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Vasilis Syrgkanis VASY@MICROSOFT.COM
Microsoft Research, New England

Ioannis Mitliagkas IOANNIS@MILA.QUEBEC

Mila - Quebec AI Institute, Université de Montréal.
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Abstract
Humans have a remarkable ability to disentangle complex sensory inputs (e.g., image, text) into
simple factors of variation (e.g., shape, color) without much supervision. This ability has inspired
many works that attempt to solve the following question: how do we invert the data generation
process to extract those factors with minimal or no supervision? Several works in the literature
on non-linear independent component analysis have established this negative result; without some
knowledge of the data generation process or appropriate inductive biases, it is impossible to per-
form this inversion. In recent years, a lot of progress has been made on disentanglement under
structural assumptions, e.g., when we have access to auxiliary information that makes the factors
of variation conditionally independent. However, existing work requires a lot of auxiliary infor-
mation, e.g., in supervised classification, it prescribes that the number of label classes should be
at least equal to the total dimension of all factors of variation. In this work, we depart from these
assumptions and ask: a) How can we get disentanglement when the auxiliary information does not
provide conditional independence over the factors of variation? b) Can we reduce the amount of
auxiliary information required for disentanglement? For a class of models where auxiliary infor-
mation does not ensure conditional independence, we show theoretically and experimentally that
disentanglement (to a large extent) is possible even when the auxiliary information dimension is
much less than the dimension of the true latent representation.
Keywords: disentanglement, non-linear independent component analysis

1. Introduction

Representation learning (Bengio et al., 2013) aims to extract low dimensional representations from
high dimensional complex datasets. The hope is that if these representations succinctly capture
factors of variation that describe the high dimensional data (e.g., extract features characterizing the
shape of an object in an image), then these representations can be leveraged to achieve good per-
formance on new downstream tasks with minimal supervision. Large scale pre-trained language
models demonstrate the major success of representation learning based approaches (Brown et al.,
2020; Wei et al., 2021; Radford et al., 2021). However, we should look at these results with a dose
of caution, as neural networks have also been shown to fail often at out-of-distribution generaliza-
tion (Beery et al., 2018; Geirhos et al., 2020; Peyrard et al., 2021). To address out-of-distribution
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generalization failures, recent works (Schölkopf, 2019; Scḧolkopf et al., 2021; Wang and Jordan,
2021) have argued in favour of incorporating causal principles into standard training paradigms—
supervised (Arjovsky et al., 2019) and unsupervised (von Kügelgen et al., 2021). The issue is
that the current deep learning paradigm does not imbibe and exploit key principles of causality
(Pearl, 2009; Scḧolkopf, 2019)—invariance principle, independent causal mechanisms principle,
and causal factorization. This is because the traditional causal inference requires access to struc-
tured random variables whose distributions can be decomposed using causal factorization, which
is impossible with complex datasets such as images or text. Therefore, to leverage the power of
deep learning and causal principles, we �rst need to disentangle raw datasets to obtain the causal
representations that generated the data, and then exploit tools from causal structure learning to pin
down the relationships between the representations. (Ke et al., 2019; Brouillard et al., 2020).

It has been shown that the general process of disentanglement is impossible in the absence
of side knowledge of the structure of the data generation process (Hyvärinen and Pajunen, 1999;
Locatello et al., 2019). However, under additional structural assumptions on the data generation
process, it is possible to invert the data generation process and recover the underlying factors of
variation (Hyvarinen and Morioka, 2016). Recently, there have been works (Hyvarinen et al., 2019;
Khemakhem et al., 2020a) which present a general framework that relies on auxiliary information
(e.g., labels, timestamps) to disentangle the latents. While existing works (Hyvarinen et al., 2019;
Khemakhem et al., 2020a) have made remarkable progress in the �eld of disentanglement, these
works make certain key assumptions highlighted below that we signi�cantly depart from.

� Labels cause the latent variables.In supervised learning datasets, there are two ways to
think about the data generation process—a) labels cause the latent variables and b) latent variables
cause the labels. (Schölkopf et al., 2012) argue for the former view, i.e., labels generate the latents,
while (Arjovsky et al., 2019) argue for the latter view, i.e., latents generate the label (see Figure 1).
Current non-linear ICA literature (Khemakhem et al., 2020a; Hyvarinen et al., 2019) assumes the
label knowledge renders latent factors of variation conditionally independent, hence it is compatible
with the former perspective (Schölkopf et al., 2012). But the latter view might be more natural for
the setting where a human assigns labels based on the underlying latent factors. Our goal is to enable
disentanglement for this case when the latent variables cause the labels (Arjovsky et al., 2019).

� Amount of auxiliary information. Existing works (Khemakhem et al., 2020a) (Theorem 1),
Khemakhem et al. (2020b) require a lot of auxiliary information, e.g., the number of label classes
should be twice the total dimension of the latent factors of variation to guarantee disentanglement.
We seek to enable disentanglement with lesser auxiliary information.

Contributions. We consider the following data generation process – latent factors generate the
observations (raw features) and the labels for multiple tasks, where the latent factors are mutually
independent. We study a natural extension of the standard empirical risk minimization (ERM)
(Vapnik (1992)) paradigm. The most natural heuristic for learning representations is to train a neural
network using ERM and use the output from the representation layer before the �nal layer. In this
work, we propose to add a constraint on ERM to facilitate disentanglement – all the components of
the representation layer must be mutually independent. Our main �ndings for the representations
learned by the constrained ERM are summarized below.

� If the number of tasks is at least equal to the dimension of the latent variables, and the latent
variables are not Gaussian, then we can recover the latent variables up to permutation and scaling.
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� If we only have a single task and the latent variables come from an exponential family whose
log-density can be expressed as a polynomial, then under further constraints on both the learner's
inductive bias and the function being inverted, we can recover the latent variables up to permutation
and scaling.

� To implement constrained ERM, we propose a simple two-step approximation. In the �rst
step, we train a standard ERM based model, and in the subsequent step we carry out linear ICA
(Comon, 1994) on the representation extracted from ERM. We carry out experiments with the above
procedure for regression and classi�cation. Our experiments show that even with the approximate
procedure, it is possible to recover the true latent variables up to permutation and scaling when the
number of tasks is smaller than the latent dimension.

