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Abstract

In this work, we present the largest benchmark001
to date on linguistic acceptability: Multilin-002
gual Evaluation of Linguistic Acceptability—003
MELA, with 48K samples covering 10 lan-004
guages from a diverse set of language families.005
We establish LLM baselines on this benchmark,006
and investigate cross-lingual transfer in accept-007
ability judgements with XLM-R. In pursuit of008
multilingual interpretability, we analyze the009
weights of fine-tuned XLM-R to explore the010
possibility of identifying transfer difficulty be-011
tween languages. Our results show that GPT-4012
performs on par with fine-tuned XLM-R, while013
open-source instruction-finetuned multilingual014
models lags behind by a notable gap. Cross-015
lingual and multi-task learning experiments016
show that unlike semantic tasks, in-language017
training data is crucial in acceptability judge-018
ments. We also conduct edge probing to inves-019
tigate the different syntax capacities between020
base XLM-R and MELA-finetuned XLM-R.021
Results of probing indicate that training on022
MELA improves the performance of XLM-R023
on sytax-related probing tasks. Our dataset will024
be made publicly available upon acceptance.025

1 Introduction026

The acceptability judgment task tests a language027

model’s ability to distinguish syntactically accept-028

able sentences like (1a) from unacceptable ones029

like (1b) in a human language - for instance, the030

following example on island constraints in En-031

glish (Ross, 1967).032

(1) a. Whose book did you find?033

b. *Whose did you find book?034

As a core linguistic competence, it has been argued035

in the literautre of Chomskyan generative syntax036

that much if not all of such syntactic competence037

is innate (Chomsky, 1965). That is, human brains038

are born with such knowledge already wired in. If039

the “innate” hypothesis were to be true and linguis- 040

tic competence were unique in humans, it would 041

naturally follow that any language model—with 042

no “innate” linguistic knowledge to begin with— 043

cannot be taught to acquire certain key linguistic 044

competence. 045

There have been many attempts in computational 046

linguistics and cognitive science to investigate this 047

hypothesis, directly or indirectly, using either a 048

data-driven approach, where examples created by 049

theoretical linguists in published textbooks are col- 050

lected, e.g., CoLA—Corpus of Linguistic Accept- 051

ability (Warstadt et al., 2019), or a theory-driven ap- 052

proach, where minimal pairs targeting specific syn- 053

tactic phenomena are generated semi-automatically 054

via some template (Warstadt et al., 2020; Xiang 055

et al., 2021; Hu et al., 2020a). 056

There have been growing interests recently to 057

expand the data-driven paradigm into other lan- 058

guages. For instance, CoLA-style datasets have 059

been proposed in Russian (Mikhailov et al., 2022), 060

Italian (Trotta et al., 2021) and Chinese (Hu et al., 061

2023). However, to date there are no multilingual 062

benchmarks in this area which can be used to sys- 063

tematically test such abilities of multilingual mod- 064

els. 065

On the other hand, recently introduced eval- 066

uation benchmarks for Large Language Models 067

(LLMs) such as GPT-4 (OpenAI, 2023) have 068

mostly focused on application-driven tasks such 069

as world knowledge and commonsense reason- 070

ing (Hendrycks et al., 2021; Srivastava et al., 2022), 071

math reasoning (Cobbe et al., 2021), and code gen- 072

eration (Zhang et al., 2023). Few works, however, 073

have investigated these models from a purely lin- 074

guistic aspect. 075

To address these gaps, we introduce MELA— 076

Multilingual Evaluation of Linguistic Acceptabil- 077

ity, the first large-scale multilingual acceptability 078

benchmark with 48k examples covering 10 lan- 079

guages from a diverse set of language families. 080
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Language L. F. label Examples W. O. Script Gender Casing 

English (en) Germ 1 One more pseudo generalization and I’m giving up. SVO Latin N.A. N.A. 

Chinese (zh) Sino-Tbt 0 张三被李四打了自己。 SVO Han N.A. N.A. 

Italian (it) Rom 1 Quest’uomo mi ha colpito. SVO Latin 2 N.A. 

Russian (ru) Slavic 0 Этим летом не никуда ездили. SVO Cyrillic 3 6 

German (de) Germ 1 Die Frau sagt, dass ihm nicht zu helfen ist. SVO Latin 3 4 

French (fr) Rom 1 Je lui ait couru après. SVO Latin 2 N.A. 

Spanish (es) Rom 1 María bailó. SVO Latin 2 N.A. 

Japanese (ja) Altaic 0 犬が道端て死゙んである。 SOV 

Han, 

Hiragana, 

Katakana 

N.A. N.A. 

Arabic (ar) Semitic 1 قال عمر إن كل السيارات استقدموها من ألمانيا . VSO Arabic 2 3 

Icelandic (is) Germ 1 Útlendingar gengu oft þennan stíg. SVO Latin 3 4 

 

Table 1: Example sentences in the MELA training set, with information about the language family (L.F.), word order
(W.O.), script, grammatical gender and casing for each language. Label “1” indicates the sentence is acceptable, “0”
unacceptable. Data for the first four languages are from existing benchmarks while the rest are collected by us.

