scaling become the dominant strategies. Importantly, the
inflection point where extra KV cache beats extra model weight may change as models become more
sophisticated. However, by shifting the focus from FLOPs-based test-time scaling laws to practical
memory constraints, our framework and analysis provide general principles for deploying reasoning
models effectively.

7 Limitations and Future Work

Our scope is intentionally focused to keep the search space tractable and inference-only. For test-
time scaling, we rely on prompt injection for serial scaling and majority voting for parallel scaling,
deliberately excluding methods that require external models. Our analysis also does not include a
comparative study of different post-training quantization or KV cache eviction algorithms, including
those requiring model retraining, such as quantization-aware training. We evaluate on the Qwen3
family, chosen for its broad size range and fixed architecture, and two challenging benchmarks
(AIME25 for mathematical reasoning and GPQA-Diamond for knowledge-intensive reasoning).
These choices were necessary to maintain a tractable search space, which already spans more than
1,700 experimental configurations, and to focus on self-contained inference strategies, leaving a
broader comparison of methods as a clear avenue for future work.

10

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(91

(10]

(11]

[12]

[13]

[14]

(15]

[16]

(171

(18]

Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit inference scaling laws. In
International Conference on Machine Learning, pages 7750-7774. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training quantization
for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for on-device llm
compression and acceleration. Proceedings of machine learning and systems, 6:87-100, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Lyv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.

Zefan Cai, Wen Xiao, Hanshi Sun, Cheng Luo, Yikai Zhang, Ke Wan, Yucheng Li, Yeyang Zhou, Li-Wen
Chang, Jiuxiang Gu, et al. R-kv: Redundancy-aware kv cache compression for training-free reasoning
models acceleration. arXiv preprint arXiv:2505.24133, 2025.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming language
models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Hicham Badri and Appu Shaji. Half-quadratic quantization of large machine learning models, November
2023. URL https://mobiusml.github.io/hqq_blog/.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantization of large
language models with guarantees. Advances in Neural Information Processing Systems, 36:4396—4429,
2023.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and Azalia
Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling. arXiv preprint
arXiv:2407.21787, 2024.

Zhewei Yao, Xiaoxia Wu, Cheng Li, Stephen Youn, and Yuxiong He. Zeroquant-v2: Exploring post-training
quantization in llms from comprehensive study to low rank compensation. arXiv preprint arXiv:2303.08302,
2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong
Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Hel-
yar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv preprint
arXiv:2412.16720, 2024.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. s1: Simple test-time scaling.
arXiv preprint arXiv:2501.19393, 2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. Self-consistency improves chain of thought reasoning in language models. arXiv preprint
arXiv:2203.11171,2022.

AIME. AIME Problems and Solutions. https://artofproblemsolving.com/wiki/index.php/
AIME_Problems_and_Solutions) 2025.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqga: A graduate-level google-proof q&a benchmark. In First
Conference on Language Modeling, 2024.

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian Xu,
Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al. From system 1 to system 2: A survey of reasoning large
language models. arXiv preprint arXiv:2502.17419, 2025.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray,

Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

11

https://mobiusml.github.io/hqq_blog/
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions

(19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(371

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo Jun,
Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive generative modeling.
arXiv preprint arXiv:2010.14701, 2020.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Training compute-optimal
large language models. arXiv preprint arXiv:2203.15556, 2022.

Samir Yitzhak Gadre, Georgios Smyrnis, Vaishaal Shankar, Suchin Gururangan, Mitchell Wortsman,
Rulin Shao, Jean Mercat, Alex Fang, Jeffrey Li, Sedrick Keh, et al. Language models scale reliably
with over-training and on downstream tasks. In The Thirteenth International Conference on Learning
Representations, 2025.

John X Morris, Chawin Sitawarin, Chuan Guo, Narine Kokhlikyan, G Edward Suh, Alexander M Rush,
Kamalika Chaudhuri, and Saeed Mahloujifar. How much do language models memorize? arXiv preprint
arXiv:2505.24832, 2025.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.3, knowledge capacity scaling laws.
arXiv preprint arXiv:2404.05405, 2024.

Tanishq Kumar, Zachary Ankner, Benjamin F Spector, Blake Bordelon, Niklas Muennighoft, Mansheej
Paul, Cengiz Pehlevan, Christopher Ré, and Aditi Raghunathan. Scaling laws for precision. arXiv preprint
arXiv:2411.04330, 2024.

