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Abstract

Machine learning based surrogate models offer researchers powerful tools for
accelerating simulation-based workflows. However, as standard datasets in this
space often cover small classes of physical behavior, it can be difficult to evaluate
the efficacy of new approaches. To address this gap, we introduce the Well: a
large-scale collection of datasets containing numerical simulations of a wide variety of
spatiotemporal physical systems. The Well draws from domain experts and numerical
software developers to provide 15TB of data across 16 datasets covering diverse
domains such as biological systems, fluid dynamics, acoustic scattering, as well as
magneto-hydrodynamic simulations of extra-galactic fluids or supernova explosions.
These datasets can be used individually or as part of a broader benchmark suite. To
facilitate usage of the Well, we provide a unified PyTorch interface for training and
evaluating models. We demonstrate the function of this library by introducing example
baselines that highlight the new challenges posed by the complex dynamics of the Well.
The code and data is available at https://github.com/PolymathicAI/the_well.

1 Introduction

Simulation is one of the most ubiquitous and important tools in the modern computational science and engi-
neering toolbox. From forecasting [1–3], to optimization [4, 5], to parameter inference [6, 7], practitioners
lean heavily on simulation to evaluate how physical systems will evolve over time in response to varying
initial conditions or stimuli. For many physical phenomena, this evolution can be described by systems of
partial differential equations (PDEs) which model fundamental physical behavior aggregated to the contin-
uum level under different material assumptions. Unfortunately, finding analytical solutions is infeasible for
all but restricted classes of PDEs [8]. As a result, numerical methods which solve discretized versions of
these equations with well-understood convergence and approximation properties have become the preem-
inent approach in this space. However, in some cases, numerical methods can provide accuracy in excess
of what is needed for applications at significant computational cost while lower resolution direct simulation
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may not resolve key features of the dynamics. This has spurred the development of faster, simplified models
referred to as surrogate models that resolve only the essential features for a given scale of simulation [9, 10].

It is this surrogate modeling space where deep learning is poised to make a significant impact [11–13] with
tangible results already demonstrated across diverse sets of fields and applications [3, 14–18]. Yet despite
these successes, deep learning based surrogates face significant challenges in reaching broader adoption.
One reason for this is the gap between the complexity of problems of practical interest and the datasets
used for evaluating these models today. Scaling analysis has shown that deep learning-based surrogates can
require large amounts of data to reach high accuracy [19, 20]. Meanwhile, even at resolutions accessible
to modern machine learning architectures, high-quality scientific simulation can require the combination of
specialized software, domain expertise, and months of supercomputer time [21]. On the other hand, from
the perspective of scientists running these simulations, even just storing the frequent snapshots necessary
for conventional off-line deep learning training is a significant and unnecessary expense [22–24]).

To address this gap, we introduce the Well, a diverse 15 TB collection high quality numerical simulations pro-
duced in close collaboration with domain scientists and numerical software developers. The Well is curated
to provide challenging learning tasks at a scale that is approachable to modern machine learning but where
efficiency remains an important concern. It contains 16 datasets ranging across application domains, scales,
and governing equations from the evolution of biological systems to the growth of galaxies. Each dataset
contains temporally coarsened snapshots from simulations of a particular physical phenomenon across
multiple initial conditions or physical parameters, while providing a sufficiently large number of snapshots
to explore simulation stability. Furthermore, the Well provides machine learning researchers with complex,
demanding benchmarks that will inform the development of the next generation of data-driven surrogates.

Related Work. Modern machine learning relies on massive, curated and diverse datasets [25–28]. Natural
language processing is built on internet-scale datasets [29–32], while vision models have grown to utilize
sets containing billions of text-images pairs [33]. These datasets are sufficiently diverse that model
improvement can be derived from sophisticated filtering approaches [32, 34, 35].
On the other hand, datasets designed for physical dynamics prediction are still growing. Early datasets
featured a variety of common reference simulations [36–38]. While these datasets have seen rapid adoption,
the broader trend has moved towards more complex but specialized simulation datasets [39–45]. These
have opened new application areas for deep learning but have typically been limited to a small number
of tasks. Other datasets have tackled more ambitious high-resolution problems [46–48], but the limited
number of snapshots and scale of individual samples often restricts their usage. New datasets which offer
complexity, volume, and diversity simultaneously are necessary for holistic evaluation of individual models
and for the emerging trend of multiple physics foundation models [49–54]. The Well provides unified
access to a collection of physical scenarios and benchmarking tools that are both diverse and challenging.

2 Diving into the Well
Format. The Well is composed of 16 datasets totaling 15TB of data with individual datasets ranging
from 6.7GB to 4.9TB. The data is provided on uniform grids and sampled at constant time intervals. Data
and associated metadata are stored in self-documenting HDF5 files [55]. All datasets use a shared data
specification described in the supplementary materials and a PyTorch [56] interface is provided. These
files include all available state variables or spatially varying coefficients associated with a given set of
dynamics in numpy [57] arrays of shape (n_traj, n_steps, coord1, coord2, (coord3)) in
single precision fp32. We distinguish between scalar, vector, and tensor-valued fields due to their different
transformation properties. Each file is randomly split into training, testing, and validation sets with a split
of 0.8/0.1/0.1 * n_traj. Details of individual datasets are given in Table 2.

Extensibility. The PyTorch interface can process any data file following the provided specification without
any additional modification to the code base. Scripts are provided to check whether HDF5 files are
formatted correctly. This allows users to easily incorporate third-party datasets into pipelines using the
provided benchmarking library.

Description of the datasets. The rest of this section provides physical intuition and background for the
scenarios contained in the datasets. Visualizations are in Appendix in Figures 1–5. Technical details on
the underlying physics, fields, physical parameters, and the generating processes for the datasets are given
in Supplementary Material.

acoustic_scattering. Acoustic scattering possesses simple linear dynamics that are complicated
by the underlying geometry. In this dataset, we model the propagation of acoustic waves through a
domain consisting of substrata with sharply variable density in the form of maze-like walls (Figure 1,
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top) or pockets with vastly differing compositions. These simulations are most commonly seen in inverse
problems including source optimization and inverse acoustic scattering in which sound waves are used
to probe the composition of the domain.

active_matter. Active matter systems are composed of agents, such as particles or macromolecules,
that transform chemical energy into mechanical work, generating active forces or stresses. These
forces are transmitted throughout the system via direct steric interactions, cross-linking proteins,
or long-range hydrodynamic interactions, leading to complex spatiotemporal dynamics (Figure 1,
middle). These simulations specifically focus on active particles suspended in a viscous fluid leading to
orientation-dependent viscosity with significant long-range hydrodynamic and steric interactions.

convective_envelope_rsg. Massive stars evolve into red supergiants (RSGs), which have turbulent
and convective envelopes. Here, 3D radiative hydrodynamic (RHD) simulations model these convective
envelopes, capturing inherently 3D processes like convection (Figure 1, bottom). The simulations give
insight into a variety of phenomena: the progenitors of supernovae (SN) explosions and the role of the
3D gas distribution in early SN [58]; calibrations of mixing-length theory (used to model convection in
1D [59–61, 21]); the granulation effects caused by large-scale convective plumes and their impacts on
interferometric and photometric observations [62–65].

euler_multi-quadrants. The Euler equations model the behavior of inviscid fluids. These simulations
specifically describe the evolution of compressible gases in a generalization of the classical Euler quadrants
Riemann problem [66]. In these problems, initial discontinuities lead to shocks and rarefactions as the
system attempts to correct the instability. This dataset is adapted to include multiple initial discontinuities
(Figure 2, top) so that the resulting shocks and rarefactions experience further interactions.

helmholtz_staircase. Scattering from periodic structures (Figure 2, middle) occurs in the design of e.g.
photonic and phononic crystals, diffraction gratings, antenna arrays, and architecture. These simulations
are the linear acoustic scattering of a single point source from an infinite, periodic, corrugated, sound-hard
surface, with unit cells comprising two equal-length line segments.

MHD_64 and MHD_256. An essential component of the solar wind, galaxy formation, and of interstellar
medium (ISM) dynamics is magnetohydrodynamic (MHD) turbulence (Figure 2, bottom). This dataset
consists of isothermal MHD simulations without self-gravity (such as found in the diffuse ISM) initially
generated with resolution 2563 and then downsampled to 643 after anti-aliasing with an ideal low-pass filter.

gray_scott_reaction_diffusion. Pattern formation is the spontaneous assembly of ordered structures
from a seemingly disordered system (Figure 3, top). It occurs across a wide range of biological and
chemical systems, often taking place when chemical reactions are coupled to spatial diffusion. For example,
reaction–diffusion systems are thought to underpin many of the self-assembly processes present in the early
development of organisms [67]. These simulations model the Gray–Scott reaction–diffusion equations [68]
describing two chemical species, A and B, whose scalar concentrations vary in space and time.

planetswe. The shallow water equations approximate incompressible fluid flows where the horizontal
length scale is significantly larger than the vertical as a depth-integrated two-dimensional problem. They
have played an important roll in the validation of dynamical cores for atmospheric dynamics as seen in the
classical Williamson problems [69]. These simulations can be seen as a refinement of Williamson 7 as they
are initialized from the hPa500 level of the ERA5 reanalysis dataset [42] with bathymetry corresponding
to the earth’s topography and featuring forcings with daily and annual periodicity (Figure 3, middle).

post_neutron_star_merger. After the in-spiral and merger of two neutron stars, a hot dense remnant
is formed. These events, central to gamma ray bursts and heavy element formation, produce a reddening
glow called a kilonova [70–77]. Accurate predictions require modeling neutrino interactions, which
convert neutrons to protons and vice versa. These simulations model the accretion disk driving the gamma
ray burst and the hot neutron-rich wind causing the kilonova (Figure 3, bottom).

rayleigh_benard. Rayleigh-Bénard convection [78, 79] is a phenomenon in fluid dynamics encountered
in geophysics (mantle convection [80], ocean circulation [81], atmospheric dynamics [82]), in engineering
(cooling systems [83], material processing [84]), in astrophysics (interior of stars and planets [85]). It
occurs in a horizontal layer of fluid heated from below and cooled from above. This temperature difference
creates a density gradient that can lead to the formation of convection currents, where warmer, less dense
fluid rises, and cooler, denser fluid sinks (Figure 4, top).

rayleigh_taylor_instability. The Rayleigh-Taylor instability [86] is comprised of two fluids of
different densities initially at rest. The instability arises from any perturbation that will displace a parcel
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of heavier fluid below a parcel of lighter fluid (Figure 4, middle). Pressure forces are then not aligned
with density gradients and this generates vorticity, increasing the amplitude of the perturbations. Eventually,
these amplitudes become so large that non-linear turbulent mixing develops.

shear_flow. Shear flow phenomena [87–89] occurs when layers of fluid move parallel to each other at
different velocities, creating a velocity gradient perpendicular to the flow direction (Figure 4, bottom). This
can lead to various instabilities and turbulence, which are fundamental to many applications in engineering
(e.g., aerodynamics [90]), geophysics (e.g., oceanography [91]), and biomedicine (e.g. biomechanics [92]).

supernova_explosion_64 and supernova_explosion_128. Supernova explosions happen at the
end of the lives of some massive stars. These explosions release high energy into the interstellar medium
(ISM) and create blastwaves. The blastwaves accumulate in the ISM and form dense, sharp shells, which
quickly cool down and can be new star-forming regions (Figure 5, top). These small explosions have
a significant impact on the entire galaxy’s evolution.

turbulence_gravity_cooling. Within the interstellar medium (ISM), turbulence, star formation,
supernova explosions, radiation, and other complex physics significantly impact galaxy evolution. This
ISM is modeled by a turbulent fluid with gravity. These fluids make dense filaments (Figure 5, middle),
leading to the formation of new stars. The timescale and frequency of making new filaments vary with
the mass and length of the system.

turbulent_radiative_layer_2D and turbulent_radiative_layer_3D. In astrophysical envi-
ronments, cold dense gas clumps move through a surrounding hotter gas, mixing due to turbulence at their
interface. This mixing creates an intermediate temperature phase that cools rapidly by radiative cooling,
causing the mixed gas to join the cold phase as photons escape and energy is lost (Figure 5, bottom).
Simulations and theories show that if cooling is faster (slower) than mixing, the cold clumps will grow
(shrink) [93, 94]. These simulations [95] describe the competition between turbulent mixing and radiative
cooling at a mixing layer. These simulations are available in 2D and 3D.

viscoelastic_instability. In two-dimensional dilute polymer solutions, the flow exhibits four
coexistent attractors: the laminar state, a steady arrowhead regime (SAR), a chaotic arrowhead regime
(CAR), and a (recently discovered) chaotic regime of elasto-inertial turbulence (EIT). SAR corresponds to
a simple traveling wave, while CAR and EIT are visually similar but differ by a weak polymer arrowhead
structure across the mid-plane in CAR. These simulations [96] are snapshots of the four attractors and
two edge states. Edge states exist on the boundary between two basins of attraction and have a single
unstable direction, marking the boundary between different flow behaviors.