Data in four languages are from existing bench-081

marks mentioned above, and we complement them082

with newly collected data in six languages. Exam-083

ples of MELA are demonstrated in Table 1. Follow-084

ing the CoLA tradition, all sentences in MELA are085

hand-written by linguists in respective languages,086

taken from textbooks, handbooks and journal arti-087

cles in theoretical syntax, except for a small frac-088

tion of Russian sentences from Mikhailov et al.089

(2022).090

We come up with three possible usages of091

MELA. In this work, we make a preliminary explo-092

ration in the following three directions:093

Benchmarking We benchmark various multilin-094

gual LMs on MELA, including BLOOMZ (Scao095

et al., 2022; Muennighoff et al., 2023), mTk (Wang096

et al., 2022), mT0 (Muennighoff et al., 2023),097

Baichuan2-Chat (Yang et al., 2023), GPT-3.5 and098

GPT-4 (OpenAI, 2023).099

Cross-lingual transfer We train XLM-R (Con-100

neau et al., 2020) on different language combina-101

tions, finding in-language training data is crucial102

for acceptability judgements, in contrast to seman-103

tic tasks such as NLI (Conneau et al., 2018).104

Syntax acquisition We probe the syntax capac-105

ity of MELA-finetuned XLM-Rs on syntax-related106

probing tasks, which indicates that XLM-R ac-107

quires syntax knowledge from the linguistic judg-108

ment task.109

In the rest of this work, We first review relevant110

literature in §2, and then describe how we con- 111

struct our benchmark MELA in §3. Next, we apply 112

MELA as an evaluation benchmark for LLMS in 113

§4. We investigate cross-lingual transfer in §5 and 114

multi-task fine-tuning in §6. Finally, we probe the 115

XLM-Rs trained on MELA for their syntax-related 116

capacity in §7. 117

2 Related Work 118

2.1 Linguistic Acceptability 119

As we mentioned in §1, currently there exist 120

four large-scale linguistic acceptability datasets: 121

CoLA (Warstadt et al., 2019), ItaCoLA (Trotta 122

et al., 2021), RuCoLA (Mikhailov et al., 2022), 123

and CoLAC (Hu et al., 2023), all of which are 124

annotated by expert linguists, while CoLAC also 125

comes with an additional set of crowd labels. 126

Another line of work in linguistic acceptability is 127

based on semi-automatic construction of example 128

sentences, usually in minimal pairs. They compare 129

the probabilities that language models assign to 130

these sentences (Warstadt et al., 2020; Xiang et al., 131

2021), sometimes focusing on specific syntactic 132

issues such as agreement (Varda and Marelli, 2023). 133

A recent work also collects acceptability data in six 134

Scandinavian languages (Nielsen, 2023), where the 135

unacceptable examples are automatically generated 136

by removing or swapping words in sentences from 137

the Universal Dependency project. 138

In this work, we follow the CoLA style when 139

building our benchmark, so that the unacceptable 140
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sentences are manually created by linguists to re-141

flect certain syntactic constraints of the language142

in question. Compared with automatic methods, a143

wider coverage of syntactic phenomena is achieved144

in this way.145

2.2 Multilingual Evaluation Benchmarks146

XTREME (Hu et al., 2020b) and XGLUE (Liang147

et al., 2020) are two of the most popular multilin-148

gual evaluation benchmarks. Of the tasks therein,149

many are constructed by translating English sam-150

ples entirely or partially into other languages, such151

as XNLI (Conneau et al., 2018), PAWS-X (Yang152

et al., 2019), and MLQA (Lewis et al., 2020).153

Apart from these NLU benchmarks, the litera-154

ture has also witnessed an abundance of multilin-155

gual generation benchmarks, ranging from sum-156

marization (Scialom et al., 2020; Ladhak et al.,157

2020) to translation (Fan et al., 2021; Goyal et al.,158

2022). After multitask instruction finetuning was159

found to unlock cross-task generalization ability160

in language models (Wei et al., 2022; Sanh et al.,161

2022), multilingual instruction datasets have also162

been proposed, represented by Supernatural In-163

struction (Wang et al., 2022) and xP3 (Muennighoff164

et al., 2023).165

3 MELA: Multilingual Evaluation of166

Linguistic Acceptability167

MELA consists of more than 48 thousand accept-168

ability samples across 10 languages from a diverse169

group of language families. Specifically, it con-170

tains three Germanic languages: English, German171

and Icelandic, three Romance languages: Spanish,172

French and Italian, one Slavic language Russian,173

one Sino-Tibetan language Chinese, one Japonic174

language Japanese, and one Semitic language Ara-175

bic. Table 1 shows example sentences and proper-176

ties of each language in MELA. For dataset statis-177

tics, see Table 2.178

3.1 Data collection Procedure179

High-resource languages. We use four ex-180

isting datasets for four languages in MELA:181

CoLA (Warstadt et al., 2019) for English, Ita-182

CoLA (Trotta et al., 2021) for Italian, Ru-183

CoLA (Mikhailov et al., 2022) for Russian, and184

CoLAC for Chinese (Hu et al., 2023), each hav-185

ing more than 6,000 data points. Since the out-186

of-domain samples of RuCoLA are produced by187

generative models, we additionally collected 1037188

Russian samples from The Syntax of Russian (Bai- 189

lyn, 2011a) (with the procedure described below) 190

and add them 50-50 to the development and test 191

sets of the Russian portion to keep a balance be- 192

tween validation-test discrepancy and generaliza- 193

tion. 194

Low-resource languages. Apart from the four 195

existing acceptability datasts, we also collected 196

samples in 6 new languages, all annotated by theo- 197

retical syntacticians in their respective languages. 198

These sentences are taken from five books/text- 199

books in the Cambridge Syntax Guides series, 200

namely The Syntax of German (Bailyn, 2011b), 201

The Syntax of French (Rowlett, 2007), The Syn- 202

tax of Spanish (Zagona, 2001), The Syntax of Ara- 203

bic (Aoun et al., 2009) and The Syntax of Ice- 204

landic (Thráinsson, 2007). Japanese data were 205

collected from Handbook of Japanese Syntax (Shi- 206

batani et al., 2017). 207

Each book contains roughly one to three thou- 208

sand example sentences with acceptability judg- 209

ments made by linguists in respective languages. 210

Graduate students majoring in linguistics in these 211

languages were paid to extract all example sen- 212

tences with their judgments in these books man- 213

ually. Note that, following previous CoLA-style 214

corpora, we only keep sentences labelled with * or 215
?? as our unacceptable sentences. All unmarked 216

sentences are extracted as acceptable sentences. 217

Following previous acceptability datasets, we re- 218

move examples when the judgment is based on co- 219

indexing of pronouns, empty categories, prosody 220

or semantic/pragmatic interpretation. We also com- 221

plete the sentence if it composed of only a phrase, 222

while keeping the judgment. 223

For Japanese, we remove examples of its dialects 224

(N=99) and those about classical Japanese (N=13). 225

For Arabic and Russian, as the original sentences 226

are written in transliterations, we also convert them 227

to their respective scripts manually. 228

The mean time for data collection for one lan- 229

guage is about a month, with Icelandic taking about 230

3 months as there were more examples in the book. 231

As these books/textbooks and handbook are 232

overviews of syntax of each language, we believe 233

they cover a wide range of linguistic phenomena 234

in these languages, and can therefore serve as a 235

good resource to evaluate language models’ over- 236

all ability to distinguish acceptable sentences from 237

unacceptable ones. 238
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English Chinese Russian Italian German French Spanish Japanese Arabic Icelandic
ISO code en zh ru it de fr es ja ar is

Train 8551 6072 7869 7801 500 500 500 500 500 500
Dev 527 492 1483 946 402 521 321 693 313 1194
Test 516 931 2341 975 402 521 322 694 313 1194

acceptable% 70.3 66.4 73.2 84.5 75.5 85.0 73.1 80.0 74.7 75.1
len (char) 40.8 11.7 56.2 36.0 49.0 29.0 31.7 16.1 22.2 32.9
len (byte) 40.8 35.0 102.8 36.3 49.6 29.7 32.9 47.7 40.8 36.7
len (token) 10.5 9.5 15.2 9.7 11.5 8.1 8.7 11.1 7.9 9.7

Table 2: Statistics of MELA: train/dev/test splits, acceptable rate, and average sentence length by characters, bytes,
and tokens (using the tokenizer of XLM-R (Conneau et al., 2020)).

