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Abstract
Protein-ligand interactions (PLI) are foundational
to small molecule drug design. With compu-
tational methods striving towards experimental
accuracy, there is a critical demand for a well-
curated and diverse PLI dataset. Existing datasets
are often limited in size and diversity, and com-
monly used evaluation sets suffer from training
information leakage, hindering the realistic as-
sessment of method generalization capabilities.
To address these shortcomings, we present PLIN-
DER, the largest and most annotated dataset to
date, comprising 449,383 PLI systems, each with
over 500 annotations, similarity metrics at pro-
tein, pocket, interaction and ligand levels, and
paired unbound (apo) and predicted structures.
We propose an approach to generate training and
evaluation splits that minimizes task-specific leak-
age and maximizes test set quality, and compare
the resulting performance of DiffDock when re-
trained with different kinds of splits.

1. Introduction
The protein-ligand field has seen a surge in the application
of deep learning-based prediction methods, notably in tasks
such as rigid body docking (Stärk et al., 2022; Lu et al.,
2022; Corso et al., 2023) where the pose of a ligand within
a given rigid protein structure is predicted, flexible pocket
docking (Plainer et al., 2023; Qiao et al., 2024) which al-
lows side-chain movements of pocket residues, co-folding
(Qiao et al., 2024; Krishna et al., 2024; Abramson et al.,
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2024) where both the protein conformation and ligand pose
are predicted at once, pocket-conditioned ligand genera-
tion (Schneuing et al., 2023) where novel ligand molecules
are generated within a given protein structure and pocket,
ligand-conditioned protein engineering (Dauparas et al.,
2023) where, conversely, novel protein sequences are de-
signed to selectively bind a ligand, and molecular scaffold-
ing (Chawdhury et al., 2021) where ligands are modified to
enhance their affinity to a protein or pocket.

These methods hold promise in accelerating drug discovery
and protein engineering by facilitating the accurate pre-
diction of ligand binding poses within protein structures.
However, their effectiveness relies heavily on the datasets
used for training and evaluation, where several key consider-
ations must be addressed: 1. Training set diversity to move
to high data regimes and learn the underlying patterns in-
stead of simple memorization; 2. Low information leakage
between train and test to accurately assess generalisation
capabilities and avoid inflating expected performance by
over-fitting; 3. Test set quality to avoid comparing predic-
tion results to unreliable ground truth caused by varying
experimental quality or missing atoms in and around the
binding site; 4. Test set diversity to showcase performance
across a range of complex types and use-cases; and 5. Real-
istic inference scenarios to move beyond the ”re-docking”
use-case where the ligand pose is predicted within the never-
available experimental ligand-bound receptor conformation.

Despite the availability of numerous publicly reported
protein-ligand interaction (PLI) structural datasets, many
fall short in meeting these critical considerations. For in-
stance, BioLip2 (Zhang et al., 2024), a sizable dataset, pri-
marily emphasizes functional annotation and lacks suitable
partitioning for training or testing machine learning-based
methods. Other datasets such as PDBBind (Wang et al.,
2005) and variants of it come with suggested splits, yet they
are small and contains information leakage between data
partitions. Attempts to address leakage issues in PDBBind
remain limited in dataset size and do not provide principled
evaluation of different leakage metrics chosen via model
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retraining (Li et al., 2024). Selectively combining previ-
ously curated datasets using evolutionary classification of
protein domains (ECOD) (Cheng et al., 2014) annotations,
as done in DockGen (Corso et al., 2024), ensures novel test
domains to assess generalization potential, but is still lim-
ited in dataset size, constrained by manual curation biases in
ECOD domain annotation, and has limitations in assessing
novel ligands and binding modes for shared ECOD domains.

PLINDER offers the largest and most diverse dataset of
protein-ligand complexes, encompassing various types such
as multi-ligand systems, oligonucleotides, peptides, and sac-
charides. It calculates similarity between complexes at the
protein, pocket, PLI, and ligand levels, enabling the mea-
surement of diversity and detection of information leakage.
Additionally, PLINDER annotates complexes for quality and
domain information, and proposes an approach to priori-
tize a diverse, high-quality test set with minimal leakage.
It also links holo complexes to relevant apo and predicted
structures, facilitating realistic inference scenarios. Through
these measures, PLINDER aims to provide researchers in the
protein-ligand field with a robust and reliable dataset for
training and evaluating deep learning-based prediction meth-
ods, ultimately advancing the development of novel drug
discovery and protein engineering approaches.

2. Method Overview
2.1. Dataset Curation and Annotation

We obtained all entries from the Protein Data Bank (PDB)
(Berman et al., 2000) as of 2024-04-09, using MMCIF files
in the PDB NextGen Archive resource (Choudhary et al.,
2023). For entries solved by X-ray crystallography, we
extracted entry and residue-level information from the cor-
responding X-ray validation reports. We generated each
biounit assembly of each PDB entry using OpenStructure
(Biasini et al., 2013), and obtained all protein-ligand inter-
actions detected by the protein-ligand interaction profiler
(PLIP) (Adasme et al., 2021) for all ligand-like chains. Only
interactions between protein and ligand atoms or ligand
atoms and water molecules are considered. A chain within a
PDB entry was labelled as a ligand chain if one of the follow-
ing was true: (1) the chain type was non-polymer, (2) there
was a Biologically Interesting Molecule Reference Dictio-
nary (BIRD) (Dutta et al., 2014) identifier associated with
that chain, (3) the chain was of type polypeptide, oligosac-
charide, or oligonucleotide and had less than 10 residues,
(4) the chain was of type polypeptide and had less than 20
residues and no UniProt ID associated with it. Ligand chains
within 4 Å of each other or having a detectable PLIP inter-
action are merged into the same PLI system. Each system is
also associated with its “interacting” residues, consisting of
residues participating in a PLIP interaction with the ligand
chains of that system, and “neighboring” residues, consist-

ing of residues within 6 Å of the ligand, together making
up the system pocket. Thus, PLI systems are defined by
the combination of a PDB ID, biounit identifier, specific
instance(s) of the ligand chain(s), and specific instance(s) of
the interacting protein chain(s) (Figure 1A).

For each system, we provide annotations broadly cate-
gorised in Table A. All domain annotations are mapped to
pocket residues, and the domain sharing the highest overlap
with the pocket is retained as the pocket domain. Systems
are labelled as holo, artifact or ion and annotated with lig-
and definitions and properties as described in Appendix A.1.
We performed extensive molecule processing and cleaning
efforts to correct bond, valence and chirality issues to ensure
that the vast majority of PLINDER can readily be processed
and used by the typical pre-processing and feature extrac-
tion routines employed by deep learning methods, and those
which cannot are clearly annotated.

2.2. Protein-ligand system similarity

To cluster and split our curated dataset, we calculated protein
and pocket similarity using MMSeqs (Steinegger & Söding,
2017) and Foldseek (van Kempen et al., 2024) (Figure 1B),
PLI similarity using the alignments combined with unique
PLIP interactions, and ligand similarity using ECFP4 finger-
prints. MMSeqs and Foldseek searches were conducted
on all PDB chains within all systems (E-value < 0.01,
min seq id 0.2, max seqs 5000) to yield alignments and
query coverages. Protein similarities are determined based
on lDDT score (only for Foldseek), identity percentage,
sequence similarity, and query coverage-adjusted global ver-
sions of these scores. Per-residue alignment information was
used to calculate pocket-level scores. PLIP interactions were
made unique using the interaction type and type-specific
attributes as defined in Table A9, and combined with pocket
information in a weighted Jaccard similarity metric to com-
pute a PLI-level similarity measure. See Appendix B for
more details.

For each similarity metric and given thresholds (50, 70, 95,
100), a graph is created with systems as nodes and edges
between systems which have a similarity score above the
threshold for the specified metric. Note that all similarity val-
ues are adapted to be in the 0-100 range. Strong and weakly
connected components, as well as communities based on the
Parallel Louvain Method are identified for this graph, using
NetworKit (Angriman et al., 2023), and systems within each
cluster are labelled with the corresponding cluster identi-
fier, adding additional similarity-centric annotations to each
system.

