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Divyat Mahajan* DIVYAT.MAHAJAN@MILA.QUEBEC
Mila - Quebec AI Institute, Université de Montréal.
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Abstract
Humans have a remarkable ability to disentangle complex sensory inputs (e.g., image, text) into
simple factors of variation (e.g., shape, color) without much supervision. This ability has inspired
many works that attempt to solve the following question: how do we invert the data generation
process to extract those factors with minimal or no supervision? Several works in the literature
on non-linear independent component analysis have established this negative result; without some
knowledge of the data generation process or appropriate inductive biases, it is impossible to per-
form this inversion. In recent years, a lot of progress has been made on disentanglement under
structural assumptions, e.g., when we have access to auxiliary information that makes the factors
of variation conditionally independent. However, existing work requires a lot of auxiliary infor-
mation, e.g., in supervised classification, it prescribes that the number of label classes should be
at least equal to the total dimension of all factors of variation. In this work, we depart from these
assumptions and ask: a) How can we get disentanglement when the auxiliary information does not
provide conditional independence over the factors of variation? b) Can we reduce the amount of
auxiliary information required for disentanglement? For a class of models where auxiliary infor-
mation does not ensure conditional independence, we show theoretically and experimentally that
disentanglement (to a large extent) is possible even when the auxiliary information dimension is
much less than the dimension of the true latent representation.
Keywords: disentanglement, non-linear independent component analysis

1. Introduction

Representation learning (Bengio et al., 2013) aims to extract low dimensional representations from
high dimensional complex datasets. The hope is that if these representations succinctly capture
factors of variation that describe the high dimensional data (e.g., extract features characterizing the
shape of an object in an image), then these representations can be leveraged to achieve good per-
formance on new downstream tasks with minimal supervision. Large scale pre-trained language
models demonstrate the major success of representation learning based approaches (Brown et al.,
2020; Wei et al., 2021; Radford et al., 2021). However, we should look at these results with a dose
of caution, as neural networks have also been shown to fail often at out-of-distribution generaliza-
tion (Beery et al., 2018; Geirhos et al., 2020; Peyrard et al., 2021). To address out-of-distribution
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generalization failures, recent works (Schölkopf, 2019; Schölkopf et al., 2021; Wang and Jordan,
2021) have argued in favour of incorporating causal principles into standard training paradigms—
supervised (Arjovsky et al., 2019) and unsupervised (von Kügelgen et al., 2021). The issue is
that the current deep learning paradigm does not imbibe and exploit key principles of causality
(Pearl, 2009; Schölkopf, 2019)—invariance principle, independent causal mechanisms principle,
and causal factorization. This is because the traditional causal inference requires access to struc-
tured random variables whose distributions can be decomposed using causal factorization, which
is impossible with complex datasets such as images or text. Therefore, to leverage the power of
deep learning and causal principles, we first need to disentangle raw datasets to obtain the causal
representations that generated the data, and then exploit tools from causal structure learning to pin
down the relationships between the representations. (Ke et al., 2019; Brouillard et al., 2020).

It has been shown that the general process of disentanglement is impossible in the absence
of side knowledge of the structure of the data generation process (Hyvärinen and Pajunen, 1999;
Locatello et al., 2019). However, under additional structural assumptions on the data generation
process, it is possible to invert the data generation process and recover the underlying factors of
variation (Hyvarinen and Morioka, 2016). Recently, there have been works (Hyvarinen et al., 2019;
Khemakhem et al., 2020a) which present a general framework that relies on auxiliary information
(e.g., labels, timestamps) to disentangle the latents. While existing works (Hyvarinen et al., 2019;
Khemakhem et al., 2020a) have made remarkable progress in the field of disentanglement, these
works make certain key assumptions highlighted below that we significantly depart from.

• Labels cause the latent variables. In supervised learning datasets, there are two ways to
think about the data generation process—a) labels cause the latent variables and b) latent variables
cause the labels. (Schölkopf et al., 2012) argue for the former view, i.e., labels generate the latents,
while (Arjovsky et al., 2019) argue for the latter view, i.e., latents generate the label (see Figure 1).
Current non-linear ICA literature (Khemakhem et al., 2020a; Hyvarinen et al., 2019) assumes the
label knowledge renders latent factors of variation conditionally independent, hence it is compatible
with the former perspective (Schölkopf et al., 2012). But the latter view might be more natural for
the setting where a human assigns labels based on the underlying latent factors. Our goal is to enable
disentanglement for this case when the latent variables cause the labels (Arjovsky et al., 2019).

• Amount of auxiliary information. Existing works (Khemakhem et al., 2020a) (Theorem 1),
Khemakhem et al. (2020b) require a lot of auxiliary information, e.g., the number of label classes
should be twice the total dimension of the latent factors of variation to guarantee disentanglement.
We seek to enable disentanglement with lesser auxiliary information.

Contributions. We consider the following data generation process – latent factors generate the
observations (raw features) and the labels for multiple tasks, where the latent factors are mutually
independent. We study a natural extension of the standard empirical risk minimization (ERM)
(Vapnik (1992)) paradigm. The most natural heuristic for learning representations is to train a neural
network using ERM and use the output from the representation layer before the final layer. In this
work, we propose to add a constraint on ERM to facilitate disentanglement – all the components of
the representation layer must be mutually independent. Our main findings for the representations
learned by the constrained ERM are summarized below.

• If the number of tasks is at least equal to the dimension of the latent variables, and the latent
variables are not Gaussian, then we can recover the latent variables up to permutation and scaling.
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• If we only have a single task and the latent variables come from an exponential family whose
log-density can be expressed as a polynomial, then under further constraints on both the learner’s
inductive bias and the function being inverted, we can recover the latent variables up to permutation
and scaling.
• To implement constrained ERM, we propose a simple two-step approximation. In the first

step, we train a standard ERM based model, and in the subsequent step we carry out linear ICA
(Comon, 1994) on the representation extracted from ERM. We carry out experiments with the above
procedure for regression and classification. Our experiments show that even with the approximate
procedure, it is possible to recover the true latent variables up to permutation and scaling when the
number of tasks is smaller than the latent dimension.

2. Related work

Non-linear ICA with auxiliary information. We first describe the works in non-linear ICA where
the time index itself serves as auxiliary information. Hyvarinen and Morioka (2016) showed that if
each component of the latent vector evolves independently and follows a non-stationary time series
without temporal dependence, then identification is possible for non-linear ICA. In contrast, Hy-
varinen and Morioka (2017) showed that if the latent variables are mutually independent, with each
component evolving in time following a stationary time series with temporal dependence, then also
identification is possible. (Khemakhem et al., 2020a; Hyvarinen et al., 2019; Khemakhem et al.,
2020b) further generalized the previous results. In these works, instead of using time, the authors
require observation of auxiliary information. Note that (Hyvarinen and Morioka, 2017; Hyvarinen
et al., 2019; Khemakhem et al., 2020a) have a limitation that the auxiliary information renders latent
variables conditionally independent. This assumption was relaxed to some extent in (Khemakhem
et al., 2020b), however, the model in (Khemakhem et al., 2020b) is not compatible with the data gen-
eration perspective that we consider, i.e., latent variables cause the labels. Recently, (Roeder et al.,
2020) studied representation identification for classification and self-supervised learning models,
where it was shown that if there are sufficient number of class labels (at least as many as the di-
mension of the latent variables), then the representations learned by neural networks with different
initialization are related by a linear transformation. Their work does not focus on recovering the true
latent variables and instead studies whether neural networks learn similar representations across dif-
ferent seeds.
Other works. In another line of work (Locatello et al., 2020; Shu et al., 2019), the authors study
the role of weak supervision in assisting disentanglement. Note this line of work is different from
us, as these models do not consider labelled supervised learning datasets, bur rather use different
sources of supervision. For example, in (Locatello et al., 2020) the authors use multiple views of
the same object as a form of weak supervision.