2. Related work

Non-linear ICA with auxiliary information. We �rst describe the works in non-linear ICA where
the time index itself serves as auxiliary information. Hyvarinen and Morioka (2016) showed that if
each component of the latent vector evolves independently and follows a non-stationary time series
without temporal dependence, then identi�cation is possible for non-linear ICA. In contrast, Hy-
varinen and Morioka (2017) showed that if the latent variables are mutually independent, with each
component evolving in time following a stationary time series with temporal dependence, then also
identi�cation is possible. (Khemakhem et al., 2020a; Hyvarinen et al., 2019; Khemakhem et al.,
2020b) further generalized the previous results. In these works, instead of using time, the authors
require observation of auxiliary information. Note that (Hyvarinen and Morioka, 2017; Hyvarinen
et al., 2019; Khemakhem et al., 2020a) have a limitation that the auxiliary information renders latent
variables conditionally independent. This assumption was relaxed to some extent in (Khemakhem
et al., 2020b), however, the model in (Khemakhem et al., 2020b) is not compatible with the data gen-
eration perspective that we consider, i.e., latent variables cause the labels. Recently, (Roeder et al.,
2020) studied representation identi�cation for classi�cation and self-supervised learning models,
where it was shown that if there are suf�cient number of class labels (at least as many as the di-
mension of the latent variables), then the representations learned by neural networks with different
initialization are related by a linear transformation. Their work does not focus on recovering the true
latent variables and instead studies whether neural networks learn similar representations across dif-
ferent seeds.
Other works. In another line of work (Locatello et al., 2020; Shu et al., 2019), the authors study
the role of weak supervision in assisting disentanglement. Note this line of work is different from
us, as these models do not consider labelled supervised learning datasets, bur rather use different
sources of supervision. For example, in (Locatello et al., 2020) the authors use multiple views of
the same object as a form of weak supervision.

3. Problem Setup

3.1. Data generation process

Before we describe the data generation process we use, we give an example of the data generation
process that is compatible with the assumptions in (Khemakhem et al., 2020a).

Y  Bernoulli
� 1

2

�
Z  N (Y1; I) X  g(Z ) (1)
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Figure 1: (a) Data generation process in Khemakhem et al. (2020b); (b) Data generation process
studied in this work.

whereBernoulli( 1
2) is the uniform Bernoulli distribution overf 0; 1g, N is normal distribution,

1 2 Rd is the vector that together with the labelY selects the mean of the latentZ , I is a d
dimensional identity matrix,g is a bijection that generates the observationsX . In Figure 1 (a), we
show the causal directed acyclic graph (DAG) corresponding to the above data generation process,
where the labels cause the latent variables (Schölkopf et al., 2012). Most of the current non-linear
ICA models are only compatible with this view of the data generation process. This may be valid
for some settings, but it is not perfectly suited for human labelled datasets where a label is assigned
based on the underlying latent factors of variations. Hence, we focus on the opposite perspective
(Arjovsky et al., 2019) when the latent variables generate the labels. The assumptions regarding the
data generation process studied in our work are de�ned formally ahead.

Assumption 1 The data generation process for regression is described as

Z  h(NZ )

X  g(Z )

Y  � Z + NY

(2)

whereNZ 2 Rd is noise,h : Rd ! Rd generatesZ 2 Rd (the components of latent variableZ are
mutually independent, non-Gaussian, and have �nite second moments),g : Rd ! Rd is a bijection
that generates the observationsX , � 2 Rk� d is a matrix that generates the labelY 2 Rk and
NY 2 Rk is the noise vector (NY is independent ofZ andE[NY ] = 0 ).

Note thatd is the dimension of the latent representation, andk corresponds to the number of
tasks. We adapt the data generation process to multi-task classi�cation as follows by changing the
label generation process.

Y  Bernoulli
�

�
�

� Z
��

; (3)

where(� ) corresponds to the sigmoid function applied elementwise to� Z and outputs the proba-
bilities of the tasks, andBernoullioperates on these probabilities elementwise to generate the label
vectorY 2 f 0; 1gk for thek tasks.
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We also contrast the DAGs of the two data generation processes in Figure 1. The nature of the
auxiliary information (labels) in the data generation process we study (Assumption 1) is very dif-
ferent from the one in prior works (equation 1); conditioning on the auxiliary information (labels)
in our data generation process does not make the latent variables independent. Our setting could be
interpreted as multi-task supervised learning, where the downstream task labels serve as the auxil-
iary information generated from shared latent variables.

Remark. The classic non-identi�ability results in Locatello et al. (2019) and Hyvärinen and Pa-
junen (1999) assumed that the latent factors of variation are all mutually independent. These results
implied that without some knowledge, e.g., auxiliary information (labels), it is impossible to disen-
tangle the latent variables. While (Khemakhem et al., 2020a) showed that it is possible to succeed
in the presence of auxiliary information, their data generation process assumes that the latent vari-
ables are not mutually independent and thus is not consistent with assumptions in (Locatello et al.,
2019) and (Hyv̈arinen and Pajunen, 1999). Whereas our work shows that the auxiliary information
helps in the case considered in (Locatello et al., 2019) and (Hyvärinen and Pajunen, 1999), since
the auxiliary information is introduced downstream of the latent variables.

3.2. Identi�ability

Our objective is to learn the modelg� 1 (or the generatorg) from the observed data and labels pairs
(X; Y ), such that for new observationsX we can recover the latent variablesZ that generatedX .
We can not always learn the exact latent variablesZ but may only identify them to some degree.
Let us denote the model learned as~g� 1 (with its inverse~g). We now describe a general notion
(commonly used in the literature) of identi�cation for the learned map~g� 1 with respect to the true
mapg� 1.

De�nition 1 Identi�ability up to A . If the learned map~g� 1 and the true mapg� 1 are related by
some bijectiona 2 A , such that~g� 1 = a � g� 1 (or equivalently~g = g � a� 1), then~g� 1 is said to
learng� 1 up to bijections inA . We denote this~g� 1 � A g� 1.

In the above de�nition, ifA was the set of all the permutation mapsP, then ~g� 1 � P g� 1

denotes identi�cation up to permutations. Permutation identi�cation guarantees that we learn the
true latent vector but do not learn the indices of the true latent, which is not important for many
downstream tasks. In other words, identi�cation up to permutations of the latent variables is the
gold standard for identi�cation. Our aim is to identify the latent variablesZ by inverting the data
generating process (learningg� 1) up to permutations.

