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ABSTRACT

Multi-property constrained optimization of molecules using generative de novo
design models is vital for the successful application of Artificial Intelligence (AI)
towards materials and drug discovery. Yet there remains a gap between the re-
ported performance of such models in the literature and their practical utility in
real world design scenarios. Furthermore, existing models are largely inaccessi-
ble to chemists without an extensive background in computer science. To address
these challenges, we propose a generative foundation model, the Multimodal Joint
Embedding Transformer (MOLJET), which performs conditional generation of
desired molecular distributions based on human-interpretable chemistry prompts
in a zero-shot manner. We assess MOLJET on the standard benchmarks available
in the GuacaMol and MIMOSA evaluation frameworks. These include structure-
based sampling tasks as well as a range of multi-property optimization tasks that
probe a models ability to design drug-like molecules given realistic property con-
straints. We demonstrate that with self-supervised pretraining, MOLJET outper-
forms 80% of task-optimized models while using zero-shot inferences and beats
all baselines after minimal supervision. Moreover, the performance of MOLJET
on text-only conditioning tasks improves with the inclusion of property modalities
during training, highlighting the importance of a multimodal approach to molec-
ular design. MOLJET is the first example of text-based de novo molecular design
using large-scale multimodal foundation models and should serve as a building
block towards further improvements to accessible AI for chemists.

1 INTRODUCTION

Emerging crises in climate, disease and human health threaten to permanently disrupt global stabil-
ity and must be actively met with creative solutions. Many such solutions are dependent on the rapid
discovery of innovative functional materials or novel drug-like molecules with optimal properties.
For instance, the viability of using redox-flow batteries (RFBs) for long-term and large-scale energy
storage is contingent on finding stable redox species with fast electrochemical kinetics, a feasible
redox potential and high solubility (Zhang et al., 2018). Due to the immense size and complexity
of chemical phase space (Polishchuk et al., 2013), the search for suitable materials is far from triv-
ial and traditional “direct” design approaches based on iterative modifications to existing chemical
structures are often far too slow (Kuhn & Beratan, 1996).

To address this issue, researchers have increasingly begun to look towards generative de novo design
models to efficiently navigate the vast molecular phase space (Meyers et al., 2021). These models
are evaluated on their ability to generate a diverse array of novel molecular structures while simul-
taneously biasing them towards a desired property distribution (Polykovskiy et al., 2020). Due to
the ubiquity of string-based molecular representations (Weininger, 1988; Krenn et al., 2020), re-
cent innovations in natural language modeling have been successfully applied to de novo molecular
design. For instance, transformer architectures have achieved state-of-the-art results on property
prediction tasks that require quantum-level accuracy (Ross et al., 2021) and have also been shown to
increase the diversity of candidates sampled from machine-learned molecular distributions (Dollar
et al., 2021).
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Figure 1: MOLJET Framework. Prompts are (i) stochastically sampled from the available modal-
ities in the dataset and (ii) used to condition autoregressive reconstruction of SELFIES strings. Con-
ditions are then chosen during inference to (iii) shift the generated molecular distribution towards
the desired structural or physicochemical properties.

Aside from string-based representations of molecular structures, there are other textual modalities
which could provide additional context to generative models and thus improve their performance.
Such modalities include IUPAC names, molecular formulas, descriptions of important chemical
moieties or functional groups and natural language descriptions of chemical behavior. Yet despite
the large overlap between architectures used for natural language modeling and molecular sequence
modeling, there have only been a few attempts to incorporate more than a single modality within
a model (Rothchild et al., 2021; Sun et al., 2021; Zeng et al., 2022) and none have included the
capacity for property-driven molecular design. Massive scaling has also been primarily limited to
property prediction tasks (Honda et al., 2019; Chithrananda et al., 2020) despite growing evidence
of the performance benefits derived from increasing model sizes, dataset sizes and compute across
all downstream tasks (Kaplan et al., 2020; Hoffmann et al., 2022).

In this work we introduce MOLJET, a large-scale multimodal joint embedding transformer for con-
ditional molecular generation and multi-property optimization. Within this framework, molecular
generation is conditioned by text-based prompts that control the structural and physicochemical
characteristics of the desired molecular distributions as depicted in Figure 1. We demonstrate condi-
tional generation on three modalities - textual descriptions of molecular structural features, physic-
ochemical properties and 1D atomistic molecular graphs - and provide a general framework for the
inclusion of additional modalities during pretraining.

To prove the efficacy of our models in realistic design scenarios, we evaluate MOLJET on a diverse
set of tasks including molecular rediscovery, similarity and substructure-based sampling, isomer
generation and multi-property optimization (Brown et al., 2019; Fu et al., 2021). With only self-
supervised pretraining, MolJET outperforms all task-optimized baseline models on five out of the
eight task categories and outperforms the baselines on all eight task categories after minimal task-
specific supervised optimization. Furthermore, the prompts are designed to be easily interpretable
by chemists without any prior knowledge of deep learning and thus accessible to a wider audience.
We provide access to our pretrained models through an online API and hope to encourage increased
participation in AI-driven de novo molecular design among scientific researchers in much the same
way that DALL-E and GPT have inspired increased interaction with deep learning models among
the general public (Brown et al., 2020; Ramesh et al., 2022).