2.3. Train-validation-test dataset splitting

We used Algorithm 1 to split the dataset into proto-train
and test sets, to ensure that our requirements for training set
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Figure 1. A) Curation and annotation of PLI systems from the PDB, B) Measuring similarity between PLI systems C) Splitting into
diverse train and high quality test sets.

Algorithm 1 Splitting
1: Input: systems S, clusters C, graphs G, depths D,

maximum leakage count M , minimum cluster size m,
number of representatives from each cluster n

2: Output: proto train and test systems
3: Initialize proto test← ∅
4: Initialize ∀s ∈ S,Ns = ∅
5: for s ∈ S do
6: if pass quality(s) then
7: for g = 1 to |G| do
8: Ns ← Ns

⋃
neighbors upto depth(s,Gg, Dg)

9: if m < |Ns| < M then
10: proto test.insert(s)
11: Sort s ∈ proto test by |Ns|
12: Initialize test← ∅
13: for c ∈ C do
14: test← up to n from proto test for c
15: Initialize proto train← S
16: for s ∈ test do
17: proto train← proto train \Ns

size, test set quality, test set diversity, and low information
leakage are met (Figure 1C). It is important to note that
these considerations vary for different prediction tasks. For
instance, in the case of rigid body docking methods, having
a similar protein in train and test may not be considered
leakage if the binding pocket location, conformation and/or
pocket interactions with a ligand are sufficiently different.
This allows us to evaluate the common use-case of docking
a different ligand into a known drug target. However, for
co-folding tasks, having such train-test pairs could poten-
tially overestimate model performance as predicted protein
structure may contribute more to commonly used accuracy
scores than the ligand pose. Likewise, for pocket condi-
tioned ligand generative tasks, similarity between ligand
structure and pocket interactions can be expected to con-
tribute to leakage more than receptor sequence similarity.
Figure A1 illustrates that using PLINDER similarity annota-
tions, the test and validation set can be further stratified into

task-specific subsets. These make the resource suitable for
critical evaluation of various task-specific methods based
on novel proteins, ligands, pockets and protein-ligand in-
teractions. This also include the possible intersections that
provide a universal testing set.

Our splitting algorithm is configurable by a set of graphs G,
each defined on a specific similarity metric, threshold, and
a neighbor depth (D) determining the maximum length of
the shortest path between two systems to constitute leakage.
The pass quality() function decides whether a system has
high enough experimental quality (see Table A2) to be con-
sidered part of the test set. The minimum neighbors m helps
avoid singletons or sparsely connected potentially unreal-
istic systems in the test set, while the maximum neighbors
M puts a cap on the number of systems removed from the
proto-train set by one test system, to maintain an acceptable
training set size. Test set redundancy is limited by allow-
ing only n number of representatives from each component
cluster (for a given similarity metric and threshold) to be
retained.

Apart from leakage count, we also prioritize test represen-
tatives based on the presence of systems within congeneric
matched molecular series (MMS, see Appendix A.3), and
the number of linked apo and predicted structures. For
systems in test which are part of a congeneric MMS, all
members of that series passing quality criteria are moved
to test, and the corresponding leaked systems are removed
from proto-train. The obtained proto-train set is further split
into training and validation sets based on random 90/10
split of component clusters for a given metric and threshold
(pocket shared ≥ 50 weak components was used for
the splits presented in this manuscript). The algorithm was
applied with the four configurations listed in Table A10 on
all PLINDER holo systems. We select one of the configura-
tions most applicable to blind-docking (configuration 1) for
re-training DiffDock to study the effect of leakage on model
performance.

Fraction of leaked systems: For a given train-test split,



PLINDER: The protein-ligand interactions dataset and resource

DATASET PLINDER PDBBIND DOCKGEN

SYSTEMS 449,383 30,337 41,791
PDB IDS 110,791 19,007 16,881
PASS QUALITY 113,498 10,818 19,355
RECEPTORS 74,256 5,425 7,961
SMILES 51,573 15,279 91,74
CCD CODES 46,988 15,064 9,164
CATH 1,641 649 603
SCOP2B 11,154 2,423 2,817
ECOD T NAME 1,332 528 478
ECOD T ID 4,458 1,444 1,513
PROTEIN KINASE 297 184 174
KINASE INHIBITORS 48,064 4,682 5,605
APO LINKED 98,473 - -
AFDB LINKED 205,300 - -

Table 1. Protein-ligand interaction dataset comparisons. Only
holo systems are listed for PLINDER. See Appendix A.4
for PDBBind (v2020) and DockGen mapping. “Pass qual-
ity” = systems passing the criteria listed in Table A2. “Re-
ceptors” = unique weakly connected components of 100%
protein fident global. “Kinase inhibitors” = systems
where a ligand is present in the kinase inhibitors list (Kanev et al.,
2020). “Apo linked” and “AFDB linked” = systems linked to
one or more apo or AFDB structure respectively, as described in
Appendix A.2.

similarity metric and threshold, we find the fraction of test
systems having at least one connection (an edge with sim-
ilarity ≥ threshold for that metric) with the train set (also
applied to validation vs. test and train vs. PoseBusters).

Since DiffDock is designed for single ligand docking, we
focused on holo PLI systems involving only a single ligand
and selected one system for each unique PDB ID, CCD
code combination, yielding 106,745 systems across 35,255
unique ligand SMILES, referred to as PLINDER-NR (non-
redundant) for DiffDock training. Split configuration 1 (with
G as pocket lddt>50) applied to the PLINDER-NR set
is referred to as PLINDER-PL50. We also created a time-
based split (PLINDER-TIME), and an ECOD topology-based
split (PLINDER-ECOD), both on PLINDER-NR, to compare
against PLINDER-PL50 (see Appendix D for more details).
PDB IDs in PoseBusters (Buttenschoen et al., 2024) are
removed from the training, validation, and test sets in all
three splits to evaluate DiffDock model performance on
PoseBusters. DiffDock was retrained on the three splits as
described in Appendix E.

3. Results
3.1. PLINDER in numbers

At the time of writing of this article, PLINDER contains
1,344,214 PLI systems extracted from 162,978 PDB entries
of which 449,383 are holo systems (with the remaining
consisting of 573,169 systems with common experimen-
tal artifacts, 318,060 ion systems, and 3,602 systems con-

taining more than five protein and/or ligand chains, see
Appendix A.1 for system classification). Within the holo
systems, 26% have more than one ligand, 25% have more
than one interacting protein chain, and 34% of systems de-
termined by X-ray diffraction pass the X-ray high quality
criteria listed in Table A2. As the curation workflow oper-
ates on the entire PDB, the collection and labelling of holo
systems allowed us to simultaneously identify 564,240 PDB
chains as being apo. Thus, PLINDER also provides an auto-
matically curated dataset of apo chains with no detectable
ligand interactions (except for artifacts or ions). Table 1
shows how PLINDER compares to the commonly used PDB-
Bind (Wang et al., 2005) and DockGen datasets (Corso et al.,
2024). Each system in PLINDER has over 500 annotations
across the categories listed in Appendix A.

Of the 615,932 ligands in holo systems covering 46,988
unique CCD codes, 233,760 (37%) pass the Lipinski Ro5
criteria, 146,444 (23%) have a covalent linkage, 122,741
(19%) are cofactors, 105,836 (17%) are oligo-saccharides,
-nucleotides or -peptides, and 55,987 (9%) are fragments.
15,383 systems are part of 2,117 congeneric MMS, each
with at least three ligands containing a common core.

3.2. PLINDER splits

As shown in Table 2, the PLINDER-PL50 split exhibits
the lowest leakage levels between training and test sets
compared to PLINDER-TIME and PLINDER-ECOD. The
pocket lddt graph used for splitting eliminates edges
between train and test for this metric at threshold above
50%, but also effectively removes most connections based
on interactions, pocket location, and protein sequence sim-
ilarity. Although similar ligands appear in both sets, they
bind to different protein pockets which forms an acceptable
test-case for the rigid-body docking task and method being
assessed.