3.2 Resulting Corpus and Data Split239

The resulting corpus contains more than 48k exam-240

ple sentences in 10 languages.241

For Italian and Chinese, we use the original242

train/dev/test splits of ItaCoLA and CoLAC, and243

for CoLAC we use the crowd label following Hu244

et al. (2023) (see Appendix C for the alternative).245

For English and Russian, we keep the training246

splits of CoLA v.1.1 and RuCoLA, and use their247

in-domain development sets as our validation sets,248

and their out-of-domain development sets as our249

test sets.250

For the six low-resource languages, we randomly251

sample 500 sentences from each of these languages252

to construct a training set, and divide the remaining253

sentences equally between validation and test sets.1254

3.3 Comparison with Other Multilingual255

Benchmarks256

We note that all samples in MELA are constructed257

individually in each language. While some early258

multilingual benchmarks opt to translate English259

sentences into other languages to obtain parallel260

samples (Conneau et al., 2018; Lewis et al., 2020),261

this approach does not suit our case. Firstly, as262

Clark et al. (2020) argue, translation introduces263

artifacts into multilingual benchmarks and often re-264

sults in translationese. Secondly, the task of linguis-265

tic acceptability is highly language-dependent, and266

syntactic phenomena in one language most likely267

cannot be captured in another language through268

translation.269

4 Evaluating LLMs with MELA270

In this section, we report the performance of several271

LLMs, open-sourced or close-sourced, on MELA.272

1We experimented with another split of these data and
observe similar results in all experiments that follow.

4.1 Experimental Settings 273

For open-sourced models, we consider 274

BLOOMZ (Scao et al., 2022; Muennighoff 275

et al., 2023), two instruction finetuned variants 276

of mT5 (Xue et al., 2021)—namely mTk (Wang 277

et al., 2022) and mT0 (Muennighoff et al., 278

2023)—and Baichuan2-Chat (Yang et al., 2023). 279

BLOOMZ is both pretrained and finetuned on 280

46 languages, which only covers 5 languages in 281

MELA: English, Chinese, French, Spanish, and 282

Arabic2. The pretraining corpus of mT5 includes 283

all 10 languages in MELA, but mT0 is finetuned 284

on the same instruction dataset as BLOOMZ. 285

mTk’s finetuning data, on the other hand, covers 286

nine languages in MELA (the left out one is 287

Icelandic) and includes the English CoLA dataset. 288

For Baichuan2, the exact language distribution of 289

pretraining and finetuning data is not disclosed. 290

For close-sourced models, we consider GPT-3.5 291

and GPT-4 (OpenAI, 2023). 292

When evaluating mTk, we use 2-shot prompts 293

following the format of its finetuning dataset. For 294

other models, we consider both 0-shot and 2-shot 295

evaluation. More details about the prompts used for 296

evaluating these models are given in Appendix A. 297

4.2 Results 298

The results of LLMs’ performance on MELA are 299

given in Table 3. We make the following observa- 300

tions. 301

GPT-4 performs on par with supervised mod- 302

els. It performs only five points below XLM-R 303

in the zero-shot setting, and only one point below 304

it in two-shot setting. On German, French and 305

Spanish even the zero-shot performance of GPT4 306

2Muennighoff et al. (2023) examine BLOOM’s pretraining
corpus ROOTS and estimate it to also contain a small amount
of Russian, German, Italian, and Japanese.
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model size examples en zh it ru de fr es ja ar is avg

Supervised
XLM-R 550M - 70.65 55.20 53.97 50.04 37.60 22.46 45.89 44.90 30.59 35.39 44.67

Open-sourced, instruction-finetuned
BLOOMZ0 7.1B - -2.28 9.99 -1.34 -1.60 -0.90 -3.20 -0.91 -1.86 7.50 3.46 0.88
BLOOMZ2 7.1B in-lang. 7.74 17.63 4.87 -0.25 -0.14 -0.34 7.05 3.81 -1.85 -1.92 3.66
BLOOMZ2 7.1B en 7.74 12.53 2.66 -0.47 3.86 -1.52 6.30 2.31 -2.36 -3.92 2.71

mT00 13B - 7.32 20.13 10.83 1.95 10.28 0.39 9.32 13.71 0.04 4.95 7.89
mTk2 13B in-lang. 39.13 32.18 18.26 11.83 9.91 13.09 24.42 22.45 12.72 15.54 19.95
mTk2 13B en 39.13 31.48 12.12 14.92 16.46 12.81 15.77 15.17 6.34 11.21 17.54

Baichuan2-Chat0 13B - 13.46 15.78 7.07 13.29 5.77 3.34 16.43 13.85 5.76 -0.98 9.38
Baichuan2-Chat2 13B in-lang. 27.26 25.89 13.14 7.23 6.78 6.68 16.43 17.87 3.04 0.94 12.52
Baichuan2-Chat2 13B en 27.26 14.88 7.44 1.97 2.76 9.54 13.77 10.19 3.04 -1.05 8.98

Close-sourced
GPT-3.50 - - 37.16 30.34 29.43 17.88 29.51 25.59 49.23 31.71 10.24 5.97 26.71
GPT-3.52 - in-lang. 67.00 45.64 38.46 24.47 27.29 23.63 59.76 38.71 18.42 14.60 35.80
GPT-3.52 - en 67.00 15.22 13.99 8.11 13.44 13.86 38.60 16.61 5.28 3.76 19.59

GPT-40 - - 69.31 50.75 35.57 37.87 43.03 32.45 51.52 45.87 16.44 9.88 39.27
GPT-42 - in-lang. 72.29 55.57 51.40 38.31 36.54 35.57 56.16 49.36 17.09 22.60 43.49
GPT-42 - en 72.29 45.49 14.57 -0.94 23.48 12.97 43.66 39.01 3.04 6.62 26.02

Table 3: Validation performance of large language models, in comparison with XLM-R finetuned on MELA training
set (all 10 languages). Superscripts denote the number of in-context examples. The 2-shot performance of mT0 is
below random guess (i.e. smaller than 0) and not presented here See Table 7 and 8 for the complete results.