2 RELATED WORK

Multi-Property Optimization. Several strategies for multi-property optimization of molecular
structures have been explored to date. Some works propose to condition the generation of molecular
structures with a learnable embedding corresponding to the values of one or more desired properties
(Lim et al., 2018; Li et al., 2018; Gebauer et al., 2022). These models jointly learn the conditional
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distributions during training and then allow for the selection of specific conditions during inference.
Others treat optimization as a translation task, in which an improved version of the input molecule
is reconstructed during training (Jin et al., 2018a; 2020). These models learn the desired molecular
distribution directly, however they also require the construction of translation pairs which can be
time-consuming and without careful control can introduce biases into the model or result in poste-
rior collapse (Jin et al., 2018b). Another popular strategy for optimization is by making stepwise
modifications to an existing molecular structure through an efficient sampling method like Markov
Chain Monte Carlo or a reinforcement-learning driven policy network (Nigam et al., 2019; Khem-
chandani et al., 2020; Fu et al., 2021). A reward function determines the success of the model and
guides further modifications. These models are flexible as they can modify their actions based on
any reward, however they often shift the generated distribution too far from the original and can
struggle to generate realistic samples (Popova et al., 2018; Brown et al., 2019).

Foundation Models for Chemistry. Given that the vast majority of de novo molecular design
models operate on a single molecular representation, there are only a few examples of multimodal
learning in the field of chemistry. KV-PLM and CHEMET both combine structural representa-
tions of molecules with natural language, the former by embedding SMILES strings directly into
a biomedical corpus and the latter by performing cross-modal attention between embeddings of a
molecular graph and a description of the molecule (Sun et al., 2021; Zeng et al., 2022). However,
these models are better suited for classification tasks than generation tasks as it is challenging to
build a corpus annotated with molecular structures that is large enough to train a generative model.
Other examples of multimodal chemistry models include GeomGCL (Li et al., 2022) which per-
forms contrastive learning on 2D and 3D molecular graphs for property prediction and VJTNN (Jin
et al., 2018b) which combines junction tree and atomic graph representations during the encoding
and decoding of the latent vector in a VAE.

3 MODEL FRAMEWORK AND PROMPT DESIGNING

Herein, we describe the Multimodal Joint Embedding Transformer (MOLJET), a large-scale gener-
ative foundation model for conditional molecular design and multi-property optimization. The aim
of MOLJET is to efficiently navigate the molecular phase space while simultaneously reaching a
desired property distribution. This task is non-trivial as the molecular landscape is high dimensional
and rugged making optimization within this space difficult (Stumpfe et al., 2020). We hypothesize
that jointly learning across text, molecular structure and properties will enhance the model’s ability
to learn structure-property relationships and thus improve its performance at designing optimized
molecules. We introduce the multimodal fusion with our prompt design framework in Section 3.1,
and then present the model architecture and conditional sampling scheme in Sections 3.2 and 3.3,
respectively.

3.1 MULTIMODAL FUSION WITH PROMPT DESIGNING

Our goal is to learn inter-modal and cross-modal information with an expressive prompt design
that can facilitate both the self-supervised pretraining and zero-shot evaluation. We propose an
early-fusion strategy to jointly reason over the text, molecular structure, and property modalities
with a shared multifaceted representation. We represent the textual description and associated
physicochemical properties of a molecule in the prompt sequence x = (s1, s2, .., sn) of the form
(stext, sprop, smol),

<text type>...</text type> <text>..</text> <property>..</property> <val>..</val> <mol>..</mol>

We include <text type> and <property> tags to differentiate across molecule descriptions (stext)
and properties (sprop). The <text> and <val> tags designate the search space on the respective
data modalities. The <mol> tag designates the SELFIES string describing the molecular structure
(smol). The proposed prompt design is flexible so that other textual representations of molecules
or associated properties may be easily substituted. We also allow each modality to contain multiple
sub-prompts. For example, we can represent multiple physicochemical properties separately as sub-
prompts in sprop. We introduce a strict ordering of the prompt sequence with the corresponding
text, property and molecular structure representations to enable the model to conditionally generate
molecular distributions given the other modalities.

3



Under review as a conference paper at ICLR 2023

3.2 MODEL ARCHITECTURE

Our objective is to pretrain a large-scale foundation model with the ability to generalize to unseen
tasks without requiring any labeled data. This is specially relevant in molecular design scenarios
where we need to generate new molecules that have not been previously seen (out-of-distribution
generalization). However, it is intractable to enumerate across all possibilities due to the unbounded
molecular search space. We present the unsupervised distribution estimation p(x) from a set of
prompts (x1, x2, .., xn) as the product of conditional multimodal token probabilities,

p(x) =

n∏
i=1

p(sn|s1, .., sn−1) (1)

Our model design is inspired by the recent success of applying the transformer encoder architecture
on shared mulitmodal multifaceted representations (e.g., UTF-8 bytes in Perceiver-IO (Jaegle et al.,
2021), vision-language decoding (Aghajanyan et al., 2022)). In this work, we investigate whether
transformer architectures are capable of learning over multimodal molecular information and trans-
lating it into a rich knowledge of the relationship between a molecule’s structure and its properties.
We seek to analyze whether transformer architectures are suitable to distill and accumulate both
inter- and cross-modal information from the molecular descriptions, and test whether the pretrained
models generalize to novel contexts during de novo molecular design.