4. Identi�cation via independence constrained ERM

The previous section established our objective of learning the modelg� 1 (or the generatorg) from
the observed data(X; Y ). We �rst train a supervised learning model to predict the labelsY from
X . For the rest of the work, we will assume that the predictor we learn takes the form� � � , where
� 2 Rk� d is a linear predictor that operates on the representation� : Rd ! Rd. As a result, the hy-
pothesis space of the functions that the learner searches over has two parts:� 2 H � corresponding
to the hypothesis class of linear maps, and� 2 H � , whereH � corresponds to the hypothesis class
over the representations. We measure the performance of the predictor on an instance(X; Y ) using
the loss`

�
Y;� � �( X )

�
(mean square error for regression, cross-entropy loss for classi�cation).
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We de�ne the risk achieved by a predictor� � � asR
�
� � �

�
= E

h
`
�
Y;� � �( X )

� i
, where the

expectation is taken with respect to the data(X; Y ).

Independence Constrained ERM (IC-ERM): The representations (� ) learnt by ERM as de-
scribed above have no guarantee of recovering the true latent variables up to permutations. Hence,
we propose a new objective where we want the learner to carry out constrained empirical risk min-
imization, where the constraint is placed on the representation layer that all components of the
representation are mutually independent. We provide the formal de�nition of mutual independence
for the convenience of the reader below.

De�nition 2 Mutual independence. A random vectorV = [ V1; � � � ; Vd] is said to be mutually
independent if for each subsetM � f 1; � � � ; dg we haveP(f Vi gi 2M ) =

Q
i 2M P(Vi ).

We state the proposed independence constrained ERM (IC-ERM) objective formally as follows:

min
� 2H � ;� 2H �

R(� � �) s.t. �( X ) is mutually independent (De�nition 2) (4)

We now state theorems that show the IC-ERM learning objective would recover the true latent
variables up to permutations under certain assumptions. It is intuitive that more auxiliary informa-
tion/numbers of tasks (k) should help us to identify the latent variables as they are shared across
these different tasks. Hence, we �rst state identi�cation guarantees for IC-ERM when we have
suf�cient tasks, and then discuss the dif�cult cases when we have few tasks.

4.1. Identi�cation when number of tasks is equal to the latent data dimension

We �rst study the setting when the number of tasksk is equal to the dimension of the latent variables
d. Before we describe the theorem, we state assumptions on the hypothesis class of the representa-
tions (H � ) and the classi�er (H � ).

Assumption 2 Assumption onH � and H � . For the true solutions (g� 1, � ), we haveg� 1 2 H �

and� 2 H � . For the case whenk = d, the setH � corresponds to the set of all invertible matrices.

The above assumption ensures that the true solutionsg� 1 and� are in the respective hypothesis
classes that the learner searches over. Also, the invertibility assumption on the hypothesis inH � is
needed to ensure that we do not have redundant tasks for the identi�cation of the latent variables.
Under the above assumption and the assumptions of our data generation process (1), we state the
following identi�cation result for the case when k=d.

Theorem 1 If Assumptions 1, 2 hold and the number of tasksk is equal to the dimension of the
latent d, then the solution� y � � y to IC-ERM(4) with ` as square loss for regression and cross-
entropy loss for classi�cation identi�es trueZ up to permutation and scaling.

The proof for the same is available in Appendix Section A. This implies that for the DAGs in Figure
1 (b), it is possible to recover the true latents up to permutation and scaling. This result extends the
current disentanglement guarantees (Khemakhem et al., 2020b) that exist for models where labels
cause the latent variables (latent variables are conditionally independent) to the settings where latent
variables cause the label (latent variables are not conditionally independent). In multi-task learning
literature (Caruana, 1997; Zhang and Yang, 2017), it has been argued that learning across multiple
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tasks with shared layers leads to internal representations that transfer better. The above result states
the conditions when the ideal data generating representation shared across tasks can be recovered.

Remark. Since we use a linear model for the label generation process, one can ask what happens
if we apply noisy linear ICA techniques (Davies, 2004; Hyvarinen, 1999) on the label itself (when
k = d) to recoverZ followed by a regression to predictZ from X . Noisy linear ICA require the
noise distribution to be Gaussian and would not work whenNY is not a Gaussian. Since we do not
make such distributional assumptions onNY , we cannot rely on noisy linear ICA on labels.

4.2. Identi�cation when the number of tasks is less than the dimensions of the latent

In this section, we study the setting when the number of tasksk is equal to one. Since this setting
is extreme, we need to make stronger assumptions to show latent identi�cation guarantees. Before
we lay down the assumptions, we provide some notation. Since we only have a single task, instead
of using the matrix� 2 Rk� d, we use
 2 Rd to signify the coef�cients that generate the label in
the single task setting. We assume each component of
 is non-zero. In the single task setting for
regression problems, the label generation is written asY  
 T Z + NY , and the rest of the notation
is the same as the data generation process in Assumption 1. We rewrite the data generation process
in Assumption 1 for the single task case in terms of normalized variablesU = Z � 
 .

Assumption 3 The data generation process for regressions is described as

Z  h(NZ )

Y  1T U + NY ;

X  g
0
(U);

(5)

whereg
0
(U) = g(U � 1


 ), whereU � 1

 = [ U1


 1
; � � � ; Ud


 d
] . We assume that all the components ofU

are mutually independent and identically distributed (i.i.d.).

Note thatg
0

is invertible sinceg is invertible and each element of
 is also non-zero. Hence,
for simplicity, we can deal with the identi�cation ofU. If we identify U up to permutation and
scaling, thenZ is automatically identi�ed up to permutation and scaling. The predictor we learn is
a composition of linear predictor� and a representation� , which is written as� � �( X ) = � T �( X ).
The learner searches for� in the setH � , whereH � consists of linear predictors with all non-zero
components, and� in the setH � .

We can further simplify the predictor as follows:� T �( X ) = 1T (�( X ) � � ), where�( X ) � � is
component-wise multiplication expressed as�( X ) � � = [� 1(X ) � � 1; � � � ; � d(X ) � � d]. Therefore,
instead of searching overH � such that all components of� are non-zero, we can �xH � = f 1g
and carry out the search over representationsH � only. For the rest of the section, without loss of
generality, we assume the predictor is of the form1 � �( X ) = 1T �( X ). We restate the IC-ERM (4)
with this parametrization and an additional constraint that all components are now required to be
independent and identically distributed (i.i.d.). We provide a formal de�nition for the convenience

of the reader below, whered= denotes identical in distribution.

