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ABSTRACT

Estimating the clique number in a graph is central to various applications, e.g.,
community detection, graph retrieval, etc. Existing estimators often rely on non-
differentiable combinatorial components. Here, we propose a full differentiable
estimator for clique number estimation, which can be trained from distant supervi-
sion of clique numbers, rather than demonstrating actual cliques. Our key insight
is a formulation of the maximum clique problem (MCP) as a maximization of the
size of fully dense square submatrix, within a suitably row-column-permuted ad-
jacency matrix. We design a differentiable mechanism to search for permutations
that lead to the discovery of such dense blocks. However, the optimal permutation
is not unique, which leads to the learning of spurious permutations. To tackle this
problem, we view the MCP problem as a sequence of subgraph matching tasks,
each detecting progressively larger cliques in a nested manner. This allows effec-
tive navigation through suitable node permutations. These steps result in MXNET,
an end-to-end differentiable model, which learns to predict clique number without
explicit clique demonstrations, with the added benefit of interpretability. Experi-
ments on eight datasets show the superior accuracy of our approach.

1 INTRODUCTION

The Maximum Clique problem (MCP) entails finding the largest subgraph where every pair of
nodes is connected by an edge. MCP is extensively studied among NP-Complete combinatorial
problems (Karp, 2010), with efforts on designing exact and heuristic solvers for general and spe-
cialized graph classes (Reba et al., 2021; Carraghan & Pardalos, 1990; San Segundo et al., 2016;
Depolli et al., 2013; Jiang et al., 2017; Tomita et al., 2017; Li & Quan, 2010; Konc & Janezic, 2007;
McCreesh & Prosser, 2014). Beyond such theoretical appeal, MCP also has numerous real-world
applications across molecular biology (Malod-Dognin et al., 2010; Depolli et al., 2013), social net-
work analysis (Balasundaram et al., 2011), protein matching (Malod-Dognin et al., 2010; Ehrlich &
Rarey, 2011; Depolli et al., 2013), identifying chemical reaction sites (Raymond & Willett, 2002;
Agrafiotis et al., 2007; Fooshee et al., 2013), drug discovery (Cao et al., 2008), etc.
Clique number estimation vs. MCP Several of aforementioned applications require an accurate
estimation of the size of the maximum clique, known as clique number, with less emphasis in pre-
dicting the maximum clique itself. This specifically include domains necessitating the comparison
of graph structures, such as protein matching (Malod-Dognin et al., 2010; Ehrlich & Rarey, 2011;
Depolli et al., 2013), reaction site identification (Raymond & Willett, 2002; Agrafiotis et al., 2007;
Fooshee et al., 2013), drug discovery (Cao et al., 2008), etc. In such cases, the maximum common
induced subgraph often serves as a relevance metric, directly mapped to the clique number detection
of the modular product graph (Solnon et al., 2015). Various network analysis models study clique
relations (Pattillo et al., 2013) for identifying cohesive subgroups in social networks (Balasundaram
et al., 2011). In such applications, a key question is the decision version of MCP, i.e., whether there
is a clique of size c exists in the graph, rather than finding the maximum clique. In such situations,
where relevance is latently influenced by the clique size, a neural architecture capable of directly
predicting clique number while ensuring end-to-end differentiability becomes essential.
Prior work on MCP and their challenges in clique number estimation With the proliferation
of real-world applications, a series of recent neural solvers aim to solve MCP harnessing data distri-
butional characteristics across supervised (Sun & Yang, 2024), unsupervised (Karalias et al., 2022;
Karalias & Loukas, 2020; Min et al., 2022) and reinforcement learning (Sanokowski et al., 2023;
Zhang et al., 2024) paradigms. However, they suffer from two key limitations, which prevent them
from realizing their full potential in clique number estimation task.
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Lack of end-to-end differentiability: End-to-end differentiability is a critical requirement for ap-
plications like graph matching, where the goal is quickly retrieve similar graphs from large corpus.
Differentiable models enable us quick off-the-shelf use of indexing methods. However, most ex-
isting neural designs operate in conjunction with non-differentiable decoders, which impede their
integration to such applications.
Middle ground between extreme and no supervision: Existing clique number estimation meth-
ods fall in two broad regimes. Combinatorial methods often use no training, whereas ML-based
methods (Sun & Yang, 2024) depend on a full demonstration of an actual clique. We focus on
the neglected middle ground, where supervision is provided as only the clique number (which can
be estimated from various efficient relaxations) and not a demonstration (which is computationally
expensive to collect). In several graph search and retrieval scenarios, the relevance of a corpus
graph depends on the extent to which query and corpus graphs overlap, which can be reduced to a
maximum common induced subgraph size computation.

1.1 OUR CONTRIBUTIONS

We introduce MXNET, a differentiable neural model specifically for clique number estimation rather
than the maximum clique itself, by training under the distant supervision of the clique size without
explicit clique guidance.
Clique detection via message passing on permuted adjacency matrix Suppose the input graph
G has a clique of size c, and to each node is added a self-loop. Then there exists a permutation,
which, when applied on node indices, will let us write the node-node adjacency matrix in a manner
that will reveal a c × c square block somewhere on the diagonal, completely filled with c2 ones.
If ω(G) is the clique number, the largest such square we can find will be ω(G) × ω(G). To turn
this initial intuition into a neural estimator of ω(G), we need two differentiable gadgets: a network
that proposes a node permutation, and a network that detects completely filled squares (maximal
subsquare or MSS detection).

The latter problem admits a simple polynomial-time dynamic programming-type algorithm, which
we generalize into a message-passing network over a grid-graph formed from the permuted adja-
cency matrix. This effectively transfers the computational complexity of the clique problem to the
row-column permutation proposer. We devise an end-to-end differentiable network for this former
combinatorial task by adapting a Gumbel-Sinkhorn network to propose a permutation that lets us
discover large filled squares. Here, we naturally work in a relaxed continuous domain, and directly
output an estimate of ω(G). We call this neural component of our model MXNET (MSS).
Curriculum-matching a series of cliques At least |V (G)|ω(G)! permutations (and possibly
many more) can identify the MSS, leading to a huge multiplicity of global optima. These will
muddle gradient signals, potentially damaging learning quality. During inference, even if ω(G) is
estimated reasonably well, we may not get an interpretable permutation. In response, we design
MXNET (SubMatch), the second variant of MXNET. MXNET (SubMatch) proposes a cascade of
ever-larger cliques Kc, c = 2, 3, . . ., and prompts the permutation generator network to find an
injective alignment of nodes in Kc to nodes of G. We expect these attempts to succeed as long as
c ≤ ω(G), and noticeably fail when c > ω(G). This expected behavior is worked into a suitable loss
function. As we shall see, the inductive bias asserted through this ‘curriculum’ not only improves
interpretability, but can also improve estimates of ω(G).
End-to-end training and constrained early stopping. We combine MXNET (MSS) and MXNET
(SubMatch), described above, into MXNET (Composite), part of an end-to-end trainable framework
we call MXNET. To mitigate overfitting and the learning of spurious correlations, we introduce
a bicriteria early stopping method which effectively balances both components, ensuring accurate
predictions supported by interpretable clique-based justifications. Our experiments on eight datasets
show that MXNET offers significant accuracy boost beyond several baselines.

1.2 BRIEF DISCUSSION ON RELATED WORK

Apart from the aforementioned prior work on MCP, our work is also related to recent advancements
in neural models for combinatorial optimization approaches on graphs and traditional methods for
estimating clique numbers in graphs. We briefly discuss them here. We further discuss related work
in Appendix C.
Neural models for combinatorial optimization on graphs In recent years, there is a series of
works focusing on combinatorial optimization on graphs. This include designing neural networks

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

which can solve graph matching (Yu et al., 2023; Liu et al., 2023; Wang et al., 2023; Nguyen et al.,
2023; Zhou et al., 2023; Jiang et al., 2019; Yu et al., 2020; Fey et al., 2020). These works pre-
dominantly have applications in image matching. Several works design generic neural networks,
which can solve a series of combinatorial optimization problems (Wang & Li, 2023; Zhao et al.,
2023; Li et al., 2018; Goshvadi et al., 2023; Lu et al., 2023; Sun & Yang, 2024; Sanokowski et al.,
2023; Zhang et al., 2024). Other works are tailored to solve specific problems including maximum
clique (Karalias & Loukas, 2020; Min et al., 2022), maximum independent set (Brusca et al., 2023;
Ahn et al., 2020), maximum common induced subgraph (Bai et al., 2021), etc.

Clique number estimation without maximum clique computation Presenting the learner with
G and its clique number ω(G), rather than a maximal clique itself, presents a practical intermediate
path between full supervision and training-free methods. Even though demonstrating G’s cliques to
the learner is itself computationally intractable, ω(G) can be bounded (Pardalos & Phillips, 1990;
Gibbons et al., 1997) via the optimal values of various continuous optimizations, the most well-
known being maxx:x≥0,1·x=1 x

⊤Ax, originally due to Motzkin & Straus (1965). Sharper bounds
have been developed (Budinich, 2003). Pelillo (1995) demonstrated how such quadratic programs
can be solved by message passing networks.

2 NOTATION AND PROBLEM SETUP

Notation Given a graph G = (V,E), we denote its adjacency matrix by A, which is possibly
padded with zero rows and columns to ensure all matrices A have the same dimension N ×N . We
define ΠN as the set of all N × N hard permutation matrices, and PN as the set of all N × N
soft permutation matrices, which are essentially doubly stochastic matrices. We will frequently use
P ∈ ΠN (S ∈ PN ) to denote hard (respectively, soft) permutation matrices. We write Oc = 1c1

⊤
c ,

where 1c is an all-one vector of dimension c. [a]+ = max{a, 0} represents the hinge or ReLU
function. For a matrix R, we denote

∑
u,v |R[u, v]| by ∥R∥1,1. Given a binary matrix B, we

refer to the size of (number of rows or columns) of the maximum sized all-ones square submatrix
as MSS(B). We call such “all-ones square submatrix” as “fully dense subsquare”, to generalize to
continuous B.