3. Problem Setup

3.1. Data generation process

Before we describe the data generation process we use, we give an example of the data generation
process that is compatible with the assumptions in (Khemakhem et al., 2020a).

Y ← Bernoulli
(1

2

)
Z ← N (Y 1, I) X ← g(Z) (1)
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(a) (b)

Figure 1: (a) Data generation process in Khemakhem et al. (2020b); (b) Data generation process
studied in this work.

where Bernoulli(1
2) is the uniform Bernoulli distribution over {0, 1}, N is normal distribution,

1 ∈ Rd is the vector that together with the label Y selects the mean of the latent Z, I is a d
dimensional identity matrix, g is a bijection that generates the observations X . In Figure 1 (a), we
show the causal directed acyclic graph (DAG) corresponding to the above data generation process,
where the labels cause the latent variables (Schölkopf et al., 2012). Most of the current non-linear
ICA models are only compatible with this view of the data generation process. This may be valid
for some settings, but it is not perfectly suited for human labelled datasets where a label is assigned
based on the underlying latent factors of variations. Hence, we focus on the opposite perspective
(Arjovsky et al., 2019) when the latent variables generate the labels. The assumptions regarding the
data generation process studied in our work are defined formally ahead.

Assumption 1 The data generation process for regression is described as

Z ← h(NZ)

X ← g(Z)

Y ← ΓZ +NY

(2)

where NZ ∈ Rd is noise, h : Rd → Rd generates Z ∈ Rd (the components of latent variable Z are
mutually independent, non-Gaussian, and have finite second moments), g : Rd → Rd is a bijection
that generates the observations X , Γ ∈ Rk×d is a matrix that generates the label Y ∈ Rk and
NY ∈ Rk is the noise vector (NY is independent of Z and E[NY ] = 0).

Note that d is the dimension of the latent representation, and k corresponds to the number of
tasks. We adapt the data generation process to multi-task classification as follows by changing the
label generation process.

Y ← Bernoulli
(
σ
(

ΓZ
))
, (3)

where (σ) corresponds to the sigmoid function applied elementwise to ΓZ and outputs the proba-
bilities of the tasks, and Bernoulli operates on these probabilities elementwise to generate the label
vector Y ∈ {0, 1}k for the k tasks.

4



TOWARDS EFFICIENT REPRESENTATION IDENTIFICATION IN SUPERVISED LEARNING

We also contrast the DAGs of the two data generation processes in Figure 1. The nature of the
auxiliary information (labels) in the data generation process we study (Assumption 1) is very dif-
ferent from the one in prior works (equation 1); conditioning on the auxiliary information (labels)
in our data generation process does not make the latent variables independent. Our setting could be
interpreted as multi-task supervised learning, where the downstream task labels serve as the auxil-
iary information generated from shared latent variables.

Remark. The classic non-identifiability results in Locatello et al. (2019) and Hyvärinen and Pa-
junen (1999) assumed that the latent factors of variation are all mutually independent. These results
implied that without some knowledge, e.g., auxiliary information (labels), it is impossible to disen-
tangle the latent variables. While (Khemakhem et al., 2020a) showed that it is possible to succeed
in the presence of auxiliary information, their data generation process assumes that the latent vari-
ables are not mutually independent and thus is not consistent with assumptions in (Locatello et al.,
2019) and (Hyvärinen and Pajunen, 1999). Whereas our work shows that the auxiliary information
helps in the case considered in (Locatello et al., 2019) and (Hyvärinen and Pajunen, 1999), since
the auxiliary information is introduced downstream of the latent variables.

3.2. Identifiability

Our objective is to learn the model g−1 (or the generator g) from the observed data and labels pairs
(X,Y ), such that for new observations X we can recover the latent variables Z that generated X .
We can not always learn the exact latent variables Z but may only identify them to some degree.
Let us denote the model learned as g̃−1 (with its inverse g̃). We now describe a general notion
(commonly used in the literature) of identification for the learned map g̃−1 with respect to the true
map g−1.

Definition 1 Identifiability up to A. If the learned map g̃−1 and the true map g−1 are related by
some bijection a ∈ A, such that g̃−1 = a ◦ g−1 (or equivalently g̃ = g ◦ a−1), then g̃−1 is said to
learn g−1 up to bijections in A. We denote this g̃−1 ∼A g−1.

In the above definition, if A was the set of all the permutation maps P , then g̃−1 ∼P g−1

denotes identification up to permutations. Permutation identification guarantees that we learn the
true latent vector but do not learn the indices of the true latent, which is not important for many
downstream tasks. In other words, identification up to permutations of the latent variables is the
gold standard for identification. Our aim is to identify the latent variables Z by inverting the data
generating process (learning g−1) up to permutations.

4. Identification via independence constrained ERM

The previous section established our objective of learning the model g−1 (or the generator g) from
the observed data (X,Y ). We first train a supervised learning model to predict the labels Y from
X . For the rest of the work, we will assume that the predictor we learn takes the form Θ ◦Φ, where
Θ ∈ Rk×d is a linear predictor that operates on the representation Φ : Rd → Rd. As a result, the hy-
pothesis space of the functions that the learner searches over has two parts: Θ ∈ HΘ corresponding
to the hypothesis class of linear maps, and Φ ∈ HΦ, where HΦ corresponds to the hypothesis class
over the representations. We measure the performance of the predictor on an instance (X,Y ) using
the loss `

(
Y,Θ ◦ Φ(X)

)
(mean square error for regression, cross-entropy loss for classification).
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We define the risk achieved by a predictor Θ ◦ Φ as R
(
Θ ◦ Φ

)
= E

[
`
(
Y,Θ ◦ Φ(X)

)]
, where the

expectation is taken with respect to the data (X,Y ).

Independence Constrained ERM (IC-ERM): The representations (Θ) learnt by ERM as de-
scribed above have no guarantee of recovering the true latent variables up to permutations. Hence,
we propose a new objective where we want the learner to carry out constrained empirical risk min-
imization, where the constraint is placed on the representation layer that all components of the
representation are mutually independent. We provide the formal definition of mutual independence
for the convenience of the reader below.

Definition 2 Mutual independence. A random vector V = [V1, · · · , Vd] is said to be mutually
independent if for each subsetM⊆ {1, · · · , d} we have P ({Vi}i∈M) =

∏
i∈M P (Vi).