The PLINDER-ECOD split, despite lower leakage than PLIN-
DER-TIME, reveals issues with incomplete domain anno-
tations. In this case, as systems with no available ECOD
annotations were chosen for test, many of these do possess
the same domains and pockets seen in the training set. The
analogous DockGen split demonstrates that a careful and
complete assignment of ECOD domains can reduce leakage
but restricts the data that can be assigned and still relies on
manual curation efforts.

The large PLINDER dataset size also ensures high diversity
sets irrespective of splitting strategy. All PLINDER-PL50
test systems meet high-quality criteria by design, contrast-
ing with 21% and 19% for PLINDER-ECOD and PLINDER-
TIME, ensuring reliable ground truth. Table 2 also compares
the numbers of train, validation and test systems across the
different splits demonstrating our capabilities of creating
PLINDER-PL50 dataset-split with a high quality test set con-



PLINDER: The protein-ligand interactions dataset and resource

Figure 2. DiffDock performance. Success rate as the percentage of test systems with at least one pose with RMSD <2 Å from reference in
the Top-10 poses when trained of different training sets and tested on: A) corresponding test sets, and B) PoseBusters set. C) Relationship
between DiffDock success rate (high quality test sets) from A) and B) and their fraction of leaked systems as reported in Table A11.

Table 2. Dataset train vs. test split/PoseBusters fraction of leaked systems

SPLIT SET
PLI

SHARED
≥ 50

POCKET
LDDT
≥ 50

POCKET
SHARED
≥ 50

PROTEIN
GLOBAL

LDDT
≥ 50

PROTEIN
SEQSIM
≥ 30

LIGAND
SIMILARITY

≥ 30
NO. TRAIN / VAL / TEST

TEST PASS
QUALITY%

VS. TEST SET

PDBBIND-ORIGINAL 0.91 1.00 1.00 1.00 1.00 0.62 22,365 / 7,549 / 423 50.12
PDBBIND-DIFFDOCK 0.43 0.76 0.73 0.76 0.80 0.43 25,442 / 1,570 / 236 22.46
DOCKGEN 0.04 0.08 0.05 0.08 0.18 0.64 40,916 / 285 / 590 50.00
PDBBIND-LP 0.77 0.87 0.86 0.89 0.94 0.40 18,152 / 3,906 / 7,265 40.37
PLINDER-TIME 0.80 0.96 0.88 0.95 0.98 0.54 76,950 / 11,392 / 11,412 19.28
PLINDER-ECOD 0.30 0.49 0.35 0.49 0.60 0.52 77,411 / 10,169 / 12,174 20.81
PLINDER-PL50 0.04 0.00 0.09 0.01 0.37 0.58 57,602 / 3,453 / 3,729 100.00

VS. POSEBUSTERS

PDBBIND-DIFFDOCK 0.52 0.69 0.65 0.70 0.78 0.59 25,442 / 1,570 / 308 100.00
PLINDER-TIME 0.72 0.88 0.83 0.88 0.93 0.66 76,950 / 11,392 / 308 100.00
PLINDER-ECOD 0.64 0.74 0.70 0.75 0.81 0.65 77,411 / 10,169 / 308 100.00
PLINDER-PL50 0.40 0.47 0.47 0.48 0.64 0.64 57,602 / 3,453 / 308 100.00

Note that the 41,961 PLINDER-NR systems are removed from the PLINDER-PL50 split by the splitting algorithm to avoid leakage.

taining ten times more complexes than the commonly used
PoseBusters set while still maintaining low leakage to the
corresponding training set.

3.3. DiffDock performance on different splits

DiffDock was re-trained using NVIDIA BioNeMo (bio)
on PLINDER-PL50, PLINDER-ECOD and PLINDER-TIME
splits as described in Appendix E. Its performance was eval-
uated against corresponding test sets, and the standardized
PoseBusters benchmark set. All evaluations utilize single
A100 GPU inference configurations. Inference protocols
involve generating poses of the ligand on a protein and at-
tempting to identify the protein pocket and corresponding
ligand configuration from the ground truth test set. Poses
are ranked by a confidence model pre-trained as previously
described by Corso et al. (2023), and an RMSD is calculated
for each pose. Because we trained new score models but
used a pre-existing confidence model, the Top-1 pose selec-
tion may be erroneous. Therefore, we generate 10 poses,
and report Top-1 and Top-10 poses that have RMSD <2Å.
The Top-1 pose will be a selection from the unoptimized
confidence model, while the Top-10 pose considers the ag-
gregate likelihood of all generated poses, thereby mitigating

the influence of the confidence model. This discrepancy in
reported success underscores the necessity of optimizing
the confidence model for accurate reporting.

In Figure 2 and Table A12, we present the reported ac-
curacy of our newly trained DiffDock models defined by
the training sets in PLINDER-TIME, PLINDER-ECOD, and
PLINDER-PL50. On the PoseBusters benchmark set, the
baseline Top-1 performance reported for DiffDock trained
on the PDBBind-DiffDock split is 38% (Corso et al., 2024).
Simply increasing the volume of data without modifying the
architecture or considering leakage boosts performance to
47.8% and 58.2% for Top-1 and Top-10 respectively, high-
lighting the critical role of training set size and diversity in
the accuracy of deep learning models. However, with more
principled splitting strategies in PLINDER-PL50 and PLIN-
DER-ECOD in which the test set has less information leak-
age to the training set, we observe a corresponding decrease
in accuracy to the 15-18% range (21-26% for Top-10).

We posited that test set quality significantly impacts mea-
sured performance. As shown in Figure 2A and Appendix
Table A12, DiffDock’s performance drops from 45.2% to
29.2% and from 19% to 14.7% for PLINDER-Time and PLIN-
DER-ECOD respectively, when lower quality systems are
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added to the test sets. Figure 2C reveals a linear relationship
between the fraction of leaked test systems for different
metrics and DiffDock performance: for most metrics higher
leakage correlates with inflated apparent accuracy (success
rate for Top-10 poses against high-quality test). We explore
this relationship in more detail in Appendix F. Our quantifi-
able evidence validates the longstanding intuition regarding
the importance of different similarity metrics in de-leaking.

4. Dataset and code availability and updates
Our automated curation workflow enables reproducible pe-
riodic updates. For each system, apart from annotations,
we provide incremental additions to the protein similarity
and ligand similarity datasets for comparative queries, and
assign clusters directly based on the new similarity data. On
a semi-annual basis, new systems will be consolidated into
the existing similarity datasets and clustering will be re-run
from scratch and released as a new version. The dataset
itself is made available to the public with a CC-BY 4.0 li-
cense and hosted on a Google Cloud Storage bucket. The
schema of the available dataset will be updated as changes
are made and a document describing the draft schema is
available here.

The PLINDER source code is Apache 2.0 licensed and can
be downloaded at https://github.com/aivant/plinder. Ap-
pendix C describes the engineering and software choices
which allowed fast and efficient dataset curation and graph
querying. Apart from dataset curation, we provide software
to evaluate predictions of protein-ligand complexes of any
size against reference PLINDER systems using a range of ac-
curacy metrics for ligand (RMSD, lDDT-PLI, PoseBusters),
pocket (lDDT-LP), and protein (lDDT, oligomeric scores)
levels (Biasini et al., 2013; Studer et al., 2023; Robin et al.,
2023; Buttenschoen et al., 2024). In the near future, we
plan to release software supporting efficient data loading
and diversity sampling of PLINDER, and the PLINDER-2024
split with stratified validation and test sets to make PLINDER
readily accessible for the machine learning community.

5. Current limitations and future directions
As the global scientific community continues to generate
new experimental data, this work, too, reports an on-going
effort to provide the most comprehensive resource for meth-
ods in the field of protein-ligand interaction prediction.