To this end, we adopt the autoregressive transformer decoder model architecture similar to GPT-
3 (Brown et al., 2020) and apply it on conditional multimodal prompt based molecule generation
tasks. We translate the general left-to-right language modeling objective to a joint modeling objec-
tive that predicts the next modality token. We minimize the joint loss defined as

L(θ) = 1

|Dtrain|
∑

x∈Dtrain

−logpθ(si|s≤i) (2)

The model learns the conditional multimodal token distribution jointly given the in-context refer-
ences to other modality tokens. We do not use modality-specific encoders in this setup since we
translate all modalities into the discrete language space. It remains as a future work to explore how
other modalities such as vision (continuous), graph (2D) or atomic coordinates (3D) could be used
in our framework to further enrich the learned multimodal molecular representations.

3.3 CONDITIONAL MOLECULE GENERATION

Given the molecular structure represented as a sequence of tokens describing the atoms, their con-
nectivity and their valence states (m1, ..mn), the conditional multimodal prompt-based molecule
generation is as follows:

m̂ ≈ arg max log pθ
m

(mt|stext, sprop,m<t) (3)

We use q temperature sampling to autoregressively sample the SELFIES tokens mt conditioned on
the multimodal prompt. The sampling takes the molecule textual description stext, physicochemical
properties sprop and <mol> ∈ m<t ⊂ smol as the initial inputs in the joint multimodal embedding
space. In addition, the molecule generation is conditional to the property values in sprop.

mt = q(·|stext, sprop,m<t)

smol(t) = ∪m<t∈smol(t−1)
{(m≤t ◦mn

t )|mn
t )}Nn=1

(4)

We sample N molecule tokens until we reach a </mol> tag. The sampled tokens are concatenated ◦
with other top scoring molecule tokens to generate the molecule structure smol(t).
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4 EXPERIMENTAL SETUP

4.1 IMPLEMENTATION AND TRAINING DETAILS

Dataset Creation. We gathered over 100M unique molecular structures from the PubChem com-
pound records database (Kim et al., 2019) to use for pretraining. Each structure includes a valid
SMILES representation, an IUPAC1 name, and a molecular formula. Functional groups are ex-
tracted from the full IUPAC name and SMILES are encoded as SELFIES strings. In accordance
with the method outlined in GuacaMol (Brown et al., 2019), we calculate the ECFP4 fingerprints
(Rogers & Hahn, 2010) for every molecule in our dataset and a holdout set of drug-like molecules
used in the benchmarks. Any molecule in the training set with a tanimoto fingerprint similarity of
≥ 0.343 to any molecule in the holdout set is removed. This ensures the model has not simply mem-
orized solutions to the benchmark tasks during pretraining. Similarly, all isomers corresponding to
the two isomer generation tasks were also removed from the training set.

Conditional prompts for each molecule are generated stochastically so the model may only see a
portion of the available modalities for any given sample. This allows the user to ignore some modal-
ities during inference while still allowing the model to jointly learn over all possible modalities. The
rules for prompt sampling are outlined in Appendix B.

Available Modalities. We provide three modalities on which the models are conditioned - tex-
tual molecule descriptions, properties and 1D atomistic molecular graphs. Table 1 shows the sub-
modalities available for the text and property modality types. Each text type provides a different level
of detail regarding the molecular structure and are all commonly used by chemists when describing
molecules. The properties are selected to cover a wide range of chemical behavior important to
drug design. Each property is calculated using the cheminformatics package RDKit (Landrum et al.,
2013) aside from DRD2 which is predicted by the model published in Olivecrona et al. (2017).
We use SELFIES as our 1D atomistic molecular graph to guarantee the validity of all molecules
generated during inference (Krenn et al., 2020).

Table 1: Details of the multimodal inputs used in the pretraining and zero-shot evaluation.

Textual
Molecule
Descriptions

IUPAC, text that fully
specifies the atomic
connectivity of the entire
molecule

FuncGroups, text that specifies only the
atomic connectivity of local environments
within the molecule

MolFormula, text that does not
specify any connectivity information
but does specify the overall atomic
makeup of the molecule.

Physicochemical
properties

Topological polar surface
area (TPSA), a measure of the
overall surface polarity of the
molecule (Prasanna &
Doerksen, 2009)

LogP/Penalized LogP (PLogP), a
method for estimating the solubility of a
molecule (Wildman & Crippen,
1999).PLogP includes penalties for
molecules with low synthesizability

BertzCT, a topological index meant
to quantify the “complexity” of a
molecule (Bertz, 1981)

QED, a quantitative measure
of the “drug-likeness” of a
molecule (Bickerton et al.,
2012)

Number of fluorine atoms, Number of
aromatic rings, Total number of rings

DRD2, the biological activity of a
molecule towards the dopamine
receptor D2

Tokenization We develop a custom vocabulary that consists of the tokens representing the
molecule textual description stext, physicochemical properties sprop and molecular structure smol.
IUPAC and FuncGroups share a vocabulary learned from a byte-pair encoding of the IUPAC names
in the training set. The MolFormulas and SELFIES are tokenized on a per-atom basis. Property
values are represented as either scalars or decile ranges labeled 1-10 with each digit tokenized sep-
arately. Finally, all tags ( <..> , <../> ) and property names are encoded as special tokens.

4.2 TASK DESCRIPTIONS

We evaluate MOLJET on 22 tasks split across 8 different categories: molecular rediscovery, similar-
ity sampling, substructure sampling, isomer generation, median molecules, multi-property optimiza-
tion, drug-likeness and biological activity. Each task is taken from either the GuacaMol evaluation

1IUPAC (International Union of Pure and Applied Chemistry) nomenclature provides an international stan-
dard of naming compounds which can be used to create unambiguous structural formula.
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framework (Brown et al., 2019) or the MIMOSA multi-property optimization framework (Fu et al.,
2021). Table 2 provides examples of tasks from a few of the optimization categories and their cor-
responding prompts. Detailed descriptions of each task category are provided below.