Guhao Feng, Kai Yang, Yuntian Gu, Xinyue Ai, Shengjie Luo, Jiacheng Sun, Di He, Zhenguo Li, and
Liwei Wang. How numerical precision affects arithmetical reasoning capabilities of llms. In Findings of
the Association for Computational Linguistics: ACL 2025, pages 4685, 2025.

Anmol Mekala, Anirudh Atmakuru, Yixiao Song, Marzena Karpinska, and Mohit Iyyer. Does quantization
affect models’ performance on long-context tasks? arXiv preprint arXiv:2505.20276, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in Neural
Information Processing Systems, 35:24824-24837, 2022.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit Dhillon,
Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier with ad-
vanced reasoning, multimodality, long context, and next generation agentic capabilities. arXiv preprint
arXiv:2507.06261, 2025.

Qwen Team. Qwqg-32b: Embracing the power of reinforcement learning, March 2025. URL https:
//qwenlm.github.io/blog/qwg-32b/.

Kimi Team. Kimi k1.5: Scaling reinforcement learning with llms. arXiv preprint arXiv:2501.12599, 2025.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws: An
empirical analysis of compute-optimal inference for problem-solving with language models. arXiv preprint
arXiv:2408.00724, 2024.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally can be
more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Ranajoy Sadhukhan, Zhuoming Chen, Haizhong Zheng, Yang Zhou, Emma Strubell, and Beidi Chen.
Kinetics: Rethinking test-time scaling laws. arXiv preprint arXiv:2506.05333, 2025.

Jian Wang, Boyan Zhu, Chak Tou Leong, Yongqi Li, and Wenjie Li. Scaling over scaling: Exploring
test-time scaling pareto in large reasoning models. arXiv preprint arXiv:2505.20522, 2025.

James Xu Zhao, Bryan Hooi, and See-Kiong Ng. Test-time scaling in reasoning models is not effective for
knowledge-intensive tasks yet. arXiv preprint arXiv:2509.06861, 2025.

Ruikang Liu, Yuxuan Sun, Manyi Zhang, Haoli Bai, Xianzhi Yu, Tiezheng Yu, Chun Yuan, and Lu Hou.
Quantization hurts reasoning? an empirical study on quantized reasoning models. arXiv preprint
arXiv:2504.04823, 2025.

Eldar Kurti¢, Alexandre Marques, Mark Kurtz, and Dan Alistarh. Deployment-ready reasoning

with quantized deepseek-rl models. https://developers.redhat.com/articles/2025/03/03/
deployment-ready-reasoning-quantized-deepseek-ril-models, March 2025.

12

https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
https://developers.redhat.com/articles/2025/03/03/deployment-ready-reasoning-quantized-deepseek-r1-models
https://developers.redhat.com/articles/2025/03/03/deployment-ready-reasoning-quantized-deepseek-r1-models

(38]

(39]

[40]

(41]

(42]

[43]

[44]

[45]

[40]

(47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International Conference
on Machine Learning, pages 38087-38099. PMLR, 2023.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W Mahoney,
and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. arXiv preprint arXiv:2306.07629, 2023.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix multipli-
cation for transformers at scale. Advances in neural information processing systems, 35:30318-30332,
2022.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang Shi,
Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware training for large
language models. arXiv preprint arXiv:2305.17888, 2023.

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Lifeng Dong,
Ruiping Wang, Jilong Xue, and Furu Wei. The era of 1-bit llms: All large language models are in 1.58 bits.
arXiv preprint arXiv:2402.17764, 1, 2024.

Zechun Liu, Changsheng Zhao, Hanxian Huang, Sijia Chen, Jing Zhang, Jiawei Zhao, Scott Roy, Lisa Jin,
Yunyang Xiong, Yangyang Shi, et al. Paretoq: Scaling laws in extremely low-bit llm quantization. arXiv
preprint arXiv:2502.02631, 2025.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong
Tian, Christopher Ré, Clark Barrett, et al. H20: Heavy-hitter oracle for efficient generative inference of
large language models. Advances in Neural Information Processing Systems, 36:34661-34710, 2023.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyrillidis,
and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance hypothesis for llm kv
cache compression at test time. Advances in Neural Information Processing Systems, 36:52342-52364,
2023.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation.
Advances in Neural Information Processing Systems, 37:22947-22970, 2024.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you what to
discard: Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801, 2023.