is noticeably higher than XLM-R. On Arabic and307

Icelandic, however, it lags behind even in the two-308

shot setting, suggesting that GPT-4 may be weaker309

at understanding these languages.310

In few-shot evaluation, using only English ex-311

amples hurts performance. As indicated by312

the results of GPT-3.5, GPT-4 and Baichuan-2,313

prompting with two English examples leads to314

even lower performance than 0-shot evaluation. In315

contrast, prompting with English instructions and316

in-language examples boosts performance. This317

suggests that these LLMs fail to transfer the con-318

cept of linguistic acceptability acquired from the319

in-context examples across languages.320

Instruction finetuning on acceptability judge-321

ments helps cross-lingual transfer. Of the open-322

source instruction-finetuned models, mTk performs323

much better than other models, as its finetuning324

dataset includes English CoLA. However, mTk325

also performs much better in non-English exam-326

ples, and its performance gap between prompting327

with in-language and English examples is much328

smaller compared with Baichuan or GPT, suggest-329

ing that finetuning on acceptability judgements may330

unlock the ability of cross-lingual generalization in331

this task.332

5 Cross-lingual Transfer of Linguistic 333

Acceptability 334

In this section, we investigate cross-lingual trans- 335

fer in linguistic acceptability by finetuning XLM- 336

RoBERTa (Conneau et al., 2020), which is a mul- 337

tilingual version of RoBERTa (Liu et al., 2019) 338

pretrained on 2.5TB CommonCrawl corpus cover- 339

ing one hundred languages. 340

5.1 Experimental Settings 341

To observe the transfer of acceptability judgements 342

across languages, we train the model on one lan- 343

guage, and evaluate it on all ten languages’ develop- 344

ment sets. Further training details can be found in 345

Appendix B. We report the median MCC of seven 346

runs for all results to mitigate inter-run variance. 347

5.2 Results 348

The main results of cross-lingual transfer in accept- 349

ability judgements are presented in Table 4. Here 350

we make several key observations. 351

The first is that the ability to perform judge- 352

ment of linguistic acceptability can be trans- 353

ferred non-trivially across languages, as indi- 354

cated by the last column of Table 43. The second 355

3The evaluation metric used for acceptability judgements,
namely MCC, is designed such that random guessing would
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↓train (size) / eval→ en zh it ru de fr es ja ar is avg

en (8551) 71.66 47.41 28.23 31.91 24.85 18.96 32.21 34.50 21.50 24.47 33.57
zh (6072) 45.72 52.71 23.18 22.80 21.31 17.61 29.01 31.48 22.16 20.57 28.65
it (7801) 39.13 34.86 53.75 17.02 17.23 21.23 22.46 20.10 19.87 17.92 26.36
ru (7869) 50.29 39.77 24.26 47.22 20.47 14.11 28.62 32.48 20.11 24.49 30.18

de (500) 35.87 37.97 15.44 18.38 36.13 16.45 22.06 22.68 12.27 21.67 23.89
fr (500) 18.57 21.16 6.52 9.19 9.85 29.73 14.28 13.32 11.63 12.74 14.70
es (500) 35.48 38.76 17.71 16.01 11.43 11.38 26.75 24.48 19.14 13.46 21.46
ja (500) 22.67 20.32 10.20 12.40 13.82 10.44 10.81 33.62 8.85 11.21 15.43
ar (500) 9.26 13.34 6.52 3.12 11.95 10.44 8.82 5.90 37.42 7.61 11.44
is (500) 27.40 23.16 9.82 11.60 7.58 18.72 18.45 12.46 7.50 25.12 16.18

avg. high-resource 51.70 43.69 32.35 29.74 20.96 17.98 28.07 29.64 20.91 21.86 29.69
avg. low-resource 24.88 25.79 11.04 11.78 15.13 16.19 16.86 18.74 16.14 15.30 17.18
avg. w.o. in-lang. 31.60 30.75 15.76 15.83 15.39 15.48 20.75 21.93 15.89 17.13 -

Table 4: Cross-lingual transfer results of finetuned XLM-R. The top four training languages are high-resource
languages in MELA (whose training samples vary from 6000 to 8500). The middle six are low-resource languages in
MELA (all of which have 500 training samples). All results are the median MCC of seven runs. “Avg. high-resource”
refers to the average of the first four rows, while “avg. low-resource” is the average of the next six rows. To illustrate
the effects of in-language training, figures in the last row are the average MCC on each language’s validation set of
9 rows, except the one where the model is trained in-language.

is that in-language training significantly boosts356

XLM-R’s performance. Comparing the figures on357

the diagonal with the last row, this is most promi-358

nent for the four high-resource languages. For ex-359

ample, when evaluating on English, training on360

English leads to 71.66 MCC, compared with an361

average of 31.60 when training on other nine lan-362

guages. For low-resource languages, the gap is363

smaller, but still notable (e.g. for Icelandic the com-364

parison is 25.12 against 17.13). However, we note365

that for Spanish and Japanese, the highest perfor-366

mance is not obtained when training in-language,367

but training on English. This leads to our third368

observation—the number of training samples369

matters. As indicated by the antepenultimate and370

penultimate lines of Table 4, when training on high-371

resource languages, XLM-R obtains an average of372

29.69 MCC, compared with 17.18 when training373

on low-resource languages.374

6 Multi-task Fine-tuning with Linguistic375

Acceptability376

In previous two sections, we investigated the trans-377

fer of linguistic acceptability with both LLMs and378

supervised XLM-R, and found that in-language379

training data or in-context examples play a key380

role in linguistic acceptability. To further assess381

the importance of in-language data, we experiment382

result in 0 performance, regardless of class imbalance.

with training on multiple languages, i.e. multi- 383

task finetuning (MFT) on acceptability judgement4. 384

To compensate the impact of training set size, we 385

first downsample data in all languages to the same 386

amount, and then finetune XLM-R on different 387

combinations of languages. Training details are 388

provided in Appendix B. 389

6.1 Experimental Setting 390

We downsample sentences in each language to the 391

same number, and train XLM-R in three settings: 392

1) in-language finetuning; 2) all-language multitask 393

finetuning, where the model is trained on a mixture 394

of data containing an equal number of sentences 395

from ten languages; and 3) all-but-in-language mul- 396

titask finetuning, where the model is trained on a 397

mixture of data containing an equal number of sen- 398

tences from nine languages, except the one being 399

evaluated on. Additional experiments on bilingual 400

training are provided in Appendix D.1. 401

6.2 Results 402

The results on ten languages’ validation sets are 403

plotted in Figure 1. When trained and evaluated 404

on the same language, the model’s performance 405

scales smoothly with the number of training sam- 406

4Following Hu et al. (2023), we regard linguistic accept-
ability in each language as a related but different task, since
the negative samples in MELA are constructed by (manually)
injecting language-specific grammar errors into sentences.
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Figure 1: Performance of XLM-R when finetuned on different languages. The horizontal axis indicates the number
of training samples per language. For example, for “all” curves, the point at 500 indicates the model is trained on
500 sentences, with 50 from each language. For “All-but-in-lang.” curves, the point at 495 indicates the model is
trained on 495 sentences, with 45 from each of the nine language except the one being evaluated on.