Table 2: Example of the downstream tasks and prompt designs used in the zero-shot evaluation. We
color each prompt with the modality(s) that they are associated with. For the prompts for all 22
tasks, please refer to Tables 6 and 7 in Appendix A.

Task/Example Prompt
Molecular Rediscovery <text type>IUPAC</text type>

Celecoxib <text>4-[5-(4-methylphenyl)..benzenesulfonamide</text><mol>

Similarity Sampling <text type>FuncGroups</text type>

Albuterol <text>butylamino,hydroxyethyl,phenol</text><mol>

Isomer Generation <text type>MolFormula</text type>

C11H24 <text>C11H24</text><mol>

<text type>IUPAC</text type>

Multi-Property Optimization <text>N-[2-[2-(dimethylamino)..prop-2-enamide</text>

Osimertinib <property>tpsa</property><val>146.0</val>

<property>logp</property><val>-0.5</val><mol>

Molecular Rediscovery. The model must generate an exact match to the target. This task tests the
model’s ability to explore regions of molecular phase space which it has not encountered during
training.

Similarity Sampling. The model must generate many samples that are structurally similar to the
target but not an exact match. This task tests the model’s ability to make small structural modifi-
cations to a target without diverting too far from the original molecule. This is analogous to how a
chemist might approach the design of a new drug by modifying small chemical motifs of a starting
structure to improve a specific desired behavior while maintaining other drug-like qualities from the
original molecule.

Substructure Sampling. The model must generate many samples that contain a specific structural
motif or set of motifs. In some tasks, the model may also be penalized for generating molecules with
non-desired motifs or for diverging too far from the pharmacological properties of the molecule from
which the desired motif is drawn. This task tests the model’s ability to generate functional moieties
off a scaffold or “fill in” the scaffold given a set of functional moieties.

Isomer Generation. The model must generate as many structural isomers as it can from a given
molecular formula. This task tests the model’s ability to map coarse-grained chemical information
to a fully connected atomic graph. It also tests if the model can enumerate all possible structures
from a local region of chemical phase space.

Median Molecules. The model must generate samples that are maximally similar to two different
target molecules. This task tests the model’s ability to interpolate between two valid chemical struc-
tures, a common goal when trying to discover a molecule that maximizes the desired properties of
two separate existing molecules.

Multi-Property Optimization (MPO). The model must simultaneously match both structural and
property requirements as dictated by the task. For instance, the model might be tasked with finding a
structural analogue to the antihistamine fexofenadine that is “less greasy” by reducing the LogP and
increasing the TPSA while maintaining a high structural similarity to the target. These tasks put the
model in realistic drug design scenarios and demonstrate its ability to perform structural sampling
while also constraining the generated molecules to the desired property ranges.

To demonstrate the versatility of the MOLJET framework, we also evaluate the model on the multi-
property optimization tasks outlined in Fu et al. (2021). These require the model to maintain high
structural similarity to an input drug-like molecule while simultaneously maximizing PLogP and
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either QED (Drug-Likeness) or DRD2 (Biological Activity). We report performance on these two
tasks as success rate which is defined as the proportion of input molecules that the model is able to
improve beyond a pre-defined threshold for each property while maintaining high similarity. Further
details on the definition of success rate are provided in Jin et al. (2018b). Each GuacaMol task is
evaluated based on a weighted average of the top 100 scoring molecules for that task. Further details
on the definitions of each GuacaMol metric are provided in Brown et al. (2019) and Appendix E.

Conditional Language Model Pretraining. We train two independent version of MOLJET,
MOLJET-GUAC and MOLJET-BIO. MOLJET-GUAC is trained and evaluated with the three text
types and TPSA, LogP, BertzCT, number of fluorine atoms and ring counts (total and aromatic).
MOLJET-BIO is trained and evaluated with the three text types and PLogP, QED and DRD2. We
train two additional model variants - one to study the difference between scalar and decile prop-
erty value representations (MOLJET-GUACSCALAR/DECILE)) and one without property conditioning to
study the cumulative effect that additional modalities have on text-only inference tasks (MOLJET-
GUACTEXT-ONLY/TEXT+PROP). The models are pretrained from scratch on the filtered PubChem train-
ing set. Further details on the training procedure, hyperparameters, baseline models and sampling
scheme can be found in Appendices C & D.

5 EXPERIMENTAL RESULTS

The performances of MOLJET-BIO and MOLJET-GUAC on the MIMOSA and GuacaMol evalua-
tion frameworks are displayed in Tables 3 and 4. Both models are very competitive during zero-shot
inference with MOLJET-GUAC outperforming ∼ 78% of all baselines on the GuacaMol benchmarks
and MOLJET-BIO improving the success rate on the Drug-Likeness and Biological Activity tasks
by 18.75% and 13.5% respectively. It should be noted that the baselines are fine-tuned on each task
in a supervised manner, whereas MOLJET has only undergone self-supervised pretraining and is
seeing the task-specific optimization prompts for the first time during inference. Thus, the perfor-
mance on these benchmarks demonstrates the efficacy of our multimodal framework in generalizing
to previously unseen molecular distributions.