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, and Tuo Zhao.
Gear: An efficient kv cache compression recipe for near-lossless generative inference of 1lm. arXiv preprint
arXiv:2403.05527, 2024.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and
Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint arXiv:2402.02750,
2024.

Junhyuck Kim, Jongho Park, Jaewoong Cho, and Dimitris Papailiopoulos. Lexico: Extreme kv cache
compression via sparse coding over universal dictionaries. In Forty-second International Conference on
Machine Learning, 2024.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun S Shao, Kurt Keutzer,
and Amir Gholami. Kvquant: Towards 10 million context length 1lm inference with kv cache quantization.
Advances in Neural Information Processing Systems, 37:1270-1303, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez,
Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with
pagedattention. In Proceedings of the 29th Symposium on Operating Systems Principles, pages 611-626,
2023.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv preprint
arXiv:2307.08691, 2023.

Liyuan Liu, Feng Yao, Dinghuai Zhang, Chengyu Dong, Jingbo Shang, and Jianfeng Gao. Flashrl: 8bit
rollouts, full power 11, August 2025. URL https://fengyao.notion.site/flash-rl,

13

https://fengyao.notion.site/flash-rl

A Related Work

Train-time scaling and knowledge capacity. Foundational scaling studies [[18520] establish power-
law relationships between model size, data, and loss, yielding prescriptions for compute-optimal
training under fixed compute budgets. While these results provide guidance for allocating parameters
and tokens during pre-training, they do not consider inference-time compute and hence require
new extrapolations [21]]. In parallel, capacity-oriented analyses estimate what models can store,
either by modeling knowledge as information per parameter or by measuring memorization versus
generalization [22][23]]. These views motivate a budget-centric view but leave precision and inference-
time trade-offs under deployment constraints unspecified. Bit-normalized studies examine how
performance at different precisions scales with total model bits [1] or the amount of training data [[24],
particularly in zero-shot or few-shot scenarios. Feng et al. [25], Mekala et al. [26] further show that
reduced numerical precision can markedly impair arithmetic reasoning and long-context performance
unless compensated by a larger model size, indicating interactions between precision, task structure,
and context length.

Inference-time methods and scaling laws. Chain-of-thought prompting elicits intermediate steps,
and self-consistency improves performance by sampling diverse rationales and aggregating them
via majority voting [27, [14]. Modern reasoning models are trained to generate substantially more
tokens, yielding significant gains across benchmarks [[14} 127} 9} |13} [11}, 14, 28} [12, |29} 130]. Test-
time scaling laws study how performance changes with increased FLOPs, tokens, or the number
of generations, comparing strategies such as majority voting, best-of-n, and verification-based
search [9} 311 132} [13] [33H35]]. However, these studies do not capture the impact of compression
techniques such as weight-only quantization, which reduces memory and latency without affecting
FLOPs. While concurrent works by Liu et al. [36] and Kurti¢ et al. [37]] study quantization in
reasoning models, their focus is on accuracy degradation rather than memory trade-offs. Our work is
distinct in its memory-centric view: we analyze the trade-offs in allocating a fixed memory budget
between model weights and test-time compute (generation length and parallelism), incorporating the
full cost of the KV cache. We also broaden the scope of compression techniques to include KV cache
eviction.

Efficient inference. Various strategies have been proposed to address challenges in LLM quan-
tization, particularly for handling outliers [2} [38| [3} 39, 40]. Quantization-aware training extends
this idea by training models with quantized weights in the forward pass [41-43]]. Post-training KV
cache compression techniques can be categorized into eviction and quantization. Eviction methods
selectively discard less important entries based on different criteria [5} 16l |44H47], while quantization
approaches reduce the precision of cached values [7, 148H551]].

14

B Memory Equations

The total memory cost M is the sum of the memory required for the model weights M ycights and the
KV cache My,.

Weight Memory. The total memory footprint for weights is the sum of memory for the quantized
and unquantized parameters. The general equation is

P, N, uan Ps+ P Pn ive
Mweights ~ Nquant; ' —r + quant 5 z + Nunquant ' 2ve
8 gw 8 8

) [bytes]

Quantized Parameters Unquantized Parameters

where Ngyant and Nynquant are the number of quantized and unquantized parameters, respectively,
Py is the low-bit precision for weights, gy is the group size, Ps and Py are the bit-widths for the
scales and zero-points, and P, .4ive 1S the native precision of the unquantized layers.