ples. When trained on sentences from other nine407

languages, however, the performance saturates408

at around 500-1000 training samples, consistent409

with previous findings about multi-task finetun-410

ing (Wang et al., 2022). When trained on all ten lan-411

guages, the performance scales more steadily than412

all-but-in-language training, but still lags behind413

in-language training by a large margin, indicating414

the importance of in-language training data.415

7 Edge Probing416

In this section, we adopt edge probing (Tenney417

et al., 2019b,a) to explore whether training on lin-418

guistic acceptability tasks improves syntax-related419

capacity to the pre-trained XLM-R.420

7.1 Preliminaries421

Edge probing is designed to investigate how much422

encoders encode syntactic and semantic informa-423

tion, which is highly related to the acceptability424

judgment from a generative linguistic perspective.425

To achieve this goal, edge probing focuses on426

structural labeling tasks in form of span labeling.427

Given one or two spans, the probing classifier is428

trained to predict the label with span representa-429

tions encoded by pre-trained encoders (XLM-R in430

our case).431

Task base en it ru zh

pos 92.87 93.77 93.47 93.17 93.95
dep 89.41 90.34 90.13 89.92 89.86
const 78.54 79.10 78.44 79.26 78.96
name 93.49 94.23 93.34 94.53 94.08
srl 77.93 82.34 80.00 81.24 80.28
coref 83.84 85.55 84.12 83.98 84.53

avg 86.01 87.56 86.58 87.02 86.94

Table 5: F1 scores of Experiment 1 on six edge probing
tasks. Bold denotes the lowest score in one task. We
train probing classifiers using span representations from
different XLM-R variants (base, en, it, ru, and zh).

For instance, dependency labeling is a typical 432

probing task, but it should be discriminated from 433

dependency parsing. In dependency parsing, the 434

parser should find out: a) the head and dependent, 435

and b) the dependency relation between them. On 436

the contrast, in dependency labeling the head and 437

dependent are given so that the task is only about 438

predicting the label between two words. Other 439

tasks follow the same labeling scheme. 440

7.2 Experiment Settings 441

We hypothesize that training on MELA can 442

improve the syntax-related capacity of XLM- 443

7



Probing task Part-of-speech tagging Depedency labeling

↓eval / train→ en it ru zh avg en it ru zh avg

en
base 92.87 75.77 65.63 43.33 69.40 89.41 74.99 60.67 40.05 66.28

XLM-Ren 93.77 81.43 68.22 44.66 72.02 90.34 77.40 61.84 45.44 68.76

it
base 83.26 94.61 66.90 38.73 70.88 78.17 91.50 60.65 32.35 65.67

XLM-Rit 85.6 95.71 63.73 39.70 71.19 83.56 92.46 62.85 37.31 69.05

ru
base 82.97 79.90 95.53 53.18 77.90 77.72 78.86 90.90 42.77 72.56

XLM-Rru 85.42 81.01 95.43 54.06 78.98 80.65 81.27 92.04 46.10 75.02

zh
base 61.19 58.57 64.43 93.88 69.52 50.16 43.42 43.12 86.06 55.69

XLM-Rzh 64.55 55.60 63.98 94.35 69.62 55.42 44.52 44.16 87.73 57.96

Table 6: F1 scores of Experiment 2 on part-of-speech tagging and depedency labeling in a cross-lingual setting. Bold
denotes a better performance in average between XLM-Rbase and XLM-Rlang . We conduct pair comparison between
XLM-Rbase and XLM-Rlang trained on MELA of one language to investigate whether linguistic accepability helps
the cross-lingual transfer in above two probing tasks.

RoBERTa. To verify this intuition, we design fol-444

lowing experiments.445

Probing Tasks We choose six edge probing tasks:446

1) part-of-speech tagging, 2) dependency labeling,447

3) constituency labeling, 4) named entity labeling,448

5) semantic role labeling, and 6) co-reference.449

We incorporate multilingual data into probing.450

POS tagging and dependency labeling are from451

Universal Dependencies V2.13 (De Marneffe et al.,452

2021), including four MELA-high-resource lan-453

guage (i.e., English, Italian, Russian, and Chinese).454

The other four monolingual English tasks are sam-455

pled from OntoNotes 5.0 (Weischedel et al., 2013).456

Experiment 1 We train probing classifiers us-457

ing span representations from XLM-Rs on En-458

glish probing tasks. We set the pre-trained XLM-459

Rbase as control group, and the other four MELA-460

finetuned XLM-Rlang (trained respectively on four461

MELA-high-resource languages) as test group.462

Experiment 2 For two tasks (pos and dep) with463

mulitlingual data available, we experiment on zero-464

shot cross-lingual transfer. We train probing classi-465

fiers on representations from XLM-Rbase in each466

of four high-resource languages, and run zero-shot467

evaluation on a target language (lang). We repeat468

the procedure on XLM-Rlang (see more details in469

Appendix E.)470

7.3 Results471

Training on the linguistic acceptability judgment472

task indeed improves the performance of XLM-R473

on syntax-related probing tasks, which supports474

our hypothesis driven by linguistic intuition.475

In Experiment 1, we train probing classifiers 476

using representations from different XLM-R vari- 477

ants. The average performance of XLM-Rbase is 478

the lowest across the six edge probing tasks (see 479

in Table 5). In Experiment 2, we compare per- 480

formances of cross-lingual transfer between XLM- 481

Rbase and XLM-Rlang (see in Table 6). The results 482

indicate that training on MELA of one language 483

helps zero-shot transfer to that language in part-of- 484

speech tagging and dependency labeling. 485

These results match our linguistic intuition. In 486

generative linguistics, the scheme of analyzing 487

the grammaticality and acceptability relies on sub 488

tasks, including categorization of words, combina- 489

tion of lexical items into constituency, and assign- 490

ment of semantic role to arguments. Therefore, we 491

assume that there might be a similar pattern with 492

human regarding syntax acquisition. 493

8 Conclusion 494

In this work we present MELA, the first multilin- 495

gual acceptability judgement benchmark covering 496

a diverse set of languages, all annotated by expert 497

linguists. By benchmarking multilingual LLMs on 498

MELA and finetuning XLM-R in different cross- 499

lingual settings, we find that GPT-4 performs on par 500

with supervised XLM-R, and in-language data is 501

crucial, both for few-shot evaluation and supervised 502

finetuning. We probe MELA-finetuned XLM-R for 503

syntax capacity, finding that training on MELA im- 504

proves the performance on syntax-related probing 505

tasks, which indicates that language models acquire 506

syntax knowledge during training on linguistic ac- 507

ceptability judgements. 508
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Limitations509