Multi-Property Optimization. We first show that MOLJET is able to leverage information from
multiple modalities to simultaneously control the structure and properties of generated molecules
during zero-shot inference. By conditioning the model on the modalities that are optimal for a given
task, it can generate molecular distributions that outperform previously state-of-the-art baselines
on a variety of multi-property optimization benchmarks. It accomplishes this by inferring how the
desired structural features must be modified to satisfy the additional property constraints. We use
the conditional generation sampling method described in Section 3.3 to efficiently explore the local
region of molecular phase space dictated by the multimodal prompt.

For example, MOLJET-BIO outperforms the previous state-of-the-art, MIMOSA, in both absolute
property improvement and success rate on the Drug-Likeness and Biological Activity MPO tasks.
It does so by exploring the local region of molecular phase space surrounding the target molecule
more efficiently by directly sampling from the conditional distribution. Because MIMOSA makes
iterative modifications to the target molecule, it does not venture as far from the original structure
during optimization. While this leads to a higher similarity score on both tasks, it fails to find as
many molecules that satisfy the property optimization constraints and thus has a lower success rate.

Table 3: Benchmark results on the MIMOSA MPO evaluation framework. PLogP, QED and DRD2
columns refer to the absolute improvement in property values from successful samples.

Drug-Likeness Biological Activity
Method Similarity PLogP QED Success Similarity PLogP DRD2 Success

VJTNN 0.17 0.46 0.02 1.0% 0.18 0.55 0.27 3.4%

DeepGA 0.35 0.93 0.09 24.9% 0.38 0.68 0.20 29.3%

MIMOSA 0.42 0.93 0.10 32.0% 0.54 0.75 0.35 43.7%

MOLJET-BIO
(Zero-shot) 0.37 1.19 0.14 38.0% 0.35 3.38 0.48 49.6%

7



Under review as a conference paper at ICLR 2023

Table 4: Benchmark results on GuacaMol which contains both MPO and molecular structure gen-
eration tasks. Bold values indicate the best performing model and underlined values indicate the
second best performing model measured against the baselines.

Benchmark
Category

Best of Data
Set

SMILES
LSTM

SMILES
GA

Graph
GA

MOLJET-GUAC
(Zero-shot)

MOLJET-GUAC
+ Graph GA

MPOs 0.698 0.778 0.717 0.868 0.838 0.878
Rediscovery 0.613 1.000 0.523 0.945 1.000 1.000
Similarity 0.546 1.000 0.771 0.977 1.000 1.000
Substructure 0.643 0.973 0.769 0.985 0.817 0.985
Isomers 0.716 0.912 0.745 0.954 1.000 1.000
Median 0.371 0.403 0.362 0.417 0.409 0.447
Total 0.623 0.850 0.671 0.877 0.857 0.900

We observe a similar trend from zero-shot MOLJET-GUAC on the GuacaMol MPOs. When break-
ing the tasks down individually, it outperforms all three baselines on the ranolazine, perindopril, and
amlodipine MPOs and is within 1% and 2.5% of the best performing model on the fexofenadine
and osimertinib MPOs, respectively (Appendix E). These tasks also require the model to meet one
or more property specifications while maintaining high similarity to a target molecule (see Fexofe-
nadine and Perindopril MPOs, Figure 2). In total, MOLJET outperforms or is competitive with the
leading baseline on seven out of nine MPOs across both evaluation frameworks demonstrating the
versatility and efficacy of our multimodal framework.

Conditional Molecular Structure Generation. MOLJET-GUAC also performs well at the zero-
shot molecular structure generation tasks, achieving a perfect score on rediscovery, similarity sam-
pling and isomer generation (Table 4). This indicates that the model is able to accurately estimate
the molecular structural probability manifold of the training set and navigate it based on the condi-
tional multimodal prompts. Each of the three text modalities provide a different degree of structural
specificity with which the model can be conditioned. For instance, tasks with stringent similarity
requirements are better suited for IUPAC conditioning, whereas FuncGroup conditioning yields a
more diverse set of generated molecules (see Drug-Likeness vs. Fexofenadine MPO in Fig. 2).
FuncGroup conditioning is also the most flexible as it can be used to combine the structural charac-
teristics of multiple input molecules (see Median Molecules, Fig. 2).

Drug-Likeness

Text Conditions

FuncGroups hydroxy, piperazin, 
indazol, methanone

Property Conditions

PLogP

QED

10th decile

10th decile

Input Molecule
plogp: 0.07

qed: 0.57

Output Molecule
plogp: 0.82

qed: 0.68

Fexofenadine MPO
Text Conditions

IUPAC 2-[4-[1-hydroxy … 
methylpropanoic acid

Property Conditions

LogP

TPSA

<= 4

9th decile >= 90

5th decile

Input Molecule
logp:   5.51
tpsa: 81.00

Output Molecule
logp:     3.37
tpsa: 121.46

Perindopril MPO

Text Conditions

Property Conditions

# Aromatic Rings 2

Input Molecule
aromatic rings: 0

Output Molecule
aromatic rings: 2

FuncGroups
ethoxy, oxopentan, 
propanoyl, carboxylic 
acid

Median Molecules

Text Conditions

benzodioxol, 
pyrazolo, pyrimidin, 
sulfonylphenyl

FuncGroups

*functional groups sampled from 
both molecules*

Input Molecules

Output Molecule
similarity: 0.43

Figure 2: Prompts, inputs and high-scoring samples for four of the de novo design tasks.

We confirm these observations quantitatively by measuring the performance of each text modality
individually on the similarity sampling tasks. We choose similarity as it is the most common struc-
tural objective for the MPOs and thus highlights important differences in sampling performance for
realistic drug design scenarios. The results of this experiment are shown in Figure 3. As expected,
we explore the largest subset of relevant phase space when conditioning on FuncGroups. How-
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ever, there are some circumstances where IUPAC conditioning is just as effective, namely when the
molecule is complex such as the stereoisomer mestranol.