In our specific setup using GPTQ, the large linear layers are quantized, while components such as
the token embedding matrix, normalization layer weights, and the final language model head remain
in native BF16 precision. For our experiments, we use a group size gy = 128, a scale precision of
Pg = 16 (FP16), and symmetric quantization, making the zero-point precision Pz = 0.

KV Cache Memory. Without compression, the KV cache memory is given by

Pnative

8

where G is the sampling group size, 1" is the number of tokens, Niayers is the number of layers,
Nkv_heads 15 the number of Key/Value heads, d},caq is the dimension per head, the factor of 2 accounts
for both Key and Value tensors, and P,¢ive 1S the native precision of the cache elements in bits (e.g.,
16 for BF16).

The memory cost is modified by different KV cache strategies:

Mkv =G-T- Nlayers * Mkv_heads * dhcad -2 [bytes]

» Eviction: This strategy reduces the number of tokens stored. The memory cost is
P, native
8

where T}ctain 1S the maximum number of tokens retained by the policy. In our experiments,
we use R-KV and test Tyetain € {8192, 4096, 2048}.

* Quantization: This strategy reduces the precision but introduces overhead for quantization
parameters. The cost is

Mkv =G- min(T, Tretain) : nlayers * NMkv_heads * dhead -2

Py 1 Ps+ P
Mkv = (G ST Nlayers * kv_heads * dhead : 2) N (k + SZ)

8 Ikv 8

where gy is the group size, and Ps and Py are the precisions of the scales and zero-points.
For our experiments, we use symmetric quantization (Pz = 0) with gy, = 64, Ps = 16,
and test Py, € {8,4,2}.

Below are the architectural details and per-token KV cache sizes for the evaluated models (Table 2).

Table 2: Architectural specifications and KV cache memory per token.

Model | Miayers Mkv_heads dhead | KV Cache (KB/token)
Qwen3-0.6B 28 8 128 112
Qwen3-1.7B 28 8 128 112
Qwen3-4B 36 8 128 144
Qwen3-8B 36 8 128 144
Qwen3-14B 40 8 128 160
Qwen3-32B 64 8 128 256

15

C Latency and Throughput Analysis

While we focus primarily on memory—accuracy trade-offs, latency and throughput can be important
practical considerations as well. In this section, we analyze how model size, weight precision, and
generation length affect both metrics.

Experimental setup. All measurements are performed on a single NVIDIA A100 80 GB GPU
using the vLLM framework [52]] with FlashAttention [53] as the attention backend. To measure
throughput for a given token budget, we sweep a range of batch sizes and record the highest batch
size that completes successfully without out-of-memory errors or KV cache preemption.

AIME25 — Latency vs. Accuracy AIME25 — Throughput vs. Accuracy
e 32B
°
601 e 60
> 40 > 40
= A =)
3 u 3
<20 <20
0 0
10° 10’ 10° 10" 10°
End-to-End Latency (s) Throughput (requests per second)

Figure 8: Latency vs. Accuracy trade-offs Figure 9: Throughput vs. Accuracy trade-offs
(AIME25, Qwen3). Each curve shows end-to- (AIME2S, Qwen3). Each point represents the
end latency vs. accuracy for different model = maximum throughput (requests per second) vs.
sizes and weight precisions with increasing gen- accuracy under 80 GB VRAM constraints with
eration length. Generation length emerges as increasing generation length. While small mod-
the dominant factor in determining latency, with els can achieve higher batch sizes, the frontier is
weight quantization providing more noticeable ~ dominated by configurations that balance model
speedups for large models (14B, 32B). capability with generation efficiency.

We show in Figure[§]that generation length is the dominant factor determining end-to-end latency
across all model configurations. The benefit of weight quantization on latency due to reduced memory
movement costs is modest for small models (up to 8B) but becomes noticeable for larger models
(14B, 32B). For instance, the 14B model takes 137.7 seconds to generate 6k tokens at 16-bit precision,
while the 4-bit variant generates 10k tokens in 130.1 seconds. The overall trend for throughput,
shown in Figure[9] is similar.

For both latency and throughput, the 4B model with 8-bit and 16-bit precisions consistently demon-
strates the strongest speed—accuracy trade-off. Crucially, 4-bit precision is never on the Pareto frontier
for any model size, suggesting that for speed-critical applications like reinforcement learning rollouts,
higher weight precisions, such as 8-bit, may be the optimal choice [54]. The trade-offs become less
favorable at the extremes of the scale: small size models (0.6B, 1.7B) achieve extreme batch sizes up
to 160 and 170, respectively, yielding throughput of 2.9 and 2.64 requests per second with 2k-token
generations, but their accuracy is fundamentally limited. Conversely, the 32B model performs poorly

on throughput due to its slow generation speed and large memory footprint, which restricts batching
under an 80 GB VRAM constraint.