Maximum clique problem (MCP), clique number A clique Kc is a complete graph with c num-
ber of nodes. The maximum clique K∗(G) in a graph G is the clique within G, containing the
highest number of nodes. The size of this maximum clique, i.e., ω(G) = |V (K∗(G))|, is referred to
as the clique number. The clique number ω(G) of a graph is unique, although the maximum clique
itself may not be — there can be multiple maximum cliques K∗ with same number of nodes ω(G).
However, as discussed in several classic papers from the Operations Research literature (Bomze
et al., 1999; Wilf, 1967; 1986), the clique number ω(G) can be bounded using the spectral proper-
ties of the graph G. When the computation of the maximum clique size is particularly challenging,
these bounds can provide an estimation of the clique number, serving as distant supervisory labels
for neural max-clique methods.

Problem statement Given a graphG, our objective is to design an end-to-end differentiable neural
model which takes the graph as input and outputs an estimate of its clique number. Formally, given
a set of I training instances D = {Gi, ω(Gi) | i ∈ [I]}, we aim to train our model on D, so that it
can predict the clique number of a new graph G. Our goal is to avoid any non-differentiable combi-
natorial routines during both training and testing phases. Our focus is on estimating specifically the
clique number, rather than the clique itself, motivated by several real applications (Malod-Dognin
et al., 2010; Ehrlich & Rarey, 2011; Depolli et al., 2013; Raymond & Willett, 2002; Agrafiotis et al.,
2007; Fooshee et al., 2013; Cao et al., 2008).

3 THE DESIGN OF MXNET

We describe our proposed framework, MXNET, in three stages.

MXNET (MSS) First, we describe how to combine a soft permutation generator with a network
that searches for the largest square submatrix in a given matrix, to directly predict clique number.

MXNET (SubMatch) While MXNET (MSS) gives accurate estimates of ω(G), the very large
number of loss optima prevents it from finding sharply interpretable clique demonstrations. We
introduce a related strategy MXNET (SubMatch), where we prepare a series of cliques of increas-
ing size and try to detect these cliques as subgraphs of the input graph. By construction, MXNET
(SubMatch) is better at producing clique certificates.
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0

<latexit sha1_base64="XcbrXF0BoAM/yCXVL9Uqk4NGp0s=">AAACGXicbVC7SgNBFJ2Nrxhfq5Y2g0GwCrsi0TIYEMsI5gFJCLOTSTJkHsvMXTEsaf0Jf8FWezuxtbL1S5w8Ck08MHA451zunRPFglsIgi8vs7K6tr6R3cxtbe/s7vn7BzWrE0NZlWqhTSMilgmuWBU4CNaIDSMyEqweDcsTv37PjOVa3cEoZm1J+or3OCXgpI6PW8AeIC1rGXFFQBtOBL7WRiZimhh3/HxQCKbAyySckzyao9Lxv1tdTRPJFFBBrG2GQQztlBjgVLBxrpVYFhM6JH3WdFQRyWw7nf5kjE+c0sU9bdxTgKfq74mUSGtHMnJJSWBgF72J+K8XyYXN0Ltsp1zFCTBFZ4t7icCg8aQm3OWGURAjRwg13N2O6YAYQsGVmXOlhIsVLJPaWSEsFoq35/nS1byeLDpCx+gUhegCldANqqAqougRPaMX9Oo9eW/eu/cxi2a8+cwh+gPv8wfA6aGp</latexit>

Combinatorial Formulation

<latexit sha1_base64="7RzvdJZsAEttiyk0qoJPld0VMSs="></latexit>∑
i,j

[
Kc → PAP→]

+

<latexit sha1_base64="JLQ611BntvR7qskoVz0J9Cp0a8M=">AAAB+HicdVBNSwMxEM3Wr1q/qh69BIvgacmWUuut6MVjC7YV2qVk02wbmmSXJCvUpb/Aq969iVf/jVd/idl2BS36YODx3gwz84KYM20Q+nAKa+sbm1vF7dLO7t7+QfnwqKujRBHaIRGP1F2ANeVM0o5hhtO7WFEsAk57wfQ683v3VGkWyVszi6kv8FiykBFsrNRGw3IFufVL1PCqELlogYx4taolXq5UQI7WsPw5GEUkEVQawrHWfQ/Fxk+xMoxwOi8NEk1jTKZ4TPuWSiyo9tPFoXN4ZpURDCNlSxq4UH9OpFhoPROB7RTYTPSql4l/eoFY2WzChp8yGSeGSrJcHCYcmghmKcARU5QYPrMEE8Xs7ZBMsMLE2KxKNpTvz+H/pFt1vbpbb9cqzas8niI4AafgHHjgAjTBDWiBDiCAgkfwBJ6dB+fFeXXelq0FJ585Br/gvH8B4uWThg==</latexit>

0
<latexit sha1_base64="JLQ611BntvR7qskoVz0J9Cp0a8M=">AAAB+HicdVBNSwMxEM3Wr1q/qh69BIvgacmWUuut6MVjC7YV2qVk02wbmmSXJCvUpb/Aq969iVf/jVd/idl2BS36YODx3gwz84KYM20Q+nAKa+sbm1vF7dLO7t7+QfnwqKujRBHaIRGP1F2ANeVM0o5hhtO7WFEsAk57wfQ683v3VGkWyVszi6kv8FiykBFsrNRGw3IFufVL1PCqELlogYx4taolXq5UQI7WsPw5GEUkEVQawrHWfQ/Fxk+xMoxwOi8NEk1jTKZ4TPuWSiyo9tPFoXN4ZpURDCNlSxq4UH9OpFhoPROB7RTYTPSql4l/eoFY2WzChp8yGSeGSrJcHCYcmghmKcARU5QYPrMEE8Xs7ZBMsMLE2KxKNpTvz+H/pFt1vbpbb9cqzas8niI4AafgHHjgAjTBDWiBDiCAgkfwBJ6dB+fFeXXelq0FJ585Br/gvH8B4uWThg==</latexit>

0
<latexit sha1_base64="9i0zjlmh5fW7/7AgItF8crW8o94=">AAAB+HicdVBNS8NAEN3Ur1q/qh69LBbBU0hKifVW9OKxBdsKbSib7aRdupuE3Y1QQ3+BV717E6/+G6/+ErdtBC36YODx3gwz84KEM6Ud58MqrK1vbG4Vt0s7u3v7B+XDo46KU0mhTWMey7uAKOAsgrZmmsNdIoGIgEM3mFzP/e49SMXi6FZPE/AFGUUsZJRoI7W8Qbni2N6lU3er2LGdBebErVUNcXOlgnI0B+XP/jCmqYBIU06U6rlOov2MSM0oh1mpnypICJ2QEfQMjYgA5WeLQ2f4zChDHMbSVKTxQv05kRGh1FQEplMQPVar3lz80wvEymYd1v2MRUmqIaLLxWHKsY7xPAU8ZBKo5lNDCJXM3I7pmEhCtcmqZEL5/hz/TzpV2/Vsr1WrNK7yeIroBJ2ic+SiC9RAN6iJ2ogiQI/oCT1bD9aL9Wq9LVsLVj5zjH7Bev8C7F2TjA==</latexit>

6

<latexit sha1_base64="D9f5ZhPRb3FxudLzS3ENUgjjA6E=">AAACGHicdVC7SgNBFJ31GeMramnhYBC0CbsxLwvBR2MjRGI0kI1hdjJJBmd2l5m7YlhS+hP+gq32dmJrZ+uXOIkRNOiBC4dz7uXee7xQcA22/W5NTE5Nz8wm5pLzC4tLy6mV1QsdRIqyKg1EoGoe0Uxwn1WBg2C1UDEiPcEuvevjgX95w5TmgX8OvZA1JOn4vM0pASM1UxsusFuITyuV/rbrybiMD3G5f+VCEO7gfZxrptJ2xt4r2fkstjNOIbubzxmy65RyThE7GXuINBqh3Ex9uK2ARpL5QAXRuu7YITRiooBTwfpJN9IsJPSadFjdUJ9Iphvx8JE+3jJKC7cDZcoHPFR/TsREat2TnumUBLp63BuIf3qeHNsM7VIj5n4YAfPp1+J2JDAEeJASbnHFKIieIYQqbm7HtEsUoWCyTJpQvj/H/5OLrMkrUzjLpQ+ORvEk0DraRNvIQUV0gE5QGVURRXfoAT2iJ+veerZerNev1glrNLOGfsF6+wSqEJ82</latexit>

MSS(PAP→) = 4

<latexit sha1_base64="SriYRQ1e8VPdLFEi8WB1K5vnlLU=">AAACBHicbVDLSsNAFL3xWeur6tLNYBFchURq67LoRnBTwT6gDWUynbRDZ5I4MxFK6NZfcKt7d+LW/3DrlzhpA2r1wIXDOfdyD8ePOVPacT6speWV1bX1wkZxc2t7Z7e0t99SUSIJbZKIR7LjY0U5C2lTM81pJ5YUC5/Ttj++zPz2PZWKReGtnsTUE3gYsoARrI3k9QTWI4J5ej3tn/VLZceu1JxqpYIc25nhm7g5KUOORr/02RtEJBE01IRjpbquE2svxVIzwum02EsUjTEZ4yHtGhpiQZWXzkJP0bFRBiiIpJlQo5n68yLFQqmJ8M1mFlItepn4r+eLhc86OPdSFsaJpiGZPw4SjnSEskbQgElKNJ8YgolkJjsiIywx0aa3oinFXazgL2md2m7Vrt5UyvWLvJ4CHMIRnIALNajDFTSgCQTu4BGe4Nl6sF6sV+ttvrpk5TcH8AvW+xdfnJjT</latexit>K5