We state the proposed independence constrained ERM (IC-ERM) objective formally as follows:

min
Θ∈HΘ,Φ∈HΦ

R(Θ ◦ Φ) s.t. Φ(X) is mutually independent (Definition 2) (4)

We now state theorems that show the IC-ERM learning objective would recover the true latent
variables up to permutations under certain assumptions. It is intuitive that more auxiliary informa-
tion/numbers of tasks (k) should help us to identify the latent variables as they are shared across
these different tasks. Hence, we first state identification guarantees for IC-ERM when we have
sufficient tasks, and then discuss the difficult cases when we have few tasks.

4.1. Identification when number of tasks is equal to the latent data dimension

We first study the setting when the number of tasks k is equal to the dimension of the latent variables
d. Before we describe the theorem, we state assumptions on the hypothesis class of the representa-
tions (HΦ) and the classifier (HΘ).

Assumption 2 Assumption on HΦ and HΘ. For the true solutions (g−1, Γ), we have g−1 ∈ HΦ

and Γ ∈ HΘ. For the case when k = d, the setHΘ corresponds to the set of all invertible matrices.

The above assumption ensures that the true solutions g−1 and Γ are in the respective hypothesis
classes that the learner searches over. Also, the invertibility assumption on the hypothesis in HΘ is
needed to ensure that we do not have redundant tasks for the identification of the latent variables.
Under the above assumption and the assumptions of our data generation process (1), we state the
following identification result for the case when k=d.

Theorem 1 If Assumptions 1, 2 hold and the number of tasks k is equal to the dimension of the
latent d, then the solution Θ† ◦ Φ† to IC-ERM (4) with ` as square loss for regression and cross-
entropy loss for classification identifies true Z up to permutation and scaling.

The proof for the same is available in Appendix Section A. This implies that for the DAGs in Figure
1 (b), it is possible to recover the true latents up to permutation and scaling. This result extends the
current disentanglement guarantees (Khemakhem et al., 2020b) that exist for models where labels
cause the latent variables (latent variables are conditionally independent) to the settings where latent
variables cause the label (latent variables are not conditionally independent). In multi-task learning
literature (Caruana, 1997; Zhang and Yang, 2017), it has been argued that learning across multiple
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tasks with shared layers leads to internal representations that transfer better. The above result states
the conditions when the ideal data generating representation shared across tasks can be recovered.

Remark. Since we use a linear model for the label generation process, one can ask what happens
if we apply noisy linear ICA techniques (Davies, 2004; Hyvarinen, 1999) on the label itself (when
k = d) to recover Z followed by a regression to predict Z from X . Noisy linear ICA require the
noise distribution to be Gaussian and would not work when NY is not a Gaussian. Since we do not
make such distributional assumptions on NY , we cannot rely on noisy linear ICA on labels.

4.2. Identification when the number of tasks is less than the dimensions of the latent

In this section, we study the setting when the number of tasks k is equal to one. Since this setting
is extreme, we need to make stronger assumptions to show latent identification guarantees. Before
we lay down the assumptions, we provide some notation. Since we only have a single task, instead
of using the matrix Γ ∈ Rk×d, we use γ ∈ Rd to signify the coefficients that generate the label in
the single task setting. We assume each component of γ is non-zero. In the single task setting for
regression problems, the label generation is written as Y ← γTZ +NY , and the rest of the notation
is the same as the data generation process in Assumption 1. We rewrite the data generation process
in Assumption 1 for the single task case in terms of normalized variables U = Z � γ.

Assumption 3 The data generation process for regressions is described as

Z ← h(NZ)

Y ← 1TU +NY ,

X ← g
′
(U),

(5)

where g
′
(U) = g(U � 1

γ ), where U � 1
γ = [U1

γ1
, · · · , Ud

γd
] . We assume that all the components of U

are mutually independent and identically distributed (i.i.d.).

Note that g
′

is invertible since g is invertible and each element of γ is also non-zero. Hence,
for simplicity, we can deal with the identification of U . If we identify U up to permutation and
scaling, then Z is automatically identified up to permutation and scaling. The predictor we learn is
a composition of linear predictor θ and a representation Φ, which is written as θ◦Φ(X) = θTΦ(X).
The learner searches for θ in the set Hθ, where Hθ consists of linear predictors with all non-zero
components, and Φ in the setHΦ.

We can further simplify the predictor as follows: θTΦ(X) = 1T(Φ(X)�θ), where Φ(X)�θ is
component-wise multiplication expressed as Φ(X)�θ = [Φ1(X)∗θ1, · · · ,Φd(X)∗θd]. Therefore,
instead of searching over Hθ such that all components of θ are non-zero, we can fix Hθ = {1}
and carry out the search over representations HΦ only. For the rest of the section, without loss of
generality, we assume the predictor is of the form 1◦Φ(X) = 1TΦ(X). We restate the IC-ERM (4)
with this parametrization and an additional constraint that all components are now required to be
independent and identically distributed (i.i.d.). We provide a formal definition for the convenience
of the reader below, where d

= denotes identical in distribution.

Definition 3 Independent & Identically Distributed (i.i.d.). A random vector V = [V1, · · · , Vd]
is said to be i.i.d. if 1) Vi(X)

d
= Vj(X) ∀i, j ∈ {1, · · · , d} 2) P ({Vi}i∈M) =

∏
i∈M P (Vi)

∀M ⊆ {1, · · · , d}.
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The reparametrized IC-ERM (4) constraint is stated as follows.

min
Φ∈HΦ

R(1 ◦ Φ) s.t. Φ(X) is i.i.d. (Definition 3) (6)

Next, we state the assumptions on each component of U (recall each component of U is i.i.d.
from Assumption 3) and HΦ under which we show that the reparametrized IC-ERM objective
(equation (6)) recovers the true latent variables U up to permutations. We assume each compo-
nent of U is a continuous random variable with probability density function (PDF) r. Define the
support of each component of U as S = {u | r(u) > 0, u ∈ R}. Define a ball of radius

√
2p as

Bp = {u | |u|2 ≤ 2p2, u ∈ R}.

Assumption 4 Each component of U is a continuous random variable from the exponential family
with probability density r. log(r) is a polynomial with degree p (where p is odd) written as

log
(
r(u)

)
=

p∑
k=0

aku
k

where the absolute value of the coefficients of the polynomial are bounded by amax, i.e., |ak| ≤ amax

for all k ∈ {1, · · · , p}, and the absolute value of the coefficient of the highest degree term is at least
amin, i.e., |ap| ≥ amin > 0. The support of r is sufficiently large that it contains Bp, i.e., Bp ⊆ S .
Also, the moment generation function of each component i of U , MUi(t), exists for all t.

Remark on the PDFs under the above assumption. The above assumption considers distributions
in the exponential family, where the log-PDF can be expressed as a polynomial. Note that as long
as the support of the distribution is bounded, every polynomial with bounded coefficients leads to a
valid PDF (i.e., it integrates to one) and we only need to set the value of a0 appropriately.