De�nition 3 Independent & Identically Distributed (i.i.d.). A random vectorV = [ V1; � � � ; Vd]

is said to be i.i.d. if 1)Vi (X ) d= Vj (X ) 8i; j 2 f 1; � � � ; dg 2) P(f Vi gi 2M ) =
Q

i 2M P(Vi )
8M � f 1; � � � ; dg.
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The reparametrized IC-ERM (4) constraint is stated as follows.

min
� 2H �

R(1 � �) s.t. �( X ) is i.i.d. (De�nition 3) (6)

Next, we state the assumptions on each component ofU (recall each component ofU is i.i.d.
from Assumption 3) andH � under which we show that the reparametrized IC-ERM objective
(equation (6)) recovers the true latent variablesU up to permutations. We assume each compo-
nent ofU is a continuous random variable with probability density function (PDF)r . De�ne the
support of each component ofU asS = f u j r (u) > 0; u 2 Rg. De�ne a ball of radius

p
2p as

Bp = f u j juj2 � 2p2; u 2 Rg.

Assumption 4 Each component ofU is a continuous random variable from the exponential family
with probability densityr . log(r ) is a polynomial with degreep (wherep is odd) written as

log
�
r (u)

�
=

pX

k=0

akuk

where the absolute value of the coef�cients of the polynomial are bounded byamax, i.e.,jak j � amax

for all k 2 f 1; � � � ; pg, and the absolute value of the coef�cient of the highest degree term is at least
amin, i.e., japj � amin > 0. The support ofr is suf�ciently large that it containsBp, i.e.,Bp � S .
Also, the moment generation function of each componenti of U, M Ui (t), exists for allt.

Remark on the PDFs under the above assumption.The above assumption considers distributions
in the exponential family, where the log-PDF can be expressed as a polynomial. Note that as long
as the support of the distribution is bounded, every polynomial with bounded coef�cients leads to a
valid PDF (i.e., it integrates to one) and we only need to set the value ofa0 appropriately.

We now state our assumptions on the hypothesis classH � that the learner searches over. Ob-

serve that�( X ) can be written ash(U) = �
�

g
0
(U)

�
(sinceX = g

0
(U)). We write the set of all

the mapsh constructed from composition of� 2 H � andg
0

asH � � g
0
. De�ne w(u1; � � � ; ud) =

log
� �

�det
�
J (h(u1; � � � ; ud))

� ��
�

, wheredet is the determinant,J (h(u1; � � � ; ud)) is the Jacobian of

h computed at(u1; � � � ; ud). The set of all thew's obtained from allh 2 H � � g
0
is denoted asW

Assumption 5 H � consists of analytic bijections. For each� 2 H � , the moment generating
function of each componenti 2 f 1; � � � ; dg, � i (X ), denoted asM � i (X ) (t) exists for allt. Each
w 2 W is a �nite degree polynomial with degree at mostq, where the absolute values of the
coef�cients in the polynomial are bounded bybmax.

De�ne pmin = max
n

� log(8(d� 1)); 4amax(d� 1)
amin

;
log

�
4bmax� n poly

amin

�

2 + q
o

, wherenpoly is the maximum
number of non-zero coef�cients in any polynomialw 2 W , � is small constant (see Appendix C).

Theorem 2 If the Assumptions 3, 4, 5 hold,(g0) � 1 2 H � , andp is suf�ciently large (p � pmin),
then the solution� y(X ) of reparametrized IC-ERM objective(6) recovers the true latentU in the
data generation process in Asssumption 3 up to permutations.

8
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Proof sketch. The complete proof is available in Appendix Section C and we provide an overview
here. We use the optimality condition that the prediction made by the learned model,1T h(U),
exactly matches the true mean,1T U, along with the constraints that each component ofU are i.i.d.
and each component ofh(U) are i.i.d., to derive that the distributions ofU andh(U) are the same.
We substitute this condition in the change of variables formula that relates the densities ofU and
h(U). Using the Assumption 5, we can show that if the highest absolute value ofU and the highest
absolute value ofh(U) are not equal, then the term with the highest absolute value amongU and
h(U) will dominate, leading to contradiction in the identity obtained by change of variables formula.
Based on this, we can conclude that the highest absolute value ofU and the highest absolute value
of h(U) must be equal. We iteratively apply this argument to show that all the absolute values of
U andh(U) are related by permutation. We can extend this argument to the actual values instead
of absolute values. Sinceh is analytic we argue that the relationship of permutation holds in a
neighborhood. Then we use properties of analytic functions (Mityagin, 2015) to conclude that the
relationship holds on the entire space.

Why does the bound onp grow linearly in d? We provide some geometric intuition into why
the degree of the polynomial (p) of the log-PDF (log(r )) needs to be large. If the dimension of
the latent spaced is large, then the second term inpmin dominates, i.e.,p has to grow linearly in
d. The simpli�cation in the proof yields that the mappingh must satisfy the following condition –
kukk = kh(u)kk for all k 2 f 1; � � � ; pg, wherek � kk is thekth norm. Hence,h is a bijection that
preserves all norms up to thepth norm. If U is 2 dimensional, then the a bijectionh that preserves
the `1 norm and thè 2 norm is composed of permutations and sign-�ips. In general, sinceU is d
dimensional, we need at leastd constraints onh in the formkukk = kh(u)kk and thusp � d, which
ensure that the only map that satis�es these constraints is composed of permutations and sign-�ips.

Signi�cance and remarks on Theorem 2.Theorem 2 shows that if we use IC-ERM principle, i.e.,
constraint the representations to be independent, then we continue to recover the latents even if the
number of tasks is small. We can show that the above theorem also extends to binary classi�cation.
We admit that strong assumptions were made to arrive at the above result, while other assumptions
such as bound onp growing linearly ind seem necessary, but we would like to remind the reader
that we are operating in the extreme single task regime. In the previous section, when the number
of tasks was equal to the dimension of the latent (when we have suf�ciently many tasks), we had
shown the success of the IC-ERM (4) objective (Theorem 1) for identi�cation of latent variables
with much fewer assumptions. In contrast, in Theorem 2, we saw that with more assumptions on
the distribution we can guarantee latent recovery with even one task. If we are in the middle, i.e.,
when the number of tasks is between one and the dimension of the latent, then the above Theorem
2 says we only require the assumptions (Assumptions 3, 4, 5) to hold for at least one task.

Note on the case k> d: We did not discuss the case when the number of tasks is greater than the
dimension of the latent variables. This is because we can select a subsetS

0
of tasks, such that

jS
0
j = d and then proceed in a similar fashion as Theorem 1. This question arises commonly in

linear ICA literature, and selecting a subset of tasks is the standard practice.