<latexit sha1_base64="pWapfNZR+rXXX+4zvN+/1i51fIY=">AAACBHicbVDLSsNAFL3xWeur6tLNYBFchaSU1mXRjeCmgn1AG8pkOmmHziRxZiKU0K2/4Fb37sSt/+HWL3HSBtTqgQuHc+7lHo4fc6a043xYK6tr6xubha3i9s7u3n7p4LCtokQS2iIRj2TXx4pyFtKWZprTbiwpFj6nHX9ymfmdeyoVi8JbPY2pJ/AoZAEjWBvJ6wusxwTz9Ho2qAxKZceu1p1atYoc25njm7g5KUOO5qD02R9GJBE01IRjpXquE2svxVIzwums2E8UjTGZ4BHtGRpiQZWXzkPP0KlRhiiIpJlQo7n68yLFQqmp8M1mFlIte5n4r+eLpc86OPdSFsaJpiFZPA4SjnSEskbQkElKNJ8agolkJjsiYywx0aa3oinFXa7gL2lXbLdm126q5cZFXk8BjuEEzsCFOjTgCprQAgJ38AhP8Gw9WC/Wq/W2WF2x8psj+AXr/Qta4JjQ</latexit>K2

<latexit sha1_base64="AhGs2N7lgy/J6hORtCGDyi2JYXs=">AAACBHicbVDLSsNAFL2pr1pfVZduBovgKiQaWpdFN4KbCvYBNpTJdNoOnUzizEQooVt/wa3u3Ylb/8OtX+KkDajVAxcO59zLPZwg5kxpx/mwCkvLK6trxfXSxubW9k55d6+lokQS2iQRj2QnwIpyJmhTM81pJ5YUhwGn7WB8kfnteyoVi8SNnsTUD/FQsAEjWBvJ74ZYjwjm6dW0d9orVxzbqzlVz0OO7czwTdycVCBHo1f+7PYjkoRUaMKxUreuE2s/xVIzwum01E0UjTEZ4yG9NVTgkCo/nYWeoiOj9NEgkmaERjP150WKQ6UmYWA2s5Bq0cvEf70gXPisB2d+ykScaCrI/PEg4UhHKGsE9ZmkRPOJIZhIZrIjMsISE216K5lS3MUK/pLWie1W7eq1V6mf5/UU4QAO4RhcqEEdLqEBTSBwB4/wBM/Wg/VivVpv89WCld/swy9Y719cdJjR</latexit>K3

<latexit sha1_base64="zAXGaakftKnSDgAE4Xx0EXLQre8=">AAACBHicbVDLSsNAFL2pr1pfVZduBovgKiQSWpdFN4KbCvYBbSiT6bQdOpPEmYlQQrf+glvduxO3/odbv8RJG1CrBy4czrmXezhBzJnSjvNhFVZW19Y3ipulre2d3b3y/kFLRYkktEkiHslOgBXlLKRNzTSnnVhSLAJO28HkMvPb91QqFoW3ehpTX+BRyIaMYG0kvyewHhPM0+tZ3+uXK47t1Zyq5yHHdub4Jm5OKpCj0S9/9gYRSQQNNeFYqa7rxNpPsdSMcDor9RJFY0wmeES7hoZYUOWn89AzdGKUARpG0kyo0Vz9eZFiodRUBGYzC6mWvUz81wvE0mc9PPdTFsaJpiFZPB4mHOkIZY2gAZOUaD41BBPJTHZExlhiok1vJVOKu1zBX9I6s92qXb3xKvWLvJ4iHMExnIILNajDFTSgCQTu4BGe4Nl6sF6sV+ttsVqw8ptD+AXr/QteCJjS</latexit>K4

<latexit sha1_base64="p1DTwM9X5S4a0fwhIcj/4LxIIA4=">AAAB/XicdVDLSgMxFM34rPVVdekmWARXQ6Zvd1U3LivYB7RDyaRpG5tkhiQjlKH4C251707c+i1u/RLTh6BFD1w4nHMv994TRJxpg9CHs7K6tr6xmdpKb+/s7u1nDg4bOowVoXUS8lC1AqwpZ5LWDTOctiJFsQg4bQajq6nfvKdKs1DemnFEfYEHkvUZwcZKjU4gkotJN5NFLjqvoGIOItcr5fLFgiV5r1LwytBz0QxZsECtm/ns9EISCyoN4Vjrtoci4ydYGUY4naQ7saYRJiM8oG1LJRZU+8ns2gk8tUoP9kNlSxo4U39OJFhoPRaB7RTYDPWyNxX/9AKxtNn0K37CZBQbKsl8cT/m0IRwGgXsMUWJ4WNLMFHM3g7JECtMjA0sbUP5/hz+Txo5m5dbuilkq5eLeFLgGJyAM+CBMqiCa1ADdUDAHXgET+DZeXBenFfnbd664ixmjsAvOO9fUXuWEA==</latexit>

A

<latexit sha1_base64="JXj8oQBUCVxKSBzDBJuCmZ1fjj0="></latexit>

W = A → XX→

<latexit sha1_base64="dA4ypN3iggremWzGJN9LN/DV3Lw=">AAAB/XicdVDLSgMxFM34rPVVdekmWARXQ6Zvd0U3Liv0Be1QMmmmjU0yQ5IRSin+glvduxO3fotbv8T0IWjRAxcO59zLvfcEMWfaIPThrK1vbG5tp3bSu3v7B4eZo+OmjhJFaINEPFLtAGvKmaQNwwyn7VhRLAJOW8Hoeua37qnSLJJ1M46pL/BAspARbKzUrPe68ZD1MlnkossKKuYgcr1SLl8sWJL3KgWvDD0XzZEFS9R6mc9uPyKJoNIQjrXueCg2/gQrwwin03Q30TTGZIQHtGOpxIJqfzK/dgrPrdKHYaRsSQPn6s+JCRZaj0VgOwU2Q73qzcQ/vUCsbDZhxZ8wGSeGSrJYHCYcmgjOooB9pigxfGwJJorZ2yEZYoWJsYGlbSjfn8P/STNn83JLt4Vs9WoZTwqcgjNwATxQBlVwA2qgAQi4A4/gCTw7D86L8+q8LVrXnOXMCfgF5/0LMZWV/A==</latexit>

Tω
<latexit sha1_base64="QCECZ0yD8QTcLMkyq/7W+us0ZiY=">AAACFHicdVDLSgMxFM34rPU16tJNsAiCUGb6dld047I+2gq2lEyaamiSGZI7ahlc+BP+glvduxO37t36JaYPQUUvBA7nnHtv7gkiwQ143rszNT0zOzefWkgvLi2vrLpr6w0TxpqyOg1FqM8CYpjgitWBg2BnkWZEBoI1g/7BUG9eMW14qE5hELG2JBeK9zglYKmOu9kCdgOJNcZSnVAi2O5xeD0Ctx0342W9vYpXzGEv65dy+WLBgrxfKfhl7Ge9UWXQpGod96PVDWksmQIqiDHnvhdBOyEaOLXz0q3YsIjQPrlg5xYqIplpJ6MjbvG2Zbq4F2r7FOAR+70jIdKYgQysUxK4NL+1IfmnFshfm6FXaSdcRTEwRceLe7HAEOJhQrjLNaMgBhYQqrn9O6aXRBMKNse0DeXrcvw/aORsXtnSUSFT3Z/Ek0KbaAvtIB+VURUdohqqI4ru0AN6RE/OvfPsvDivY+uUM+nZQD/KefsEhyqfaQ==</latexit>

ColumnScale+RowScale
<latexit sha1_base64="EB/dQB4Q2qKC1ooBivvINDS1FSQ=">AAACCHicdVDJSgNBEO2JW4xLRj16aQyCpzCT3VvQi8cIZoEkhJ5OJ2nSPTN010jCkB/wF7zq3Zt49S+8+iV2FkGDPih4vFdFVT0vFFyD43xYiY3Nre2d5G5qb//gMG0fHTd0ECnK6jQQgWp5RDPBfVYHDoK1QsWI9ARreuPrud+8Z0rzwL+Daci6kgx9PuCUgJF6droDJOp1gE0glmQy69kZJ+tcVpxiDjtZt5TLFwuG5N1KwS1jN+sskEEr1Hr2Z6cf0EgyH6ggWrddJ4RuTBRwKtgs1Yk0CwkdkyFrG+oTyXQ3Xhw+w+dG6eNBoEz5gBfqz4mYSK2n0jOdksBIr3tz8U/Pk2ubYVDpxtwPI2A+XS4eRAJDgOep4D5XjIKYGkKo4uZ2TEdEEQomu5QJ5ftz/D9p5Exe2dJtIVO9WsWTRKfoDF0gF5VRFd2gGqojiiL0iJ7Qs/VgvViv1tuyNWGtZk7QL1jvX45Rmps=</latexit>ωmax

<latexit sha1_base64="7Ib4tDjZNgzE0XhTw5c4ilI0OJM=">AAACCnicdVDLSgNBEJz1GeMr0aOXwSB4CrsxL29BD3oSBaNCsiyzk44ZMvtgplcNS/7AX/Cqd2/i1Z/w6pc4iRE0aEFDUdVNd5cfS6HRtt+tmdm5+YXFzFJ2eWV1bT2X37jQUaI4NHkkI3XlMw1ShNBEgRKuYgUs8CVc+v3DkX95A0qLKDzHQQxuwK5D0RWcoZG8XL6NcIfp0cnJ0GtjD5B5uYJdtPfrdqVE7aJTLe1VyobsOfWyU6NO0R6jQCY49XIf7U7EkwBC5JJp3XLsGN2UKRRcwjDbTjTEjPfZNbQMDVkA2k3Hpw/pjlE6tBspUyHSsfpzImWB1oPAN50Bw56e9kbin54fTG3Gbt1NRRgnCCH/WtxNJMWIjnKhHaGAoxwYwrgS5nbKe0wxjia9rAnl+3P6P7kombyK1bNyoXEwiSdDtsg22SUOqZEGOSanpEk4uSUP5JE8WffWs/VivX61zliTmU3yC9bbJ4mtmxg=</latexit>