We now state our assumptions on the hypothesis class HΦ that the learner searches over. Ob-
serve that Φ(X) can be written as h(U) = Φ

(
g
′
(U)
)

(since X = g
′
(U)). We write the set of all

the maps h constructed from composition of Φ ∈ HΦ and g
′

as HΦ ◦ g
′
. Define w(u1, · · · , ud) =

log
(∣∣det[J(h(u1, · · · , ud))

]∣∣), where det is the determinant, J(h(u1, · · · , ud)) is the Jacobian of

h computed at (u1, · · · , ud). The set of all the w’s obtained from all h ∈ HΦ ◦ g
′

is denoted asW

Assumption 5 HΦ consists of analytic bijections. For each Φ ∈ HΦ, the moment generating
function of each component i ∈ {1, · · · , d}, Φi(X), denoted as MΦi(X)(t) exists for all t. Each
w ∈ W is a finite degree polynomial with degree at most q, where the absolute values of the
coefficients in the polynomial are bounded by bmax.

Define pmin = max
{
κ log(8(d−1)), 4amax(d−1)

amin
,

log

(
4bmax∗npoly

amin

)
2 +q

}
, where npoly is the maximum

number of non-zero coefficients in any polynomial w ∈ W , κ is small constant (see Appendix C).

Theorem 2 If the Assumptions 3, 4, 5 hold, (g′)−1 ∈ HΦ, and p is sufficiently large (p ≥ pmin),
then the solution Φ†(X) of reparametrized IC-ERM objective (6) recovers the true latent U in the
data generation process in Asssumption 3 up to permutations.

8
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Proof sketch. The complete proof is available in Appendix Section C and we provide an overview
here. We use the optimality condition that the prediction made by the learned model, 1Th(U),
exactly matches the true mean, 1TU , along with the constraints that each component of U are i.i.d.
and each component of h(U) are i.i.d., to derive that the distributions of U and h(U) are the same.
We substitute this condition in the change of variables formula that relates the densities of U and
h(U). Using the Assumption 5, we can show that if the highest absolute value of U and the highest
absolute value of h(U) are not equal, then the term with the highest absolute value among U and
h(U) will dominate, leading to contradiction in the identity obtained by change of variables formula.
Based on this, we can conclude that the highest absolute value of U and the highest absolute value
of h(U) must be equal. We iteratively apply this argument to show that all the absolute values of
U and h(U) are related by permutation. We can extend this argument to the actual values instead
of absolute values. Since h is analytic we argue that the relationship of permutation holds in a
neighborhood. Then we use properties of analytic functions (Mityagin, 2015) to conclude that the
relationship holds on the entire space.

Why does the bound on p grow linearly in d? We provide some geometric intuition into why
the degree of the polynomial (p) of the log-PDF (log(r)) needs to be large. If the dimension of
the latent space d is large, then the second term in pmin dominates, i.e., p has to grow linearly in
d. The simplification in the proof yields that the mapping h must satisfy the following condition –
‖u‖k = ‖h(u)‖k for all k ∈ {1, · · · , p}, where ‖ · ‖k is the kth norm. Hence, h is a bijection that
preserves all norms up to the pth norm. If U is 2 dimensional, then the a bijection h that preserves
the `1 norm and the `2 norm is composed of permutations and sign-flips. In general, since U is d
dimensional, we need at least d constraints on h in the form ‖u‖k = ‖h(u)‖k and thus p ≥ d, which
ensure that the only map that satisfies these constraints is composed of permutations and sign-flips.

Significance and remarks on Theorem 2. Theorem 2 shows that if we use IC-ERM principle, i.e.,
constraint the representations to be independent, then we continue to recover the latents even if the
number of tasks is small. We can show that the above theorem also extends to binary classification.
We admit that strong assumptions were made to arrive at the above result, while other assumptions
such as bound on p growing linearly in d seem necessary, but we would like to remind the reader
that we are operating in the extreme single task regime. In the previous section, when the number
of tasks was equal to the dimension of the latent (when we have sufficiently many tasks), we had
shown the success of the IC-ERM (4) objective (Theorem 1) for identification of latent variables
with much fewer assumptions. In contrast, in Theorem 2, we saw that with more assumptions on
the distribution we can guarantee latent recovery with even one task. If we are in the middle, i.e.,
when the number of tasks is between one and the dimension of the latent, then the above Theorem
2 says we only require the assumptions (Assumptions 3, 4, 5) to hold for at least one task.

Note on the case k>d: We did not discuss the case when the number of tasks is greater than the
dimension of the latent variables. This is because we can select a subset S

′
of tasks, such that

|S′ | = d and then proceed in a similar fashion as Theorem 1. This question arises commonly in
linear ICA literature, and selecting a subset of tasks is the standard practice.

5. ERM-ICA: Proposed implementation for independence constrained ERM

In the previous section, we showed the identification guarantees with the IC-ERM objective. How-
ever, solving this objective is non-trivial, since we need to enforce independence on the representa-
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tions learnt. We propose a simple two step procedure as an approximate approach to solve the above
problem. The learner first carries out standard ERM stated as

Θ†,Φ† ∈ arg min
Θ∈HΘ,Φ∈HΦ

R(Θ ◦ Φ) (7)

The learner then searches for a linear transformation Ω that when applied to Φ† yields a new
representation with mutually independent components. We state this as follows. Find an invertible
Ω ∈ Rd×d such that

Z† = Ω ◦ Φ†(X) where the components of Z† are mutually independent (8)

Note that a solution to the above equation (8) does not always exist. However, if we can find a
Ω that satisfies the above (8), then the classifier Θ ◦Ω−1 and the representation Ω ◦Φ†(X) together
solve the IC-ERM (4) assuming Θ◦Ω−1 ∈ HΘ and Ω◦Φ† ∈ HΦ. To find a solution to the equation
(8) we resort to the approach of linear ICA (Comon, 1994). The approach has two steps. We first
whiten Φ†(X). 1 Define V to be the covariance matrix of Φ†(X). If the covariance V is invertible, 2

then the eigendecomposition of V is given as V = UΛ2UT. We obtain the whitened data Φ∗(X) as
follows Φ∗(X) = Λ−1UTΦ†(X). Consider a linear transformation of the whitened data and denote
it as Z∗ = Ω ◦ Φ∗(X) and construct another vector Z

′
such that its individual components are all

independent and equal in distribution to the corresponding components in Z∗. Our goal is to find
an Ω such that the mutual information between Z∗ and Z

′
is minimized. To make dependence on Ω

explicit, we denote the mutual information between Z
′

and Z∗ as I(Ω ◦ Φ∗(X)). We state this as
the following optimization

Ω† ∈ arg min
Ω,Ω is invertible

I(Ω ◦ Φ∗(X)) (9)

We denote the above two step approximation method as ERM-ICA and summarize it below:

• ERM Phase: Learn Θ†,Φ† by solving the ERM objective (Eq: 7).

• ICA Phase: Learn Ω† by linear ICA (Eq: 9) on the representation from ERM Phase (Φ†).

The above ERM-ICA procedure outputs a classifier Θ† ◦ (Ω†)−1 and representation Ω† ◦ Φ† that
is an approximate solution to the IC-ERM problem (4). While the proposed ERM-ICA procedure
is a simple approximation, we do not know of other works that have investigated this approach
theoretically and experimentally for recovering the latents. Despite its simplicity, we can prove
(similar to Theorem 1) that when the number of tasks is equal to the dimension of the latent variable,
ERM-ICA can recover the latent variables up to permutation and scaling.