3 Benchmark
To showcase the dataset and the associated benchmarking library, we provide a set of simple baselines time-
boxed to 12 hours on a single NVIDIA H100 to demonstrate the effectiveness of naive approaches on these
challenging problems and motivate the development of more sophisticated approaches. These baselines are
trained on the forward problem - predicting the next snapshot of a given simulation from a short history. The
models used here are the Fourier Neural Operator [97, FNO], Tucker-Factorized FNO [98, TFNO], U-net
[99] and a modernized U-net using ConvNext blocks [100, CNextU-net]. The neural operator models are im-
plemented using neuralop [101]. Full training and hyperparameter details are included in the appendix.

Table 3 reports the one-step Variance Scaled Root Mean Squared Error (VRMSE) which is defined as
the standard RMSE normalized by the standard deviation of the target field, averaged over all physical
fields. We report the top performing run for each model across all hyperparameters. The CNextU-net
architecture outperforms the others on 8 of the 17 experiments. However, what is very interesting is that
there is a noticeable split between problems which favor spatial domain handling and those which prefer
the spectral approach. At the one-step level, 9/17 favor U-net type models while 8 favor spectral models.
While in some cases, the results are close, in others, one class of models has a clear advantage. The reason
for this is not immediately clear. Boundary conditions would be a natural hypothesis as the boundary
condition are handled naively according to model defaults which vary between the U-net and FNO-type
models, but there is no clear trend in this direction.

Limitations. These datasets are not without their limitations. They focus largely on uniformly sampled
domains at manageable resolutions while many engineering problems require higher resolutions and
more complicated meshes than most conventional architectures can feasibly process. As available VRAM
increases or more efficient architectures are developed, the current version of the Well may no longer
be challenging and new datasets may be needed to push the community forward.
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Appendix

A How to build The Well

A.1 Initial Construction

The Well was built using the following organization method:

• Domain scientists and numerical software developers were contacted. Individuals working with
simulations that were sufficiently distinct from existing datasets, non-trivial for learning, and
did not require excessive resolution were brought into the collaboration.

• Domain experts were asked to generate data across a sensible range of simulation parameters
or initial conditions given the complexity of their simulations. They generated the data on the
clusters associated with their home institution.

• The data was then transferred to a cluster for storage and processing.

• Data was analyzed to ensure there were no NaN, that the grid and time steps were uniform, and
that the data files were consistent.

• A data specification was created for storage, distribution, and programmatic access for machine
learning users.

• The data was processed into this common format. A PyTorch Dataset was constructed to read
this data for machine learning usage.

• Once processed, a compute budget was allocated to benchmarking based on the size of the data
and typical workloads in the space.

• Preliminary benchmarking was performed and results were reported in the paper.

A.2 Data Availability

We are in discussion for making subsets available on HuggingFace upon release. The code and the data
will be released when the paper will be published.

A.3 Data Specification

We provide the data with a unified data specification and PyTorch-based interface. The data resides in
HDF5 archives with a shared format.

The specification is described below with example entries for a hypothetical 2D (D=2) simulation with
dimension B x T x H x W. Note that this uses HDF5 Groups, Datasets, and attributes (denoted by "@"):

r o o t : Group
@ s i m u l a t i o n _ p a r a m e t e r s : l i s t [ s t r ] = [ ’ ParamA ’ , . . . ]
@ParamA : f l o a t = 1 . 0
. . . # A d d i t i o n a l l i s t e d p a r a m e t e r s
@dataset_name : s t r = ’ ExampleDSet ’
@gr id_type : s t r = ’ c a r t e s i a n ’ # " c a r t e s i a n / s p h e r i c a l c u r r e n t l y s u p p o r t e d "
@n_spa t i a l _d ims : i n t = 2 # Should match number of p r o v i d e d s p a t i a l d i m e n s i o n s .
@ n _ t r a j e c t o r i e s : i n t = B # " Batch " d imens ion of d a t a s e t

− d i m e n s i o n s : Group
@ s p a t i a l _ d i m s : l i s t [ s t r ] = [ ’ x ’ , ’y ’ ] # Names match d a t a s e t s below .
t ime : D a t a s e t = f l o a t 3 2 ( T )

@sample_varying = F a l s e # Does t h i s v a l u e va ry between t r a j e c t o r i e s ?
−x : D a t a s e t = f l o a t 3 2 (W) # Grid c o o r d i n a t e s i n x

@sample_varying = F a l s e
@time_varying = F a l s e # True no t c u r r e n t l y s u p p o r t e d

−y = f l o a t 3 2 (H) # Grid c o o r d i n a t e s i n y
@sample_varying = F a l s e
@time_varying = F a l s e
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− b o u n d a r y _ c o n d i t i o n s : Group # I n t e r n a l and e x t e r n a l boundary c o n d i t i o n s
−X_boundary : Group

@assoc i a t ed_d ims : l i s t [ s t r ] = [ ’ x ’ ] # Def ined on x
# I f a s s o c i a t e d wi th s e t v a l u e s f o r g iv en f i e l d .
@ a s s o c i a t e d _ f i e l d s : l i s t [ s t r ] = [ ]
# Geomet r ic d e s c r i p t i o n of BC . C u r r e n t l y s u p p o r t p e r i o d i c / w a l l / open
@bc_type = ’ p e r i o d i c ’
@sample_varying = F a l s e
@time_varying = F a l s e
−mask : D a t a s e t = boo l ( 2 5 6 ) # True on c o o r d i n a t e s where boundary i s d e f i n e d .
− v a l u e s : D a t a s e t = f l o a t 3 2 ( NumTrue ( mask ) ) # Values d e f i n e d on mask p o i n t s

s c a l a r s : Group # Non− s p a t i a l l y v a r y i n g s c a l a r s .
@fie ld_names : l i s t [ s t r ] = [ ’ ParamA ’ , ’ O t h e r S c a l a r ’ , . . . ]
ParamA : D a t a s e t = f l o a t 3 2 ( 1 )

@sample_varying = F a l s e # Does t h i s va ry between t r a j e c t o r i e s ?
@time_varying = F a l s e # Does t h i s va ry ove r t ime ?

O t h e r S c a l a r : D a t a s e t = f l o a t 3 2 ( T )
@sample_varying = F a l s e
@time_varying = True

t 0 _ f i e l d s : Group
# f i e l d _ n a m e s s h o u l d l i s t a l l d a t a s e t s i n t h i s c a t e g o r y
@fie ld_names : l i s t [ s t r ] = [ ’ FieldA ’ , ’ Fie ldB ’ , ’ Fie ldC ’ , . . . ]
− Fie ldA : D a t a s e t = f l o a t 3 2 (BxTxHxW)

@dim_varying = [ True True ]
@sample_varying = True
@time_varying = True

− F ie ldB : D a t a s e t = f l o a t 3 2 (TxHxW)
@dim_varying = [ True True ]
@sample_varying = True
@time_varying = F a l s e

− F ie ldC : D a t a s e t = f l o a t 3 2 ( BxTxH )
@dim_varying = [ True F a l s e ]
@sample_varying = True
@time_varying = True

. . . # A d d i t i o n a l f i e l d s

− t 1 _ f i e l d s : Group
@fie ld_names = [ ’ VFieldA ’ , . . . ]
−VFieldA : D a t a s e t = f l o a t 3 2 (BxTxHxWxD)

@dim_varying = [ True True ]
@sample_varying = True
@time_varying = True

. . . # A d d i t i o n a l f i e l d s

− t 2 _ f i e l d s : Group
@fie ld_names : l i s t [ s t r ] = [ ’ TFieldA ’ , . . . ]
− TFieldA : D a t a s e t = f l o a t 3 2 (BxTxHxWxD^2)

@ant i symmet r ic = F a l s e
@dim_varying = [ True True ]
@sample_varying = True
@symmetric = True # Whether t e n s o r i s symmet r ic
@time_varying = True

. . . # A d d i t i o n a l f i e l d s

We did not generate Croissant [102] descriptions of the datasets because the specification does not currently
support HDF5 files and would have required converting the 15TB of data to another format that is handled
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by the standard. Our provided specification is self-documenting and contains sufficient metadata for
machine processing.

For usage purposes, the GenericWellDataset outputs all fields as a dictionary giving users the option
of how to arrange the input and output for their goals. We include default data processors which add all
time-invariant fields as model inputs, but not as targets.

Dataset Size (GB) Run time (h) Hardware Software

acoustic_scattering_discontinuous 157 0.25 64 C Clawpack [103]
acoustic_scattering_inclusions 283 0.25 64 C Clawpack [103]

acoustic_scattering_maze 311 0.33 64 C Clawpack [103]
active_matter 51.3 0.33 A100 GPU Python

convective_envelope_rsg 570 1460 80 C Athena++ [104]
euler_multi-quadrants 5170 80⋆ 160 C⋆ ClawPack [103]
helmholtz_staircase 52 0.11 64 C Python

MHD_128 4580 48 64 C Fortran MPI
MHD_64 72 – – –

gray_scott_reaction_diffusion 154 33⋆ 40 C Matlab
planetswe 186 0.75 64 C Dedalus [105]

post_neutron_star_merger 110 505⋆ 300 C⋆ νbhlight [106]
rayleigh_benard 358 60⋆ 768 C⋆ Dedalus [105]

rayleigh_taylor_instability 256 65⋆ 128 C⋆ TurMix3D [107]
shear_flow 115 5⋆ 448 C⋆ Dedalus [105]

supernova_explosion_128 754 4⋆ 1040 C⋆ ASURA-FDPS [108]
supernova_explosion_64 268 4⋆ 1040 C⋆ ASURA-FDPS [108]

turbulence_gravity_cooling 829 577⋆ 1040⋆ C ASURA-FDPS [108]
turbulent_radiative_layer_2D 6.9 2⋆ 48 C Athena++ [104]
turbulent_radiative_layer_3D 745 271⋆ 128 C Athena++ [104]
viscoelastic_instability 66 34⋆ 64 C Dedalus [105]

Table 1: Information about the different dataset generation. In the running time and hardware columns,
⋆ denotes a total for all the runs. Otherwise, these figures are given for running one simulation only. For
hardware, C denotes the number of Cores. Computation was performed on nodes equipped with either
2 48-core AMD Genoa or 2 32-core Intel Icelake.