GNNω

<latexit sha1_base64="aOPpwAEc743+xYWkQgfRWGWoPes=">AAAB/XicdVDLSgMxFM34rPVVdekmWARXQ6Zvd0U3LivaB7RDyaRpG5tkhiQjlKH4C251707c+i1u/RLTh6BFD1w4nHMv994TRJxpg9CHs7K6tr6xmdpKb+/s7u1nDg4bOowVoXUS8lC1AqwpZ5LWDTOctiJFsQg4bQajy6nfvKdKs1DemnFEfYEHkvUZwcZKjU4gkptJN5NFLjqvoGIOItcr5fLFgiV5r1LwytBz0QxZsECtm/ns9EISCyoN4Vjrtoci4ydYGUY4naQ7saYRJiM8oG1LJRZU+8ns2gk8tUoP9kNlSxo4U39OJFhoPRaB7RTYDPWyNxX/9AKxtNn0K37CZBQbKsl8cT/m0IRwGgXsMUWJ4WNLMFHM3g7JECtMjA0sbUP5/hz+Txo5m5dbui5kqxeLeFLgGJyAM+CBMqiCK1ADdUDAHXgET+DZeXBenFfnbd664ixmjsAvOO9fbfWWIg==</latexit>

S

<latexit sha1_base64="GXa1uqhjBtJNTupc/zhhyFQMnU0=">AAACBHicdVDLSgMxFM3UV62vqks3wSK4KjN9uyu6cVmpfYAzlkyaaUOTzJhkhDJ06y+41b07cet/uPVLTB+CFj1w4XDOvdx7jx8xqrRtf1ipldW19Y30ZmZre2d3L7t/0FZhLDFp4ZCFsusjRRgVpKWpZqQbSYK4z0jHH11M/c49kYqG4lqPI+JxNBA0oBhpI3muz5Nmp3nr6jCa9LI5O2+f1exyAdp5p1IolkuGFJ1ayalCJ2/PkAMLNHrZT7cf4pgToTFDSt04dqS9BElNMSOTjBsrEiE8QgNyY6hAnCgvmR09gSdG6cMglKaEhjP150SCuFJj7ptOjvRQLXtT8U/P50ubdVDzEiqiWBOB54uDmEEdwmkisE8lwZqNDUFYUnM7xEMkEdYmt4wJ5ftz+D9pF0xe+cpVKVc/X8STBkfgGJwCB1RBHVyCBmgBDO7AI3gCz9aD9WK9Wm/z1pS1mDkEv2C9fwHSOpkf</latexit>

SWS→
<latexit sha1_base64="VhPqJIcJTGFtQieY2/YwvADFe1E=">AAACCnicdVDJSgNBEO2JW4zbRI9eGoPgKcxk9xbUg8cIZgETQk+nkzTpnhm6a9Qw5A/8Ba969yZe/QmvfomdRdCgDwoe71VRVc8LBdfgOB9WYmV1bX0juZna2t7Z3bPT+w0dRIqyOg1EoFoe0Uxwn9WBg2CtUDEiPcGa3uh86jdvmdI88K9hHLKOJAOf9zklYKSunW4Du4f4oib1YNJth5p37YyTdU4rTjGHnaxbyuWLBUPybqXglrGbdWbIoAVqXfuz3QtoJJkPVBCtb1wnhE5MFHAq2CTVjjQLCR2RAbsx1CeS6U48O32Cj43Sw/1AmfIBz9SfEzGRWo+lZzolgaFe9qbin54nlzZDv9KJuR9GwHw6X9yPBIYAT3PBPa4YBTE2hFDFze2YDokiFEx6KRPK9+f4f9LImbyypatCpnq2iCeJDtEROkEuKqMqukQ1VEcU3aFH9ISerQfrxXq13uatCWsxc4B+wXr/AtNdm0Y=</latexit>

DPmsgω

<latexit sha1_base64="/OBd7MSeABf1yal2UJat3/hD8NI=">AAACDXicdVDJSgNBEO1xjXGLy81LYxA8hZns3oJ68BjBRMEZQk+nok16FrprxDjkG/wFr3r3Jl79Bq9+iZ1FUNEHBY/3qqiq58dSaLTtd2tmdm5+YTGzlF1eWV1bz21stnWUKA4tHslIXfhMgxQhtFCghItYAQt8Ced+/2jkn9+A0iIKz3AQgxewq1D0BGdopE5u20W4xfS4mcRdhjDsuLEWnVzeLtgHdbtSpHbBqRZLlbIhJadedmrUKdhj5MkUzU7uw+1GPAkgRC6Z1peOHaOXMoWCSxhm3URDzHifXcGloSELQHvp+Poh3TNKl/YiZSpEOla/T6Qs0HoQ+KYzYHitf3sj8U/PD35txl7dS0UYJwghnyzuJZJiREfR0K5QwFEODGFcCXM75ddMMY4mwKwJ5etz+j9pF01eheppOd84nMaTITtkl+wTh9RIg5yQJmkRTu7IA3kkT9a99Wy9WK+T1hlrOrNFfsB6+wRL75yg</latexit>

DPupdateω

<latexit sha1_base64="HJFsp4k3MoD/MDdwt/XVXj4PYbg=">AAACC3icdVDJSgNBEO2JW4zbGI9eGoPgaZjJ7i2oB48RTCIkYejpdJImPQvdNZIw5BP8Ba969yZe/QivfomdRdCgDwoe71VRVc+LBFdg2x9Gam19Y3MrvZ3Z2d3bPzAPs00VxpKyBg1FKO88opjgAWsAB8HuIsmI7wnW8kaXM791z6TiYXALk4h1fTIIeJ9TAlpyzWwH2BiSqzoZDOTU7USKu2bOtuzzql3KY9tyyvlCqahJwakWnQp2LHuOHFqi7pqfnV5IY58FQAVRqu3YEXQTIoFTwaaZTqxYROiIDFhb04D4THWT+e1TfKqVHu6HUlcAeK7+nEiIr9TE93SnT2CoVr2Z+Kfn+SuboV/tJjyIYmABXSzuxwJDiGfB4B6XjIKYaEKo5Pp2TIdEEgo6vowO5ftz/D9p5nVeVvmmmKtdLONJo2N0gs6Qgyqohq5RHTUQRWP0iJ7Qs/FgvBivxtuiNWUsZ47QLxjvX4z+m6o=</latexit>

DPaggrω

<latexit sha1_base64="P+Z1T2dnoixaPYkz47jdjAgpPPg=">AAACDnicdVDJSgNBFOyJW4zbqHjy0hgET2Emu7egHjxGMAtkQujp9CRNeha634hhyD/4C1717k28+gte/RI7i6BBCxqKqle81+VGgiuwrA8jtbK6tr6R3sxsbe/s7pn7B00VxpKyBg1FKNsuUUzwgDWAg2DtSDLiu4K13NHl1G/dMal4GNzCOGJdnwwC7nFKQEs988gBdg/JVV2H+mEMk54TKd4zs1bOOq9apTy2cnY5XygVNSnY1aJdwXbOmiGLFqj3zE+nH9LYZwFQQZTq2FYE3YRI4FSwScaJFYsIHZEB62gaEJ+pbjI7f4JPtdLHXij1CwDP1J+JhPhKjX1XT/oEhmrZm4p/eq6/tBm8ajfhQRQDC+h8sRcLDCGedoP7XDIKYqwJoZLr2zEdEkko6AYzupTvn+P/STOv+8qVb4rZ2sWinjQ6RifoDNmogmroGtVRA1GUoEf0hJ6NB+PFeDXe5qMpY5E5RL9gvH8BK56dGw==</latexit>

DPreadoutω

<latexit sha1_base64="ti1CUwtu1LEMkfM4CpI6LAXNjlU=">AAAB+HicdVDLSgMxFM34rPVVdekmWARXQ6Zvd0U3rqQF+4B2KJk0bUOTzJBkhDr0C9zq3p249W/c+iWmD0GLHrhwOOde7r0niDjTBqEPZ219Y3NrO7WT3t3bPzjMHB03dRgrQhsk5KFqB1hTziRtGGY4bUeKYhFw2grG1zO/dU+VZqG8M5OI+gIPJRswgo2V6re9TBa56LKCijmIXK+UyxcLluS9SsErQ89Fc2TBErVe5rPbD0ksqDSEY607HoqMn2BlGOF0mu7GmkaYjPGQdiyVWFDtJ/NDp/DcKn04CJUtaeBc/TmRYKH1RAS2U2Az0qveTPzTC8TKZjOo+AmTUWyoJIvFg5hDE8JZCrDPFCWGTyzBRDF7OyQjrDAxNqu0DeX7c/g/aeZsXm6pXshWr5bxpMApOAMXwANlUAU3oAYagAAKHsETeHYenBfn1XlbtK45y5kT8AvO+xdH3ZPI</latexit>

N
<latexit sha1_base64="L7KFh9sgv3CpReNBByAhpVptdZo=">AAACCnicdVBJSwMxGM3UrdZtqkcvwSJ4GjLdvRW9eKxgF2iHkknTNjQzGZKMpQz9B/4Fr3r3Jl79E179JaaLoEUfBB7vfVueH3GmNEIfVmpjc2t7J72b2ds/ODyys8dNJWJJaIMILmTbx4pyFtKGZprTdiQpDnxOW/74eu637qlUTIR3ehpRL8DDkA0YwdpIPTvbJUwSTrGUYiLZcKR7dg456LKKSnmIHLecL5SKhhTcatGtQNdBC+TACvWe/dntCxIHNNSEY6U6Loq0l2CpmRk8y3RjRSNMxnhIO4aGOKDKSxanz+C5UfpwIKR5oYYL9WdHggOlpoFvKgOsR2rdm4t/en6wtlkPql7CwijWNCTLxYOYQy3gPBfYZ5ISzaeGYCKZuR2SEZaYaJNexoTy/XP4P2nmTV5O+baYq12t4kmDU3AGLoALKqAGbkAdNAABE/AInsCz9WC9WK/W27I0Za16TsAvWO9f/3ObYg==</latexit>↭