5. ERM-ICA: Proposed implementation for independence constrained ERM

In the previous section, we showed the identi�cation guarantees with the IC-ERM objective. How-
ever, solving this objective is non-trivial, since we need to enforce independence on the representa-
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tions learnt. We propose a simple two step procedure as an approximate approach to solve the above
problem. The learner �rst carries out standard ERM stated as

� y; � y 2 arg min
� 2H � ;� 2H �

R(� � �) (7)

The learner then searches for a linear transformation
 that when applied to� y yields a new
representation with mutually independent components. We state this as follows. Find an invertible

 2 Rd� d such that

Z y = 
 � � y(X ) where the components ofZ y are mutually independent (8)

Note that a solution to the above equation (8) does not always exist. However, if we can �nd a

 that satis�es the above (8), then the classi�er� � 
 � 1 and the representation
 � � y(X ) together
solve the IC-ERM (4) assuming� � 
 � 1 2 H � and
 � � y 2 H � . To �nd a solution to the equation
(8) we resort to the approach of linear ICA (Comon, 1994). The approach has two steps. We �rst
whiten� y(X ). 1 De�ne V to be the covariance matrix of� y(X ). If the covarianceV is invertible,2

then the eigendecomposition ofV is given asV = U� 2UT . We obtain the whitened data� � (X ) as
follows � � (X ) = � � 1UT � y(X ). Consider a linear transformation of the whitened data and denote
it asZ � = 
 � � � (X ) and construct another vectorZ

0
such that its individual components are all

independent and equal in distribution to the corresponding components inZ � . Our goal is to �nd
an
 such that the mutual information betweenZ � andZ

0
is minimized. To make dependence on


explicit, we denote the mutual information betweenZ
0

andZ � asI (
 � � � (X )) . We state this as
the following optimization


 y 2 arg min

 ;
 is invertible

I (
 � � � (X )) (9)

We denote the above two step approximation method as ERM-ICA and summarize it below:

• ERM Phase: Learn� y; � y by solving the ERM objective (Eq: 7).

• ICA Phase: Learn
 y by linear ICA (Eq: 9) on the representation from ERM Phase (� y).

The above ERM-ICA procedure outputs a classi�er� y � (
 y) � 1 and representation
 y � � y that
is an approximate solution to the IC-ERM problem (4). While the proposed ERM-ICA procedure
is a simple approximation, we do not know of other works that have investigated this approach
theoretically and experimentally for recovering the latents. Despite its simplicity, we can prove
(similar to Theorem 1) that when the number of tasks is equal to the dimension of the latent variable,
ERM-ICA can recover the latent variables up to permutation and scaling.

Theorem 3 If Assumptions 1, 2 hold and the number of tasksk is equal to the dimension of the
latentd, then the solution
 y � � y to ERM-ICA ((7), (9)) with ` as square loss for regression and
cross-entropy loss for classi�cation identi�es trueZ up to permutation and scaling.

1. For simplicity, we assume� y (X ) is zero mean, although our analysis extends to the non-zero mean case as well. We
also assume� y (X ) has �nite second moments.

2. If it is not invertible, then we �rst need to project� y (X ) into the range space ofV

10
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The proof of the above theorem can be found in Appendix Section B. We leave the theoretical
analysis of the ERM-ICA approach for the single task case for future work, but we do show its
performance empirically for such scenarios in the evaluation section ahead. We believe that building
better approximations to directly solve the IC-ERM, which do not involve a two-step approach like
ERM-ICA approach is a fruitful future work.

6. Evaluation

6.1. Experiment Setup

6.1.1. DATA GENERATION PROCESS

Regression.We use the data generation process described in Assumption 1. The components of
Z are i.i.d. and follow discrete uniformf 0; 1g distribution. Each element of the task coef�cient
matrix � is i.i.d. and follows a standard normal distribution. The noise in the label generation is
also standard normal. We use a 2-layer invertible MLP to modelg and follow the construction used
in Zimmermann et al. (2021).3 We carry out comparisons for three settings,d = f 16; 24; 50g, and
vary tasks fromk = f d

2 ; 3d
4 ; dg. The dataset size used for training and test is5000data points, along

with a validation set of1250data points for hyper parameter tuning.

Classi�cation. We use the data generation process described in Assumption 1. We use the same
parameters and dataset splits as regression, except the labels are binary and sampled as follows:
Y  Bernoulli(� (� Z )) . Also, the noise in the� sampling is set to a higher value (10 times that of
a standard normal), as otherwise the Bayes optimal accuracy is much smaller.

6.1.2. METHODS, ARCHITECTURE, AND OTHER HYPERPARAMETERS

We compare our method against two natural baselines.a) ERM. In this case, we carry out standard
ERM (7) and use the representation learned at the layer before the output layer.b) ERM-PCA.
In this case, we carry out standard ERM (7) and extract the representation learned at the layer
before the output layer. We then take the extracted representation and transform it using principal
component analysis (PCA). In other words, we analyze the representation in the eigenbasis of its
covariance matrix.c) ERM-ICA. This is the main approach ((7), (8)) that approximates the IC-
ERM objective (4). Here we take the representations learnt using ERM (7) and transform them
using linear independent component analysis (ICA) (9).

We de�ne mean square error and cross-entropy as our loss objectives for the regression and
classi�cation task respectively. In both settings, we use a two layer fully connected neural network
and train the model using stochastic gradient descent. The architecture and the hyperparameter
details for the different settings are provided in Appendix D. Also, the code repository can be
accessed from the link4 in the footnote.

6.1.3. METRICS

The models are evaluated on the test dataset using the following two metrics.
� Label (Y ) prediction performance. We use the averageR2 (coef�cient of determination)

and the average accuracy across tasks in the regression and classi�cation task respectively. For

3. https://github.com/brendel-group/cl-ica/blob/master/main_mlp.py
4. Our Code Repository:https://github.com/divyat09/ood_identification
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Figure 2: Comparison of label and latent prediction performance (regression,d = 16).

Figure 3: Comparison of label and latent prediction performance (regression,d = 50).

the ERM-PCA and ERM-ICA, we take �nal representations learnt by these methods and train a
linear/logistic regression model to predict the labelY for the regression/classi�cation task. We
check this metric to ensure that the representations do not lose any information about the label.