B Dataset Details

All numerical simulations are on a uniform grid, uniform time-steps and in single precision fp32.

B.1 acoustic_scattering

Description of the physical phenomenon. We include three variants of an acoustic scattering problem to
showcase the challenges introduces by sharp discontinuities and irregular structure. The acoustic equations
describe the evolution of an acoustic pressure wave through materials with spatially varying density. The
specific modeling equations used here are:

∂p

∂t
+K(x,y)

(
∂u

∂x
+
∂v

∂y

)
=0 (1)

∂u

∂t
+

1

ρ(x,y)

∂p

∂x
=0 (2)

∂v

∂t
+

1

ρ(x,y)

∂p

∂v
=0 (3)

with ρ the material density, u,v the velocity in the x,y directions respectively, p the pressure, and K the
bulk modulus. ρ and K jointly define the speed of sound and so only ρ is varied in these simulations while
K is maintained at a constant value of 4.

These equations are most prevalent in inverse problems like source optimization of a signal or inverse
scattering where the underlying material densities are inferred from observed dynamics. These are simple
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Dataset CS Resolution (pixels) n_steps n_traj

acoustic_scattering (x,y) 256×256 100 8000
active_matter (x,y) 256×256 81 360
convective_envelope_rsg (r,θ,ϕ) 256×128×256 100 29
euler_multi-quadrants (x,y) 512×512 100 10000
gray_scott_reaction_diffusion (x,y) 128×128 1001 1200
helmholtz_staircase (x,y) 1024×256 50 512
MHD (x,y,z) 643 and 2563 100 100
planetswe (θ,ϕ) 256×512 1008 120
post_neutron_star_merger (logr,θ,ϕ) 192×128×66 181 8
rayleigh_benard (x,y) 512×128 200 1750
rayleigh_taylor_instability (x,y,z) 128×128×128 120 45
shear_flow (x,y) 128×256 200 1120
supernova_explosion (x,y,z) 643 and 1283 59 1000
turbulence_gravity_cooling (x,y,z) 64×64×64 50 2700
turbulent_radiative_layer_2D (x,y) 128×384 101 90
turbulent_radiative_layer_3D (x,y,z) 128×128×256 101 90
viscoelastic_instability (x,y) 512×512 variable 260

Table 2: Dataset description: coordinate system (CS), resolution of snapshots, n_steps (number of
time-steps per trajectory), n_traj (total number of trajectories in the dataset).

linear dynamics, but the sharp discontinuities in the underlying material density lead to interesting behavior
that can be challenging for learned models.

The three datasets vary in the families of material density configurations they consider:

• Single Discontinuity - The simplest example consisting of two continuously varying subdomains
with a discontinuous interface. The intitial conditions consist of a flat pressure static field with
1-4 high pressure rings randomly placed in domain. The rings are defined with variable intensity
∼U(.5,2) and radius ∼U(.06,.15). The subdomain densities are generated from one of the
following randomly selected functions:

– Gaussian Bump - Peak density samples from ∼U(1,7) and σ∼U(.1,5) with the center
of the bump uniformly sampled from the extent of the subdomain.

– Linear gradient - Four corners sampled with ρ ∼ U(1,7). Inner density is bilinearly
interpolated.

– Constant - Constant ρ∼U(1,7)
– Smoothed Gaussian Noise - Constant background sampled ρ∼U(1,7)with IID standard nor-

mal noise applied. This is then smoothed by a Gaussian filter of varying sigma σ∼U(5,10)
• Inclusions - In this dataset, we first generate a background from the single discontinuity set and

further add randomly generated potentially overlapping “inclusions” containing wildly different
material properties. This is akin to a geoscience setting with interfaces and mineral deposits. The
inclusions are added as 1-15 random ellipsoids with center uniformly sampled from the domain
and height/width sampled uniformly from [.05, .6]. The ellipsoid is then rotated randomly with
angle sampled [-45, 45]. For the inclusions, Ln(ρ)∼U(−1,10).

• Maze - This dataset explores complex arrangements of sharp discontinuities. We generated a
maze with initial width between 6 and 16 pixels and upsample it via nearest neighbor resampling
to create a 256 x 256 maze. The walls are set to ρ= 106 while paths are set to ρ= 3. The
initial sources are generated as a flat pressure static field with 1-6 high pressure rings randomly
placed along paths of maze. The rings are defined with variable intensity ∼U(3.,5.) and radius
∼U(.01,.04). Any overlap with walls is removed.

Simulation details. The simulations are performed using the total variation diminishing solvers in
Clawpack [103], a framework for solving hyperbolic conservation laws using an explicit finite volume
scheme, with a monotonized central-difference flux limiter with step-size determined by the CFL condition.
The simulation occurs on a domain that is open in the y direction and closed (reflective) in the x direction.
Each simulation took approximately 15 minutes of wall time on 64 Icelake CPU cores. Parallelization
is done using domain decomposition with ghost node padding for internal boundaries. As the maze
simulations are run for more steps, they each required 20 minutes.
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Varied Physical Parameters. We vary ρ while keeping K constant to control the material speed of sound c.

Fields present in the data. u or u,v the vector-valued velocity field, p the pressure, and constant fields
ρ and c (the material speed of sound).

References to cite when using these simulations: [103].

B.2 active_matter

Description of the physical phenomenon. We are interested in studying the dynamics of N active
particles of length ℓ and thickness b (aspect ratio ℓ/b≫1) immersed in a Stokes fluid with cubic volume
V . In large particle limit, continuum kinetic theories describing the evolution of the distribution function
Ψ(x,p,t) have proven to be useful tools for analyzing and simulating particle suspensions [109, 110]. The
Smoluchowski equation governs Ψ’s evolution, ensuring particle number conservation,

∂Ψ

∂t
+∇x·(ẋΨ)+∇p·(ṗΨ)=0, (4)

where the conformational fluxes ẋ and ṗ are obtained from the dynamics of a single particle in a
background flow u(x,t). The moments of Ψ yield the concentration field c=⟨1⟩, polarity field n=⟨p⟩/c,
and nematic order parameter Q = ⟨pp⟩/c, with ⟨f⟩ =

∫
|p|=1

fΨ dp. For dense suspensions, the
conformational fluxes are

ẋ=u−dT∇xlogΨ; ṗ=(I−pp)·(∇u+2ζD)·p−dR∇plogΨ. (5)

Here dT and dR are dimensionless translational and rotational diffusion constants, ζ is the strength
of particle alignment through steric interactions, and D = ⟨pp⟩ is the second-moment tensor. The
Smoluchowski equation is coupled to the Stokes flow as

−∆u+∇P=∇·Σ,∇·u=0, (6)
Σ=αD+βS :E−2ζβ(D·D−S :D). (7)

Here P(x,t) is the fluid pressure, α is the dimensionless active dipole strength, β characterizes the particle
density, E=[∇u+∇u⊤]/2 is the symmetric rate-of-strain tensor, and S=⟨pppp⟩ is the fourth-moment
tensor. The stress tensor Σ in Eq. (7) includes contributions from active dipole strength, particle rigidity,
and local steric torques. Despite the fact that kinetic theories are consistent with microscopic details and
are amenable to analytical treatment, they are not immune from computational challenges. For instance,
in dense suspensions with strong alignment interactions (high ζ), the cost to resolve the orientation field
p is prohibitively high even in 2D. Though approximate coarse-grained models that track only low-order
moments exist, they rely on phenomenological [111][112] or learned corrections [113] to close the system.
This underscores the need for fast, high-fidelity, data-efficient physical surrogate models to track and predict
the evolution of few low-order moments. An autoregressive surrogate model can efficiently screen the high-
dimensional parameter space of complex active matter systems and help design self-organizing materials
that switch between nontrivial dynamical states in response to external actuation or varying parameters.

Simulation details. We numerically close the system of equations (4)-(6) using pseudo-spectral
discretization where Fourier differentiation is used to evaluate the derivatives with respect to space and
particle orientation. We use the second order implicit-explicit backward differentiation time-stepping
scheme (SBDF2), where the linear terms are handled implicitly and the nonlinear terms explicitly with
time-step ∆t=0.0004. The numerical simulations are performed in a periodic square domain of length
L= 10 with 2562 spatial modes and 256 orientational modes. The simulation code will be available.
The approximate time to generate the data is 20 minutes per simulation on an A100 80GB GPU in fp64
precision. In total, this is about 75 hours of simulation.

Varied Physical Parameters. α∈{−1,−2,−3,−4,−5} β=0.8; ζ∈{1,3,5,7,9,11,13,15,17}.

Fields present in the data. concentration (scalar field), velocity (vector field), orientation tensor (tensor
field), strain-rate tensor (tensor field).

References to cite when using these simulations: [113].
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B.3 convective_envelope_rsg

Description of the physical phenomenon. The 3D radiation hydrodynamic (RHD) equations are [114]:

∂ρ

∂t
+∇·(ρv)=0 (8)

∂(ρv)

∂t
+∇·(ρvv+Pgas)=−Gr−ρ∇Φ (9)

∂E

∂t
+∇·[(E+Pgas)v]=−cG0

r−ρv·∇Φ (10)

∂I

∂t
+cn·∇I=S(I,n) (11)

where ρ is the gas density, v is the flow velocity, Pgas and Pgas are the gas pressure tensor and scalar,
respectively, E is the total gas energy density, with E =Eg+ρv2/2, where Eg = 3Pgas/2 is the gas
internal energy density, G0

r and Gr are the time-like and space-like components of the radiation four-force,
and I is the frequency integrated intensity, which is a function of time, spatial coordinate, and photon
propagation direction n. ∇Φ is defined as ∇Φ = −Gm(r)/r2, where m(r) is the mass inside the
radial coordinate r including the mass contained within the simulation inner boundary. The source term
describing the interaction between the gas and radiation in a comoving frame as given by

S0(I0,n0)=cρκaP

(
carT

4

4π
−J0

)
+cρ(κS+κaR)(J0−I0), (12)

where κaP and κaR are Planck and Rosseland mean absorption opacities from OPAL [115], and and κS
is the electron scattering opacity, all evaluated in the comoving frame. These simulations neglect stellar
rotation and magnetic fields. Similar setups have been used by [116, 117].

Simulation details. The RHD equations are solved using the standard Godunov method in Athena++
[104], available at https://www.athena-astro.app/. The simulation grid is in spherical-polar coordi-
nates with 128 uniform bins in polar angle θ from π

4−
3π
4 and 256 bins in azimuth f from 0−π with periodic

boundary conditions in θ and f . Outside of the simulation domain, Athena++ uses ghost zones to enforce
its boundary conditions. For the “periodic” boundary in θ, the ghost zones from π/4 (3π/4) are copied
from the last active zones around the 3π/4 (π/4) boundary so that the mass and energy flux across the θ
boundary is conserved. The radial direction is covered by a logarithmic spaced grid consisting of 384 (256)
zones, with δr/r≈0.01, extending far out enough to capture any wind structure or extended atmosphere.
The simulations were generated during 2 months on 80 nodes of NASA PLeiades Skylake CPU nodes.