Theorem 3 If Assumptions 1, 2 hold and the number of tasks k is equal to the dimension of the
latent d, then the solution Ω† ◦ Φ† to ERM-ICA ((7), (9)) with ` as square loss for regression and
cross-entropy loss for classification identifies true Z up to permutation and scaling.

1. For simplicity, we assume Φ†(X) is zero mean, although our analysis extends to the non-zero mean case as well. We
also assume Φ†(X) has finite second moments.

2. If it is not invertible, then we first need to project Φ†(X) into the range space of V

10
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The proof of the above theorem can be found in Appendix Section B. We leave the theoretical
analysis of the ERM-ICA approach for the single task case for future work, but we do show its
performance empirically for such scenarios in the evaluation section ahead. We believe that building
better approximations to directly solve the IC-ERM, which do not involve a two-step approach like
ERM-ICA approach is a fruitful future work.

6. Evaluation

6.1. Experiment Setup

6.1.1. DATA GENERATION PROCESS

Regression. We use the data generation process described in Assumption 1. The components of
Z are i.i.d. and follow discrete uniform {0, 1} distribution. Each element of the task coefficient
matrix Γ is i.i.d. and follows a standard normal distribution. The noise in the label generation is
also standard normal. We use a 2-layer invertible MLP to model g and follow the construction used
in Zimmermann et al. (2021).3 We carry out comparisons for three settings, d = {16, 24, 50}, and
vary tasks from k = {d2 ,

3d
4 , d}. The dataset size used for training and test is 5000 data points, along

with a validation set of 1250 data points for hyper parameter tuning.

Classification. We use the data generation process described in Assumption 1. We use the same
parameters and dataset splits as regression, except the labels are binary and sampled as follows:
Y ← Bernoulli(σ(ΓZ)). Also, the noise in the Γ sampling is set to a higher value (10 times that of
a standard normal), as otherwise the Bayes optimal accuracy is much smaller.

6.1.2. METHODS, ARCHITECTURE, AND OTHER HYPERPARAMETERS

We compare our method against two natural baselines. a) ERM. In this case, we carry out standard
ERM (7) and use the representation learned at the layer before the output layer. b) ERM-PCA.
In this case, we carry out standard ERM (7) and extract the representation learned at the layer
before the output layer. We then take the extracted representation and transform it using principal
component analysis (PCA). In other words, we analyze the representation in the eigenbasis of its
covariance matrix. c) ERM-ICA. This is the main approach ((7), (8)) that approximates the IC-
ERM objective (4). Here we take the representations learnt using ERM (7) and transform them
using linear independent component analysis (ICA) (9).

We define mean square error and cross-entropy as our loss objectives for the regression and
classification task respectively. In both settings, we use a two layer fully connected neural network
and train the model using stochastic gradient descent. The architecture and the hyperparameter
details for the different settings are provided in Appendix D. Also, the code repository can be
accessed from the link 4 in the footnote.

6.1.3. METRICS

The models are evaluated on the test dataset using the following two metrics.
• Label (Y ) prediction performance. We use the average R2 (coefficient of determination)

and the average accuracy across tasks in the regression and classification task respectively. For

3. https://github.com/brendel-group/cl-ica/blob/master/main_mlp.py
4. Our Code Repository: https://github.com/divyat09/ood_identification
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Figure 2: Comparison of label and latent prediction performance (regression, d = 16).
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Figure 3: Comparison of label and latent prediction performance (regression, d = 50).

the ERM-PCA and ERM-ICA, we take final representations learnt by these methods and train a
linear/logistic regression model to predict the label Y for the regression/classification task. We
check this metric to ensure that the representations do not lose any information about the label.
• Latent (Z) prediction performance. We use mean correlation coefficient (MCC), a standard

metric used to measure permutation and scaling based identification (refer (Hyvarinen and Morioka,
2017; Zimmermann et al., 2021) for further details). The metric is computed by first obtaining the
correlation matrix (ρ(Z, Ẑ)) between the recovered latents Ẑ and the true latents Z. Let’s define
|ρ(Z, Ẑ)| as the absolute values of the correlation matrix. Then we find a matching (assign each
row to a column in |ρ(Z, Ẑ)|) such that the average absolute correlation is maximized and return the
optimal average absolute correlation. Intuitively, we find the optimal way to match the components
of the predicted latent representation (Ẑ) and components of the true representation (Z). Notice that
a perfect absolute correlation of one for each matched pair of components would imply identification
up to permutations.

6.2. Results

Regression. Figure 2 and 3 show a comparison of the performance of the three approaches across
d = 16 and d = 50 for various tasks. The results for the case of d = 24 are in the Appendix E.1 (due
to space limits). In both cases, we find that the method ERM-ICA is significantly better than the
other approaches in terms of guaranteeing permutation and scaling based identification. All three
approaches have similar label prediction performance. We observe a similar trend for the case of
d = 24 shown in the Appendix E.1.

Classification. Figure 4 and 5 show a comparison of the performance of the three approaches across
d = 16 and d = 24 for various tasks. In both cases, we find that the method ERM-ICA is better than

12
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Figure 4: Comparison of label and latent prediction performance (classification, d = 16)
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Figure 5: Comparison of label and latent prediction performance (classification, d = 24)

the other approaches in terms of guaranteeing permutation and scaling based identification, except
in the case of 24 data dimensions with a total of 12 tasks. All three approaches have similar label
prediction performance. For classification, unlike regression, the improvements are smaller and we
do not see improvement for d = 50 (comparisons for the case of d = 50 are in the Appendix E.2).
We see a worse performance in the classification setting because the ERM model does not learn the
Bayes optimal predictor unlike regression.

Discussion. We have shown that ERM-ICA achieves significant improvement in latent recovery
with much fewer tasks (up to d

2 ). However, in our theory we proved that under certain assumptions
solving the reparametrized IC-ERM objective (Eq (6)) can achieve identification even with a single
task. Note that we only approximate equation (6) with ERM-ICA, and if we build better approxima-
tions of the ideal approach (IC-ERM), then we can witness gains with even fewer tasks. We believe
that building such approximations is a fruitful future work.

7. Conclusion

In this work, we analyzed the problem of disentanglement in a natural setting, where latent factors
cause the labels, a setting not well studied in the ICA literature. We show that if ERM is constrained
to learn independent representations, then we can have latent recovery from learnt representations
even when the number of tasks is small. We propose a simple two step approximate procedure
(ERM-ICA) to solve the constrained ERM problem, and show that it is effective in a variety of
experiments. Our analysis highlights the importance of learning independent representations and
motivates the development of further approaches to achieve the same in practice.

13
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Francesco Locatello, Ben Poole, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem, and Michael
Tschannen. Weakly-supervised disentanglement without compromises. In International Confer-
ence on Machine Learning, pages 6348–6359. PMLR, 2020.

Boris Mityagin. The zero set of a real analytic function. arXiv preprint arXiv:1512.07276, 2015.

Judea Pearl. Causality. Cambridge university press, 2009.

Maxime Peyrard, Sarvjeet Singh Ghotra, Martin Josifoski, Vidhan Agarwal, Barun Patra, Dean
Carignan, Emre Kiciman, and Robert West. Invariant language modeling. arXiv preprint
arXiv:2110.08413, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. arXiv preprint arXiv:2103.00020, 2021.