For both latency and throughput, 4-bit precision is never on the Pareto frontier, as higher
precisions (8-bit and 16-bit) consistently provide a better trade-off between accuracy and
speed.

16

D Detailed Results for Parallel Scaling

Figure [I0] presents the per-model plots for the parallel scaling analysis discussed in Section 4]

Qwen3-32B » 16-bit Qwen3-32B - 8-bit Qwen3-32B ¢ 4-bit
75 75

50 50

25 25

Accuracy (%)

o
o
(=

1 5 10 50 100 1 5 10 50 100 1 5 10 50 100
Qwen3-14B « 16-bit Qwen3-14B « 8-bit Qwen3-14B « 4-bit

75 7
50
25

1 5 10 50 100 1 5 10 50 100 1 5 10 50 100

Qwen3-8B ¢ 16-bit Qwen3-8B ¢ 8-bit Qwen3-8B ¢ 4-bit
75

50

25

Accuracy (%)
[Se] wn ~

=}
=}
=1

60
50
40

25 20

Accuracy (%)
[Se] wn ~

o
=}
=1

i 510 50 100 1 510 50 1 510 50
Qwen3-4B ¢ 16-bit Qwen3-4B ¢ 8-bit Qwen3-4B ¢ 4-bit
75 75
S 60
550 50
5 40
§ 25 25 20
<
0 0 0
1 510 50 1 510 50 1 510 50
Qwen3-1.7B * 16-bit Qwen3-1.7B « 8-bit Qwen3-1.7B « 4-bit
60 60 60
40 40 40
5
Y / N / ‘
<

o
o
(=

1 510 50 1 510 50 1 510 50
Qwen3-0.6B ¢ 16-bit Qwen3-0.6B * 8-bit Qwen3-0.6B ¢ 4-bit
60 60 60
&40 40 40
g
=
320 20 /-‘“‘ 20
< /"‘“
0 0 0 iR
1 510 50 1 510 50 1 510 50
Total Memory [GB] Total Memory [GB] Total Memory [GB]

Figure 10: Per-model Memory vs. Accuracy for parallel scaling (AIME25). Each plot shows
the memory—accuracy trade-off for a single model and weight precision, comparing serial scaling
(G = 1) with parallel scaling by increasing the sampling group size, G € {1,3,4,6,8,12,16}.
Points along each curve represent increasing the token budget via budget forcing. Parallel scaling
improves the memory—accuracy trade-off only for models effectively larger than 8-bit 4B.

17

E Detailed Results for KV Cache Compression

Figures|[TT|and [I2] show the per-model results for the KV cache compression analysis discussed in
Section|5| For eviction, we also present results for StreamingL.LLM, where we retain the first Tegin/2
tokens and the most recent Tiepin /2 tokens for a given retention budget Treqain-

Accuracy (%) Accuracy (%) Accuracy (%)

Accuracy (%)

=N
S

'S
S

%)
S

=)

754

501

251

60 1

401

20 1

Qwen3-14B « 8-bit

=
=y

e @ e @ A e —
o NS il 60 n . _——
2 /A/ ! = o7
'/ P ‘/ 40 =
/ yZ
201 /
/4 #
........ 04 _» #> #> #> #> #> #> ®
1.6% 10" 1.7%10" 1.8%10" 1.9% 10" 2x10" 5000 10000 15000 20000 25000 30000
Qwen3-14B « 4-bit
759 —
/“A / Y
o ’IJ’A/A /.___._—-o—o A4$£§’d“='}
Vo _—" 501 /A(/Ar
/-A/ yo A/},
| 3 / Sh
/ / 254
% .
........ 0l & - . - - - - .
10" 1.1x10" 12x10' 13x10"° 14x10' 5000 10000 15000 20000 25000 30000
Qwen3-8B ¢ 16-bit
N A PR—) A —) —
g "/ — ” /‘é z-éﬁﬁ"' —d
eV] -
ol 40 //
// = =
¢ / 201 /“I
V ~~
........ 04 #> #> #> #> #> #> *
1.6x10" 1.7x10" 1.8x10" 1.9%10" 5000 10000 15000 20000 25000 30000
Qwen3-8B ¢ 8-bit
4 it ——e— ———
z /A/ g e ®" z 601 /ﬁé‘ 2
-."7‘4 /' /;_’_/,._,._ —
od 4
/'/ e // 40 //
5 7 0 N
/ // 201 /
4 z
"""" . 01 e — - = T — .
9x 10" 10" 1L1x10' 12x10' 13x10' 5000 10000 15000 20000 25000 30000