We are working towards additional data annotations, such
as classical docking scores, cross-docking scores, measured
and predicted binding affinities, cryptic pocket and promis-
cuous ligand labels, to prioritize and stratify test sets with
varying properties and auxiliary task labels. We are explor-
ing data augmentation strategies to increase the diversity
of interactions, pockets, and folds covered using experi-

mental structures without ligands (Corso et al., 2024) and
prediction methods (Voitsitskyi et al., 2024), for which our
interaction and leakage detection algorithms are already
applicable. While the current release links only a single
AlphaFold model to each system, we will make use of the
redundancy within UniProt to link multiple predicted struc-
tures from the AlphaFold Database to each system. As we
observed cases where PLIP failed to detect high similarity
between near-identical pockets, we will also explore alter-
native protein-ligand interaction profilers for curating PLI
systems. Our focus on filtering high-quality test systems
favours smaller molecules and may underrepresent protein
or ligand classes for which only low quality structures are
available. Ideally, atom-level weighting would be used in
accuracy metrics instead, to be explored in future projects.
In addition, while we only utilize quality information for
X-ray structures, validation reports for electron microscopy
structures now include per-residue Q-scores (Pintilie et al.,
2020), which could be incorporated into similar criteria.

To enable a fair assessment of methodological advances we
plan to add a leaderboard for commonly adopted methods
trained and tested on PLINDER datasets. This will include
models trained on the full PLINDER data split, including
diversity sampled redundant and augmented systems be-
yond the subsets described for DiffDock training in this
manuscript. We also aim to cover more realistic assessment
scenarios of cross-docking or predicting poses within apo
and predicted receptor structures, with predicted pockets
stratified by the extent of conformational change.

6. Conclusion
We present PLINDER a large, comprehensive and automated
dataset resource for protein-ligand interactions. We demon-
strate the value in scalable similarity measures between
protein-ligand complexes and a splitting algorithm that pri-
oritises test set quality and low information leakage. By
retraining DiffDock on various splits, we show that our
methods and results provide a solid foundation for dataset
generation, as well as measuring and addressing both quality
and dataset leakage in a quantitative and tunable manner.
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A. Curation and Annotation
A.1. Ligand and holo system annotation

In order to characterize our systems, we identified small-
molecules that are not considered PLINDER ligands - arti-
facts and single (non-hydrogen) atom or ion entities. All
entities containing a single atom, excluding basic organic
elements C, H, N, O, P, S, were kept as auxiliary entity,
which we refer as an ”ion”, irrespective of its oxidation state
(eg. Fe2+, Xe, Cl−). These entities were considered as part
of the pocket, if they were within 4 Å distance from the
ligand, but not considered as a ligand (hereafter referred
to as ”ions”). To enrich for biologically and therapeuti-
cally relevant ligands, we further excluded molecules that
contain few atoms (less than 2 carbons or less than 5 non-
hydrogen atoms), are highly charged (absolute charge more
than 2), have long unbranched hydrocarbon linkers (longer
than 12), contain unspecified atoms or are common exper-
imental buffer artifacts. The artifact entries were curated
based on commonly used artifact definitions (Zhang et al.,
2024) and including additional commonly occurring buffer
reagents, but excluding biologically relevant co-factors or
sugars (eg. NAG). The list used is provided in Table A4.
The ligand inclusion criteria is summarized in Table A3, if
the molecule does not pass the criteria - it is labelled as an
“artifact”. All PLI systems which have at least one ligand
that passes the curation criteria form our dataset of holo
systems.

Each detected ligand was assigned a unique canonical
SMILES. For single residue ligands we used the Chemi-
cal Component Dictionary (CCD) (Westbrook et al., 2015)
to identify the SMILES. If the ligand name was not present
in the CCD or it consisted of multiple residues, we used
the resolved SMILES value from PLIP that was further
standardized via RDKit canonicalization. We then used
the canonical SMILES to calculate ligand descriptors for
Lipinski criteria and other commonly used metrics such as
the quantitative estimate of drug-likeness (QED) (Bicker-
ton et al., 2012). Finally, the SMILES were used to assign
bond orders to resolved ligand atoms. When some atoms
were missing in the resolved structure, we used substructure
matching to identify the relevant molecular fragments to
assign the bond orders. In case of failure to assign bond
orders from SMILES, we used OpenBabel (O’Boyle et al.,
2008) to assign the bond orders. Despite our best efforts
not all ligands were successfully processed by RDKit. In
Table A5 we report the numbers for PLINDER total and
RDKit-processable ligand SMILES. Note that these num-
bers also include ions and artifacts not counted in Table 1.

Table A6 provides and overview for numbers of protein and
ligand chains per holo system in PLINDER dataset.

A.2. Apo, predicted and cross-docking structures

Each system is associated where possible to related (1) apo
chains, (2) predicted structures from the AlphaFold database
(Varadi et al., 2022; Jumper et al., 2021) and (3) other holo
systems.

Apo protein chains within each PDB entry are defined as
those with a different entity identifier to any protein chain in
that entry participating in a holo system. These are collected
across the entire PDB to form the database of apo chains.
Similarly, a database of predicted structures is constructed
using the sequences and AFDB models of all UniProt IDs as-
sociated with PDB structures. A similar Foldseek and MM-
seqs search as described in Section 2.2 is performed for the
holo systems against these two databases with min seq id
set to 0.9 and minimum query coverage set to 0.9, to cal-
culate all the protein scores, as well as the pocket lddt
and pocket identity scores (Note that the remaining
scores cannot be calculated as they depend on the presence
of a ligand and binding pocket in the target). Cross-docking
structures are instead obtained for each system using the
similarities already calculated in 2.2. The apo, predicted
and cross-docking hits are further restricted with a filter of
95% pocket identity.

Each linked structure is superposed to the corresponding
system and additional metrics are calculated based on trans-
planting the ligand from the system to the linked structure.
These include the RMSD of the superposition as well as the
lDDT-LP, lDDT-PLI (Robin et al., 2023) and PoseBusters
checks (Buttenschoen et al., 2024) of the transplanted lig-
and.

A.3. Matched molecular series

To enable evaluation of lead optimization use-cases, we
detected PLI systems containing matched molecular series
(MMS), where the ligands in the set all contain the same
constant core and each pair within the set only differ by a
single chemical transformation. This allows evaluating the
performance in use-cases, where both pockets and some
members of a chemical series are known and methods are
used to prioritize changes to this series that optimize binding.
This is a key part of typical lead optimization stages of drug
development, and this annotation allows for fair evaluation
of methods that make use of this prior knowledge available
at inference time.

Using all the annotated ligands, we generated the mm-
pdb index using default parameters. This index maps
ligands that are matched molecular pairs to their shared
core scaffold. We dropped scaffolds which were frag-
mented or contained less than 5 atoms. Systems with
pockets in the same 95% protein identity and 100%
pocket identity shared strong components con-

https://github.com/rdkit/mmpdb
https://github.com/rdkit/mmpdb
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Category Annotations
Identifiers PDB ID, biounit, interacting protein chains and residue numbers, ligand chains
Entry information Release date, oligomeric state, determination method, keywords, pH
System informa-
tion

System type (holo, artifact, ion, see Appendix A.1), CCD code, unique CCD code (de-duplicated
for identical molecules with different CCD codes), canonical SMILES, resolved SMILES

Ligand properties Molecular weight, Wildman-Crippen ClogP (Wildman & Crippen, 1999), hydrogen bond donor and
acceptor counts, number of rings, number of heavy atoms, QED (Bickerton et al., 2012), covalent
bonds, passing Lipinski’s rule of five (Ro5) criteria, detected as fragment, detected as oligo-peptide,
-saccharide or -nucleotide, presence in cofactor list, presence in artifact list, presence in list of
kinase inhibitors (Kanev et al., 2020), BIRD ID (Dutta et al., 2014), detected PLIP interactions
(Adasme et al., 2021), PoseBusters checks (Buttenschoen et al., 2024)

Protein properties CATH (Orengo et al., 1997), ECOD (Cheng et al., 2014), SCOP (Murzin et al., 1995), Pfam (Mistry
et al., 2021), UniProt (Consortium, 2019), Kinase (Kanev et al., 2020), PANTHER (Thomas et al.,
2022) for each protein chain in the entry and also aggregated to the system pocket

Entry quality Resolution, R, Rfree, clash score, % Ramachandran outliers, % rotamer outliers, % RSRZ outliers,
data completenessMolProbity score (Chen et al., 2010)

Per-residue quality RSR, RSCC, RSRZ,occupancy, missing/resolved atom counts, outliers (clash, geometry, density,
chirality) and alternative configuration count. Per-residue quality metrics are also aggregated across
ligands, pockets, and chains.