Due to the large amount of human labor involved in510

transcribing and examining the sentences in MELA,511

the dataset only covers ten languages, of which512

six are low-resource, with only a small number513

of training samples. In the future, we intend to514

expand the dataset by additionally collecting data515

in other languages, especially non-Latin and non-516

Indo-European languages, which are currently un-517

derrepresented in MELA.518

Also, in this work we focused on introducing519

the MELA dataset and showcasing some of its us-520

ages, such as serving as a benchmark for evaluat-521

ing LLMs and providing a data resource for cross-522

lingual researches in computational linguistics. We523

did not propose any new theory, method, or model524

to improve the understanding of linguistic accept-525

ability in humans or language models. We leave the526

exploration of other use cases of MELA to future527

works.528

Ethics Statement529

Sentences in our dataset MELA, including those in530

English, Italian, Russian, and Chinese consolidated531

from previous works, are sourced from renounced532

linguistics publications such as syntax textbooks533

and journal articles. Therefore, we believe they do534

not raise any ethical issues such as leak of personal535

identifiable information.536

The sentences in MELA, both acceptable and537

unacceptable, are only intended for researches con-538

cerning the acquisition and evaluation of linguistic539

capabilities (of either humans or language models),540

and should not be interpreted otherwise. We release541

MELA under Apache 2.0 license, and note that for542

the four existing acceptability datasets, RuCoLA543

is available under Apache 2.0 license, while the544

authors of CoLA, ItaCoLA, and CoLAC did not545

provide any license information along with their546

released datasets. For the individual sentences in547

MELA, the copyright (where applicable) remains548

with the original authors or publishers.549
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A Prompts876

A.1 mTk877

The prompt for evaluating mTk is presented in878

Figure 2, which reuses the prompt for Supernat-879

ural Instruction task 6165. In Table 7 we present880

the results on validation sets when prompting with881

examples from different languages’ training sets.882

Each figure is the median of three sets of randomly883

selected prompts (always one acceptable and one884

unacceptable).885

A.2 Other Open-Source models886

Since linguistic acceptability is not included in887

the finetuning mixture of mT0, BLOOMZ, and888

Baichuan2, we experiment with several prompts889

imitating the style of both mTk’s prompt for CoLA890

and the prompts given by Muennighoff et al. (2023),891

and the results are presented in Table 13. For892

the main experiments we use the best prompt se-893

lected on this subset of training set, i.e. the seventh894

5https://github.com/allenai/
natural-instructions/blob/master/tasks/
task616_cola_classification.json

prompt in Table 13. For few-shot evaluation, we 895

experiment with both in-language examples and 896

English-only examples, and report the median of 897

three sets of prompts. For the instruction itself we 898

always use English. 899

A.3 OpenAI Models 900

For OpenAI models, we use the 0613 version of 901

GPT-3.5-turbo and GPT-4. Due to the limited bud- 902

get, we choose to use the fifth prompt in Table 13 903

without further ablations, which is found to per- 904

form reasonably well in preliminary experiments. 905

For few-shot evaluation we also experiment with 906

in-language examples and English-only examples. 907

We experimented with different sets of in-context 908

examples with GPT-3.5, and found it to have lim- 909

ited impact: the average MCC for 2-shot evaluation 910

of GPT-3.5 with in-language examples reported in 911

Table 3 is 35.80, and two other runs with different 912

examples yield 37.20 and 36.56, respectively. 913

B Training Details 914

For experiments concerning XLM-R in §5, §4 and 915

§6, we finetune with learning rate 7.5e-6, weight 916

decay 0.075 and batch size 32. To minimize con- 917

founding variables and accentuate the interaction 918

across languages in terms of linguistic acceptability 919

performance, we train the model for 15k steps for 920

all experiments in §4 and §5 with 750 steps of lin- 921

ear warmup and cosine learning rate decay over 0.4 922

cycles, and take the best checkpoint based on val- 923

idation results. For experiments on downsampled 924

data in §6 and Appendix D.1 the model is trained 925

for 5K steps instead, and validation is performed 926

every 250 steps. The training is conducted on a 927

single RTX 3090 with 24GB RAM. 928

We note that these hyperparameters are chosen 929

based on previous works on similar tasks (Liu et al., 930

2019; Hu et al., 2023) and our preliminary experi- 931

ments. The sheer amount of experiments covered 932

in our work makes it impossible to finetune hyper- 933

parameters on each combination of training data, 934

and we thus decide to keep them fixed across all ex- 935

periments for a fair comparison across languages, 936

which may be suboptimal for certain cases. Hu 937

et al. (2023), for example, report 56.45 MCC for 938

XLM-R on CoLAC development set, while our 939

result is 52.71 with the same training data. 940

We also note that finetuning language models 941

on linguistic acceptability data leads to large per- 942

formance variations, regardless of the specific lan- 943
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Definition: You’re given a sentence and your task is to classify whether the sentence is acceptable or
not. Any sentence which is grammatically correct, has a naturalistic text, is written by a native speaker
and which minimizes superfluous content is acceptable, otherwise unacceptable. If the sentence is
acceptable then write "acceptable", otherwise "unacceptable".
Positive Example 1−

input: {example1}
output: acceptable

Positive Example 2−
input: {example2}
output: unacceptable

Now complete the following example−
input: {sent}
output:

Figure 2: Prompt for evaluating mTk.
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Figure 3: Interrun variance when finetuning XLM-R on English (first row) and Chinese (second row) training data.
Each subfigure plots the validation MCC of seven runs with different random seeds on one language. After taking
the median of these seven runs, this variance is mitigated to a large extent.

13



prompt en zh it ru de fr es ja ar is avg

en 39.13 31.48 12.12 14.92 16.46 12.81 15.77 15.17 6.34 11.21 17.54
zh 18.82 32.18 11.42 8.94 2.96 3.50 17.13 16.92 8.27 13.81 13.39
it 11.67 25.64 18.26 11.54 4.75 8.45 24.30 20.01 9.43 12.62 14.67
ru 14.32 26.47 11.37 11.83 4.39 10.34 15.56 20.60 10.01 16.09 14.10
de 15.39 24.40 12.09 9.05 9.91 6.80 19.59 15.63 7.89 13.40 13.42
fr 13.29 25.41 13.15 12.02 9.29 13.09 17.52 13.42 8.86 13.04 13.91
es 15.09 26.78 14.15 13.83 6.78 6.99 24.42 18.14 14.76 11.64 15.26
ja 13.52 26.74 12.15 2.99 0.59 2.52 11.68 22.45 4.00 12.26 10.89
ar 22.14 25.56 16.81 13.32 9.05 12.61 17.82 16.30 12.72 7.37 15.37
is 9.89 23.25 9.16 5.54 4.79 5.60 13.14 15.53 6.84 15.54 10.93

in-lang. 39.13 32.18 18.26 11.83 9.91 13.09 24.42 22.45 12.72 15.54 19.95

Table 7: Validation performance of mTk, with in-context examples from different languages.