MestranolAlbuterolAripiprazole

Figure 3: Similarity sampling from each
text modality.

To estimate how amenable MOLJET is to further opti-
mization, we re-run the Graph GA method but replace
the starting population with the top 100 molecules gen-
erated by MOLJET. On average, the Graph GA seeded
with molecules generated by MOLJET improves upon
the zero-shot MOLJET by ∼ 5% and the baseline Graph
GA by ∼ 2.6% (Table 4). This demonstrates the capac-
ity of MOLJET to be further improved by task-specific
fine-tuning strategies and we leave further work in this
direction as future research.

Evaluating Prompt Design. We also run ablations to
study a) the effect of the choice of numerical property
representation on the GuacaMol tasks with property con-
ditioning and b) the impact of the inclusion of property
modalities during training on GuacaMol tasks with text-
only conditioning. On the GuacaMol tasks with property conditioning, MOLJET-GUACSCALAR per-
forms slightly better than MOLJET-GUACDECILE (0.881 vs. 0.872). This suggests that the property
prediction capacity of the scalar model is only slightly greater than the average distance between
decile bins. For most properties, this distance is fairly large so this result indicates a potential area
in which MOLJET could be improved.

Finally, we evaluate MOLJET-GUACTEXT-ONLY and MOLJET-GUACTEXT+PROP on the text-only infer-
ence tasks from GuacaMol (Table 5). These tasks do not require any property conditioning during
inference and thus the performance of the two models should be expected to be comparable if cross-
modal learning does not occur during training. However, we find that MOLJET-GUACTEXT+PROP

performs better on the text-only inference tasks, supporting our hypothesis that our multimodal
prompt design framework supports both inter- and cross-modal learning. The property information
that is jointly embedded during training enhances the models understanding of molecular structure
even when that information is not provided during inference.

Table 5: Multimodal Model Ablations

Modality GuacaMol
Reconstruction
IUPAC FuncGroup

Text 0.827 62.1% 60.2%
Text + Property 0.843 68.7% 63.4%

To confirm this behavior, we construct two
additional text-only inference tasks, IUPAC
Reconstruction and FuncGroup Reconstruc-
tion. IUPAC Reconstruction tests the mod-
els ability to accurately reconstruct a SELFIES
string given its IUPAC from a holdout set of
IUPAC-SELFIES pairs that were not seen dur-
ing training. FuncGroup Reconstruction tests
the models ability to generate molecules that

contain the requested functional group from a list of 102 functional groups developed by the au-
thors to include a wide range of atom types and complexities. Additional implementation details
for each task are outlined in Appendices A & F. Again, we find that MOLJET-GUACTEXT+PROP out-
performs MOLJET-GUACTEXT-ONLY, providing additional evidence that both inter- and cross-modal
learning occur during training and that multimodal joint embeddings are capable of enhancing the
performance of de novo molecular design models

6 CONCLUSION

We introduce MOLJET, a multimodal foundational chemistry model for conditional de novo design
of organic molecules. MOLJET demonstrates state-of-the-art performance on realistic drug design
tasks in a zero-shot manner. Our framework is adaptable and easy to interpret, making it well-suited
for the inclusion of other modalities such as scientific text. We make our code, models and data
publicly available and provide API access to our pretrained models to allow chemistry researchers
of all backgrounds to participate in the future development of AI-driven de novo molecular design.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Armen Aghajanyan, Bernie Huang, Candace Ross, Vladimir Karpukhin, Hu Xu, Naman Goyal,
Dmytro Okhonko, Mandar Joshi, Gargi Ghosh, Mike Lewis, et al. Cm3: A causal masked multi-
modal model of the internet. arXiv preprint arXiv:2201.07520, 2022.

Alex Andonian, Quentin Anthony, Stella Biderman, Sid Black, Preetham Gali, Leo Gao, Eric Hal-
lahan, Josh Levy-Kramer, Connor Leahy, Lucas Nestler, Kip Parker, Michael Pieler, Shivanshu
Purohit, Tri Songz, Phil Wang, and Samuel Weinbach. GPT-NeoX: Large scale autoregressive lan-
guage modeling in pytorch, 2021. URL http://github.com/eleutherai/gpt-neox.

Steven H Bertz. The first general index of molecular complexity. Journal of the American Chemical
Society, 103(12):3599–3601, 1981.
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A PROMPT DESIGN

Table 6: Example of the multi property optimization tasks and prompt designs used in the zero-shot
evaluation. We color each prompt with the modality(s) that they are associated with.