Similarity clusters Protein, pocket, PLI, and ligand-level components at thresholds of 50%, 70%, 95% and 100% for
metrics listed in Appendix B

Matched molecular
series

Congeneric series IDs, core scaffolds and transformations, see Appendix A.3

Linked structures
(apo, AFDB)

Associated similarity scores, CIF files superposed to each holo system, superposition RMSD,
lDDT-LP, lDDT-PLI (Robin et al., 2023), and PoseBusters results based on transplanted ligand, see
Appendix A.2

System files MMCIF and PDB files of all ligand chains, interacting protein chains and interacting waters
extracted from the biounit. SDF files of each ligand chain. Note: chains are renamed for PDB
format.

Table A1. Annotations available per system. Annotation availability is indicated with a copper color scheme, where light orange is zero
availability, brown is 50% availability and black is available in all systems. For boolean annotations such as ”presence in cofactor list”,
the color indicates how many systems have the annotation as True.

Table A2. X-ray high quality criteria for PLI systems, based on a
combination of relevant previously defined criteria (Warren et al.,
2012; Leemann et al., 2023; Buttenschoen et al., 2024).

PROPERTY TEST VALUE
ENTRY

RESOLUTION ≤ 3.5
R-FACTOR ≤ 0.4
Rfree ≤ 0.45
R − Rfree ≤ 0.05

LIGAND AND POCKET

NO UNRESOLVED HEAVY ATOMS TRUE
NO ALTERNATIVE CONFIGURATIONS TRUE
AVERAGE OCCUPANCY ≥ 0.8
AVERAGE RSCC ≥ 0.8
AVERAGE RSR ≤ 0.3

LIGAND

NO CLASH OUTLIERS TRUE

taining ligands sharing the same scaffold are collected into
congeneric MMS.

Table A3. Non-artifact ligand classification criteria
PROPERTY VALUE
IS A SINGLE ATOM (ION) FALSE
NON-H ATOM COUNT > 5
C ATOM COUNT > 2
ABSOLUTE CHARGE ≤ 2
UNBRANCHED HYDROCARBON LINKER LENGTH ≤ 12
UNSPECIFIED ATOM (*) COUNT 0
CCD CODE (OR SYNONYM) IN TABLE A4 FALSE

A.4. Comparison with other PLI datasets

We selected PDBBind (Wang et al., 2005), and Dock-
Gen (Corso et al., 2024) to compare PLINDER against PLI
datasets that have previously been used for training and
evaluation of deep learning methods. These datasets are
mapped to PLINDER using a combination of PDB IDs and
CCD codes, with the first biounit containing the ligand con-
sidered for PDBBind and specified biounit identifiers for
DockGen.
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Table A4. CCD codes of ligands that are treated as artifacts
02U, 12P, 13P, 144, 15P, 16P, 1EM, 1PE, 1PG, 1PS, 2DP, 2JC, 2NV, 2OP, 2PE, 32M, 33O,

3HR, 3PG, 3SY, 3V3, 543, 6JZ, 6PE, 7E8, 7E9, 7I7, 7N5, 7PE, 7PG, 7PH, 90A, 9FO,

9JE, 9YU, AAE, ABA, AE3, AE4, AGA, AKR, AUC, B3H, B3P, B4T, B4X, BAM, BCN,

BDN, BE7, BEN, BET, BEZ, BGL, BHG, BNG, BNZ, BOG, BTB, BU1, BXC, C10, C14,

C8E, CAC, CAD, CAQ, CD4, CE1, CE9, CHT, CIT, CN3, CN6, CPS, CXE, CXS, D10,

D12, D1D, D22, DAO, DD9, DDQ, DDR, DEP, DET, DHB, DHJ, DIO, DKA, DMF, DMI,

DMR, DOX, DPG, DR6, DRE, DTD, DTT, DTU, DTV, E4N, EAP, EEE, EPE, ETE, ETF,

ETX, F09, F4R, FJO, FTT, FW5, GLV, GOL, GVT, GYF, HAE, HAI, HCA, HCS, HED,

HEX, HEZ, HP6, HSG, HSH, HT3, HTG, HTH, HTO, HZA, I3C, ICT, IHP, IHS, IMD,

IPH, JDJ, K12, KDO, L1P, L2C, L2P, L3P, L4P, LAC, LDA, LI1, LMR, LMT, LMU, LUT,

M2M, MAC, MAE, MB3, MBN, MBO, MC3, ME2, MEG, MES, MLA, MLI, MLT, MPD,

MPO, MRD, MSE, MYR, N8E, NBN, NET, NEX, NHE, O4B, OCT, OES, OGA, OP2,

OTE, OXM, P03, P15, P1O, P22, P25, P2K, P33, P3G, P4C, P4G, P4K, P6G, PA8, PC8,

PD7, PE3, PE4, PE5, PE6, PE7, PE8, PEG, PEP, PEU, PEX, PG0, PG4, PG5, PG6, PG8,

PGE, PGF, PGO, PGR, PHB, PHQ, PL9, PLC, PMS, PPI, PQ9, PQE, PTD, PUT, PVO,

PX2, PX4, QGT, QJE, QLB, RG1, RWB, SAR, SEP, SGM, SIN, SOG, SP5, SPD, SPJ,

SPM, SPZ, SQU, SRT, TAM, TAR, TAU, TBU, TCE, TCN, TEA, TFA, THE, TLA, TMA,

TOE, TPO, TRD, TRS, UMQ, UND, V1J, VX, XAT, XP4, XPA, XPE, Y69.

Table A5. Ligand annotation overview in PLINDER

Ligand Type
Number of

Unique Items

Ligand SMILES 54,089
Ligand RDKit Canonical SMILES 53,543
Ligand CCD Code 48,271

Mapping details are shown in Table A7 and Table A8. Sys-
tems with annotations in PLINDER that differ from PDBBind
or Dockgen are referred to as inconsistent with PLINDER.
For example, some ligands labeled as peptides with four
amino acids in PDBBind were found to have five or six
amino acids in PLINDER, or were identified with entirely
different ligand CCD codes. PDB IDs that did not pass
the PLINDER processing pipeline are referred to as not in
PLINDER. These consist of cases in PDBBind and DockGen
containing peptides longer than 11 amino acids, which are
not considered as ligands in PLINDER.

B. Similarity measures
B.1. Protein similarity

Foldseek and MMSeqs searches were run on all PDB chains
present in all systems (E-value < 0.01, min seq id 0.2,
max seqs 5000). The fraction of identical residues and
query coverage were saved along with the full query and tar-
get alignments. Additionally for Foldseek, alignment lDDT
and lDDT scores per aligned residue were saved. These
search results are used to define the following protein level
similarities for a given alignment, with the highest value be-
ing taken for each if both Foldseek and MMSeqs alignments

Table A6. Number of protein chains and ligand chains in PLINDER

holo systems

PROTEIN CHAINS LIGANDS SYSTEM IDS

1 1 257836
2 57312
3 16854
4 4508
5 1417

2 1 62977
2 25852
3 5985
4 2691
5 809

3 1 7129
2 2057
3 1163
4 312
5 83

4 1 1347
2 481
3 88
4 126
5 29

5 1 201
2 23
3 6
4 19
5 78

are found:

• protein lddt: lDDT score

• protein identity: Percentage of identical
residues

• protein seqsim: Sequence similarity

• protein qcov: Query coverage

• protein lddt global,
protein identity global,
protein seqsim global: Corresponding
similarities multiplied by the query coverage,
approximates the value for the global alignment.