Geoffrey Roeder, Luke Metz, and Diederik P Kingma. On linear identifiability of learned represen-
tations. arXiv preprint arXiv:2007.00810, 2020.

Bernhard Schölkopf. Causality for machine learning. arXiv preprint arXiv:1911.10500, 2019.

15



AHUJA MAHAJAN SYRGKANIS MITLIAGKAS

Bernhard Schölkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun Zhang, and Joris Mooij.
On causal and anticausal learning. arXiv preprint arXiv:1206.6471, 2012.

Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. Proceedings of the
IEEE, 109(5):612–634, 2021.

Rui Shu, Yining Chen, Abhishek Kumar, Stefano Ermon, and Ben Poole. Weakly supervised dis-
entanglement with guarantees. arXiv preprint arXiv:1910.09772, 2019.

Vladimir Vapnik. Principles of risk minimization for learning theory. In Advances in neural infor-
mation processing systems, pages 831–838, 1992.
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Appendix A. Proof of Theorem 1: IC-ERM for the case k=d

Theorem 1 If Assumptions 1, 2 hold and the number of tasks k is equal to the dimension of the
latent d, then the solution Θ† ◦ Φ† to IC-ERM (4) with ` as square loss for regression and cross-
entropy loss for classification identifies true Z up to permutation and scaling.

Proof Consider we are in the regression setting for the data generation process in Assumption 1.
Therefore, using X ← g(Z) and Y ← ΓZ +N , the risk of a predictor f can be written as follows:

R(f) = E
[
‖Y − f(X)‖2

]
= E

[
‖ΓZ +N − f ◦ g(Z)‖2

]
= E

[
‖ΓZ − f ◦ g(Z)‖2

]
+ E

[
‖N‖2

]
− 2 ∗ E[(ΓZ − f ◦ g(Z))TN ]

= E
[
‖ΓZ − f ◦ g(Z)‖2

]
+ E

[
‖N‖2

]
(since Z ⊥ N and E[N ] = 0)

(10)

From the above it is clear that R(f) ≥ E
[
‖N‖2

]
for all functions f : Rd → Rd. Since g−1 ∈ HΦ,

Γ ∈ HΘ and g−1(X) has all mutually independent components, Γ ◦ g−1 satisfies the constraints in
IC-ERM (4) and also achieves the lowest error possible, i.e., R(Γ ◦ g−1) = E[‖N‖2]. Consider any
solution to constrained ERM in (4). The solution must satisfy the following equality except over a
set of measure zero.

Θ† ◦ Φ†(X) = ΓZ

=⇒ Φ†(X) = (Θ†)−1ΓZ
(11)

Let us call Φ†(X) = Z† and A = (Θ†)−1Γ. Hence, the above equality becomes Z† = AZ, where
all the components of Z† are independent (Eq: (4)) and all the components of Z are independent
(Assumption 1). We will now argue that the matrix A can be written as a permutation matrix times
a scaling matrix. We first show that in each column of A there is exactly one non-zero element.
Consider column k of A denoted as [A]k. Since A is invertible all elements of the column cannot be
zero. Now suppose at least two elements i and j of [A]k are non-zero. Consider the corresponding
components of Z†. Since Z†i and Z†j are both independent and since [A]ik and [A]jk are both non-
zero, from Darmois’ theorem (Darmois, 1953) it follows that Zk is a Gaussian random variable.
However, this leads to a contradiction as we assumed none of the random variables in Z follow a
Gaussian distribution. Therefore, exactly one element in [A]k is non-zero. We can say this about
all the columns of A. No two columns will have the same row with a non-zero entry or otherwise
A would not be invertible. Therefore, A can be expressed as a matrix permutation times a scaling
matrix, where the scaling takes care of the exact non-zero value in the row and the permutation
matrix takes care of the address of the element which is non-zero. This completes the proof.
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Appendix B. Proof of Theorem 3: ERM-ICA for the case k=d

Theorem 3 If Assumptions 1, 2 hold and the number of tasks k is equal to the dimension of the
latent d, then the solution Ω† ◦ Φ† to ERM-ICA ((7), (9)) with ` as square loss for regression and
cross-entropy loss for classification identifies true Z up to permutation and scaling.

Proof Although the initial half of the proof is identical to the proof of Theorem 1 we repeat it for
clarity. Consider we are in the regression setting for the data generation process in Assumption 1.
Therefore, using X ← g(Z) and Y ← ΓZ +N , the risk of a predictor f can be written as follows:

R(f) = E
[
‖Y − f(X)‖2

]
= E

[
‖ΓZ +N − f ◦ g(Z)‖2

]
= E

[
‖ΓZ − f ◦ g(Z)‖2

]
+ E

[
‖N‖2

]
− 2 ∗ E[(ΓZ − f ◦ g(Z))TN ]

= E
[
‖ΓZ − f ◦ g(Z)‖2

]
+ E

[
‖N‖2

]
(since Z ⊥ N and E[N ] = 0)

(12)

From the above it is clear that R(f) ≥ E
[
‖N‖2

]
for all functions f : Rd → Rd. Since g−1 ∈ HΦ,

Γ ∈ HΘ and g−1(X) has all mutually independent components, Γ ◦ g−1 satisfies the constraints in
IC-ERM (4) and also achieves the lowest error possible, i.e., R(Γ ◦ g−1) = E[‖N‖2].

Consider any solution to ERM in (7). The solution must satisfy the following equality except over
a set of measure zero.

Θ† ◦ Φ†(X) = ΓZ

=⇒ Φ†(X) = (Θ†)−1ΓZ
(13)

Since Φ†(X) is a linear combination of independent latents with at least one latent non-Gaussian
(and also the latents have a finite second moment). We can use the result from (Comon, 1994) that
states Ω† that solves equation (9) relates to (Θ†)−1 as follows

(Ω†)−1 = (ΓPΛ)−1 = Λ−1P−1Γ−1 (14)

Substituting the above into (13) we get Φ†(X) = Λ−1P−1Γ−1ΓZ = Λ−1P−1Z. This completes
the proof.

We can also carry out the same proof for the multi-task classification case. In multi-task classi-
fication we can write the condition for optimality as

σ
(

Ω†Φ†(X)
)

= σ
(

ΓZ
)

(15)

where sigmoid is applied separately to each element, and since the sigmoids are equal, this implies
the individual elements are also equal. Therefore, Ω†Φ†(X) = ΓZ and we can use the same
analysis as the regression case from this point on. Also, note that we equated the sigmoids in first
place, because the LHS corresponds to P̂ (Y |X) and RHS corresponds to true P (Y |X).
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Appendix C. Proof of Theorem 2: IC-ERM for the case k=1

Theorem 2 If the Assumptions 3, 4, 5 hold, (g′)−1 ∈ HΦ, and p is sufficiently large (p ≥ pmin),
then the solution Φ†(X) of reparametrized IC-ERM objective (6) recovers the true latent U in the
data generation process in Asssumption 3 up to permutations.