<latexit sha1_base64="L7KFh9sgv3CpReNBByAhpVptdZo=">AAACCnicdVBJSwMxGM3UrdZtqkcvwSJ4GjLdvRW9eKxgF2iHkknTNjQzGZKMpQz9B/4Fr3r3Jl79E179JaaLoEUfBB7vfVueH3GmNEIfVmpjc2t7J72b2ds/ODyys8dNJWJJaIMILmTbx4pyFtKGZprTdiQpDnxOW/74eu637qlUTIR3ehpRL8DDkA0YwdpIPTvbJUwSTrGUYiLZcKR7dg456LKKSnmIHLecL5SKhhTcatGtQNdBC+TACvWe/dntCxIHNNSEY6U6Loq0l2CpmRk8y3RjRSNMxnhIO4aGOKDKSxanz+C5UfpwIKR5oYYL9WdHggOlpoFvKgOsR2rdm4t/en6wtlkPql7CwijWNCTLxYOYQy3gPBfYZ5ISzaeGYCKZuR2SEZaYaJNexoTy/XP4P2nmTV5O+baYq12t4kmDU3AGLoALKqAGbkAdNAABE/AInsCz9WC9WK/W27I0Za16TsAvWO9f/3ObYg==</latexit>↭

<latexit sha1_base64="0XfEKVofpAH9sI9ItvmrK9p44wE="></latexit>

ωω,ε,ϑ(G)
<latexit sha1_base64="7Ib4tDjZNgzE0XhTw5c4ilI0OJM=">AAACCnicdVDLSgNBEJz1GeMr0aOXwSB4CrsxL29BD3oSBaNCsiyzk44ZMvtgplcNS/7AX/Cqd2/i1Z/w6pc4iRE0aEFDUdVNd5cfS6HRtt+tmdm5+YXFzFJ2eWV1bT2X37jQUaI4NHkkI3XlMw1ShNBEgRKuYgUs8CVc+v3DkX95A0qLKDzHQQxuwK5D0RWcoZG8XL6NcIfp0cnJ0GtjD5B5uYJdtPfrdqVE7aJTLe1VyobsOfWyU6NO0R6jQCY49XIf7U7EkwBC5JJp3XLsGN2UKRRcwjDbTjTEjPfZNbQMDVkA2k3Hpw/pjlE6tBspUyHSsfpzImWB1oPAN50Bw56e9kbin54fTG3Gbt1NRRgnCCH/WtxNJMWIjnKhHaGAoxwYwrgS5nbKe0wxjia9rAnl+3P6P7kombyK1bNyoXEwiSdDtsg22SUOqZEGOSanpEk4uSUP5JE8WffWs/VivX61zliTmU3yC9bbJ4mtmxg=</latexit>

GNNω

<latexit sha1_base64="7Ib4tDjZNgzE0XhTw5c4ilI0OJM=">AAACCnicdVDLSgNBEJz1GeMr0aOXwSB4CrsxL29BD3oSBaNCsiyzk44ZMvtgplcNS/7AX/Cqd2/i1Z/w6pc4iRE0aEFDUdVNd5cfS6HRtt+tmdm5+YXFzFJ2eWV1bT2X37jQUaI4NHkkI3XlMw1ShNBEgRKuYgUs8CVc+v3DkX95A0qLKDzHQQxuwK5D0RWcoZG8XL6NcIfp0cnJ0GtjD5B5uYJdtPfrdqVE7aJTLe1VyobsOfWyU6NO0R6jQCY49XIf7U7EkwBC5JJp3XLsGN2UKRRcwjDbTjTEjPfZNbQMDVkA2k3Hpw/pjlE6tBspUyHSsfpzImWB1oPAN50Bw56e9kbin54fTG3Gbt1NRRgnCCH/WtxNJMWIjnKhHaGAoxwYwrgS5nbKe0wxjia9rAnl+3P6P7kombyK1bNyoXEwiSdDtsg22SUOqZEGOSanpEk4uSUP5JE8WffWs/VivX61zliTmU3yC9bbJ4mtmxg=</latexit>

GNNω

<latexit sha1_base64="7Ib4tDjZNgzE0XhTw5c4ilI0OJM=">AAACCnicdVDLSgNBEJz1GeMr0aOXwSB4CrsxL29BD3oSBaNCsiyzk44ZMvtgplcNS/7AX/Cqd2/i1Z/w6pc4iRE0aEFDUdVNd5cfS6HRtt+tmdm5+YXFzFJ2eWV1bT2X37jQUaI4NHkkI3XlMw1ShNBEgRKuYgUs8CVc+v3DkX95A0qLKDzHQQxuwK5D0RWcoZG8XL6NcIfp0cnJ0GtjD5B5uYJdtPfrdqVE7aJTLe1VyobsOfWyU6NO0R6jQCY49XIf7U7EkwBC5JJp3XLsGN2UKRRcwjDbTjTEjPfZNbQMDVkA2k3Hpw/pjlE6tBspUyHSsfpzImWB1oPAN50Bw56e9kbin54fTG3Gbt1NRRgnCCH/WtxNJMWIjnKhHaGAoxwYwrgS5nbKe0wxjia9rAnl+3P6P7kombyK1bNyoXEwiSdDtsg22SUOqZEGOSanpEk4uSUP5JE8WffWs/VivX61zliTmU3yC9bbJ4mtmxg=</latexit>

GNNω

<latexit sha1_base64="7Ib4tDjZNgzE0XhTw5c4ilI0OJM=">AAACCnicdVDLSgNBEJz1GeMr0aOXwSB4CrsxL29BD3oSBaNCsiyzk44ZMvtgplcNS/7AX/Cqd2/i1Z/w6pc4iRE0aEFDUdVNd5cfS6HRtt+tmdm5+YXFzFJ2eWV1bT2X37jQUaI4NHkkI3XlMw1ShNBEgRKuYgUs8CVc+v3DkX95A0qLKDzHQQxuwK5D0RWcoZG8XL6NcIfp0cnJ0GtjD5B5uYJdtPfrdqVE7aJTLe1VyobsOfWyU6NO0R6jQCY49XIf7U7EkwBC5JJp3XLsGN2UKRRcwjDbTjTEjPfZNbQMDVkA2k3Hpw/pjlE6tBspUyHSsfpzImWB1oPAN50Bw56e9kbin54fTG3Gbt1NRRgnCCH/WtxNJMWIjnKhHaGAoxwYwrgS5nbKe0wxjia9rAnl+3P6P7kombyK1bNyoXEwiSdDtsg22SUOqZEGOSanpEk4uSUP5JE8WffWs/VivX61zliTmU3yC9bbJ4mtmxg=</latexit>

GNNω

<latexit sha1_base64="/SSCykE+4BCVtHBG9Xio8hbvJ70=">AAAB/XicdVBNS8NAEJ3Ur1q/qh69LBbBU0hKqfVW9OKxov2ANpTNdtuu3U3C7kYoofgXvOrdm3j1t3j1l7hpI2jRBwOP92aYmedHnCntOB9WbmV1bX0jv1nY2t7Z3SvuH7RUGEtCmyTkoez4WFHOAtrUTHPaiSTFwue07U8uU799T6ViYXCrpxH1BB4FbMgI1kZq9XyR3Mz6xZJjV8+dmltGju3MkRK3UjbEzZQSZGj0i5+9QUhiQQNNOFaq6zqR9hIsNSOczgq9WNEIkwke0a6hARZUecn82hk6McoADUNpKtBorv6cSLBQaip80ymwHqtlLxX/9HyxtFkPa17CgijWNCCLxcOYIx2iNAo0YJISzaeGYCKZuR2RMZaYaBNYwYTy/Tn6n7TKtlu1q9eVUv0iiycPR3AMp+DCGdThChrQBAJ38AhP8Gw9WC/Wq/W2aM1Z2cwh/IL1/gU4ZJX+</latexit>

S

<latexit sha1_base64="5o99QxRTqL2U/WgdOhpNEm1rpfE=">AAACGHicdVA9SwNBEN3zM8avqKWFi0HQJtwFiYpN0ELLCEYFLxx7m7lkyd6Hu3NCOFL6J/wLttrbia2drb/EvSSCij4YeLw3w8w8P5FCo22/WxOTU9Mzs4W54vzC4tJyaWX1Qsep4tDksYzVlc80SBFBEwVKuEoUsNCXcOn3jnP/8haUFnF0jv0EWiHrRCIQnKGRvNKGm7mqG3sudgHZNj882XEHXsap24EbWh14pbJdqR3Y+06V2hV7iJw4u1VDnLFSJmM0vNKH2455GkKEXDKtrx07wVbGFAouYVB0Uw0J4z3WgWtDIxaCbmXDRwZ0yyhtGsTKVIR0qH6fyFiodT/0TWfIsKt/e7n4p+eHvzZjsN/KRJSkCBEfLQ5SSTGmeUq0LRRwlH1DGFfC3E55lynG0WRZNKF8fU7/JxfVilOr1M52y/WjcTwFsk42yTZxyB6pk1PSIE3CyR15II/kybq3nq0X63XUOmGNZ9bID1hvn6rPn9Q=</latexit>{ωω(c; G)}c→2

<latexit sha1_base64="4qy616ealnginFplz8lRwHglKpU=">AAACAHicbVC7SgNBFJ2NrxhfUUubxSDEJuyKRMughZYRzEOSJcxO7iZD5rHMzAphSeMv2GpvJ7b+ia1f4iTZQhMPXDiccy/ncsKYUW0878vJrayurW/kNwtb2zu7e8X9g6aWiSLQIJJJ1Q6xBkYFNAw1DNqxAsxDBq1wdD31W4+gNJXi3oxjCDgeCBpRgo2VHrqSwwCXb057xZJX8WZwl4mfkRLKUO8Vv7t9SRIOwhCGte74XmyCFCtDCYNJoZtoiDEZ4QF0LBWYgw7S2cMT98QqfTeSyo4w7kz9fZFirvWYh3aTYzPUi95U/NcL+UKyiS6DlIo4MSDIPDhKmGukO23D7VMFxLCxJZgoan93yRArTIztrGBL8RcrWCbNs4pfrVTvzku1q6yePDpCx6iMfHSBaugW1VEDEcTRM3pBr86T8+a8Ox/z1ZyT3RyiP3A+fwBRz5aC</latexit>