For systems with more than one interacting protein
chain, greedy chain mapping is performed using the
protein lddt global score where available and
protein identity global otherwise.

The protein similarity score (Sa,b) between systems a and
b is then calculated as a weighted mean across the mapped
pairs of chains (i, j), with the weight (li) defined by the
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Figure A1. PLINDER test sets can be further stratified into subsets using extensive system similarity annotations. The test and validation
sets can be further subsplit into subsets of novel protein, ligand and protein-ligand interaction systems, including their intersections for
potential multi-task testing.

Table A7. PDBBind mapping to PLINDER details

PDBBind 2020

total PDB ID + ligand CCD combinations 19443
total PDB IDs 19443
total ligand CCDs 12930

PDB IDs in PLINDER 19007
PDB IDs + Ligand CCD ID inconsistent with PLINDER 1375
holo systems in PLINDER 28184
ion systems in PLINDER 711
artifact systems in PLINDER 1442
PDB IDs not in PLINDER 436

systems in PLINDER 30337

length of each query protein chain.

Sa,b =
Σi∈a(li.Si,j)

Σi∈ali

B.2. Pocket similarity

The alignment results and chain mappings obtained from
protein similarity calculation are combined with information
about the binding pocket, i.e residues in proximity to the
ligand, to define the following pocket level scores:

• pocket shared The percentage of shared and
aligned binding pocket residues

|Ba ∩ Aligneda→b(Bb)|
|Ba|

Table A8. DockGen mapping to PLINDER details

DockGen

total PDB ID + Biounit ID + Ligand CCD combination 26007
total PDB IDs 18504
total Ligand CCD 9338

PDB IDs in PLINDER 18391
PDB IDs + Ligand CCD ID inconsistent with PLINDER 1510
holo systems in PLINDER 37656
ion systems in PLINDER 3212
artifact systems in PLINDER 923
PDB IDs not in PLINDER 113

systems in PLINDER 41791

where the binding pocket residues of the query system
a (Ba) are only considered if the corresponding aligned
residue in the target system b, Aligneda→b, is also in
Bb.

• pocket identity The percentage of identical
residues in the query binding pocket

Σn∈Ba
Ba

n = Alignedna→b

|Ba|

• pocket identity shared The percentage of
shared, aligned and identical binding pocket residues

Σn∈(Ba∩Aligneda→b(Bb))Ba
n = Alignedna→b

|Ba|
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• pocket lddt The mean lDDT of query binding
pocket residues

Σn∈Ba lDDTn

|Ba|

• pocket lddt shared The mean lDDT of shared
and aligned binding pocket residues

Σn∈(Ba∩Aligneda→b(Bb))lDDTn

|Ba|

B.3. Protein-ligand interaction similarity

We convert each PLIP interaction into a unique string, de-
fined by the interaction type and type-specific attributes as
defined in Table A9.

Table A9. Attributes used to define protein-ligand interaction types
INTERACTION TYPE ATTRIBUTES
HYDROGEN BONDS IS PROTEIN THE DONOR?, IS THE BOND

WITH A SIDECHAIN?
HYDROPHOBIC -
SALT BRIDGES DOES THE PROTEIN CARRY THE POSITIVE

CHARGE?
WATER BRIDGES IS PROTEIN THE DONOR?
π STACKS STACKING TYPE
π-CATION DOES THE PROTEIN PROVIDE THE CHARGE?
HALOGEN BONDS IS THE BOND WITH A SIDECHAIN?
METAL COMPLEXES METAL TYPE, TARGET TYPE, COORDINA-

TION, GEOMETRY, LOCATION

The collection of hashed PLIP interactions is used to define
a weighted Jaccard index:

Jw(Ia, Ib) =

∑
min(ai, bi)∑
max(ai, bi)

Where Ia and Ib are the multisets of interactions, ai and bi
are the counts of each unique interaction in Ia and Ib respec-
tively, min(ai, bi) is the minimum count of each interaction
found in both sets, and max(ai, bi) is the maximum count
of each interaction across both sets.

The pli shared between two systems a and b is then de-
fined by comparing the interactions at each aligning pocket
residue:

Σn∈(Ba∩Aligneda→b(Bb))Jw(I
n
a , I

n
b )

|Ia|

B.4. Ligand similarity

To detect ligand similarity, we generate ECFP4 finger-
prints with length of bits 1024 using RDKit (rdk) on ligand
SMILES. We then calculated Tanimoto coefficient for each
ligand pair. When more than one ligand present in a PLI
system, we used the maximum similarity for each individ-
ual pair of systems. To be consistent with protein similarity

scores, as well as for storage and querying efficiency, we
first ranked all the Tanimoto coefficients and saved only the
top 5000 pairs. For potential leakage detection we used the
30% and 50% cutoffs previously reported for ligand based
activity enrichment (Jasial et al., 2016).

C. Dataset construction and engineering
considerations

The data ingestion and data processing required to pro-
duce the complete PLINDER dataset involves large scale
orchestration of a non-trivial amount of computational re-
sources. We leverage the metaflow (met) framework
to define a directed acyclic graph (DAG) of the work to
be completed. This enables us to implement the pro-
cessing logic in normal python code, and then simply
write a metaflow.FlowSpec to distribute the work in a
kubernetes (kub) cluster. We promote the FlowSpec
to an argo (Arg) workflow template in order to execute the
entire end-to-end pipeline in the cloud.

The RCSB rsync API makes it convenient to distribute
the initial dataset ingestion along the middle two character
codes of PDB IDs. However, the number of entries within
a two character code are not evenly distributed, leading to
uneven run times, making it a poor choice for distributing
other stages in the workflow. For stages such as annota-
tion generation and scoring, we batch chunks of PDB IDs
and distribute along these chunks instead. Using either two
character code or PDB ID chunks with tunable chunk sizes
allows us to choose between simple distribution logic and
desired total run time.

Careful consideration of distributing the workload affords
the ability to run a majority of the end-to-end pipeline on
commodity machines, with few exceptions. The first is
for the large foldseek and mmseqs database creation
steps, which are vertically scaled on a 96 core machine.
Additionally, the cluster generation and splitting steps use
up to 100 GB of memory because they require reading
a significant portion of the protein similarity dataset into
memory in order to construct the graphs.

Downstream stages of the workflow that leverage the similar-
ity and cluster datasets initially suffered from a substantial
bottleneck simply reading the data from disk. Converting
the data to parquet files and partitioning the data based on
commonly applied query filters reduced query times from
30 minutes or more to under 10 minutes. Subsequent adop-
tion of the duckdb(Raasveldt & Muehleisen) embedded
database engine with its query optimizer further reduces
query times by a factor of up to two to four. Currently, ma-
terialization of the data into a data frame is the slowest step
for large queries (100 million to 1 billion records). Finally,
since duckdb supports standard query language (SQL), it
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is possible to push complex aggregations that are currently
done in python into the query itself, including cross-dataset
joins, further reducing the cost in both time and memory of
querying these data.