� Latent (Z ) prediction performance. We use mean correlation coef�cient (MCC), a standard
metric used to measure permutation and scaling based identi�cation (refer (Hyvarinen and Morioka,
2017; Zimmermann et al., 2021) for further details). The metric is computed by �rst obtaining the
correlation matrix (� (Z; Ẑ )) between the recovered latentsẐ and the true latentsZ . Let's de�ne
j� (Z; Ẑ )j as the absolute values of the correlation matrix. Then we �nd a matching (assign each
row to a column inj� (Z; Ẑ )j) such that the average absolute correlation is maximized and return the
optimal average absolute correlation. Intuitively, we �nd the optimal way to match the components
of the predicted latent representation (Ẑ ) and components of the true representation (Z ). Notice that
a perfect absolute correlation of one for each matched pair of components would imply identi�cation
up to permutations.

6.2. Results

Regression.Figure 2 and 3 show a comparison of the performance of the three approaches across
d = 16 andd = 50 for various tasks. The results for the case ofd = 24 are in the Appendix E.1 (due
to space limits). In both cases, we �nd that the method ERM-ICA is signi�cantly better than the
other approaches in terms of guaranteeing permutation and scaling based identi�cation. All three
approaches have similar label prediction performance. We observe a similar trend for the case of
d = 24 shown in the Appendix E.1.

Classi�cation. Figure 4 and 5 show a comparison of the performance of the three approaches across
d = 16 andd = 24 for various tasks. In both cases, we �nd that the method ERM-ICA is better than

12
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Figure 4: Comparison of label and latent prediction performance (classi�cation,d = 16)

Figure 5: Comparison of label and latent prediction performance (classi�cation,d = 24)

the other approaches in terms of guaranteeing permutation and scaling based identi�cation, except
in the case of 24 data dimensions with a total of 12 tasks. All three approaches have similar label
prediction performance. For classi�cation, unlike regression, the improvements are smaller and we
do not see improvement ford = 50 (comparisons for the case ofd = 50 are in the Appendix E.2).
We see a worse performance in the classi�cation setting because the ERM model does not learn the
Bayes optimal predictor unlike regression.

Discussion. We have shown that ERM-ICA achieves signi�cant improvement in latent recovery
with much fewer tasks (up tod2). However, in our theory we proved that under certain assumptions
solving the reparametrized IC-ERM objective (Eq (6)) can achieve identi�cation even with a single
task. Note that we only approximate equation (6) with ERM-ICA, and if we build better approxima-
tions of the ideal approach (IC-ERM), then we can witness gains with even fewer tasks. We believe
that building such approximations is a fruitful future work.

7. Conclusion

In this work, we analyzed the problem of disentanglement in a natural setting, where latent factors
cause the labels, a setting not well studied in the ICA literature. We show that if ERM is constrained
to learn independent representations, then we can have latent recovery from learnt representations
even when the number of tasks is small. We propose a simple two step approximate procedure
(ERM-ICA) to solve the constrained ERM problem, and show that it is effective in a variety of
experiments. Our analysis highlights the importance of learning independent representations and
motivates the development of further approaches to achieve the same in practice.

13
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Bernhard Scḧolkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning.Proceedings of the
IEEE, 109(5):612–634, 2021.

Rui Shu, Yining Chen, Abhishek Kumar, Stefano Ermon, and Ben Poole. Weakly supervised dis-
entanglement with guarantees.arXiv preprint arXiv:1910.09772, 2019.

Vladimir Vapnik. Principles of risk minimization for learning theory. InAdvances in neural infor-
mation processing systems, pages 831–838, 1992.

Julius von K̈ugelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf, Michel
Besserve, and Francesco Locatello. Self-supervised learning with data augmentations provably
isolates content from style.arXiv preprint arXiv:2106.04619, 2021.

Yixin Wang and Michael I Jordan. Desiderata for representation learning: A causal perspective.
arXiv preprint arXiv:2109.03795, 2021.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners.arXiv preprint
arXiv:2109.01652, 2021.

Yu Zhang and Qiang Yang. A survey on multi-task learning.arXiv preprint arXiv:1707.08114,
2017.

Roland S Zimmermann, Yash Sharma, Steffen Schneider, Matthias Bethge, and Wieland Brendel.
Contrastive learning inverts the data generating process.arXiv preprint arXiv:2102.08850, 2021.

16



TOWARDS EFFICIENT REPRESENTATION IDENTIFICATION IN SUPERVISED LEARNING

Appendix A. Proof of Theorem 1: IC-ERM for the case k=d

Theorem 1 If Assumptions 1, 2 hold and the number of tasksk is equal to the dimension of the
latent d, then the solution� y � � y to IC-ERM(4) with ` as square loss for regression and cross-
entropy loss for classi�cation identi�es trueZ up to permutation and scaling.

Proof Consider we are in the regression setting for the data generation process in Assumption 1.
Therefore, usingX  g(Z ) andY  � Z + N , the risk of a predictorf can be written as follows:

R(f ) = E
�
kY � f (X )k2�

= E
�
k� Z + N � f � g(Z )k2�

= E
h
k� Z � f � g(Z )k2

i
+ E

�
kN k2�

� 2 � E[(� Z � f � g(Z ))T N ]

= E
h
k� Z � f � g(Z )k2

i
+ E

�
kN k2�

(sinceZ ? N andE[N ] = 0)

(10)

From the above it is clear thatR(f ) � E
�
kN k2

�
for all functionsf : Rd ! Rd. Sinceg� 1 2 H � ,

� 2 H � andg� 1(X ) has all mutually independent components,� � g� 1 satis�es the constraints in
IC-ERM (4) and also achieves the lowest error possible, i.e.,R(� � g� 1) = E[kN k2]. Consider any
solution to constrained ERM in (4). The solution must satisfy the following equality except over a
set of measure zero.