ω(G)

<latexit sha1_base64="9uhqKZl7xauNIYUpYSx9GBArfA0=">AAACF3icbVA9SwNBEN2LXzF+RS0FOQyCVbgTiZZBGwuLCOYDkhD2NpNkye7tsTsnhuM6/4R/wVZ7O7G1tPWXuPkoNPHBwOO9GWbmBZHgBj3vy8ksLa+srmXXcxubW9s7+d29mlGxZlBlSijdCKgBwUOoIkcBjUgDlYGAejC8Gvv1e9CGq/AORxG0Je2HvMcZRSt18octSXHAqEhu0k7SQnjAhCkZKcMR0rSTL3hFbwJ3kfgzUiAzVDr571ZXsVhCiExQY5q+F2E7oRo5E5DmWrGBiLIh7UPT0pBKMO1k8kfqHlul6/aUthWiO1F/TyRUGjOSge0cX23mvbH4rxfIuc3Yu2gnPIxihJBNF/di4aJyxyG5Xa6BoRhZQpnm9naXDaimDG2UORuKPx/BIqmdFv1SsXR7VihfzuLJkgNyRE6IT85JmVyTCqkSRh7JM3khr86T8+a8Ox/T1owzm9knf+B8/gDixaFF</latexit>Lcomposite

<latexit sha1_base64="jJRl+OmLq/iRYcZ9KkfeTnGf6zE=">AAACGnicbVC7TsMwFHXKq5RXgJElUCExVQlChbECBsYi0YfUVpXj3rRW7SSybxBV1Jmf4BdYYWdDrCysfAlumwFajmTp6Jx7fezjx4JrdN0vK7e0vLK6ll8vbGxube/Yu3t1HSWKQY1FIlJNn2oQPIQachTQjBVQ6Qto+MOrid+4B6V5FN7hKIaOpP2QB5xRNFLXPmwjPGB6zYMAFITIqdl0gkjJRExHxl276JbcKZxF4mWkSDJUu/Z3uxexRJrbmKBatzw3xk5KFXImYFxoJxpiyoa0Dy1DQypBd9LpV8bOsVF6k3xzQnSm6u+NlEqtR9I3k5LiQM97E/Ffz5dzyRhcdFIexglCyGbBQSIcjJxJT06PK2AoRoZQprh5u8MGVFGGps2CKcWbr2CR1E9LXrlUvj0rVi6zevLkgByRE+KRc1IhN6RKaoSRR/JMXsir9WS9We/Wx2w0Z2U7++QPrM8fo8yiIw==</latexit>

Di!erentiable formulation

<latexit sha1_base64="9FPMFY68iv8c1q6InqfZnNMVTC4=">AAAB/XicdVDLSgMxFM3UV62vqks3wSK4GjJ9uyu6cVnBPqAdSiZN29gkMyQZoQzFX3Cre3fi1m9x65eYPgQteuDC4Zx7ufeeIOJMG4Q+nNTa+sbmVno7s7O7t3+QPTxq6jBWhDZIyEPVDrCmnEnaMMxw2o4UxSLgtBWMr2Z+654qzUJ5ayYR9QUeSjZgBBsrNbuBSNrTXjaHXHRRRaU8RK5XzhdKRUsKXrXoVaDnojlyYIl6L/vZ7YckFlQawrHWHQ9Fxk+wMoxwOs10Y00jTMZ4SDuWSiyo9pP5tVN4ZpU+HITKljRwrv6cSLDQeiIC2ymwGelVbyb+6QViZbMZVP2EySg2VJLF4kHMoQnhLArYZ4oSwyeWYKKYvR2SEVaYGBtYxoby/Tn8nzTzNi+3fFPM1S6X8aTBCTgF58ADFVAD16AOGoCAO/AInsCz8+C8OK/O26I15SxnjsEvOO9fdd6WJw==</latexit>

X
<latexit sha1_base64="RScRJ1Jqjw8hFTAS7RSU6t98lHY=">AAAB/3icdVBNS8NAEJ34WetX1aOXxSJ4Ckkotd6KXjy2YD+gDWWz3bRLd5OwuxFK6MG/4FXv3sSrP8Wrv8RtG0GLPhh4vDfDzLwg4Uxpx/mw1tY3Nre2CzvF3b39g8PS0XFbxakktEViHstugBXlLKItzTSn3URSLAJOO8HkZu537qlULI7u9DShvsCjiIWMYG2kbj8QWXPgzQalsmNXr5ya6yHHdhaYE7fiGeLmShlyNAalz/4wJqmgkSYcK9VznUT7GZaaEU5nxX6qaILJBI9oz9AIC6r8bHHvDJ0bZYjCWJqKNFqoPycyLJSaisB0CqzHatWbi396gVjZrMOan7EoSTWNyHJxmHKkYzQPAw2ZpETzqSGYSGZuR2SMJSbaRFY0oXx/jv4nbc92q3a1WSnXr/N4CnAKZ3ABLlxCHW6hAS0gwOERnuDZerBerFfrbdm6ZuUzJ/AL1vsXaPmWoQ==</latexit>

Q2

<latexit sha1_base64="GmQJYqj/hidyM8JDAPrLxgoSqY0=">AAAB/3icdVBNS8NAEJ3Ur1q/qh69LBbBU0hqqfVW9OKxBfsBbSib7bZdupuE3Y1QQg/+Ba969yZe/Sle/SVu2gha9MHA470ZZub5EWdKO86HlVtb39jcym8Xdnb39g+Kh0dtFcaS0BYJeSi7PlaUs4C2NNOcdiNJsfA57fjTm9Tv3FOpWBjc6VlEPYHHARsxgrWRun1fJM3BxXxQLDl29cqpuWXk2M4CKXErZUPcTClBhsag+NkfhiQWNNCEY6V6rhNpL8FSM8LpvNCPFY0wmeIx7RkaYEGVlyzunaMzowzRKJSmAo0W6s+JBAulZsI3nQLriVr1UvFPzxcrm/Wo5iUsiGJNA7JcPIo50iFKw0BDJinRfGYIJpKZ2xGZYImJNpEVTCjfn6P/Sbtsu1W72qyU6tdZPHk4gVM4BxcuoQ630IAWEODwCE/wbD1YL9ar9bZszVnZzDH8gvX+BWqOlqI=</latexit>

Q3

<latexit sha1_base64="l3pTGdqEvP/Vewwg6kq4d9BcfjQ=">AAAB/3icdVBNS8NAEJ34WetX1aOXxSJ4Ckkptd6KXjy2YD+gDWWz3bRLd5OwuxFK6MG/4FXv3sSrP8Wrv8RNG0GLPhh4vDfDzDw/5kxpx/mw1tY3Nre2CzvF3b39g8PS0XFHRYkktE0iHsmejxXlLKRtzTSnvVhSLHxOu/70JvO791QqFoV3ehZTT+BxyAJGsDZSb+CLtDWszoelsmPXrpy6W0GO7SyQEbdaMcTNlTLkaA5Ln4NRRBJBQ004VqrvOrH2Uiw1I5zOi4NE0RiTKR7TvqEhFlR56eLeOTo3yggFkTQVarRQf06kWCg1E77pFFhP1KqXiX96vljZrIO6l7IwTjQNyXJxkHCkI5SFgUZMUqL5zBBMJDO3IzLBEhNtIiuaUL4/R/+TTsV2a3atVS03rvN4CnAKZ3ABLlxCA26hCW0gwOERnuDZerBerFfrbdm6ZuUzJ/AL1vsXbCOWow==</latexit>

Q4

<latexit sha1_base64="EY9pyvIdyQYMPFsXGoS3/O0bIvg=">AAACCnicdVDLSgNBEJyNrxhfGz16GQyCp2U3hBhvQS9ehIjmAWYJs5NJMmT2wUyvGpb8gb/gVe/exKs/4dUvcTZZQYMWNBRV3XR3eZHgCmz7w8gtLa+sruXXCxubW9s7ZnG3pcJYUtakoQhlxyOKCR6wJnAQrBNJRnxPsLY3Pkv99i2TiofBNUwi5vpkGPABpwS01DOLXWD3oGhyFXsXBOho2jNLtlU9sWtOGduWPUNKnEpZEydTSihDo2d+dvshjX0WABVEqRvHjsBNiAROBZsWurFiEaFjMmQ3mgbEZ8pNZqdP8aFW+ngQSl0B4Jn6cyIhvlIT39OdPoGRWvRS8U/P8xc2w6DmJjyIYmABnS8exAJDiNNccJ9LRkFMNCFUcn07piMiCQWdXkGH8v05/p+0ypZTtaqXlVL9NIsnj/bRATpCDjpGdXSOGqiJKLpDj+gJPRsPxovxarzNW3NGNrOHfsF4/wKv5Jst</latexit>

SubMatch

<latexit sha1_base64="9VBmHb+1UZTszJWjDK+eYWRsTSA=">AAAB/3icdVBNS8NAEJ3Ur1q/qh69LBbBU0hKrfVW9OKxBfsBbSib7bZdupuE3Y1QQg/+Ba969yZe/Sle/SVu2gha9MHA470ZZub5EWdKO86HlVtb39jcym8Xdnb39g+Kh0dtFcaS0BYJeSi7PlaUs4C2NNOcdiNJsfA57fjTm9Tv3FOpWBjc6VlEPYHHARsxgrWRun1fJM354GJQLDl29cqpuWXk2M4CKXErZUPcTClBhsag+NkfhiQWNNCEY6V6rhNpL8FSM8LpvNCPFY0wmeIx7RkaYEGVlyzunaMzowzRKJSmAo0W6s+JBAulZsI3nQLriVr1UvFPzxcrm/Wo5iUsiGJNA7JcPIo50iFKw0BDJinRfGYIJpKZ2xGZYImJNpEVTCjfn6P/Sbtsu1W72qyU6tdZPHk4gVM4BxcuoQ630IAWEODwCE/wbD1YL9ar9bZszVnZzDH8gvX+BW4elqQ=</latexit>