Varied Physical Parameters. All simulations are cuts of a larger simulation. They have all the same
physical parameters, but are different times of the same simulation.

Fields present in the data. : energy (scalar field), density (scalar field), pressure (scalar field), velocity
(vector field).

References to cite when using these simulations: [21].

B.4 euler_multi-quadrants

Description of the physical phenomenon. This particular set of simulations solves the compressible
inviscid Euler equations, which in two dimensions in integral form are

d

dt

∫∫
Ω

UdA+

∮
∂Ω

(Fî+Gĵ)·n̂dS=0 (13)

where U=(ρ,ρu,ρv,ρE)T and

F=

 ρu
ρu2+p
ρuv

u(ρE+p)

 G=

 ρv
ρuv

ρv2+p
v(ρE+p)

. (14)

Here, ρ is the density, u and v are the Cartesian velocities, p is the pressure, and
ρE=p/(γ−1)+ 1

2ρ(u
2+v2) is the total velocity.
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Figure 1: Top to bottom row: snapshots at t = {0, T
3 ,

2T
3 , T} of acoustic_scattering, ac-

tive_matter and convective_envelope_rsg.

Simulation details. These simulations used the open source software CLAWPack [103, 118], a general
framework for solving hyperbolic conservation laws using an explicit finite volume scheme . The
simulations use different sets of piecewise constant initial data, which is known as a Riemann problem
[66]. The possible solutions are then a combination of shocks, rarefaction waves, or contact discontinuities
that sometimes interact as the simulation proceeds in time. The data was generated in fp64 in 80 hours
on 160 CPU cores.

Varied Physical Parameters. γ∈{1.3,1.4,1.13,1.22,1.33,1.76,1.365,1.404,1.453,1.597} and boundary
conditions are either open or periodic.

Fields present in the data. density (scalar field), energy (scalar field), pressure (scalar field), momentum
(vector field).

References to cite when using these simulations: [103, 118].

B.5 helmholtz_staircase

Description of the physical phenomenon. We simulate linear acoustic scattering of a single point source
from an infinite, periodic, corrugated, sound-hard surface. The region Ω∈R2 above the boundary ∂Ω
is simply connected and filled with a constant-density gas with sound speed c>0. We define x=(x1,x2).
The boundary ∂Ω extends with spatial period d in the x1 direction and unbounded in the perpendicular
x2 direction. The current example is a right-angled staircase whose unit cell consists of two equal-length
line segments at π/2 angle to each other, see Fig. 1 in [119]. This geometry models a 3D staircase which
extends infinitely in the third direction pointing into the plane of the paper. While we solve the problem
in the frequency domain, the original time-domain problem is described by the wave equation sourced
by a point excitation at t=0 and x=x0∈Ω,

∂2U(t,x)

∂t2
−∆U(t,x)=δ(t)δ(x−x0) t∈R, x∈Ω, (15)

where ∆=∇·∇ is the spatial Laplacian, and time t is rescaled such that the sound speed c=1. We
assume quiescence before the point excitation: U ≡ 0 for t< 0, and that the normal component of the
fluid velocity vanishes at the staircase’s surface, yielding Neumann boundary conditions

Un(t,x)=n·∇U(t,x)=0 t∈R, x∈∂Ω, (16)
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where n is the unit boundary normal pointing into Ω. Taking the Fourier transform with respect to t of
Eqs. (15)–(16), we get the inhomogeneous Helmholtz Neumann boundary value problem (BVP) that is
the focus of this simulation,

−(∆+ω2)u=δx0
in Ω, (17)

un=0 on ∂Ω, (18)

where ω ∈R is the emission frequency of the source. We solve for the acoustic pressure u, which is
additionally subject to radiation conditions as described in [119].

Scattering from periodic structures occurs in real-life applications such as the design of waveguides on
various lengthscales: photonic and phononic crystals, diffraction gratings, antenna arrays, and architectural
elements. These applications often involve numerical simulations performed repeatedly in an optimization
or inference loop, calling for fast and robust numerical methods. This setting, however, presents some
challenges to accurate numerical modelling. The solution domain is unbounded in both the vertical
direction and along the surface; truncation in the vertical direction requires satisfying the correct radiation
conditions, and naive truncation in the horizontal direction would result in large artificial reflections (and
hence errors) due to the possibility of waves being guided along the surface. Periodization—reducing the
computation to the unit cell—is seemingly impossible, since the point source breaks the periodicity of the
problem. It is possible, however, to express the nonperiodic solution in terms of a family of quasiperiodic
solutions via the Floquet–Bloch transform (also referred to as the array scanning method). The current
geometric setup involves corner singularities that must be dealt with if high-order accuracy is to be
achieved. Finally, as the input frequency ω grows, the computation will become more expensive due to
the need for a finer discretization grid to resolve oscillations.

Simulation details. Our simulation combines the Floquet–Bloch transform with a high-order boundary
integral equation (BIE) method to solve each of the quasiperiodic BVPs. The main advantage of this
approach is a reduction of the number of discretization nodes (and hence computational cost) by conversion
of the 2D PDE to an integral to be evaluated on a 1D boundary. High-order accuracy is then achievable
via appropriately chosen quadrature rules, which can easily handle the corner singularities. In contrast,
finite difference (FD) and finite element (FEM) schemes require finer meshing of the domain near the
corners and implement radiation conditions explicitly. The Floquet–Bloch transform has previously
been paired with both FD and FEM methods to tackle scattering from a nonperiodic source, but only
to low-order accuracy [120, 121]. Other approaches include meshfree methods such as the method of
fundamental solutions [122–124] and the plane waves method [125], as well as tools based on the Rayleigh
hypothesis [126]. In the high-frequency limit, fast methods exist that exploit approximations including
the Helmholtz–Kirchhoff approximation [127] and geometric acoustics [128–130].

The Helmholtz staircase dataset consists of 25600 images generated from 512 distinct input parameter
combinations; the parameters are the source frequency ω (takes 16 different values) and the source position
x0 (takes 32 values). All input frequencies lie in the “low-frequency” regime in the sense that there exists a
trapped acoustic mode at that frequency, meaning that the input wavelength is of the same lengthscale as the
staircase period. For each parameter combination, we generate 50 timesteps spanning one temporal period,
T=2π/ω, analytically via U(t,x)=u(t,x)exp(−iωt). The simulations are accurate to around 7–8 digits.

We chose the low-frequency regime for the purposes of training due to the existence of trapped modes in
this limit. One can identify two distinct spatial frequencies in the generated images: the input frequency ω,
which dominates the outgoing waves far away from the boundary, and the distinct spatial frequency of the
trapped mode visible along the boundary. The prediction algorithm needs to learn that out of the two, it is ω
that determines the time-dependence of the acoustic waves, and correctly identify it from the image despite
the presence of a trapped mode. This gets increasingly difficult as ω rises (due to the two frequencies
growing more disparate), until a cutoff above which trapped modes no longer exist. In the future, it would
be of interest to also learn the dispersion relation of trapped modes, i.e. infer the relationship between
their spatial frequency and the input frequency based on the boundary geometry. On 64 CPU cores, the
simulation takes ∼400s per input parameter, total ∼50 hours.

Varied Physical Parameters. frequency of the source ω ∈ {0.062, 0.251, 0.439, 0.626, 0.813,
0.998, 1.182, 1.363, 1.541, 1.715, 1.882, 2.042, 2.191, 2.323, 2.433, 2.511}, with the sources
coordinates being all combinations of x ∈ {−0.4, −0.3, −0.2, −0.1, 0, 0.1, 0.2, 0.3, 0.4} and
y∈{−0.2,−0.1, 0, 0.1, 0.2, 0.3, 0.4}.

Fields present in the data. real and imaginary part of accoustic pressure (scalar field), the staircase mask
(scalar field, stationary).
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References to cite when using these simulations: [119].

B.6 MHD (magnetohydrodynamic simulations)

Description of the physical phenomenon. These simulations employ a third-order-accurate hybrid
essentially non-oscillatory (ENO) scheme [131] to solve the ideal MHD equations:

∂ρ

∂t
+∇·(ρvvv)=0, (19)

∂ρvvv
∂t

+∇·
[
ρvvvvvv+

(
p+

B2

8π

)
I− 1

4π
BB

]
=f, (20)

∂B

∂t
−∇×(vvv×B)=0. (21)

Here, ρ is the density, v the velocity, B denotes the magnetic field, p represents the gas pressure, and I
is the identity matrix. These simulations utilize periodic boundary conditions and an isothermal equation of
state, p=c2sρ, where cs is the isothermal sound speed. For the energy source term f , we assume a random
large-scale solenoidal driving at a wave number k ≈ 2.5 (i.e., 1/2.5 of the box size), with continuous
driving. The simulations are executed with a 2563 grid resolution and have been referenced and utilized
in numerous prior studies [131–135].

The main control parameters of these MHD simulations are the dimensionless sonic Mach number, Ms≡
|vvv|/cs, and the Alfvénic Mach number,MA≡|vvv|/⟨vA⟩, where vvv is the velocity, cs and vA are the isothermal
sound speed and the Alfvén speed respectively, and ⟨·⟩ signifies averages over the entire simulation box. A
range of sonic Mach numbers is provided for two different regimes of Alfvénic Mach number (see below
varied physical parameters). The simulations are either sub-Alfvénic with MA≈0.7 (indicating a strong
magnetic field) or super-Alfvénic with MA=2.0. The initial Alfvén Mach number in the super-Alfvénic
runs is 7.0, but after the small-scale dynamo saturates, the final MA value is around 2. These simulations
are non-self-gravitating, and the file units are in code units. The MHD simulations are scale-free, allowing
users to assign a physical scale to the box length and density [136, 137]. Rescaling these simulations
requires maintaining the sonic and Alfvén Mach numbers constant, though other physical quantities (e.g.,
density, velocity) may be converted to physical units. On 64 CPU cores, it takes 48 hours per simulation.

Varied Physical Parameters. dimensionless sonic Mach number Ms∈ {0.5, 0.7, 1.5, 2.0, 7.0} and
dimensionless Alfvénic Mach number MA∈{0.7, 2.0}.

Fields present in the data. Density (scalar field), velocity (vector field), magnetic field (vector field).

References to cite when using these simulations: [131, 138, 135, 139].

B.7 gray_scott_reaction_diffusion

Description of the physical phenomenon. The Gray–Scott equations [68] are a set of coupled
reaction–diffusion equations describing two chemical species, A and B, whose scalar concentrations vary
in space and time:

∂A

∂t
=δA∆A−AB2+f(1−A), (22)

∂B

∂t
=δB∆B+AB2−(f+k)B. (23)

The two parameters f and k control the “feed” and “kill” rates in the reaction, respectively; specifically,
f controls the rate at which species A is added to the system and k controls the rate at which species B
is removed. The two diffusion constants δA and δB govern the rate of diffusion of each species. A zoo
of qualitatively different static and dynamic patterns in the solutions are possible depending on the two
parameters f and k [140]. There is a rich landscape of pattern formation hidden in these equations.