Example Prompt

Osimertinib

<text type>IUPAC</text type>

<text>N-[2-[2-(dimethylamino)..prop-2-enamide</text>

<property>tpsa</property><val>146.0</val>

<property>logp</property><val>-0.5</val><mol>

Fexofenadine

<text type>IUPAC</text type>

<text>2-[4-(1-hydroxy...methylpropanoic acid]</text>

<property>tpsa</property><val>9</val>

<property>logp</property><val>5</val><mol>

Ranolazine

<text type>IUPAC</text type>

<text>N-(2,6-dimethylphenyl...piperazin-1-yl]acetamide</text>

<property>logp</property><val>8.5</val>

<property>aromatic rings</property><val>0</val><mol>

<property>f count</property><val>1</val><mol>

Perindopril
<text type>FuncGroups</text type>

<text>ethoxy,oxopentan,octahydroindole,carboxylic acid</text>

<property>aromtic rings</property><val>2</val>

Amlodipine
<text type>FuncGroups</text type>

<text>aminoethoxymethyl,chlorophenyl,dihydropyridine,dicarboxylate</text>

<property>ring count</property><val>3</val>

Sitagliptin

<text type>FuncGroups</text type>

<text>amino,trifluoromethyl,triazolo,pyrazin</text>

<text type>MolFormula</text type>

<text>C16H15F6N5O</text>

<property>logp</property><val>3</val>

<property>tpsa</property><val>6</val><mol>

Zaleplon

<text type>IUPAC</text type>

<text>N-[3-(3-cyanopyrazolo...N-ethylacetamide]</text>

<text type>MolFormula</text type>

<text>C19H17N3O2</text>

PLogP/QED
<text type>FuncGroups</text type>

<text>oxo,phenyl,triazaspiro,indole,carboxamide</text>

(Drug-Likeness)
<property>plogp</property><val>10</val>

<property>qed</property><val>10</val><mol>

PLogP/DRD2
<text type>FuncGroups</text type>

<text>oxo,triazolo,methoxyethyl,benzimidazol,dimethylacetamide</text>

(Biological Activity)
<property>plogp</property><val>10</val>

<property>drd2</property><val>10</val><mol>
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Table 7: Example of the conditional molecular structure generation tasks and prompt designs used
in the zero-shot evaluation. We color each prompt with the modality(s) that they are associated with.

Task Example Prompt

M
ol

ec
ul

ar

R
ed

is
co

ve
ry

Celecoxib
<text type>IUPAC</text type>

<text>4-[5-(4-methylphenyl)..benzenesulfonamide</text><mol>

Troglitazone
<text type>IUPAC</text type>

<text>5-[[4-[(6-hydroxy...thiazolidine-2,4-dione]]]</text><mol>

Thiothixene
<text type>IUPAC</text type>

<text>(9Z)-N,N-dimethyl...thioxanthene-2-sulfonamide</text><mol>

Si
m

ila
ri

ty

Sa
m

pl
in

g

Albuterol
<text type>FuncGroups</text type>

<text>butylamino,hydroxyethyl,phenol</text><mol>

Aripiprazole
<text type>FuncGroups</text type>

<text>dichlorophenyl,piperazin,quinolin</text><mol>

Mestranol
<text type>FuncGroups</text type>

<text>ethynyl,methoxy,methyl,octahydro,phenanthren</text><mol>

Is
om

er

G
en

er
at

io
n

C11H24
<text type>MolFormula</text type>

<text>C11H24</text><mol>

C9H10N2O2PF2Cl
<text type>MolFormula</text type>

<text>C9H10N2O2PF2Cl</text><mol>

M
ed

ia
n

M
ol

ec
ul

es Camphor/Menthol
<text type>FuncGroups</text type>

<text>heptan,methyl,trimethylbicyclo,ylcyclohexan</text><mol>

Tadalafil/Sildenafil
<text type>FuncGroups</text type>

<text>pyrazolo,triazatetracyclo,pyrimidin,methylpiperazin</text><mol>

Su
bs

tr
uc

tu
re

Sa
m

pl
in

g

Valsartan

<text type>IUPAC</text type>

<text>methanoyl-methyl...phenyl]methyl]amine</text><mol>

<property>logp</property><val>2.0</val><

<property>tpsa</property><val>77.0</val><

<property>bertzct</property><val>896.4</val><

Deco Hop
<text type>FuncGroups</text type>

<text>amino,hydroxy,quinazoline</text><mol>

Scaffold Hop
<text type>FuncGroups</text type>

<text>propanol,benzothiazol</text><mol>
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B PROMPT SAMPLING STRATEGY

Prompts are stochastically generated from the available modalities by the following set of rules:

• The text modality is sampled uniformly from the list (IUPAC, FuncGroups, MolFormula, None) .
If None is selected then no text conditioning is included for that sample. This allows the
user to perform property-only conditioning by leaving out the text conditioning during
inference.

• If FuncGroups is chosen, then the number of functional groups, N, used for conditioning is
sampled uniformly from [1-M] where M is the total number of functional groups for the
given molecule. Then N functional groups are selected from the list and concatenated with
commas.

• Next, the number of property conditions, K, is sampled uniformly from [0-L] where L is
the total number of property modalities available for training. Then K properties are chosen
from the list and their property names and values are added to the prompt after the text type
and text. The ordering of property sub-modalities is also stochastic.

C TRAINING & SAMPLING IMPLEMENTATION DETAILS

We use the GPT-NeoX Python library Andonian et al. (2021) developed with Megatron Shoeybi
et al. (2019) and DeepSpeed Rasley et al. (2020). We optimize the autoregressive log-likelihood
(i.e., cross-entropy loss) averaged over a 256-token context. We set the global batch size as 2048,
and the learning rate to 2 × 10−4, and rely on the cosine decay. We use an Adam optimizer with
β1 = 0.9, β2 = 0.99, and σ = 10−8 and clip the gradient norm at 1.0. We use the Rotary positional
embeddings Su et al. (2021), parallel attention and feed-forward (FF) Black et al. (2022), and all
dense layers in comparison to the original transformer decoder model architecture Radford et al.
(2019).