D. Comparing splitting methods
To evaluate generalizability of deep learning model perfor-
mance, along with PLINDER the dataset itself, we propose a
splitting algorithm 1 which can separate dissimilar protein-
ligand interactions, protein and ligands systems into train-
ing, validation, test sets while maintaining test set quality
and train and test set diversity. We applied this algorithm
with four different configurations, listed in Table A10 on
the entire PLINDER dataset. For all splits, m = 2, M =
400, C is defined by the strongly connected components of
pli shared ≥ 70, and n = 5. The resulting proto-train
sets were divided into train and validation sets based on
weakly connected components of pocket shared ≥ 50.
As shown by the fraction of leaked systems for different met-
rics and thresholds in Table A10, splitting by different simi-
larity graphs removes leakage for that metric and to varying
extents also removes connections based on other metrics.
For example, splitting based on the pocket shared ≥
20 graph (configuration 2) only ensures that train and test
systems do have a ligand-binding pocket in the same loca-
tion. As seen by the resulting fraction of leaked systems
for protein seqsim for this configuration, this implies
that similar proteins are in train and test (but necessarily
with ligands bound in different locations). Similarly, as
none of these configurations performed splitting using the
ligand similarity graph, similar ligands are in both train and
test for all splits. Future efforts will go towards optimizing
thresholds and the m and M parameters to obtain a re-
quired test-set size, combining different component clusters
to further separate train and validation sets, and combining
different graphs to obtain stratified test sets for task-specific
assessment.

The first configuration, which distinguishes similar pockets
even for cases where ligands bind to alternative sites, was ap-
plied to a non-redundant single-ligand subset (PLINDER-NR,
described in Section 3.2) to create the PLINDER-PL50 split
which was used for retraining Diffdock. To better demon-
strate the advantage of this split method, we evaluate our
split against two more splits on PLINDER-NR also used to
retrain DiffDock, four previously detailed splits mapped to
PLINDER as described in Appendix A.4, and one additional
high quality test set:

1. PLINDER-Time: Using January 1, 2021, as the cut-
off date for the training set, all PLINDER-NR systems
submitted after this date up to 2022-04-19 form the
validation set, and those submitted afterward up to

2022-04-19 form the test set.

2. PLINDER-ECOD: This split was generated using the
pocket-level ECOD topology (t-name) annotations.
Systems from PLINDER-NR were first grouped by
ECOD t-name and sorted by its number of members,
the biggest group was added to train until the training
set had 80% of systems. The rest of the groups were
divided evenly into validation and test sets, along with
systems with unknown t-name.

3. DockGen split: Another ECOD t-name derived split
on a different dataset provided by DockGen (Corso
et al., 2024).

4. PDBBind-Original split: This split uses the “general”,
“refined” and “core” sets of PDBBind (Liu et al., 2015)
as train, validation and test sets respectively.

5. PDBBind-DiffDock split: This split was generated
by removing ligands and receptors similar to the train-
ing set from the time-split PDBBind test set, used in
DiffDock (Corso et al., 2023).

6. PDBBind-LP: A cleaned and reorganzied PDBBind
split of non-covalent binders controlling for leakage
defined by high protein sequence and ligand similarity
(Li et al., 2024).

7. PoseBusters has recently gained popularity as an ad-
ditional benchmark set for evaluating docking meth-
ods, due to its focus on higher quality systems. To
include evaluations against PoseBusters, we excluded
all PoseBusters PDB IDs from PLINDER-ECOD and
PLINDER-TIME splits.

In Table A11 we present the fraction of leaked systems
(defined in Section 2.3) for each split for different metrics
and thresholds. We note that RDKit failed to obtain ECFP4
for a number of SMILES, which might effect the reported
ligand similarity fraction of leaked systems values. We
report these numbers for the different PLINDER splits in
Table A14.

E. Retraining DiffDock
We re-train DiffDock using the NVIDIA BioNeMo Frame-
work (bio) (FW) with an identical model size of 20.2M pa-
rameters for original DiffDock comparison. A Fused Adam
optimizer was used a with learning rate of 0.001, and decay
rates (β1 and β2) 0.9 and 0.999. A new feature of DiffDock
in the BioNeMo FW is an Adaptive Batch Sampler during
training. Due to the variable size of protein-ligand com-
plexes, the memory requirements when loading the hetero-
graph can vary. This algorithm pre-computes the memory
requirement of each complex, and shuffles the batches to
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accommodate the memory overhead. Effective batch size is
12-13. All models were trained on eight 80GB A100 GPUs
for 200-400 epochs, and fully converge in 24-30 hours. For
a full list of model hyperparameters, see Table A13.

F. Performance vs Leakage analysis
Previous studies suggested that reported deep learning
method performance in general ligand pose prediction is
overestimated due to information leakage between the train
and evaluation sets (Corso et al., 2024; Li et al., 2024). This
information leakage is commonly detected by employing
similarity metrics that are used to compare test systems to
those encountered in training. We employed multiple met-
rics for this purpose (see Appendix B) to estimate the extent
of leakage for PLINDER and other dataset splits.

To assess the generalization ability, several recent studies
used high performing examples with quoted ligand or pro-
tein sequence dissimilarity above or below a certain cutoff.
For example, Krishna et al. (2024) used below 30% protein
sequence identity and below 0.5 ligand Tanimoto similarity,
to consider dissimilar protein and ligand, respectively. How-
ever, it remains unclear to what extent different similarity
metrics inflate the performance.

As we chose to remove the high quality PoseBusters from
PLINDER train / validation / test splitting, none of our PLIN-
DER splitting approaches (time, ECOD, PL50) have dealt
with active de-leaking for this subset. As a result, this pro-
vides a good representative sample for leakage-performance
assessment using three different DiffDock models trained
on three PLINDER splits. For each model we estimate the
success rate comparing the most accurate (lowest RMSD
to reference) prediction in Top 10 poses to 2 Å threshold.
Figure A2 demonstrates the relationship across different
metrics and thresholds relative to reported performance. In
Figure A2A, we show the mean excess success rate observed
for ”leaked” test systems relative to the baseline (all test
systems) as a function of ”leakage”, determined by train-test
distance cutoff. Likewise, in Figure A2B and Figure A2C,
we show success rate enrichment for leaked systems com-
pared to all test systems and change in best pose RMSD as
a function of leakage cutoff for various similarity metrics.
Finally, Figure A2D shows the cumulative leakage fraction
as a result of distance to train set. This analysis reveals that
DiffDock performance has varied sensitivity for different
type of information leakage. The pocket and PLI similarity
metrics show the most sensitive difference in performance.
Systems that share higher than 50 PLI similarity seem to con-
tribute the most significantly to overestimated performance,
while ligand similarity is hardly affecting DiffDock success.
It is somewhat intuitive that for a rigid docking task the
pocket specific interactions form the most sensitive informa-
tion that result in inflated performance if leaked. However,

for different model architectures and especially for different
tasks - this assessment should be repeated independently. To
enable such evaluation and provide model developers with a
better understanding of the factors affecting their prediction
methods, we provide scripts to generate such leakage vs.
performance plots across different similarity metrics and
performance measures.
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Table A10. Split configurations used and resulting leakage metrics
CONFIGURATIONS

PARAMETER 1 2 3 4

G
[POCKET LDDT

≥ 50]
[POCKET SHARED

≥ 20]
[PROTEIN SEQSIM

≥ 30]

[PLI SHARED ≥ 20,
POCKET SHARED ≥ 50,

PROTEIN LDDT ≥ 70]
D [2] [2] [2] [2, 2, 1]

SPLIT NUMBER OF SYSTEMS

TRAIN 279297 248849 339791 255463
TEST 14491 16910 4932 15132
VAL 19452 10131 17666 13896
REMOVED 122384 159734 73235 151133