Simulation details. Many numerical methods exist to simulate reaction–diffusion equations. If low-
order finite differences are used, real-time simulations can be carried out using GPUs, with modern
browser-based implementations readily available [140, 141]. We choose to simulate with a high-order
spectral method here for accuracy and stability purposes. We simulate (22)–(23) in two dimensions
on the doubly periodic domain [−1,1]2 using a Fourier spectral method implemented in the MATLAB
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Figure 2: Top to bottom row: snapshots at t = {0, T
3 ,

2T
3 , T} of euler_multi-quadrants,

helmholtz_staircase and MHD.

package Chebfun [142]. Specifically, we use the implicit-explicit exponential time-differencing fourth-order
Runge–Kutta method [143] to integrate this stiff PDE in time. The Fourier spectral method is used in space,
with the linear diffusion terms treated implicitly and the nonlinear reaction terms treated explicitly and
evaluated pseudospectrally. Simulations are performed using a 128×128 bivariate Fourier series over a
time interval of 10,000 seconds, with a simulation time step size of 1 second. Snapshots are recorded every
10 time steps. We seed the simulation trajectories with 200 different initial conditions: 100 random Fourier
series and 100 randomly placed Gaussians. In all simulations, we set δA=0.00002 and δB =0.00001.
Pattern formation is then controlled by the choice of the “feed” and “kill” parameters f and k. We choose six
different (f,k) pairs which result in six qualitatively different patterns, summarized in the following table:

f k

Gliders 0.014 0.054
Bubbles 0.098 0.057
Maze 0.029 0.057
Worms 0.058 0.065
Spirals 0.018 0.051
Spots 0.030 0.062

On 40 CPU cores, it takes 5.5 hours per set of parameters, 33 hours in total for all simulations.

Varied Physical Parameters. All simulations used δu = 2.10−5 and δv = 1.10−5. "Gliders":
f = 0.014, k = 0.054. "Bubbles": f = 0.098, k = 0.057. "Maze": f = 0.029, k = 0.057. "Worms":
f=0.058,=̨0.065. "Spirals": f=0.018, k=0.051. "Spots": f=0.03, k=0.062.

Fields present in the data. Two chemical species A and B.

References to cite when using these simulations: None.

B.8 planetswe

Description of the physical phenomenon. The shallow water equations are a 2D approximation of a 3D
flow in the case where horizontal length scales are significantly longer than vertical length scales. They are
derived from depth-integrating the incompressible Navier-Stokes equations. The integrated dimension then
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only remains in the equation as a variable describing the height of the pressure surface above the flow. In this
case, we specifically explore the rotating forced hyperviscous spherical shallow water equations defined as:

∂u

∂t
=−u·∇u−g∇h−ν∇4u−2Ω×u (24)

∂h

∂t
=−H∇·u−∇·(hu)−ν∇4h+F (25)

where ∇4 denotes a hyperviscosity term. Hyperviscosity is largely non-physical but is commonly used
in atmospheric modeling to maintain stability of under-resolved simulations without effecting large scales
to the same degree as conventional diffusion. ν=1.76×10−10 is therefore selected for simulation stability
- equivalently to matching at wave number 224. F is a forcing term designed to introduce seasonality.

These equations have long been used as a simpler approximation of the primitive equations in atmospheric
modeling of a single pressure level, most notably in the Williamson test problems. The scenario in this
dataset can be seen as similar to Williamson Problem 7 as we derive initial conditions from the hPa 500
pressure level in ERA5. These are then simulated with realistic topography and two levels of periodicity.
Since this is supposed to present a simplified version of the challenges in atmospheric prediction, F is
constructed to be a time-dependent forcing term with annual and daily seasonality giving the simulation
a sense of “days” and “years”, though these are defined in simulation time rather than in physical units.
The logic for F is defined in code as:

def f i n d _ c e n t e r ( t ) :
t i m e _ o f _ d a y = t / day
t i m e _ o f _ y e a r = t / y e a r
m a x _ d e c l i n a t i o n = . 4
l o n _ c e n t e r = t i m e _ o f _ d a y *2* np . p i
l a t _ c e n t e r = np . s i n ( t i m e _ o f _ y e a r *2* np . p i )* m a x _ d e c l i n a t i o n
l o n _ a n t i = np . p i + l o n _ c e n t e r
return l o n _ c e n t e r , l a t _ c e n t e r , l o n _ a n t i , l a t _ c e n t e r

def s e a s o n _ d a y _ f o r c i n g ( phi , t h e t a , t , h_f0 ) :
phi_c , t h e t a _ c , phi_a , t h e t a _ a = f i n d _ c e n t e r ( t )
s igma = np . p i / 2
c o e f f i c i e n t s = np . cos ( ph i − ph i_ c ) \

* np . exp ( −( t h e t a − t h e t a _ c )**2 / sigma **2)
f o r c i n g = h_f0 * c o e f f i c i e n t s
return f o r c i n g

Simulation details. The simulations are performed using the spin-spherical harmonic pseudospectral
method in Dedalus [105] with initial conditions derived from the u,v,z fields in the hPa 500 level of ERA5
[42]. The spatial grid is oversampled by a factor of 3/2 relative to the spectral grid as an anti-aliasing measure
following Orszag’s rule. To ensure stable initialization, these unbalanced initial conditions are repeatedly
simulated for short sequences then projected into hydrostatic balance. The resulting initital conditions are
then burned-in for half a model year. The next three model years are then recorded at an interval of one
model hour resulting in a total of 3024 recorded steps per initial condition. The simulation time-step varies
according to the CFL condition and is performed using a second-order IMEX Runge-Kutta scheme [144].
The resulting data was interpolated onto a equiangular grid by resampling from the spectral representation.

Each simulation took approximately 45 minutes of wall time on 64 Icelake CPU cores.

Varied Physical Parameters. This data varies only in initial conditions as it is intended to roughly
approximate the challenges associated with a specific physical object (the earth).

Fields present in the data. u or u,v the vector-valued velocity field and h the surface height.

References to cite when using these simulations: [145]

B.9 post_neutron_star_merger

Description of the physical phenomenon. These simulations are of the disk of hot, dense gas formed after
the in-spiral and merger of two neutron stars. These cataclysmic events are now known to be the central
engines of gamma ray bursts—some of the most energetic events in the universe—and a primary source
of heavy elements in the universe [70–72]. The radioactive decay of heavy elements fused in these systems
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produces a reddening glow that can be seen from earth, a kilonova, the first observation of which was
made in 2017 [73–77]. Of key importance in predicting these events is capturing accurately the interaction
of neutrinos, subatomic particles that interact with nuclei and nucleons to convert neutrons to protons
and vice versa. The models here are the most advanced simulations in the world of the accretion disk
that drives the relativistic jet that powers the gamma ray burst and of the hot neutron-rich wind that sources
one component of the kilonova. We solve the general relativistic equations of ideal magnetohydrodynamics
coupled to lepton conservation and the neutrino transport equation:2

∂t
(√

gρ0u
t
)
+∂i

(√
gρ0u

i
)

= 0 (26)

∂t
[√

g
(
T t

ν+ρ0u
tδtν

)]
+∂i

[√
g
(
T i

ν+ρ0u
iδtν

)]
=

√
g
(
Tκ

λΓ
λ
νκ+Gν

)
∀ν=0,1,...,4 (27)

∂t
(√

gBi
)
+∂j

[√
g
(
bjui−biuj

)]
= 0 (28)

∂t
(√

gρ0Yeu
t
)
+∂i

(√
gρ0Yeu

i
)

=
√
gGye (29)

D

dλ

(
h3Iν,f
ε3

)
=

(
h2ην,f
ε2

)
−
(εχν,f

h

)(h3Iν,f
ε3

)
, (30)

where here ρ0 is the rest mass density, g is the absolute value of the determinant of the metric tensor,
uµ the is the fluid four-vector, Tµ

ν , the stress energy tensor, δµν , the Kronecker delta, Γλ
µν the Christoffel

symbols, Bi the magnetic field 3-vector, bµ the magnetic field four-vector, Ye the electron fraction (ratio
of electrons to baryons, Gν the radiation field four-fource, Gye the lepton exchange source term. Iν,f
is the neutrino intensity as a function of position, energy ε=hν, and flavor f . d/dλ is the total derivative
along null geodesics of I. ην,f is the emissivity and χν,f the opacity. h is Planck’s constant.

Roughly, equation (26) is conservation of mass or particle number. Equation (27) is conservation of energy
and momentum. Conservation of momentum is of course Newton’s second law, but in general relativity
this is combined with conservation of energy. Equation (28) is conservation of magnetic flux. In ideal
hydrodynamics, conductivities are assumed to be infinite and thus electric fields can be ignored. Magnetic
field lines then get advected with the fluid flow. Equation (29) is conservation of lepton number and
controls how neutrons and electrons are advected with the fluid. Equation (30) evolves the motion of
neutrinos, which are binned into three flavors: electron neutrinos, their antiparticles, and “heavy neutrinos”
which include muon and tau neutrinos and their antiparticles. We assume neutrino mass is negligible and
approximate the neutrinos as travelling at the speed of light. Thus we are able to use the radiative transfer
equation for photons with some modification. For more details, see [106]. The simulations provided in
the Well are from a series of papers, [146–149].

These simulations are computationally expensive and challenging. They require sufficiently high resolution
and short time scales to capture the magnetorotational instability, which drives fluid motion [150–152]. But
they must also be run for sufficiently long times to track the motion of outgoing material. The electron frac-
tion, Ye is a critical parameter for heavy element nucleosynthesis which ultimately determines the kilonova
signal. ML algorithm that captures bulk fluid motion and tracks the electron fraction Ye without requiring
detailed modeling of magnetohydrodynamic turbulence would be a powerful tool in modeling these systems.

Simulation details. These simulations were produced using the open source νbhlight code, available at
https://github.com/lanl/nubhlight and first described in [106]. This code builds on a long history
of methods spanning more than two decades [153–156]. It solves the equations of ideal general relativistic
magnetohydrodynamics via finite volume methods with constrained transport, and uses Monte Carlo
methods to perform neutrino radiation transport. The two are coupled via first-order operator splitting. The
code uses a radially logarithmic quasi-spherical grid in horizon penetrating coordinates, as first described in
[157], the WENO reconstruction first described in [158], the primitive variable recovery scheme described
in [159], and the drift-frame artificial atmosphere treatment described in [160].

Simulations were generated using the torus_cbc problem generator, which constructs a torus of gas
in hydrostatic equilibrium around a rotating black hole, as first detailed in [161, 162]. Initial conditions
must specify a black hole mass and and angular momentum, an initial disk entropy, electron fraction, inner
radius and radius of maximum pressure, and the preferred units of density (usually chosen so that the peak
density is close to 1 in code units). A ratio of gas pressure to magnetic pressure at the point of maximum
pressure must also be chosen. (This parameter is called plasma β.) Parameters to reproduce can be found
in the cited papers. Finally a finite temperature nuclear equation of state and neutrino opacities must be

2Below we use Einstein summation notation. Repeated indices are summed. Greek indices range from 0 to 3
inclusive. Latin indices range from 1 to 3 inclusive.

28

https://github.com/lanl/nubhlight


chosen. The equation of state is the SFHo [163] model. The opacities are the Fornax opacities [164]
first described in [165]. Both opacities and equation of state are tabulated in Stellar Collapse format [166]
and may be found on the web at https://stellarcollapse.org/. Each simulation takes ∼3 weeks
to be generated using 300 CPU cores.

Varied Physical Parameters. Black hole spin parameter a, ranges 0 to 1. Initial mass and angular
momentum of torus. In dimensionless units, evaluated as inner radius Rin and radius of maximum pressure
Rmax. Torus initial electron fraction Ye and entropy kb. Black hole mass in solar masses.