Q5

<latexit sha1_base64="II4O67tPTRb9+hsJuVGOmd9JOo4=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklB9Fj04kWo1H5AG8pmu2mXbjZhdyKU0J/gxYMiXv1F3vw3btsctPXBwOO9GWbmBYkUBl3321lb39jc2i7sFHf39g8OS0fHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Hbmt5+4NiJWjzhJuB/RoRKhYBSt1LhvNPqlsltx5yCrxMtJGXLU+6Wv3iBmacQVMkmN6Xpugn5GNQom+bTYSw1PKBvTIe9aqmjEjZ/NT52Sc6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjtZ0IlKXLFFovCVBKMyexvMhCaM5QTSyjTwt5K2IhqytCmU7QheMsvr5JWteJdVtyHarl2k8dRgFM4gwvw4ApqcAd1aAKDITzDK7w50nlx3p2PReuak8+cwB84nz/sHY2N</latexit>

MSS
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A

Figure 1: Input graph G with adjacency matrix A contains K4 and K3, so ω(G) = 4. The topmost
part shows how a node permutation P supplied by an oracle rearranges A to locate the maximal
clique as a dense square diagonal block. The lower part shows the two neural components that turn
the combinatorial intuition into a differentiable network. In the first neural component (middle),
GNNθ obtains contextual node embeddings X , which drives a Gumbel-Sinkhorn network Tϕ to
propose a soft permutation S. S is applied to W = A⊙XX⊤ (rationale explained in text) to form
the relaxed counterpart of PAP⊤ in the oracular setting. If S is chosen well, we expect SWS⊤

to have large, fully-filled diagonal squares. The largest among these is/are detected by message-
passing (DPmsgψ,DPaggrψ,DPreadoutψ) in a grid graph. The second neural component (shown
at the bottom) consists of a series of cliques K2 ⊂ K3 ⊂ · · · , each processed by GNNθ, to provide
contextual node embeddings Q2,Q3, . . ., which are checked for a form of injective subsumption
by X . Subsumption fails as we move from Qω(G) to Qω(G)+1 — a transition we detect via the
ρθ(c;G) network. The losses from the two neural components are combined into LComposite.

MXNET (Composite) We combine MXNET (MSS) and MXNET (SubMatch) to build an accurate,
yet interpretable clique number estimator MXNET (Composite). Here, MXNET (SubMatch) helps
MXNET (MSS) navigate through suitable node permutations, while MXNET (MSS) promotes
accuracy by directly predicting the clique number.

3.1 DESIGN OF MXNET (MSS)
We first introduce a novel combinatorial formulation of the Maximum Clique Problem (MCP) and
then customize this formulation to develop MXNET (MSS), which approximates this combinatorial
solution in a differentiable manner.

Combinatorial formulation of MCP Given a graph G = (V,E), suppose the nodes
are magically ordered in such a way that all those nodes that belong to one of the max-
imal cliques, are consecutively numbered. Under this node ordering, the submatrix in-
dexed by V (K∗(G)) in the corresponding adjacency matrix A (with added self loops) will
be the largest possible fully dense (all-ones) subsquare in A. Formally, if V = [N ]
and V (K∗(G)) = {j + 1, ..., j + ω(G) | for some 1 ≤ j ≤ N − ω(G)}, then we have (i)
A[V (K∗(G)), V (K∗(G))] = Oω(G) and (ii) for any pair (j, j + c) with c > ω(G) and 1 ≤ j ≤
ω(G)− c, we have A[j : j + c, j : j + c] ̸= Oc.

Given the above ordering among the nodes, the MCP is equivalent to finding the largest fully dense
subsquare within the adjacency matrix, which can be solved in polynomial time. Therefore, all
that we have achieved thus far is to relegate the hardness of MCP to the module that must suggest
the node ordering. To more forward, we cast the MCP as a maximization of the size (number of
rows or columns) of the largest fully dense subsquare in the adjacency matrix, over all possible node
permutations as the optimization variable. If we define MSS(B) as the size of the largest fully dense
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diagonal subsquare in a matrix B, then MCP amounts to
maximizeP∈ΠN

MSS(PAP⊤). (1)
The routine MSS(·) is summarized in Algorithm 1. A matrix called FF (mnemonic for flood-fill,
or frontier-flooding), which is updated using a simple dynamic programming (DP) routine. After
updating the (i, j)-th position, FF[i, j] represents the size of the largest fully dense subsquare in
B (which is PAP⊤ in our problem), with the bottom-right element as B[i, j]. Algorithm 1 first
initializes the first row and column of FF with those from B.
Once we update FF[r, c] with r < i, c < j, then FF[i − 1, j], FF[i, j − 1] and
FF[i − 1, j − 1] contain the values of the size of largest fully dense subsquare in B,

Algorithm 1 MSS(B) # B is binary

1: FF← Empty(N,N)
2: FF[1, :]← B[1, :], FF[:, 1]← B[:, 1]
3: for i, j ∈ {2, .., N} do
4: t1 ← FF[i− 1, j]
5: t2 ← FF[i, j − 1]
6: t3 ← FF[i− 1, j − 1]
7: FF[i, j]← B[i, j] · (1 + min

j∈{1,2,3}
tj)

8: Return maxi∈[N ] FF[i, i]

with bottom right position as (i − 1, j), (i, j − 1)
and (i − 1, j − 1) respectively. If B[i, j] = 1,
the size of the corresponding subsquare ending at
(i, j) is computed by increasing one over the mini-
mum of the above three entries of FF as: FF[i, j] =
1+min {FF[i− 1, j],FF[i, j − 1],FF[i− 1, j − 1]}.
We can visualize this computation as a wavefront pro-
gressing down the main diagonal. Finally, we com-
pute the required size of fully dense subsquare as
maxi∈[N ] FF[i, i].

A message-passing perspective of MSS(B) Next, we conceptualize MSS as an instance of iter-
ative message passing, akin to graph neural networks, applied to a directed acyclic graph where the
nodes are initialized with binary states. This perspective enables us to develop a neural network ca-
pable of simulating Algorithm 1. Given the input matrix B = PAP⊤, we construct the graph GN
as a N ×N directed acyclic grid graph. The nodes of GN are V (GN ) = [N ]× [N ], with each node
(i, j) having an in-neighbor set In-Nbr((i, j)) := {(i− 1, j), (i, j − 1), (i− 1, j − 1)} except at the
boundaries. The node embeddings of GN are initialized as h0(i, j) = B[i, j]∈ R. At propagation
layer ℓ ∈ [N ], each node (i, j) first receives messages from its in-neighbors (s, t), then aggregates
these messages, and finally updates its embedding as:

Ml(i, j) = ∪(s,t)∈In-Nbr(i,j)DPmsg
(
hℓ(s, t), hℓ(i, j)

)

hℓ+1(i, j) = DPupdate
(
h0(i, j),DPaggr

(
Ml(i, j)

))
.

(2)

Note that, unlike traditional GNNs, which use hℓ(i, j) as input at each layer, we feed the initial
feature h0(i, j) as input at each propagation step, specifically tailoring our approach to simulate
Algorithm 1. After the completion of N of such propagations, we compute the output of the DP as

DPoutput(B) = DPreadout
(
∪(i,j)∈V (GN )hN (i, j)

)
. (3)

Note that when B ∈ {0, 1}N×N , the specific choices of the functions: DPmsg(x, y) =
x, DPaggr({xi}) = 1 + mini xi, DPupdate(x, y) = xy, DPreadout({x}) = max{x} ensures
that DPoutput(B) = MSS(B), as computed in Algorithm 1.
Differentiable approximation of the combinatorial MCP in Eq. (1) Here, we propose a neural
network ωθ,ϕ,ψ, with model parameters θ, ϕ, and ψ (to be described later), to approximate the
combinatorial MCP formulation (1). Our approach involves continuous relaxations of the original
objective (1) on three fronts. (1) We relax the hard permutation matrix P into a soft permutation
matrix S, modeled as a doubly stochastic matrix. (2) It becomes difficult to attain zero values
in the right entries of SAS⊤ due to the continuous relaxation of S. Moreover, the binary matrix
A attenuates gradient signals. To address these problems we substitute the binary 0/1 values in
the adjacency matrix A with continuous values, computed using node embeddings for each node
u ∈ V (G). (3) Since items (1) and (2) result in continuous relaxations of PAP⊤, the initial states
h0(i, j) now contain continuous values instead of binary 0/1 values. Consequently, we model the
embeddings of the grid graph using continuous values.
— Computation of node embeddings: We use a graph neural network GNNθ with parameters θ, to
perform message passing across L propagation layers to compute node embeddings X ∈ RN×d

where X = [xL(u) ∈ Rd]u∈[N ]. The embeddings xL(u) capture the information about the sub-
graph containing nodes within L-hop distance from u. These embeddings are then used to perform
continuous relaxations W of the adjacency matrix A as follows:

W = A⊙XX⊤, where, X = [xL(u) ∈ Rd]u∈[N ] := GNNθ(G) (4)
— Relaxation of hard to soft permutations: The hard permutation matrix P in Eq. (1) is the essential
blocker to an efficient and differentiable expression. To address this, we approximate P with a
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doubly stochastic soft permutation matrix S. We obtain S by first feeding the node embeddings X
into a neural network Tϕ, and then applying Sinkhorn iterations (Mena et al., 2018; Cuturi, 2013) to
the resulting matrix Tϕ(X). Given a maximum number of iterations τmax, we compute S as:

S = Tτmax
where, T0 = exp(Tϕ(X)/λ); Tτ+1 = ColumnScale(RowScale(Tτ )), (5)

where λ is a temperature parameter; RowScale and ColumnScale perform row and column normal-
izations of the matrix argument. As τmax → ∞, S approaches a doubly stochastic matrix and as
λ → 0 and τmax → ∞, S converges to a hard permutation matrix. Using Eqs. (4) and (5), we
compute the relaxation of PAP⊤ as: B = SWS⊤.