� y � � y(X ) = � Z

=) � y(X ) = (� y) � 1� Z
(11)

Let us call� y(X ) = Z y andA = (� y) � 1� . Hence, the above equality becomesZ y = AZ , where
all the components ofZ y are independent (Eq: (4)) and all the components ofZ are independent
(Assumption 1). We will now argue that the matrixA can be written as a permutation matrix times
a scaling matrix. We �rst show that in each column ofA there is exactly one non-zero element.
Consider columnk of A denoted as[A]k . SinceA is invertible all elements of the column cannot be
zero. Now suppose at least two elementsi andj of [A]k are non-zero. Consider the corresponding
components ofZ y. SinceZ y

i andZ y
j are both independent and since[A]ik and[A]jk are both non-

zero, from Darmois' theorem (Darmois, 1953) it follows thatZk is a Gaussian random variable.
However, this leads to a contradiction as we assumed none of the random variables inZ follow a
Gaussian distribution. Therefore, exactly one element in[A]k is non-zero. We can say this about
all the columns ofA. No two columns will have the same row with a non-zero entry or otherwise
A would not be invertible. Therefore,A can be expressed as a matrix permutation times a scaling
matrix, where the scaling takes care of the exact non-zero value in the row and the permutation
matrix takes care of the address of the element which is non-zero. This completes the proof.
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Appendix B. Proof of Theorem 3: ERM-ICA for the case k=d

Theorem 3 If Assumptions 1, 2 hold and the number of tasksk is equal to the dimension of the
latentd, then the solution
 y � � y to ERM-ICA ((7), (9)) with ` as square loss for regression and
cross-entropy loss for classi�cation identi�es trueZ up to permutation and scaling.

Proof Although the initial half of the proof is identical to the proof of Theorem 1 we repeat it for
clarity. Consider we are in the regression setting for the data generation process in Assumption 1.
Therefore, usingX  g(Z ) andY  � Z + N , the risk of a predictorf can be written as follows:

R(f ) = E
�
kY � f (X )k2�

= E
�
k� Z + N � f � g(Z )k2�

= E
h
k� Z � f � g(Z )k2

i
+ E

�
kN k2�

� 2 � E[(� Z � f � g(Z ))T N ]

= E
h
k� Z � f � g(Z )k2

i
+ E

�
kN k2�

(sinceZ ? N andE[N ] = 0)

(12)

From the above it is clear thatR(f ) � E
�
kN k2

�
for all functionsf : Rd ! Rd. Sinceg� 1 2 H � ,

� 2 H � andg� 1(X ) has all mutually independent components,� � g� 1 satis�es the constraints in
IC-ERM (4) and also achieves the lowest error possible, i.e.,R(� � g� 1) = E[kN k2].

Consider any solution to ERM in (7). The solution must satisfy the following equality except over
a set of measure zero.

� y � � y(X ) = � Z

=) � y(X ) = (� y) � 1� Z
(13)

Since� y(X ) is a linear combination of independent latents with at least one latent non-Gaussian
(and also the latents have a �nite second moment). We can use the result from (Comon, 1994) that
states
 y that solves equation (9) relates to(� y) � 1 as follows

(
 y) � 1 = (� P�) � 1 = � � 1P � 1� � 1 (14)

Substituting the above into (13) we get� y(X ) = � � 1P � 1� � 1� Z = � � 1P � 1Z . This completes
the proof.

We can also carry out the same proof for the multi-task classi�cation case. In multi-task classi-
�cation we can write the condition for optimality as

�
�


 y� y(X )
�

= �
�

� Z
�

(15)

where sigmoid is applied separately to each element, and since the sigmoids are equal, this implies
the individual elements are also equal. Therefore,
 y� y(X ) = � Z and we can use the same
analysis as the regression case from this point on. Also, note that we equated the sigmoids in �rst
place, because the LHS corresponds toP̂ (Y jX ) and RHS corresponds to trueP(Y jX ).

18



TOWARDS EFFICIENT REPRESENTATION IDENTIFICATION IN SUPERVISED LEARNING

Appendix C. Proof of Theorem 2: IC-ERM for the case k=1

Theorem 2 If the Assumptions 3, 4, 5 hold,(g0) � 1 2 H � , andp is suf�ciently large (p � pmin),
then the solution� y(X ) of reparametrized IC-ERM objective(6) recovers the true latentU in the
data generation process in Asssumption 3 up to permutations.

Proof We write � y(X ) = [� y
1(X ); � � � ; � y

d(X )]. We call � y
i (X ) = Vi and the vectorV =

[V1; � � � ; Vd] = [� y
1(X ); � � � ; � y

d(X )].

Observe that since(g
0
) � 1 2 H � , we can use the same argument used in the proof of Theorem 1 to

conclude that(g
0
) � 1 is a valid solution for the reparametrized IC-ERM objective (Eq: (6)). Notice

that the terms� y and� that appear in the proof of Theorem 1, they are equal to identity here due to
the Assumption 3 and IC-ERM (6). Therefore, following the standard argument in Theorem 1, we
can conclude that any solution� y(X ) of reparametrized IC-ERM (6) satis�es the following:

X

i

� y
i (X ) =

X

i

(g
0
) � 1
i (X )

X

i

Vi =
X

i

Ui

(16)

We write the moment generation function of a random variableUi asM Ui (t) = E[etU i ]. We
substitute the moment generating functions to get the following identity.

X

i

Vi =
X

i

Ui =) � i M Vi (t) = � i M Ui (t) (17)

SinceUi
d= Uj andVi

d= Vj , we can useM Ui (t) = M Uj (t) andM Vi (t) = M Vj (t) for all t 2 R
and simplify as follows:

�
M Vi (t)

� d
=

�
M Ui (t)

� d
=) M Vi (t) = M Ui (t)

=) Vi
d= Ui ; 8i 2 f 1; � � � ; dg

(18)

In the second step of the above simpli�cation, we use the fact that the moment generating
function is positive. In the third step, we use the fact that if moment generating functions exist and
are equal, then the random variables are equal in distribution (Feller, 2008). Having established that
the distributions are equal, we now show that the random variables are equal up to permutations.

Since the vectorV is an invertible transformh of U, whereV = h(U). We can write the pdf of
U in terms ofV as follows.

Y

i

p(ui ) =
Y

i

p(vi )
�
�det(J(h(u)))

�
� ; (19)

wherep corresponds to the pdf ofUi (recall that pdfs of all components is the same). We take log
on both sides of the above equation to get the following:

X

i

log(p(ui )) =
X

i

log(p(vi )) + log
� �

�det(J(h(u)))
�
�
�

(20)
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From Assumption 4, we substitute a polynomial forlog(p(u)) =
P p

k=0 akuk . From Assumption 5,

we express thislog
� �

�det(J(h(u)))
�
�
�

=
P

bk
Q

i u� k (i )
i . We substitute these polynomials into the

above equation to get the following:
X

i

log(p(ui )) �
X

i

log(p(vi )) � log
� �

�det(J(h))
�
�
�

= 0

=)
pX

k=1

ak

dX

i =1

(uk
i � vk

i ) �
X

m

bm

Y

i

u� m (i )
i = 0

(21)

In the proof, we �rst focus on comparing the largest absolute value amongu's and largest
absolute value amongv's. Without loss of generality, we assume thatjuj j > jui j for all i 6= j (uj is
the largest absolute value amongu's) andjvr j > jvi j for all i 6= r (vr is the largest absolute value
amongv's). Consider the setting whenjuj j � p2 > 1 (these points exist in the support because of
the Assumption 4). We can writejuj j = �p 2, where� � 1.