Fields present in the data. fluid density (scalar field), fluid internal energy (scalar field), electron fraction
(scalar field), temperate (scalar field), entropy (scalar field), velocity (vector field), magnetic field (vector
field), contravariant tensor metric of space-time (tensor field, no time-dependency).

References to cite when using these simulations: [146–149].

Figure 3: Top to bottom row: snapshots at t= {0, T3 ,
2T
3 ,T} of gray_scott_reaction_diffusion,

planetswe and post_neutron_star_merger.

B.10 rayleigh_benard

Description of the physical phenomenon. We consider a 2D horizontally-periodic fluid. We write
u=(ux,uz) its velocity (horizontal and vertical), b its buoyancy which is the upward force exerted on
the fluid due to differences in density, themselves caused by difference in temperature, and p the pressure.
The fluid is governed by the equations:

∂b

∂t
−κ∆b=−u·∇b,

∂u

∂t
−ν∆u+∇p−bez=−u·∇u,

where ∆ = ∇·∇ is the spatial Laplacian and ez is the unit vector in the vertical direction, with the
additional constraints

∫
p=0 (pressure gauge). The first equation rules the convection and diffusion in the

fluid, while the second equation is a Navier-Stokes equation augmented by the buoyancy force. The fluid
is periodic in the horizontal direction but it has boundary conditions in the vertical direction at the bottom
z=0 and at the top z=Lz as follows u(z=0)=0, b(z=0)=Lz and u(Lz=0)=0, b(Lz=0)=0.
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The fluid equations are parameterized by the Rayleigh and Prandtl numbers through the thermal diffusivity
κ and viscosity ν

κ=
(
Rayleigh×Prandtl

)−1
2 ,

ν=

(
Rayleigh
Prandtl

)−1
2

.

The Rayleigh number is a dimensionless parameter that measures the relative importance between the
effect of the buoyancy forces and the effect of the viscosity forces and thermal conduction. The Prandlt
number is a dimensionless parameter that measures the relative importance between momentum diffusivity
and thermal diffusivity [79].

Simulation details. The data is simulated by solving these PDE through spectral methods using the
Dedalus software [105]. The solution is evolved over time with adaptive time-steps. High Rayleigh
simulations are very time-consuming because they require very small time-step to prevent the solution
from diverging [167]. Generation of simulations take between ∼ 6000s and ∼ 50000s (high Rayleigh
numbers take longer to be generated, 60h in total for all simulations.

Varied Physical Parameters. Rayleigh ∈ {1e6, 1e7, 1e8, 1e9, 1e10}, Prandtl ∈
{0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0}. For initial conditions δb0∈{0.2, 0.4, 0.6, 0.8, 1.0}.

Fields present in the data. buoyancy (scalar vield), pressure (scalar field), velocity (vector field).

References to cite when using these simulations: [105]

B.11 rayleigh_taylor_instability

Description of the physical phenomenon. The key dimensionless parameter for RTI is the dimensionless
density difference or Atwood number (A=(ρh−ρl)/(ρh+ρl)). As RTI is found to be self-similar, the
growth rate (α) of the mixing can be characterised by

α=
L̇2

4AgL
, (31)

where L is the width of the turbulent mixing zone.

The flow is governed by equations for continuity, momentum and incompressibility in the case of miscible
fluids with common molecular diffusivity:

∂tρ+∇·(ρu)=0, (32)
∂t(ρu)+∇·(ρuu)=−∇p+∇·τ+ρg, (33)

∇·u=−κ∇·
(
∇ρ

ρ

)
. (34)

Here, ρ is density, u is velocity, p is pressure, g is gravity, κ is the coefficient of molecular diffusivity
and τ is the deviatoric stress tensor

τ=ρν

(
∇u+(∇u)

T− 2

3
(∇·u)I

)
, (35)

where ν is the kinematic viscosity and I is the identity matrix.

From a fundamental standpoint, we would expect a good machine learning-based model or emulator to
advect and mix the density field rather than create or destroy mass to give appropriate statistics. Our
simulations are of comparable spatial resolution to simulations run by a large-scale study of the growth rate
of RTI [168]. Therefore, we would consider a good emulator to produce a comparable value for the growth
rate as reported in their paper for an appropriately similar set of initial conditions. In addition, during the
non-linear regime, as turbulence develops, we would expect to observe typical energy spectra of the inertial
cascade where energy is distributed following an appropriate k−5/3 slope. From a structural perspective, we
would expect that for an initialisation with a large variety of modes in the initial spectrum to observe a range
of bubbles and spikes (upward and downward moving structures). In the other limit (where there is only
one mode in the initial spectrum) we would hope to observe a single bubble and spike [169]. Finally, a good
emulator would exhibit a statistically symmetric mixing width for low Atwood numbers in the Boussinesq
regime (defined as A<0.1 [170]) and asymmetries in the mixing width for large Atwood number.
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Simulation details. We use TURMIX3D [107] to solve the governing equations (32), (33) and (34) on a
staggered ‘Marker and Cell’ type mesh [171] using a ‘Lagrange + remap’ method with a Helmholtz–Hodge
type decomposition. The domain is discretised such that each cell is a cube (i.e. ∆x=∆y=∆z=h)
and parallelized in all three directions using MPI.

The code is second-order in space using an upwind total variation diminishing approach with Van Leer
flux limiters [172, 173] and second-order in time using a strong stabilisation preserved Runge-Kutta [174].
Our discretised pressure equation is modified to account for the non-zero divergence of velocity fields
and large density difference and reads as

∇·
[

1

ρn+1
∇
(

ρl
ρh−ρl

pn
)]

=
ρl

∆t(ρh−ρl)
∇·

(
(ρintuint)

ρn+1
+κ

∇ρn+1

ρn+1

)
, (36)

where indices n and n+1 refer to times tn and tn+1 and the index int refers to an intermediate time
incorporating all remaining forces of the momentum equation. Equation (36) is then solved using a ‘red
and black’ relaxation method coupled with a ‘V-cycle’ multigrid convergence method [175–177]. The
coefficient ρl/(ρh−ρl) normalises the diffusion term to make the pressure solver quasi-independent of the
Atwood number [107]. Finally, we must comment on the treatment of viscosity in the code. The kinematic
viscosity, ν, is re-scaled to keep the Kolmogorov scale

η=ν3/4⟨ε⟩−(1/4), (37)

on the order of the mesh resolution. Here ⟨ε⟩ is the mean dissipation rate per unit mass found using the
large-scale energy budget rather than the small-scale shear average. Therefore, we define ν as

ν(t)=

[(
h

2.1

)4

⟨ε⟩

]1/3
, (38)

where, the dissipation rate is determined using the average potential energy ⟨Ep⟩ and kinetic energy ⟨K⟩
as follows:

⟨ε⟩= 1

⟨ρ⟩L
d

dt

(
⟨ρ⟩L

[
⟨Ep⟩−⟨K⟩

])
. (39)

The coefficient 2.1 is a classical value given by Pope[178] to limit the pile-up of energy on small scales.
The use of η here is justified by the presence of a Kolmogorov cascade in RT-driven flows [179–181].
On 128 CPU cores, it takes 1 hour to obtain 1 simulation, ∼65 hours in total.

Varied Physical Parameters. We run simulations with 13 different initializations for five different Atwood
number At ∈ {3

4 ,
1
2 ,

1
4 ,

1
8 ,

1
16}. The first set on initial conditions considers varying the mean µ and

standard deviation σ of the profile A(k) with µ∈{1, 4, 16} and σ∈{1
4 ,

1
2 , 1}, the phase (argument of the

complex Fourier component) ϕ was set randomly in the range [0,2π). The second set of initial conditions
considers a fixed mean (µ=16) and standard deviation (σ=0.25) and a varieed range of random phases
(complex arguments ϕ ∈ [0,ϕmax)) given to each Fourier component. The four cases considered are
specified by ϕmax∈{ π

128 ,
π
8 ,

π
2 , π}.

Fields present in the data. Density (scalar field), velocity (vector field).

References to cite when using these simulations: [180]

B.12 shear_flow

Description of the physical phenomenon. We consider a 2D-periodic incompressible shear flow whose
velocity u=(ux,uz) (horizontal and vertical) and pressure p are governed by the following Navier-Stokes
equation:

∂u

∂t
−ν∆u+∇p=−u·∇u.

where∆=∇·∇ is the spatial Laplacian, with the additional constraints
∫
p=0 (pressure gauge). In order to

better visualize the shear, we consider a passive tracer field s governed by the advection-diffusion equation
∂s

∂t
−D∆s=−u·∇s.

We also track the vorticity ω=∇×u= ∂uz

∂x − ∂ux

∂z which measures the local spinning motion of the fluid.
The shear is created by initializing the velocity u at different layers of fluid moving in opposite horizontal
directions.
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The fluid equations are parameterized by the Reynolds and Schmidt numbers through the viscosity ν and
the tracer diffusivity D

ν=(Reynolds)−1,

D=
(
Reynolds×Schmidt

)−1
.

The Reynolds number is a dimensionless parameter that measures the relative importance of inertial forces
to viscous forces. The Schmidt number measures the relative importance of momentum diffusivity and
mass diffusivity.

Shear flows are challenging to model and predict due to their inherent instability and the potential for
turbulent transition, which is highly sensitive to initial conditions and external perturbations. This instability
leads to complex flow phenomena such as Kelvin-Helmholtz instabilities [182], turbulent eddies, and
vortex formation, all of which require high-resolution simulations to capture accurately.

Simulation details. The data is simulated by solving these PDEs through mixed Fourier-Chebychev
pseudospectral methods using the Dedalus software [105]. The solution is evolved over time with adaptive
time-steps. With 7 nodes of 64 CPU cores, each with 32 tasks running in parallel on each node, it takes
∼5 hours to generate all the data.

Varied Physical Parameters. Reynolds∈{1e4, 5e4, 1e5, 5e5}, Schmidt∈{0.1, 0.2, 0.5, 1.0, 2.0, 5.0,
10.0}. For initial conditions nshear∈{2, 4}, nblobs∈{2, 3, 4, 5}, w∈{0.25, 0.5, 1.0, 2.0, 4.0}.

Fields present in the data. Tracer (scalar field), velocity (vector field), pressure (scalar field).

References to cite when using these simulations: [105].

Figure 4: Top to bottom row: snapshots at t = {0, T
3 ,

2T
3 , T} of rayleigh_benard,

rayleigh_taylor_instability and shear_flow.

B.13 supernova_explosion

Description of the physical phenomenon. The simulations solve an explosion inside a compression
of a monatomic ideal gas, which follows the equation of state with the specific heat ratio γ=5/3:

P=(γ−1)ρu, (40)
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where P , ρ, and u are the pressure, smoothed density, and specific internal energy. The adiabatic
compressible gas follows the following equations:

dρ

dt
=−ρ∇·v, (41)

d2r

dt2
=−∇P

ρ
+avisc−∇Φ, (42)

du

dt
=−P

ρ
∇·v+Γ−Λ

ρ
, (43)

where r is the position, avisc is the acceleration generated by the viscosity, Φ is the gravitational potential,
Γ is the radiative heat influx per unit volume, and Λ is the radiative heat outflux per unit volume.