Proof We write Φ†(X) = [Φ†1(X), · · · ,Φ†d(X)]. We call Φ†i (X) = Vi and the vector V =

[V1, · · · , Vd] = [Φ†1(X), · · · ,Φ†d(X)].

Observe that since (g
′
)−1 ∈ HΦ, we can use the same argument used in the proof of Theorem 1 to

conclude that (g
′
)−1 is a valid solution for the reparametrized IC-ERM objective (Eq: (6)). Notice

that the terms Θ† and Γ that appear in the proof of Theorem 1, they are equal to identity here due to
the Assumption 3 and IC-ERM (6). Therefore, following the standard argument in Theorem 1, we
can conclude that any solution Φ†(X) of reparametrized IC-ERM (6) satisfies the following:∑

i

Φ†i (X) =
∑
i

(g
′
)−1
i (X)∑

i

Vi =
∑
i

Ui
(16)

We write the moment generation function of a random variable Ui as MUi(t) = E[etUi ]. We
substitute the moment generating functions to get the following identity.∑

i

Vi =
∑
i

Ui =⇒ ΠiMVi(t) = ΠiMUi(t) (17)

Since Ui
d
= Uj and Vi

d
= Vj , we can use MUi(t) = MUj (t) and MVi(t) = MVj (t) for all t ∈ R

and simplify as follows:(
MVi(t)

)d
=
(
MUi(t)

)d
=⇒ MVi(t) = MUi(t)

=⇒ Vi
d
= Ui, ∀i ∈ {1, · · · , d}

(18)

In the second step of the above simplification, we use the fact that the moment generating
function is positive. In the third step, we use the fact that if moment generating functions exist and
are equal, then the random variables are equal in distribution (Feller, 2008). Having established that
the distributions are equal, we now show that the random variables are equal up to permutations.

Since the vector V is an invertible transform h of U , where V = h(U). We can write the pdf of
U in terms of V as follows. ∏

i

p(ui) =
∏
i

p(vi)
∣∣det(J(h(u)))

∣∣, (19)

where p corresponds to the pdf of Ui (recall that pdfs of all components is the same). We take log
on both sides of the above equation to get the following:∑

i

log(p(ui)) =
∑
i

log(p(vi)) + log
(∣∣det(J(h(u)))

∣∣) (20)
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From Assumption 4, we substitute a polynomial for log(p(u)) =
∑p

k=0 aku
k. From Assumption 5,

we express this log
(∣∣det(J(h(u)))

∣∣) =
∑
bk
∏
i u

θk(i)
i . We substitute these polynomials into the

above equation to get the following:∑
i

log(p(ui))−
∑
i

log(p(vi))− log
(∣∣det(J(h))

∣∣) = 0

=⇒
p∑

k=1

ak

d∑
i=1

(uki − vki )−
∑
m

bm
∏
i

u
θm(i)
i = 0

(21)

In the proof, we first focus on comparing the largest absolute value among u’s and largest
absolute value among v’s. Without loss of generality, we assume that |uj | > |ui| for all i 6= j (uj is
the largest absolute value among u’s) and |vr| > |vi| for all i 6= r (vr is the largest absolute value
among v’s). Consider the setting when |uj | ≥ p2 > 1 (these points exist in the support because of
the Assumption 4). We can write |uj | = αp2, where α ≥ 1.

There are three cases to further consider:

a) |vr| > |uj |

b) |vr| < |uj |

c) |vr| = |uj |
We first start by analyzing the case b). Since all values of |vi| and |ui| are also strictly less than |uj |,
we have the following:

• ∃ c < 1 such that |ui| < cαp2 ∀ i 6= j

• |vi| < cαp2 ∀ i ∈ {1, · · · , d}, where c < 1.

We divide the identity in equation (21) by upj and separate the terms in such a way that only the
term ap is in the LHS and the rest of the terms are pushed to the RHS. We show further simplification
of the identity below.

|ap| =
∣∣∣ap d−1∑

i=1

(upi
upj
−
vpi
upj

)
+

p−1∑
k=1

ak

d∑
i=1

(uki
upj
− vki
upj

)
−
∑
m

bm
1

upj

∏
i

u
θm(i)
i

∣∣∣
=⇒ |ap| ≤

∣∣∣ap d−1∑
i=1

(upi
upj
−
vpi
upj

)∣∣∣+
∣∣∣ p−1∑
k=1

ak

d∑
i=1

(uki
upj
− vki
upj

)∣∣∣+
∣∣∣∑
m

bm
1

upj

∏
i

u
θm(i)
i

∣∣∣
=⇒ 1 ≤ 1

|ap|

(∣∣∣ap d−1∑
i=1

(upi
upj
−
vpi
upj

)∣∣∣+
∣∣∣ p−1∑
k=1

ak

d∑
i=1

(uki
upj
− vki
upj

)∣∣∣+
∣∣∣∑
m

bm
1

upj

∏
i

u
θm(i)
i

∣∣∣)
(22)

We analyze each of the terms in the RHS separately. The simplification of the first term yields the
following expression.

1

|ap|

∣∣∣ap d−1∑
i=1

(upi
upj
−
vpi
upj

)∣∣∣ ≤ 1

|ap|

∣∣∣ap∣∣∣ d−1∑
i=1

(∣∣∣upi
upj

∣∣∣+
∣∣∣vpi
upj

∣∣∣)
≤ 2cp(d− 1)

(23)
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The simplification of the second term in the RHS of the last equation in (22) yields the following
expression.

1

|ap|

∣∣∣ p−1∑
k=1

ak

d∑
i=1

(uki
upj
− vki
upj

)∣∣∣ ≤ 1

|ap|

p−1∑
k=1

|ak|
d∑
i=1

(∣∣∣uki
upj

∣∣∣+
∣∣∣vki
upj

)∣∣∣
≤

p−1∑
k=1

2|ak|
d∑
i=1

(∣∣∣ukj
upj

∣∣∣)∣∣∣
≤ 1

|ap|

( p−1∑
k=1

2|ak|(d− 1)
) 1

αp2

≤ 2amax(d− 1)

aminp

(24)

The simplification of the third term in the RHS of the last equation in (22) yields the following
expression.

1

|ap|

∣∣∣∑
m

bm
1

upj

∏
i

u
θm(i)
i

∣∣∣ ≤∑
m

|bm|
1

|uj |(p−q)

≤ bmax

amin

npoly

(αp2)(p−q)

(25)

where npoly corresponds to the number of non-zero terms in the polynomial expansion of the log-
determinant. In the above simplification, we used the fact that

∑
i θm(i) ≤ q and |ui| < |uj |.

Analyzing the RHS in equations (23)-(25), we see that if p becomes sufficiently large, the RHS
becomes less than 1. This contradicts the relationship in equation (22). Therefore, all |vi| cannot be
strictly less than |ui|. This rules out case b).

We now derive the bounds on the value of p as follows. Assume p ≥ 2q, i.e., the degree of the
log-pdf of each component of U is at least twice the degree of the log-determinant of the Jacobian
of h.