Model Examples en zh it ru de fr es ja ar is avg

mT0
None 7.32 20.13 10.83 1.95 10.28 0.39 9.32 13.71 0.04 4.95 7.89
In-language -3.64 -2.51 -6.52 -3.12 -6.27 -10.44 -5.27 -5.90 -7.50 -3.46 -5.46
English -3.64 -2.51 -6.52 -3.12 -6.27 -10.44 -5.27 -5.90 -7.50 -3.46 -5.46

Table 8: 0-shot (rows marked as ‘None’) and 2-shot validation performance of mT0 13B. The model performs
exactly the same when prompted with English and in-language examples.

guages (see Figure 3), which corresponds with pre-944

vious findings in the literature (Raffel et al., 2020).945

We thus train with seven different random seeds946

for every experiment in this work to reduce this947

variance, and the reported scores are computed by948

first taking the median of these seven runs at each949

checkpointing step, and then maxing over all the950

aggregated checkpoints. For experiments on down-951

sampled data in §6, each run also select a different952

subset of training data.953

C Alternative Labels for CoLAC954

Hu et al. (2023) propose two sets of labels for955

the Chinese acceptability corpus CoLAC, and in956

MELA we adopt the crowd label following their957

suggestions. In Table 9 we present additional exper-958

imental results of finetuning and evaluating XLM-959

R on the linguist label of CoLAC, with other lan-960

guages’ validation samples kept the same as Ta-961

ble 4. The results suggest that from the perspective962

of cross-lingual transfer, label0 (crowd label) of963

CoLAC has higher quality then label1 (linguist la-964

bel).965

D Additional Results 966

D.1 Bilingual training 967

Apart from the multilingual training in §6, we also 968

perform bilingual training with MELA, where the 969

fine-tuning data come from two languages, each 970

with 250 randomly examples. 971

Results are shown in Table 10. We find from 972

the last column that English is most helpful when 973

transferring to other languages, which is not sur- 974

prising since it makes up of the largest portion in 975

the model’s pretraining data. From the last row, 976

on the other hand, we find that French benefits the 977

least from other languages, which is consistent with 978

the results in Figure 1. 979

D.2 ScaLA 980

As we noted in §2, Nielsen (2023) recently intro- 981

duce ScaLA, an automatically constructed linguis- 982

tic acceptability dataset covering six Scandinavian 983

languages. Here we extend our experiments by 984

evaluating the transfer between MELA and ScaLA 985

with XLM-R. We also evaluate BLOOMZ and the 986

two instruction finetuned mT5 on ScaLA for ref- 987

erence. For finetuning XLM-R, we use the full 988

training set of ScaLA, but discard sentences with 989

more than 100 tokens to avoid running out of mem- 990
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CoLAC label en zh it ru de fr es ja ar is avg

label1 45.72 52.71 23.18 22.80 21.31 17.61 29.01 31.48 22.16 20.57 28.65
label0 39.56 36.59 19.47 22.33 16.29 17.84 20.99 28.91 10.19 14.89 22.71

Table 9: Performance of XLM-R when trained and evaluated on label1 (first row, same as Table 4) and label0
(second row) of CoLAC. The validation sets of other languages are kept fixed. We note that the columns “zh” and
“avg” are not directly comparable between the two rows, since the Chinese validation set are evaluated with different
labels. However, of the other nine languages eight have higher performance on the first row than the second row.
French is the only exception.

train 1 / eval → en de is it fr es ru zh ja ar avg
train 2 ↓

in-lang. 46.37 34.59 24.39 17.37 31.77 30.44 24.86 38.81 35.06 36.19 31.99

en 0.00 -8.30 -3.67 4.36 -9.38 -3.09 -1.50 -2.08 -3.06 -9.38 -3.61
de -5.44 0.00 -0.31 0.10 -13.44 -8.04 -4.72 -0.49 -7.42 -7.94 -4.77
is -9.70 -13.82 0.00 -1.18 -13.74 -9.30 -5.10 -2.16 -7.53 -10.11 -7.26
it -10.40 -10.30 -2.94 0.00 -11.92 -7.52 -4.70 -0.57 -6.04 -9.79 -6.42
fr -7.00 -9.94 -6.08 -2.63 0.00 -7.48 -5.15 -4.29 -4.34 -11.09 -5.80
es -0.49 -10.61 -4.15 1.21 -11.33 0.00 -4.47 4.86 -3.73 -8.61 -3.73
ru -4.81 -10.14 -3.61 -1.40 -7.81 -9.92 0.00 -0.63 -5.80 -9.31 -5.34
zh -3.32 -10.30 -2.16 -0.68 -9.31 -2.20 -0.02 0.00 -3.81 -8.65 -4.05
ja -8.83 -11.62 -5.57 1.11 -13.45 -8.19 -2.61 -1.01 0.00 -9.42 -5.96
ar -9.12 -10.15 -4.34 -3.87 -13.38 -9.72 -6.08 -4.32 -4.71 0.00 -6.57

avg -5.91 -9.52 -3.28 -0.30 -10.38 -6.55 -3.44 -1.07 -4.64 -8.43

Table 10: Bilingual fine-tuning results. The first row (in-lang.) reports absolute MCC, while the rest report relative
MCC w.r.t. the first row. Each cell indicates the result of fine-tuning on 2 × 250 examples in two languages (train1
and train2) and evaluating on train1. Diagonal cells show results when fine-tuning on 500 samples from a single
language, and evaluating on this language.

ory6.991

The results are presented in Table 11. We make992

several observations:993

• Transferring both from MELA to ScaLA and994

from ScaLA to MELA leads to notable per-995

formance drop, even for Icelandic, which is996

both in MELA and ScaLA. We attribute this997

to the fact that MELA and ScaLA are con-998

structed differently: the negative sentences in999

MELA are written by expert linguists, while1000

the negative samples in ScaLA are generated1001

automatically.1002

• The relative performance of the three instruc-1003

tion finetuned models are consistent between1004

MELA and ScaLA. mTk performance better1005

than mT0 and BLOOMZ, and prompting with1006

in-language examples leads to higher perfor-1007

mance than prompting with English examples.1008

6Due to the difference in data source, the average sentence
length of ScaLA is significantly longer then MELA.