SPLIT-PAIR FRACTION OF LEAKED SYSTEMS

PLI SHARED ≥ 50
TRAIN VS. TEST 0.03 0.00 0.00 0.00
VAL VS. TEST 0.00 0.00 0.00 0.00
TRAIN VS. VAL 0.06 0.02 0.02 0.03
TRAIN VS. POSEBUSTERS 0.52 0.39 0.77 0.46
POCKET LDDT ≥ 50
TRAIN VS. TEST 0.00 0.58 0.00 0.14
VAL VS. TEST 0.00 0.15 0.00 0.03
TRAIN VS. VAL 0.89 0.77 0.89 0.81
TRAIN VS. POSEBUSTERS 0.56 0.73 0.83 0.60
POCKET SHARED ≥ 50
TRAIN VS. TEST 0.07 0.00 0.00 0.00
VAL VS. TEST 0.00 0.00 0.00 0.00
TRAIN VS. VAL 0.00 0.00 0.00 0.00
TRAIN VS. POSEBUSTERS 0.57 0.42 0.81 0.51
PROTEIN LDDT GLOBAL ≥ 50
TRAIN VS. TEST 0.03 0.59 0.00 0.14
VAL VS. TEST 0.00 0.17 0.00 0.04
TRAIN VS. VAL 0.89 0.80 0.90 0.82
TRAIN VS. POSEBUSTERS 0.56 0.75 0.81 0.60
PROTEIN SEQSIM ≥ 30
TRAIN VS. TEST 0.34 0.70 0.00 0.40
VAL VS. TEST 0.15 0.29 0.00 0.18
TRAIN VS. VAL 0.93 0.84 0.96 0.85
TRAIN VS. POSEBUSTERS 0.71 0.83 0.84 0.73
LIGAND SIMILARITY ≥ 30
TRAIN VS. TEST 0.66 0.70 0.68 0.69
VAL VS. TEST 0.62 0.65 0.64 0.63
TRAIN VS. VAL 0.72 0.72 0.80 0.79
TRAIN VS. POSEBUSTERS 0.58 0.57 0.58 0.57
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Table A11. Fraction of leaked systems between different dataset-splits for selected similarity metrics and thresholds. For PLINDER-splits
we only report on high quality test structures

METRIC
PDBBIND

-ORIGINAL
PDBBIND

-LP
PDBBIND

-DIFFDOCK
DOCKGEN

PLINDER
-ECOD

PLINDER
-TIME

PLINDER
-PL50

PLI SHARED ≥ 50
TRAIN VS. POSEBUSTERS 0.51 0.48 0.52 0.60 0.64 0.72 0.40
TRAIN VS. TEST 0.88 0.71 0.27 0.05 0.30 0.80 0.04
TRAIN VS. VAL 0.73 0.64 0.78 0.13 0.05 0.78 0.10
VAL VS. TEST 0.89 0.69 0.08 0.01 0.05 0.59 0.00

POCKET LDDT ≥ 50
TRAIN VS. POSEBUSTERS 0.66 0.67 0.69 0.74 0.74 0.88 0.47
TRAIN VS. TEST 0.97 0.84 0.53 0.09 0.49 0.96 0.00
TRAIN VS. VAL 0.84 0.84 0.89 0.20 0.30 0.95 0.77
VAL VS. TEST 0.97 0.83 0.23 0.03 0.18 0.79 0.00

POCKET SHARED ≥ 50
TRAIN VS. POSEBUSTERS 0.63 0.64 0.65 0.70 0.70 0.83 0.47
TRAIN VS. TEST 0.96 0.81 0.47 0.06 0.35 0.88 0.09
TRAIN VS. VAL 0.82 0.80 0.87 0.14 0.07 0.87 0.29
VAL VS. TEST 0.94 0.80 0.16 0.01 0.08 0.70 0.00

PROTEIN GLOBAL LDDT ≥ 50
TRAIN VS. POSEBUSTERS 0.68 0.68 0.70 0.72 0.75 0.88 0.48
TRAIN VS. TEST 0.97 0.85 0.53 0.10 0.49 0.95 0.01
TRAIN VS. VAL 0.85 0.84 0.88 0.19 0.30 0.95 0.77
VAL VS. TEST 0.97 0.83 0.22 0.04 0.18 0.79 0.00

PROTEIN SEQSIM ≥ 30
TRAIN VS. POSEBUSTERS 0.77 0.79 0.78 0.81 0.81 0.93 0.64
TRAIN VS. TEST 0.97 0.90 0.58 0.19 0.60 0.98 0.37
TRAIN VS. VAL 0.88 0.86 0.90 0.34 0.44 0.98 0.83
VAL VS. TEST 0.97 0.87 0.39 0.08 0.35 0.87 0.14

LIGAND SIMILARITY ≥ 30
TRAIN VS. POSEBUSTERS 0.57 0.57 0.59 0.61 0.65 0.66 0.64
TRAIN VS. TEST 0.55 0.40 0.37 0.53 0.52 0.54 0.58
TRAIN VS. VAL 0.50 0.44 0.50 0.71 0.45 0.41 0.48
VAL VS. TEST 0.52 0.36 0.25 0.54 0.50 0.46 0.51

TEST POSEBUSTERS

QUALITY DATASET-SPLIT TOP-10 TOP-1 TOP-10 TOP-1

LOW PLINDER-ECOD 19.31 ± 0.28 13.57 ± 0.09 - -
PLINDER-TIME 37.61 ± 0.10 25.35 ± 0.50 - -

HIGH PLINDER-ECOD 26.47 ± 0.39 19.02 ± 0.24 47.17 ± 0.94 38.41 ± 2.11
PLINDER-PL50 25.67 ± 0.61 18.19 ± 0.29 35.46 ± 2.09 29.41 ± 1.46
PLINDER-TIME 58.75 ± 0.58 45.26 ± 0.38 58.16 ± 0.89 47.78 ± 0.24

HIGH + LOW PLINDER-ECOD 20.85 ± 0.21 14.74 ± 0.11 47.17 ± 0.94 38.41 ± 2.11
PLINDER-PL50 25.67 ± 0.61 18.19 ± 0.29 35.46 ± 2.09 29.41 ± 1.46
PLINDER-TIME 41.78 ± 0.16 29.27 ± 0.42 58.16 ± 0.89 47.78 ± 0.24
PDBBIND-DIFFDOCK (20M) 47.9 35.0 - 38.0
PDBBIND-DIFFDOCK (30M) 57.0 43.0 - 50.0

Table A12. DiffDock performance on varied quality quality test sets reported as percentage success rate of prediction within RMSD <2 Å
from reference for Top-1 and Top-10 ranked poses. For each PLINDER split, the trained model is evaluated on its corresponding test set
and the PoseBusters set. For on PDBBind-DiffDock split, we show baseline values for the original DiffDock (20M parameters), and
DiffDock-L (30M parameters).
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Figure A2. Characterizing DiffDock PoseBusters benchmark performance relationship with distance cutoffs for different metrics. For this
analysis we used an average performance of three models trained on PLINDER splits. The success rate was estimated for any of the top 10
poses being below 2 Å threshold from a reference pose. The effect of ”leakage” distance cutoff for various similarity metrics on: (A) the
excess success rate observed for ”leaked” systems relative to the baseline, (B) Success rate enrichment factor, (C) change in best pose
RMSD as a function of ”leakage” cutoff (D) cumulative leakage fraction. We note the abrupt jump after 80% distance is due to our choice
not to store pairwise similarities below 20% for our PLINDER dataset.



PLINDER: The protein-ligand interactions dataset and resource

Table A13. Hyperparameters used for re-training the DiffDock
Score Model. Choices are based on original publication model
size and parameters, with the introduction of variable batch sizing.

Parameter Option
Protein Graph Coarse-Grain
ESM Language Model Embeddings True
Ligand Hydrogens False
Maximum Neighbors in Protein Graph 24
Receptor Radius 15
Distance Embedding Method Sinusoidal
Dropout 0.1
Optimizer Fused Adam
Learning Rate 0.001
Batch Size Variable
Convolution Layers 6
Scalar Features 48
Vector Features 10
Total Parameters 20.2M

Table A14. Number of SMILES across the splits that failed to
produce ECFP4 fingerprint with RDKit

CATEGORY SPLIT SIZE NO. FAILED

PLINDER-ECOD TEST 11401 186
PLINDER-ECOD TRAIN 77411 757
PLINDER-ECOD VAL 10169 158
PLINDER-TIME TEST 10895 141
PLINDER-TIME TRAIN 76950 804
PLINDER-TIME VAL 11392 163
PLINDER-PL50 TEST 3517 12
PLINDER-PL50 TRAIN 57734 1888
PLINDER-PL50 VAL 3459 43