Under a one-dimensional spherical symmetry model [183], an analytic solution describes the propagation
of blastwaves in a uniform medium. The time evolution of the radius of the SN shell is written as

R(t)=ξ

(
E

ρ

)1/5

t2/5, (44)

where E, ρ, and ξ are the energy injected by SN, the density of the surrounding ISM, and the dimensionless
similarity variable, respectively. However, ISM has a large density contrast. Turbulence and cooling form
a dense filamentary structure, especially in star-forming regions where SN often occurs. Such structure
prevents the blastwave’s propagation, and the SN remnants’ shells become anisotropic.

Simulation details. The simulations are implemented with N-body/SPH code, ASURA-FDPS
[184, 108, 185]. To solve the hydrodynamic interaction, a DISPH [186] is employed. SPH methods may
encounter difficulties resolving contact discontinuities caused by shock waves (such as SN shells) with low
mass resolution. Integration timesteps are determined by the resolution and thermal energy [187] so that
the blastwave is resolved. Nevertheless, the code has been tested and verified to resolve the shock wave
accurately. It can capture the formation of SN shells caused by thermal energy when the mass resolution is
finer than 1 solar mass [185, 188]. The gas in simulations has 1 solar metallicity to mimic the environment
around the solar system, which causes a strong radiative cooling. For the 1283 data, it takes ∼3500 CPU
hours on up to 1040 CPU cores to generate all data. For the 643 data, it takes ∼3800 hours on up to 1040
CPU cores to generate all data.

Varied Physical Parameters. Initial temperature T0={100K}, Initial number density of hydrogen
ρ0={44.5/cc}, metallicity (effectively strength of cooling) Z={Z0}.

Fields present in the data. Pressure (scalar field), density (scalar field), temperature(scalar field), velocity
(vector field).

References to cite when using these simulations: [185, 188]

B.14 turbulence_gravity_cooling

Description of the physical phenomenon. Similar to supernova_explosion, the simulations solve
a compression of a monatomic ideal gas, which also follows the equations (40) - (43). To explore different
evolutions of ISM under several conditions, simulations are performed with variant initial density, initial
temperature, and metallicity with a similar setup to [185]. Metallicity refers to the effectiveness of radiative
cooling and heating. In this dataset, richer metallicity mostly has a stronger radiative cooling.

Simulation details. Simulations are implemented with N-body/SPH code, ASURA-FDPS
[184, 108, 185].A Density-Independent Smoothed Particle Hydrodynamics (DISPH) [186] is employed
to solve the hydrodynamic interaction.

The simulations are performed with two resolutions (1 solar mass and 0.1 solar mass) to capture detailed
structures in turbulence. First, gas spheres with a total mass of 106 solar mass are generated to make
initial gas clouds with turbulence following ∝v−4 mimicking star-forming regions. By changing radius,
uniform densities are varied in three levels. The initial conditions are constructed using the Astrophysical
Multi-purpose Software Environment [189–191]. Radiation is included using the metallicity-dependent
cooling and heating functions from 10 to 109 K generated by CLOUDY version 13.5 [192–194]. Assuming
the environment of the Milky Way Galaxy, dwarf galaxies, and the early universe, 1 solar metallicity, 0.1
solar metallicity, and 0 metallicity (adiabatic) are adopted. The turbulent spherical clouds are initialized
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at three different temperatures: 10 K, 100 K, and 1000 K. Details about each simulation time are available
on the README.md of the dataset.

Varied Physical Parameters. Random seeds for generating an initial turbulence velocity field, Initial
temperature T0={10K, 100K, 1000K}, Initial number density of hydrogen ρ0 ={44.5/cc, 4.45/cc,
0.445/cc}, metallicity (effectively strength of cooling) Z={Z0, 0.1Z0, 0}.

Fields present in the data. Pressure (scalar field), density (scalar field), temperature(scalar field), velocity
(vector field).

References to cite when using these simulations: [185].

B.15 turbulent_radiative_layer_2D and turbulent_radiative_layer_3D

Description of the physical phenomenon. The simulations solve the standard fluid equations with
an additional energy source term, which removes thermal energy at a rate tcool which is fastest for
intermediate temperatures between the hot and cold phase. The full system of equations solved is given by:

∂ρ

∂t
+∇·(ρv)=0 (45)

∂ρv

∂t
+∇·(ρvv+P)=0 (46)

∂E

∂t
+∇·((E+P)v)=− E

tcool
(47)

E=P/(γ−1) where γ=5/3 (48)

The major result from these simulations and the corresponding analytic theory is that the total volume
integrated radiative cooling is proportional to the net rate of transfer of mass from the hot phase to the cold
phase, and that both are proportional to the relative velocity of the phases risen to the 3/4 and the cooling
time to the -1/4 power, i.e. Ėcool∝Ṁ∝v

3/4
rel t

−1/4
cool .

Simulation details. 2D data takes 100 CPU core hours on nodes of 48 CPUs to generate all data, while
3D data was generated on 128 core nodes, taking 34560 CPUhours for all simulations.

Varied Physical Parameters. tcool={0.03, 0.06, 0.1, 0.18, 0.32, 0.56, 1.00, 1.78, 3.16}.

Fields present in the data. Density (scalar field), pressure (scalar field), velocity (vector field).

References to cite when using these simulations: [95].

B.16 viscoelastic_instability

Description of the physical phenomenon. This dataset contains results from two-dimensional direct
numerical simulations between two parallel walls with periodic boundary conditions in the streamwise
(horizontal) direction and no velocity at the walls. The governing equations of the problem read,

Re(∂tu+u·∇u)+∇p=β∆u+(1−β)∇·T(C), (49a)
∇·u=0. (49b)

We consider FENE-P fluids, where the polymeric stress is related to the conformation tensor C - an
ensemble average of the product of the end-to-end vector of each polymer molecule - via

T(C):=
1

Wi

(
C

1−(tr(C)−3)/L2
max

−I

)
. (49c)

We consider the evolution equation for the polymer conformation tensor C,

∂tC+(u·∇)C+T(C)=C·∇u+(∇u)T ·C+ε∆C. (49d)

In these equations u = (u,v) is the velocity with u and v the streamwise and wall-normal velocity
respectively, p is the pressure, β := νs/ν is a ratio of kinematic viscosities, where νs and νp = ν−νs
are the solvent and polymer contributions respectively, and Lmax is the maximum extensibility of the
polymer chains. The half-distance between the plates h and the bulk velocity Ub are used to make the
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Figure 5: Top to bottom row: snapshots at t = {0, T3 ,
2T
3 , T} of supernova_explosion, turbu-

lence_gravity_cooling and turbulent_radiative_layer_2D.

system non-dimensional. The remaining non-dimensional parameters are the Reynolds, Re :=Ubh/ν,
and Weissenberg, Wi :=τUb/h, numbers, where τ is the polymer relaxation time, along with the parameter
ε :=D/Ubh which is the dimensionless polymer stress diffusivity.

Simulation details. The edge states in the present data set are obtained by bisecting between initial
conditions known to reach each attractor. This is done between the laminar state and EIT and between
EIT and SAR. The data is generated using the Dedalus codebase [105]. It takes ∼1 day to generate ∼50
snapshots on 32 or 64 CPU cores, 3 months in total.

Varied Physical Parameters. Reynold number Re= 1000, Weissenberg number Wi= 50, β = 0.9,
ϵ=2.10−6, Lmax=70.

Fields present in the data. pressure (scalar field), velocity (vector field), positive conformation tensor
( c∗xx,c

∗
yy,,c

∗
xy are in tensor fields, c∗zz in scalar fields).

References to cite when using these simulations: [96].

C Additional Tasks of Interest

C.1 Moving Beyond the Baselines

The baseline models employed here are powerful but naive models employed en masse without accounting
for the specific physical characteristics of the datasets. These are just a starting point for analysis with
the Well. Areas for further exploration include:

Physical constraints. Conservation laws and boundary conditions are both key physical properties that
can often be directly controlled by a model [195–199]. The Well features a variety of conserved quantities
and diverse boundary conditions that can vary within a single dataset, making it well-suited to advance
such research.

Long-term stability. Several prior studies have highlighted the difficulty and importance of stable
surrogate models [20, 49, 200, 201]. The Well is designed with these studies in mind with most datasets
including at least 50 snapshots per trajectory while some include a thousand or more.
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Further challenges. While our example baselines target the forward problem, the Well can be used for a
variety of other tasks. Several datasets, such as acoustic_scattering and helmholtz_staircase
are well-suited for inverse scattering tasks. Others like MHD are coarsened representations of high
resolution simulations and could be used for studies of super-resolution. Many contain wide parameter
ranges valuable for generalization studies.

The Well contains an enormous diversity of data and can be used for more than forecasting dynamics.
We propose a list of additional challenges to be tackled within the Well:
- Super-resolution: MHD has been downsampled and is available at two resolutions. super-
nova_explosion has been generated at two resolutions. For MHD which is downsampled, infer the
unresolved scales from the remaining scales. For either, explore generalization from lower resolution
training to higher resolution.

- Transfer across dimensionality: The same physical phenomenon is represented in 2D and 3D in
turbulent_radiative_layer_2D and turbulent_radiative_layer_3D. Identify approaches
for generalizing from cheaper 2D training to more expensive 3D dynamics.

- Time-steps generalization: rayleigh_taylor_instability simulations for different Atwood
numbers have different simulation time-steps. Develop a model trained at a given time-step that can
generalize to others.

- Transfer across a physical parameter range: Develop a model trained on a restricted range of
physical parameters that can generalize to unseen ones which can have different physics be-
havior. Datasets: active_matter, gray_scott_reaction_diffusion, rayleigh_benard,
viscoelastic_instability, shear_flow, euler_multi-quadrants generate data across
ranges of parameters that can easily be filtered in the provided dataset object.

- Steady-state prediction: convective_envelope_rsg and gray_scott_reaction_diffusion
eventually reach a steady-state. Predict this steady-state from initial conditions.

- Stable long-term forecasting: Each trajectory of planetswe is rolled out for three model years.
Develop models that can produce stable predictions in the sense that the forecasted states follow the
same distribution as the simulated system at long time horizons.

- Inverse-scattering problem: acoustic_scattering and helmholtz_staircase contain forward
simulations of acoustic waves scattering in response to different material densities. Try instead predicting
the material densities from the evolution of the pressure fields.

- Simulation acceleration: post_neutron_star_merger and turbulence_gravity_cooling are
enormously expensive simulations taking months to generate. Accurate predictions here can constitute
an enormous speed-up relative to the generating process.

D Benchmarking

D.1 Results

D.2 Standard Methodology

The preliminary benchmarks included in the Well are intended to demonstrate the value of new, more
challenging tasks for pushing the field forward. As the focus of this work is on the data, our benchmarking
methodology is designed to be representative of a generic standard practice in the field both in terms of
design choices and computational resources. With that in mind, all benchmarks were performed with
the following procedure:

• Baseline models were scaled to approximately 15-20 million parameters.
• Batch size was chosen to maximize GPU memory consumption for a given dataset.
• AdamW was used for all experiments with the PyTorch default WD of .01. We performed

a coarse learning rate search over {1×10−4, 5×10−4, 1×10−3, 5×10−3, 1×10−2}. The
run/epoch with the best validation VRMSE was used for subsequent reporting (see Table. 5).

• All models and datasets were trained using Mean Squared Error averaged over fields and space
during training.