Total Memory (Model Size + KV Cache) [GB]

=—&— Full KV Cache == R-KV — 8k
R-KV — 4k

R-KV — 2k

St
St
St

Tokens Processed

reamingLLM — 8k
reamingLLM — 4k
reamingLLM — 2k

== Quantization — 8-bit
~#— Quantization — 4-bit
=&~ Quantization — 2-bit

Figure 11: Per-model Memory vs. Accuracy by KV cache strategy (AIME25, models > 4B). Each
plot shows the memory—accuracy trade-off for a single model and weight precision, comparing KV
cache eviction methods (R-KV, Streamingl.LM) against KV cache quantization and no compression.
Points along each curve represent increasing the number of processed tokens.

18

Qwen3-4B ¢« 16-bit

Ip— e
,\; 60 1 A /‘/..—A/ o-— < 60 4 ’ /\;ﬁs—_‘:—-g
< e —
]
3401 401 /‘
«
= 45
g 7
3 201 20 /
2 < — .
10 5000 10000 15000 20000 25000 30000
Qwen3-4B ¢ 8-bit
< 901 i— ‘/A§A/0/. il ’ 601 ,\’—/ﬂg]
xX o~ ~ A
E/ A
g / . / . /
5 401 y / ! 40 { /
] 7/ /s .
S ’ i -
51 /‘
S 20 201
< i L r ——
5%10" 6x10" 7x10° 8 x 10" 5000 10000 15000 20000 25000 30000
Qwen3-4B ¢ 4-bit
= A " ‘_A/'/._._. / é§-67A_2
—r A"
& 404 - 2 401 ="
> L e i
g /. 7
3 20 y 4 201 /,y
Q
< PO~ e L — .
w - i/
3x10° 4x10° 6x10° 5000 10000 15000 20000 25000 30000
Qwen3-1.7B ¢ 8-bit
A — @ e @
27 — 30 . —? ’
S y -~ %‘. < /.\4 —
Iy ”° 7
5201 / 20
g VZ
i 104 ‘/ 7 107
O o e e e e B e e e 0
2x10° 3x10° 4x10" 5000 10000 15000 20000 25000 30000
Qwen3-1.7B ¢ 4-bit
20 i s e @ e O g 20
= 7 h— ~ g /}\7 e
= i N -
= o —
2104 / 104 —
g / /
=
Q
é:) A/' 4 o
01 s—n—n—n—n—n—n—s 0
2x10° 3x10° 4x10" 5000 10000 15000 20000 25000 30000
Qwen3-0.6B « 8-bit
T T— £ — m——— S—
& a ﬁn’-‘/’—_._ ° 151 —/0”/,_‘7': — e
S _ V- A -) - -
\; 10 1 /70 10 / //‘/
-
3 Ve / -
S 7 a°
3 s 7 s{ ./ /
é ‘/ =
01 _s—m—s—s—n—n—n—sn 0
10° 2x10” 3x10" 4x10 5000 10000 15000 20000 25000 30000

Total Memory (Model Size + KV Cache) [GB]

—&— Full KV Cache

—&— R-KV — 8k

R-KV — 4k
R-KV — 2k

Tokens Processed

StreamingLLM — 8k
StreamingLLM — 4k
StreamingLLM — 2k

== Quantization — 8-bit
=@ Quantization — 4-bit

Figure 12: Per-model Memory vs. Accuracy by KV cache strategy (AIME25, models < 4B). Each
plot shows the memory—accuracy trade-off for a single model and weight precision, comparing KV
cache eviction methods (R-KV, Streamingl.LLM) against KV cache quantization and no compression.
Points along each curve represent increasing the number of processed tokens.

19

	Introduction
	Background
	Experimental Setup
	Test-Time Scaling with Weight-Only Quantization
	Test-Time Scaling with Weight and KV Cache Compression
	Conclusion
	Limitations and Future Work
	Related Work
	Memory Equations
	Latency and Throughput Analysis
	Detailed Results for Parallel Scaling
	Detailed Results for KV Cache Compression