BLOOMZ performs only at chance level on 1009

ScaLA, since these languages are not covered 1010

in its pretraining data. 1011

• Finetuning experiments suggest that the au- 1012

tomatically constructed negative samples in 1013

ScaLA are easier to distinguish than hand- 1014

written negative samples in MELA, as in- 1015

dicated by the much higher MCC score on 1016

ScaLA. Few-shot evaluation of instruction 1017

finetuned models, however, obtains lower 1018

MCC scores on ScaLA than MELA, suggest- 1019

ing that patterns easily captured by finetuning 1020

is not necessarily easy to perceive by LLMs 1021

in the few-shot setting. 1022

E Edge Probing Details 1023

Probing Classifier We follow the same architec- 1024

ture of probing classifier as (Tenney et al., 2019b). 1025

We extract contextual representations from each 1026

layer of XLM-R (including the embedding layer), 1027
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MELA ScaLA

model train data examples en zh it ru de fr es ja ar is avg da fo is nb nn sv avg

XLM-R MELA - 71.6 56.9 57.3 48.9 35.8 24.2 43.6 43.6 31.8 34.7 44.8 47.2 15.6 33.0 57.5 35.9 56.5 41.0
XLM-R ScaLA - 51.02 44.43 20.99 23.96 24.92 9.81 33.23 24.64 8.58 25.95 26.75 86.8 51.0 86.1 88.3 78.6 84.4 79.2
XLM-R MELA + ScaLA - 70.63 57.84 53.78 49.80 31.91 20.89 44.87 41.24 24.61 33.20 42.88 84.5 46.6 85.4 87.5 77.5 85.2 77.8

BLOOMZ 7B0 - - -2.3 10.0 -1.3 -1.6 -0.9 -3.2 -0.9 -1.9 7.5 3.5 0.9 0.0 0.0 0.0 0.0 0.0 3.6 0.6
BLOOMZ 7B2 - in-lang. 7.7 17.6 4.9 -0.2 -0.1 -0.3 7.0 3.8 -1.9 -1.9 3.7 -0.8 2.3 -1.7 2.4 -0.8 0.0 0.3
BLOOMZ 7B2 - en 7.7 12.5 2.7 -0.5 3.9 -1.5 6.3 2.3 -2.4 -3.9 2.7 5.6 1.6 -2.3 -1.7 0.0 1.6 0.8
mT00 - - 7.3 20.1 10.8 1.9 10.3 0.4 9.3 13.7 0.0 5.0 7.9 8.6 3.3 7.0 4.7 7.8 5.8 6.2
mTk2 - in-lang. 39.1 32.2 18.3 11.8 9.9 13.1 24.4 22.4 12.7 15.5 19.9 20.9 4.2 14.5 12.6 18.1 22.7 15.5
mTk2 - en 39.1 31.5 12.1 14.9 16.5 12.8 15.8 15.2 6.3 11.2 17.5 17.1 2.8 6.5 11.7 17.9 17.5 12.2

Table 11: Additional results of finetuned XLM-R and few-shot evaluation of BLOOMZ, mT0, mTk on ScaLA.

and get the scalar mixed representations (in 1,024-1028

dim), see Equation (1) in (Tenney et al., 2019a).1029

Then, the representations are projected in 512-dim1030

with a CNN module. For two-span prediction, we1031

concatenate representations of two spans into a1032

1,024-dim tensor. We pass the span representations1033

to the probing classifier, which is a two-layer MLP1034

(hidden state dimension is set to 512).1035

Probing Dataset For part-of-speech tagging and1036

dependency labeling, we use PUD (parallel sen-1037

tences in all four languages) in UD V2.13. For the1038

other four tasks in OntoNotes 5.0, we down sam-1039

ple sentences to 2k. All dataset all split into train,1040

development and test sets in a ration of 7:1.5:1.5.1041

For each sentence, there might be multiple labels,1042

so we present the numbers of sentences, words and1043

labels in Table 12.1044

Training We train classifiers for all probing tasks1045

with Adam optimizer at a starting learning rate of1046

5e-4 for 3,000 training steps with the batch size1047

of 32, and evaluate on the development set every1048

50 traing steps, halving the learning rate if no im-1049

provement is seen in 5 evaluation during training.1050
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Task |L| Sentences Words Total Labels

Part-of-speech 17 0.7k / 0.15k / 0.15k 14.7k / 3.2k / 3.3k 14.7k / 3.2k / 3.3k
Dependencies 36 0.7k / 0.15k / 0.15k 14.7k / 3.2k / 3.3k 14.7k / 3.2k / 3.3k
Constituencies 78 1.4k / 0.3k / 0.3k 27.0k / 5.9k / 5.7k 51.1k / 11.1k / 10.7k
Named Entities 18 1.4k / 0.3k / 0.3k 34.6k / 7.3k / 7.4k 3.7k / 0.8k / 0.7k
Semantic Roles 2 1.4k / 0.3k / 0.3k 29.9k / 6.4k / 6.6k 7.3k / 1.5k / 1.6k
Co-reference 66 1.4k / 0.3k / 0.3k 35.4k / 8.1k / 7.5k 3.6k / 0.8k / 0.7k

Table 12: The summary statistics for each split and for each English probing task.

Prompt MCC

Determine if the following sentence is acceptable or not. Answer acceptable or unaccept-
able. 3.92
{sent}

Determine if the following sentence is acceptable or not. Answer ‘acceptable’ or ‘unac-
ceptable’. 4.78
{sent}

Determine if the following sentence is acceptable or not. A sentence which is grammati-
cally correct, has a naturalistic text, is written by a native speaker and which minimizes
superfluous content is acceptable, otherwise unacceptable.

2.37

{sent}

Determine if the following sentence is acceptable or not. A sentence which is grammati-
cally correct, has a naturalistic text, is written by a native speaker and which minimizes
superfluous content is acceptable, otherwise unacceptable. Answer acceptable or unac-
ceptable.

0.56

{sent}

Determine if the following sentence is acceptable or not. A sentence which is grammati-
cally correct, has a naturalistic text, is written by a native speaker and which minimizes
superfluous content is acceptable, otherwise unacceptable. Answer ‘acceptable’ or ‘unac-
ceptable’.

3.93

{sent}

{sent}
8.89

Question: Is this sentence linguistically acceptable? Answer acceptable or unacceptable.

{sent}
9.23

Question: Is this sentence linguistically acceptable? Answer ‘acceptable’ or ‘unaccept-
able’.

{sent}
5.30

Question: Is this sentence linguistically acceptable? A sentence is acceptable if it is
grammatically correct and has a naturalistic text. Answer acceptable or unacceptable.

{sent}
6.47

Question: Is this sentence linguistically acceptable? A sentence is acceptable if it is
grammatically correct and has a naturalistic text. Answer ‘acceptable’ or ‘unacceptable’.

Table 13: The performance of mT0 on 2560 MELA training samples (256 samples per language) with various
prompts.
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