• Boundary conditions were handled naively according to model architecture. Fourier domain
convolutions implicitly used periodic boundaries while spatial domain convolutions utilized
standard zero padding.
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Dataset Model

FNO TFNO U-net CNextU-net

acoustic_scattering (maze) 0.5062 0.5057 0.0351 0.0153
active_matter 0.3691 0.3598 0.2489 0.1034
convective_envelope_rsg 0.0269 0.0283 0.0555 0.0799
euler_multi-quadrants (periodic b.c.) 0.4081 0.4163 0.1834 0.1531
gray_scott_reaction_diffusion 0.1365 0.3633 0.2252 0.1761
helmholtz_staircase 0.00046 0.00346 0.01931 0.02758
MHD_64 0.3605 0.3561 0.1798 0.1633
planetswe 0.1727 0.0853 0.3620 0.3724
post_neutron_star_merger 0.3866 0.3793 — —
rayleigh_benard 0.8395 0.6566 1.4860 0.6699
rayleigh_taylor_instability (At = 0.25) >10 >10 >10 >10
shear_flow 0.1567 0.1348 0.5910 0.2037
supernova_explosion_64 0.3783 0.3785 0.3063 0.3181
turbulence_gravity_cooling 0.2429 0.2673 0.6753 0.2096
turbulent_radiative_layer_2D 0.5001 0.5016 0.2418 0.1956
turbulent_radiative_layer_3D 0.5278 0.5187 0.3728 0.3667
viscoelastic_instability 0.7212 0.7102 0.4185 0.2499

Table 3: Model Performance Comparison: VRMSE metrics on test sets (lower is better). Best results are
shown in bold. VRMSE is scaled such that predicting the mean value of the target field results in a score of 1.

• All runs were time-limited to 12 hours on a single Nvidia H100 GPU. Due to the size of these
datasets, this intentionally gave an advantage to faster models. As such, we used recent, optimized
libraries wherever possible and avoided cutting-edge architectures without optimized GPU kernels.

• Single precision was used for all experiments as several datasets encountered stability issues
with mixed or low precision training.

D.3 Models

We opted to stick with time-tested models that are widely used in applications and that natively extend to
3D. This is not intended to be an exhaustive baseline, but rather provide a starting point for the community
to use in their own studies. The Fourier Neural Operator [97, FNO] and U-net [99] are among the most
widely used models for data driven surrogates. While neither can fairly be called state of the art at this
point, they have demonstrated robustness across many problems and are common starting points for
practitioners. The TFNO [202] is a more recent tensor-factorized variant of the FNO that improves
scalability. We additionally felt that the 2015 variant of the U-net with MaxPool layers and Tanh activations
was lacking many recent improvements and so replaced the convolutional blocks with a modern ConvNext
[100] architecture for fairer evaluation.

As mentioned in the previous section, all models were scaled to obtain approximately 15-20 million
parameters for 2D models. We prioritized reaching this with adjustments to depth or width rather than filter
size or downsampling rates. The hyperparameter settings that allowed us to reach these are as follows:

• FNO

– Spectral filter size (modes) - 16
– Hidden dimension - 128
– Blocks - 4

• TFNO

– Spectral filter size (modes) - 16
– Hidden dimension - 128
– Blocks - 4

• U-net Classic

– Spatial filter size - 3
– Initial dimension - 48

37



– Blocks per stage - 1
– Up/Down blocks - 4
– Bottleneck blocks - 1

• CNextU-net

– Spatial filter size - 7
– Initial dimension - 42
– Blocks per stage - 2
– Up/Down blocks - 4
– Bottleneck blocks - 1

D.4 Metrics

We evaluate the performance of our models using a diverse set of spatial metrics, namely:

• The mean squared error (MSE): for two spatial fields u and v it is defined as:

MSE(u,v)=⟨|u−v|2⟩,

where ⟨·⟩ denotes the spatial mean operator. We also consider its variant the root mean squared
error (RMSE) that is the square root of the MSE.

• The normalized mean squared error (NMSE): it corresponds to the MSE normalized by the mean
square value of the truth, that is:

NMSE(u,v)=⟨|u−v|2⟩/(⟨|u|2⟩+ϵ),

where ϵ=10−7. The term ϵ prevents division by zero in cases where |u|2⟩ reaches zero. We
also consider its square root variant called the NRMSE.

• The variance scaled mean squared error (VMSE): it is the MSE normalized by the variance of
the truth

VMSE(u,v)=⟨|u−v|2⟩/(⟨|u−ū|2⟩+ϵ).

We chose to report its square root variant, the VRMSE.

• The maximum error (L∞):
L∞(u,v)=max|u−v|

.

• The binned spectral mean squared error (BSMSE): it is the MSE after bandpass filtering of the
input fields on a given frequency band B, that is:

BSMSEB(u,v)=⟨|uB−vB|2⟩,

where uB=F−1[F[u]1B], with F the discrete Fourier Transform and 1B the indicator function
over the set of frequencies B. For each dataset, we define three disjoint frequency bands B1,
B2, and B3 corresponding to low, intermediate, and high spatial frequencies, respectively. In
practice, these bands are defined by partitioning the frequencies based on the magnitudes of
their wavenumbers, which are split evenly on a logarithmic scale.

• The binned spectral normalized mean square error is a variant of the previous metric normalized
to bin energy of the target:

BSNMSEB(u,v)=⟨|uB−vB|2⟩/⟨|vB|2⟩,

thus a value of 1 or more indicates that the model would have performed better if it had predicted
coefficients of zero corresponding to that scale. This is used in Figure 6 for instance to make
the rollout quality more immediately visually interpretable.
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Figure 6: The benchmark library included with the Well includes both coarse and fine level metrics. On
the left, we can see the model’s performance in VRMSE across state variables. On the right, we divide
the isotropic power spectrum into three bins whose boundaries are evenly distributed in log space and
evaluate the growth of RMSE per bin normalized by the true bin energy to examine the model’s ability
to consistently resolve the problem scales.

D.5 Evaluation Metrics

The benchmark library comes equipped with a variety of metrics to inform architecture design in physically
meaningful ways. For instance, if we look at the aggregate score for turbulent_radiative_layer_2D,
most baselines appear to have performed quite poorly. However, in Figure 6, using per-field metrics, we
can see that several fields did quite well and that loss is concentrated in the pressure (P) field. Similarly,
looking at one-step performance, it appears that CNextU-net has a large advantage, but when we look
at longer time horizons, this advantage quickly dissipates and all models apart from the original U-net
becomes largely interchangeable. The binning of this error over frequency bins provides further insight
as we see all models effectively predict low frequency modes in the long run, but high frequency modes
diverge more quickly. The full collection of metrics is described in the supplementary material.

D.6 Results

Due to space limitations, we report the one-step VRMSE in Table 2. In many cases, the simple, generic
training approach works quite poorly. We choose VRMSE as the reporting metric as it has the clear
interpretation that scores above 1.0 indicates one could have improved the result by predicting the
non-spatially varying mean of the target. This is not the same as predicting the population mean, but it
is a significantly easier task that predicting the spatially varying target. However, we see in many cases,
12 hours of training is insufficient to reach this level of performance.

When we dig deeper into individual datasets as we do in Figure 6, we can see that this poor performance
is not uniform across fields. Even when overall performance is poor, individual fields may obtain good
accuracy. Perhaps this is in part due to the use of unnormalized losses during training which could support
the use of normalized losses for general surrogate modeling tasks.

Interestingly, though also predictably, we see the model is better able to track the evolution of low
frequency modes over time while high frequency modes diverge relatively quickly. The metrics included
in the Well pipeline provide valuable insights like this into training and developing new architectures.

More generally, certain datasets proved particularly challenging due to either computational limitations
or inherent complexities in their dynamics. For the following datasets, the training could only be done
on less than 5 epochs within 12 hours (see Table 5): convective_envelope_rsg (544GB),
euler_multi-quadrants (4.9TB), turbulence_gravity_cooling (793GB), turbu-
lent_radiative_layer_3D (711GB). Non-time limited training could improve the results.
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Dataset FNO TFNO U-net CNextU-net

acoustic_scattering (maze) 0.5033 0.5034 0.0395 0.0196
active_matter 0.3157 0.3342 0.2609 0.0953

convective_envelope_rsg 0.0224 0.0195 0.0701 0.0663
euler_multi-quadrants (periodic b.c.) 0.3993 0.4110 0.2046 0.1228
gray_scott_reaction_diffusion 0.2044 0.1784 0.5870 0.3596

helmholtz_staircase 0.00160 0.00031 0.01655 0.00146
MHD_64 0.3352 0.3347 0.1988 0.1487

planetswe 0.0855 0.1061 0.3498 0.3268
post_neutron_star_merger 0.4144 0.4064 - -

rayleigh_benard 0.6049 0.8568 0.8448 0.4807
rayleigh_taylor_instability (At = 0.25) 0.4013 0.2251 0.6140 0.3771

shear_flow 0.2963 0.2087 0.5799 0.3258
supernova_explosion_64 0.3804 0.3645 0.3242 0.2801

turbulence_gravity_cooling 0.2381 0.2789 0.3152 0.2093
turbulent_radiative_layer_2D 0.4906 0.4938 0.2394 0.1247
turbulent_radiative_layer_3D 0.5199 0.5174 0.3635 0.3562
viscoelastic_instability 0.7195 0.7021 0.3147 0.1966

Table 4: Dataset and model comparison in VRMSE metric on the validation sets, best result in bold.
VRMSE is scaled such that predicting the mean value of the target field results in score of 1.

Dataset FNO TFNO U-net CNextU-net

acoustic_scattering (maze) 1E-3 (27) 1E-3 (27) 1E-2 (26) 1E-3 (10)
active_matter 5E-3 (239) 1E-3 (243) 5E-3 (239) 5E-3 (156)

convective_envelope_rsg 1E-4 (14) 1E-3 (13) 5E-4 (19) 1E-4 (5)
euler_multi-quadrants (periodic b.c.) 5E-4 (4) 5E-4 (4) 1E-3 (4) 5E-3 (1)
gray_scott_reaction_diffusion 1E-3 (46) 5E-3 (45) 1E-2 (44) 1E-4 (15)

helmholtz_staircase 5E-4 (132) 5E-4 (131) 1E-3 (120) 5E-4 (47)
MHD_64 5E-3 (170) 1E-3 (155) 5E-4 (165) 5E-3 (59)

planetswe 5E-4 (49) 5E-4 (49) 1E-2 (49) 1E-2 (18)
post_neutron_star_merger 5E-4 (104) 5E-4 (99) - -

rayleigh_benard 1E-4 (32) 1E-4 (31) 1E-4 (29) 5E-4 (12)
rayleigh_taylor_instability (At = 0.25) 5E-3 (177) 1E-4 (175) 5E-4 (193) 5E-3 (56)

shear_flow 1E-4 (91) 1E-4 (91) 1E-3 (93) 1E-4 (39)
supernova_explosion_64 1E-4 (40) 1E-4 (35) 5E-4 (46) 5E-4 (13)

turbulence_gravity_cooling 1E-4 (13) 5E-4 (10) 1E-3 (14) 1E-3 (3)
turbulent_radiative_layer_2D 5E-3 (500) 1E-3 (500) 5E-3 (500) 5E-3 (495)
turbulent_radiative_layer_3D 1E-3 (12) 5E-4 (12) 5E-4 (13) 5E-3 (3)
viscoelastic_instability 5E-3 (205) 5E-3 (199) 5E-4 (198) 5E-4 (114)

Table 5: Optimal learning rate and number of training epochs (in parenthesis) to obtain the VRMSE
validation loss reported in Table 4.
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