We use a q temperature value of 1.0 for sampling for evaluating all 22 tasks. We found that this value
gives us the best tradeoff between the validity and diversity of the generated molecules. For each
GuacaMol task, we generate 128K samples to use for evaluation. This is on the order of the number
of samples that are generated and evaluated during fine-tuning of the GuacaMol baselines. For the
Drug-Likeness and Biological Activity tasks, we evaluate on 250 molecules randomly sampled from
a subset of the ZINC dataset provided in Jin et al. (2018b) in accordance with the methods outlined
in Fu et al. (2021). For each molecule, we generate 1K samples which is on the order of the number
of samples that are generated and evaluated during fine-tuning of the MIMOSA baselines.

D BASELINE MODELS

We compare MOLJET to two sets of baselines – one for the GuacaMol tasks and another for the
Drug-Likeness/Biological Activity tasks. The GuacaMol baselines include:

• Best of Data Set, the metrics evaluated on the top molecules from the ChEMBL dataset
(Gaulton et al., 2012))

• SMILES LSTM, an LSTM model which is fine-tuned with the hill-climbing method
(Brown et al., 2019))

• SMILES GA, a genetic algorithm that makes mutations to a SMILES string (Yoshikawa
et al., 2018))

• Graph GA, a genetic algorithm that makes mutations directly to a molecular graph (Jensen,
2019))

The Drug-Likeness/Biological Activity baselines include:

• VJTNN, a graph-to-graph translation VAE that utilizes adversarial regularization (Jin et al.,
2018b))

• DeepGA, a genetic algorithm enhanced with a discriminator neural network to improve
molecular diversity (Nigam et al., 2019))
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• MIMOSA, a Markov chain Monte Carlo sampling strategy augmented by pretrained graph
neural networks (Fu et al., 2021))

E MODEL PERFORMANCE ON INVIDIDUAL GUACAMOL TASKS

Table 8 shows the detailed performance view on the GuacaMol benchmark. Aside from the redis-
covery tasks, the final score for each metric is evaluated as a weighted average of the top 100 scoring
molecules that were generated during sampling. The scores for individual molecules are based on
their ECFP4 (Rogers & Hahn, 2010) fingerprint similarities to the targets, calculated property values
and structural features. These values are passed through a set of modifiers and thresholds to scale
them between 0 and 1. The score is then calculated as the geometric mean of each scaled task-
specific value. For further details on the metric definition of each benchmark, please refer to Brown
et al. (2019).

Table 8: Benchmark results on GuacaMol which contains both MPO and molecular structure gen-
eration tasks. Bold values indicate the best performing model and underlined values indicate the
second best performing model

Benchmark
Category Benchmark Best of Data

Set
SMILES
LSTM

SMILES
GA

Graph
GA

MOLJET-GUAC
(Zero-shot)

MOLJET-GUAC
+ Graph GA

Osimertinib 0.781 0.894 0.880 0.937 0.914 0.992
Fexofenadine 0.817 0.926 0.904 1.000 0.997 1.000
Ranolazine 0.836 0.833 0.832 0.913 0.920 0.920

MPOs Perindopril 0.701 0.764 0.644 0.803 0.804 0.823
Amlodipine 0.696 0.885 0.678 0.888 0.895 0.903
Sitagliptin 0.509 0.536 0.526 0.809 0.758 0.823
Zaleplon 0.547 0.610 0.552 0.728 0.625 0.688

Celecoxib 0.674 1.000 0.570 0.836 1.000 1.000
Rediscovery Troglitazone 0.558 1.000 0.523 1.000 1.000 1.000

Thiothixene 0.608 1.000 0.476 1.000 1.000 1.000
Albuterol 0.522 1.000 0.871 1.000 1.000 1.000

Similarity Aripiprazole 0.595 1.000 0.747 0.985 0.999 1.000
Mestranol 0.520 1.000 0.695 0.945 1.000 1.000
Valsartan 0.259 0.931 0.628 0.958 0.930 0.977

Substructures Deco Hop 0.933 0.996 0.876 0.995 0.893 0.996
Scaffold Hop 0.738 0.993 0.803 1.000 0.632 0.984

Isomers C11H24 0.684 0.963 0.734 0.952 1.000 1.000
C9H10N2O2PF2Cl 0.747 0.860 0.757 0.955 1.000 1.000

Median Camphor/Menthol 0.334 0.398 0.348 0.405 0.386 0.416
Tadalafil/Sildenafil 0.407 0.408 0.377 0.429 0.434 0.478

Total — 0.623 0.850 0.671 0.877 0.857 0.900

F RECONSTRUCTION TASKS

To validate the ablation on the Text + Property vs. the Text-Only models, we construct two addi-
tional tasks that evaluate the model’s performance on text-only conditioning - IUPAC Reconstruction
and FuncGroup Reconstruction. An IUPAC reconstruction is counted as successful if the generated
SELFIES string exactly matches the canonical SMILES from the holdout set after being decoded
back into a SMILES and canonicalized. IUPAC Reconstruction is evaluated on 10000 randomly
sampled IUPAC/SMILES pairs from the holdout validation set. A FuncGroup reconstruction is
counted as successful when the SMILES string decoded from the generated SELFIES string matches
the substructure pattern matching the requested functional group (we use SMARTS substructures for
matching). We hand select 102 functional groups to test the model on its ability to recognize simple
functional groups, basic nitrogen heterocycles, basic oxygen heterocycles, basic mixed heterocycles,
double ring nitrogen heterocycles, double ring oxygen heterocycles, polycyclic aromatic hydrocar-
bons, fused rings and phenyls among others. The full dataset will be made available upon request.
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