From the equation (23) we get the following bound on p

2cp(d− 1) ≤ 1

4

=⇒ 8(d− 1) ≤ 1

cp

=⇒ log(8(d− 1)) ≤ p log(
1

c
)

=⇒ p ≥ log(8(d− 1))

log(1
c )

(26)

From the equation (24) we get the following bound on p

amax(d− 1)

aminp
≤ 1

4
=⇒ p ≥ 4amax(d− 1)

amin
(27)
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From the equation (25) we get the following bound on p

bmax

|ap|
npoly

(αp2)(p−q) ≤
1

4

=⇒ log
(4bmaxnpoly

|ap|

)
≤ 2(p− q) log p

=⇒ p ≥
log
(

4bmaxnpoly

amin

)
2

+ q

(28)

From the above equations (26), (27), and (28), we get that if

p ≥ max
{ log(8(d− 1))

log(1
c )

,
4amax(d− 1)

amin
,
log
(

4bmaxnpoly

amin

)
2

+ q
}

(29)

then the sum of the terms in the RHS in equation (22) is at most 3
4 and the term in the LHS in

equation (22) is 1, which leads to a contradiction.
From the above expression, we gather that the second and third term should dominate in de-

termining the lower bound for p. From the second term, we gather that the lower bound increases
linearly in the dimension of the latent, and from the third term we gather that p must be greater
than q by a factor that grows logarithmically in the number of terms in the polynomial of the log
determinant.

Let us now consider the case a) ( |vr| > |uj |) which is similar to the case b) analyzed above. Since
values of |ui| are strictly less than |uj | and |vr|, and since |vr| > |uj |, there exist a c < 1 such that
|ui| ≤ cαp2, |vr| ≥ 1

cαp
2, |vi| ≤ c|vr|, where c < 1. We follow the same steps as done in the

analysis for case b). We separate the equation so that only the term ap (obtained by dividing vpr with
vpr ) is in the LHS and the rest on the RHS.

|ap| =
∣∣∣ap d−1∑

i=1

(upi
vpr
−
vpi
vpr

)
+

p−1∑
k=1

ak

d∑
i=1

(uki
vpr
− vki
vpr

)
−
∑
m

bm
1

vpr

∏
i

u
θm(i)
i

∣∣∣
=⇒ |ap| ≤

∣∣∣ap d−1∑
i=1

(upi
vpr
−
vpi
vpr

)∣∣∣+
∣∣∣ p−1∑
k=1

ak

d∑
i=1

(uki
vpr
− vki
vpr

)∣∣∣+
∣∣∣∑
m

bm
1

upj

∏
i

u
θm(i)
i

∣∣∣
=⇒ 1 ≤ 1

|ap|

(∣∣∣ap d−1∑
i=1

(upi
vpr
−
vpi
vpr

)∣∣∣+
∣∣∣ p−1∑
k=1

ak

d∑
i=1

(uki
vpr
− vki
vpr

)∣∣∣+
∣∣∣∑
m

bm
1

vpr

∏
i

u
θm(i)
i

∣∣∣)
(30)

We analyze each of the terms in the RHS in equation (30) separately. The simplification of the
first term in the RHS of the above yields the following upper bound.

1

|ap|

∣∣∣ap d−1∑
i=1

(upi
vpr
−
vpi
vpr

)∣∣∣ ≤ 1

|ap|

∣∣∣ap∣∣∣ d−1∑
i=1

(∣∣∣upi
vpr

∣∣∣+
∣∣∣vpi
vpr

∣∣∣)
≤ 2cp(d− 1)

(31)
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The simplification of the second term in the RHS of equation (30) yields the following upper bound.

1

|ap|

∣∣∣ p−1∑
k=1

ak

d∑
i=1

(uki
vpr
− vki
vpr

)∣∣∣ ≤ 1

|ap|

p−1∑
k=1

|ak|
d∑
i=1

(∣∣∣uki
vpr

∣∣∣+
∣∣∣vki
vpr

)∣∣∣
≤

p−1∑
k=1

2|ak|
d∑
i=1

(∣∣∣ukj
vpr

∣∣∣)∣∣∣
≤ 1

|ap|

( p−1∑
k=1

2|ak|(d− 1)
) 1

αp2

≤ amax(d− 1)c

|ap|αp

≤ amax(d− 1)

aminp

(32)

The simplification of the third term in the RHS of equation (30) yields the following upper
bound.

1

|ap|

∣∣∣∑
m

bm
1

vpr

∏
i

u
θm(i)
i

∣∣∣ ≤∑
m

|bm|
1

|vr|(p−q)

≤ bmax

|ap|

npoly

(
cp−q

)
(αp2)(p−q)

≤ bmax

|ap|
npoly

(αp2)(p−q)

(33)

Analyzing the RHS in equation (31)-(33), we see that if p becomes sufficiently large then the
RHS becomes less than 1. This contradicts the relationship in equation (30). Therefore, there is no
|vi| that is strictly larger than |ui|. This rules out case a). In fact from equations (31)-(33) we can
get the same bound on p as in case b).

Thus, the only possibility is case c), i.e., |vr| = |uj | =⇒ vr = uj or vr = −uj . Consider
the case when p is odd. In that case, vr = uj is the only option that works. We substitute vr = uj
in the equation (22) and repeat the same argument for the second highest absolute value, and so on.
This leads to the conclusion that for each component u there is a component of v such that both of
them are equal. Hence, we have established the relationship vr = uj . For another sample where
index j corresponds to the highest absolute value and is in the neighbourhood of uj , the relationship
vr = uj must continue to hold. If this does not happen, then there would be another component
vq = uj where q 6= r. However, if that were the case, then it would contradict the continuity of h.

Therefore, the relationship vr = uj (the match between index j for u and index r for v) holds
for a neighbourhood of values of vector u. Since each component of h is analytic, we can use the
fact that the neighbourhood of vector of values of u for which the relationship vr = uj holds has a
positive measure, and then from (Mityagin, 2015) it follows that this relationship would hold on the
entire space. We can draw the same conclusion for all the components of h and conclude that h is a
permutation map.
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Appendix D. Implementation Details

D.1. Model Architecture

• Fully Connected Layer: (Data Dim, 100)

• BatchNormalization(100)

• LeakyReLU(0.5)

• Full Connected Layer: (100, Data Dim)

• BatchNormalization(Data Dim)

• LeakyReLU(0.5)

• Fully Connected Layer: (Data Dim, Total Tasks)

We consider the part of the network before the final fully connected layer as the representation
network, and use the output from the representation network for training ICA/PCA after the ERM
step.

D.2. Hyperparameters

We use SGD to train all the methods with the different hyperparameters across each task mentioned
below. In every case, we select the best model during the course of training based on the validation
loss, and also use a learning rate scheduler that reduces the existing learning rate by half after every
50 epochs. Also, regarding ICA, we use the FastICA solver in sklearn with 30, 000 maximum
iterations and data whitening.

• Regression: Learning Rate: 0.01, Batch Size: 512, Total Epochs: 1000, Weight Decay:
5e− 4, Momentum: 0.9

• Classification: Learning Rate: 0.05, Batch Size: 512, Total Epochs: 200, Weight Decay:
5e− 4, Momentum: 0.9
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Appendix E. Additional Experiments

E.1. Task: Regression
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Figure 6: Regression Task: Data Dimension 24

E.2. Task: Classification
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Figure 7: Classification Task: Data Dimension 50
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