There are three cases to further consider:

a) jvr j > juj j

b) jvr j < juj j

c) jvr j = juj j

We �rst start by analyzing the case b). Since all values ofjvi j andjui j are also strictly less thanjuj j,
we have the following:

• 9 c < 1 such thatjui j < c�p 2 8 i 6= j

• jvi j < c�p 2 8 i 2 f 1; � � � ; dg, wherec < 1.

We divide the identity in equation (21) byup
j and separate the terms in such a way that only the

termap is in the LHS and the rest of the terms are pushed to the RHS. We show further simpli�cation
of the identity below.
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(22)

We analyze each of the terms in the RHS separately. The simpli�cation of the �rst term yields the
following expression.
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The simpli�cation of the second term in the RHS of the last equation in (22) yields the following
expression.
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The simpli�cation of the third term in the RHS of the last equation in (22) yields the following
expression.
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wherenpoly corresponds to the number of non-zero terms in the polynomial expansion of the log-
determinant. In the above simpli�cation, we used the fact that

P
i � m (i ) � q and jui j < juj j.

Analyzing the RHS in equations (23)-(25), we see that ifp becomes suf�ciently large, the RHS
becomes less than1. This contradicts the relationship in equation (22). Therefore, alljvi j cannot be
strictly less thanjui j. This rules out case b).

We now derive the bounds on the value ofp as follows. Assumep � 2q, i.e., the degree of the
log-pdf of each component ofU is at least twice the degree of the log-determinant of the Jacobian
of h.

From the equation (23) we get the following bound onp
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From the equation (24) we get the following bound onp
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From the equation (25) we get the following bound onp
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From the above equations (26), (27), and (28), we get that if
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then the sum of the terms in the RHS in equation (22) is at most3
4 and the term in the LHS in

equation (22) is1, which leads to a contradiction.
From the above expression, we gather that the second and third term should dominate in de-

termining the lower bound forp. From the second term, we gather that the lower bound increases
linearly in the dimension of the latent, and from the third term we gather thatp must be greater
thanq by a factor that grows logarithmically in the number of terms in the polynomial of the log
determinant.

Let us now consider the case a) (jvr j > juj j) which is similar to the case b) analyzed above. Since
values ofjui j are strictly less thanjuj j andjvr j, and sincejvr j > juj j, there exist ac < 1 such that
jui j � c�p 2, jvr j � 1

c �p 2, jvi j � cjvr j, wherec < 1. We follow the same steps as done in the
analysis for case b). We separate the equation so that only the termap (obtained by dividingvp

r with
vp

r ) is in the LHS and the rest on the RHS.
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(30)

We analyze each of the terms in the RHS in equation (30) separately. The simpli�cation of the
�rst term in the RHS of the above yields the following upper bound.

1
japj

�
�
�ap

d� 1X

i =1

� up
i

vp
r

�
vp

i

vp
r

� �
�
� �

1
japj

�
�
�ap

�
�
�

d� 1X

i =1

� �
�
�
up

i

vp
r

�
�
� +

�
�
�
vp

i

vp
r

�
�
�
�

� 2cp(d � 1)

(31)

22



TOWARDS EFFICIENT REPRESENTATION IDENTIFICATION IN SUPERVISED LEARNING

The simpli�cation of the second term in the RHS of equation (30) yields the following upper bound.
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The simpli�cation of the third term in the RHS of equation (30) yields the following upper
bound.
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Analyzing the RHS in equation (31)-(33), we see that ifp becomes suf�ciently large then the
RHS becomes less than1. This contradicts the relationship in equation (30). Therefore, there is no
jvi j that is strictly larger thanjui j. This rules out case a). In fact from equations (31)-(33) we can
get the same bound onp as in case b).

Thus, the only possibility is case c), i.e.,jvr j = juj j =) vr = uj or vr = � uj . Consider
the case whenp is odd. In that case,vr = uj is the only option that works. We substitutevr = uj

in the equation (22) and repeat the same argument for the second highest absolute value, and so on.
This leads to the conclusion that for each componentu there is a component ofv such that both of
them are equal. Hence, we have established the relationshipvr = uj . For another sample where
indexj corresponds to the highest absolute value and is in the neighbourhood ofuj , the relationship
vr = uj must continue to hold. If this does not happen, then there would be another component
vq = uj whereq 6= r . However, if that were the case, then it would contradict the continuity ofh.

Therefore, the relationshipvr = uj (the match between indexj for u and indexr for v) holds
for a neighbourhood of values of vectoru. Since each component ofh is analytic, we can use the
fact that the neighbourhood of vector of values ofu for which the relationshipvr = uj holds has a
positive measure, and then from (Mityagin, 2015) it follows that this relationship would hold on the
entire space. We can draw the same conclusion for all the components ofh and conclude thath is a
permutation map.
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Appendix D. Implementation Details

D.1. Model Architecture

• Fully Connected Layer: (Data Dim, 100)

• BatchNormalization(100)

• LeakyReLU(0.5)

• Full Connected Layer: (100, Data Dim)

• BatchNormalization(Data Dim)

• LeakyReLU(0.5)

• Fully Connected Layer: (Data Dim, Total Tasks)

We consider the part of the network before the �nal fully connected layer as the representation
network, and use the output from the representation network for training ICA/PCA after the ERM
step.

D.2. Hyperparameters

We use SGD to train all the methods with the different hyperparameters across each task mentioned
below. In every case, we select the best model during the course of training based on the validation
loss, and also use a learning rate scheduler that reduces the existing learning rate by half after every
50 epochs. Also, regarding ICA, we use the FastICA solver in sklearn with30; 000 maximum
iterations and data whitening.

• Regression: Learning Rate:0:01, Batch Size:512, Total Epochs:1000, Weight Decay:
5e � 4, Momentum:0:9

• Classi�cation: Learning Rate:0:05, Batch Size:512, Total Epochs:200, Weight Decay:
5e � 4, Momentum:0:9
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