— Relaxation of Algorithm 1: Unlike the binary input in Algorithm 1, B now takes continuous
values. Therefore, we use continuous hk(i, j) ∈ R in Eqs. (2)– (3) and model DPmsg,DPupdate
and DPreadout using neural networks (Details in Appendix D) with parameters ψ. Under these re-
laxations, we compute the node embeddings hℓ(i, j) on GN , starting with h0(i, j) = (SWS⊤)[i, j]
as follows:
hℓ+1(i, j) = DPupdateψ

(
(SWS⊤)[i, j],

∑
(s,t)∈In-Nbr(i,t) DPmsgψ

(
hℓ(i, j), hℓ(s, t)

))
. (6)

Finally, we predict the clique number ω(G) via max pooling, following Step 8 in Algorithm 1:
ωθ,ϕ,ψ(G) = max(i,j)∈V (GN ) DPreadoutψ(hN (i, j)). (7)

Training Given I training instances {Gi, ω(Gi) | i ∈ [I]}, we learn θ, ϕ, ψ by minimizing the
mean squared error LMSS = 1

I

∑
i∈[I](ωθ,ϕ,ψ(Gi)− ω(Gi))

2.

Limitation of MXNET (MSS) As mentioned in Section 1.1, MXNET (MSS) can estimate ω(G)
accurately, but, owing to massive symmetries in the distant supervision, succumbs to confusing
gradient signals from a large number of equivalent soft permutations that achieve the optimal ob-
jective, and does not always succeed at producing interpretable “clique certificates” S. The space
of globally optimal Ss increases further because neither the combinatorial MCP (1) nor its neural
approximation (7) constrains the position of the subsquare within the permuted matrix B. We now
proceed to rectify this limitation.

3.2 DESIGN OF MXNET (SUBMATCH)

Finding cliques via subgraph matching If the Gumbel-Sinkhorn network Tϕ is powerful enough
to find an effective soft permutation S, it may well be powerful enough to arrange the maximal
subsquare in a fixed position, say, [1:ω(G), 1:ω(G)]. How do we endow Tϕ with this inductive bias?
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Figure 2: Testing if Kc ⊆ G for increasing
c until c > ω(G)=8.

We start with the standard observation that a clique Kc
is a subgraph of G (written as Kc ⊆ G) if and only if
c ≤ ω(G). If we had a perfect black box subgraph test,
“K2 ⊆ G”, “K3 ⊆ G”, . . . , “Kω(G) ⊆ G” would pass,
but “Kω(G)+1 ⊆ G” and subsequent tests would fail.
Formally, K1 ⊂ K2 ⊂ . . .Kω(G) ⊆ G, but Kc ̸⊆ G for
any c > ω(G).

We shift our perspective on S as “a permutation that col-
lects clique nodes into a contiguous subsquare” to “a per-
mutation that maps Kc injectively into G”, where each
Kc is presented in a specific format. Kc, the adjacency
matrix of Kc, is zero-padded to anN×N adjacency ma-
trix, but the edges are always presented in the [1:c, 1:c]

upper left corner. Formally, Kc =

[
1c×c 0c×(N−c)

0(N−c)×c 0(N−c)×(N−c)

]
. Then there exists a hard node

permutation P such that
K1 ≤ K2 ≤ · · · ≤ Kω(G) ≤ PAP⊤; Kc ̸≤ PAP⊤ ∀c > ω(G) (elementwise inequality). (8)

The inequality Kc < PAP⊤ can be written equivalently as [Kc−PAP⊤]+ = 0. The asymmetric
distance

∥∥[Kc − PAP⊤]+
∥∥
1,1

measures the coverage of Kc by the graph G and can be used as
distance measure for subgraph matching (Lou et al., 2020; Ranjan et al., 2022; Roy et al., 2022).
Then, using the nested inequality in Eq. (8), we will have [Kc − PAP⊤]+ = 0 for all c ≤
ω(G) and for c > ω(G), we will have [Kc − PAP⊤]+ > 0. The green line in Figure 2 shows∥∥[Kc −PAP⊤]+

∥∥
1,1

as c increases. As expected, with the ideal P , it jumps from zero to positive
values for c > ω(G) = 8.
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Neural relaxation We employ GNNθ, introduced in Eq. (4), to represent graphs G and Kc as
N × d contextual node embedding matrices X and Qc. We replace the hard clique coverage loss∑
i,j [Kc − PAP⊤]+[i, j] with a soft clique coverage loss ρθ,ϕ(c;G) =

∑
i,j [Qc − SX]+[i, j],

where S is the soft permutation matrix (5). Consistent with Kc, the first c rows of Q contain the
non-trivial embedding vectors corresponding to clique nodes V (Kc), whereas the lower N − c rows
are zero pads. The blue line in Figure 2 shows ρθ,ϕ(c;G) against c, after θ, ϕ are reasonably trained.
We can again see a detectable jump after c = ω(G).

Training curriculum Instead of using MXNET (MSS) to directly estimate ω(G), we will train
ρθ,ϕ(c;G) using a ‘curriculum’ that encourages the neural counterpart of Eqn. (8) to hold. Specifi-
cally, we seek to minimize minθ,ϕ LSubMatch(ω(G); {ρθ,ϕ(c;G)}c≥2) where LSubMatch is written as

LSubMatch =
∑

i∈[I]

( ω(G)∑

c=2

ρθ,ϕ(c;G)

|ω(G)− 1| +
ω(G)−1∑

c=2

[ρθ,ϕ(c+ 1;G)− ρθ,ϕ(c;G)− γ]+
|ω(G)− 2|

+ [ρθ,ϕ(ω(G);G)− ρθ,ϕ(ω(G) + 1;G) + δ]+

)
(9)

(I) The first term encourages S to discover that Kc ⊆ G for c ∈ [2, ω(G)].
(II) As long as c < ω(G), we do not want ρθ,ϕ(c;G) ≫ ρθ,ϕ(c+1;G). The second term constitutes
this “nesting curriculum”.
(III) The third term encourages the jump: ρθ,ϕ(ω(G) + 1;G) ≫ ρθ,ϕ(ω(G);G).

Here δ and γ are margin hyperparameters, with γ ≪ δ typically giving the best performance. In
Eq. (9), we may limit the inner summation of the first term to only c = ω(G) and the inner summa-
tion of the last term to c = ω(G)− 1. However, summation from 2 to ω(G) provides more explicit
guidance to the learner that, K2, . . . ,Kc are subgraphs of G. Our experiments in Appendix F show
that it is unable to reason that if Kc is a subgraph of G then also K2, . . . are also subgraphs of G.

Inference During inference, we evaluate ρθ,ϕ(c;G) as we increment c, reporting our estimate
ω̂(G) as the smallest c∗ such that ρθ,ϕ(c∗ + 1;G) ≥ ρθ,ϕ(c

∗;G) + δ.

Pros and cons Loss expression (9) achieves two goals. It guides the search for S using a pro-
gression from smaller to largest cliques, and it guides the positioning of the MSS to the upper left
corner for a variety of clique sizes. Together, these improve the interpretability of “clique certifi-
cates” (somewhat dense subsquares in the continuous regime). Experiments suggest that MXNET
(MSS) can sometimes beat MXNET (SubMatch) in terms of the raw accuracy of estimating ω(G).

3.3 DESIGN OF MXNET (COMPOSITE)

Given their complementary strengths, we are naturally motivated to combine MXNET (MSS) and
MXNET (SubMatch) into our final proposal, MXNET (Composite).

Training We simultaneously train the neural networks ωθ,ϕ,ψ and ρθ,ϕ(c;G) by minimizing with
a composite loss function, with the mixing hyperparameter λ, written as

LComposite = λLMSS + LSubMatch (10)

Bicriteria early stopping Early experiments suggested that the two parts of the composite loss can
be oppositional. Therefore, we developed a bicriteria early stopping logic. It consists of two phases.
Initially, we monitor the reduction in LSubMatch, indicating the model’s effectiveness in identifying
an optimal permutation that satisfies the query clique detection challenges. Once LSubMatch saturates,
we transition to monitoring LMSS. To prevent the second phase from reversing the gains of the first,
we allow/accept a reduction in LMSS only if the damage to LSubMatch is below a threshold. This
enhanced early stopping policy ensures a balanced optimization of (10).

Inference During inference, we have the option to base our predictions on either ωθ,ϕ,ψ or
ρθ,ϕ(c;G). While ρθ,ϕ(c;G) provides a certificate for the maximum detected clique, ωθ,ϕ,ψ di-
rectly predicts the clique number based on neural maximum subsquare detection (7). Given our
objective of accurate clique number prediction, we choose to use the prediction of ωθ,ϕ,ψ.

4 EXPERIMENTS

We report on extensive experiments using eight datasets, comparing the performance of MXNET
with other methods. We also instrument different components of MXNET to understand their impact.

7
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4.1 SETUP

Datasets We conduct experiments on eight datasets, comprising five real-world and three syn-
thetic datasets. Real-world datasets include (1) IMDB-BINARY (IMDB), (2) Enzymes and modular
products of graph pairs from (3) PTC-MM-m, (4) AIDS, (5) Mutagenicity (MUTAG-m) datasets.
We also generate three synthetic datasets from (6) DSJC, (7) Brockington (Brock), and (8) RB. One
key application of clique number estimation is to compute the similarity score between two graphs
based on the size of their maximum common induced subgraph, expressed as the modular product1
between the graph pairs. Motivated by applications in graph similarity, we use modular graph prod-
ucts for three datasets, viz., AIDS, MUTAG, PTC-MM. We call them AIDS-m, MUTAG-m and
PTC-MM-m respectively. Additional details are in in Appendix E.

Baseline neural and neural+combinatorial MCP solvers Prior methods that operate under the
three practically motivated métiers of our problem setting — end-to-end differentiability, a focus
on clique number prediction rather than a maximal clique itself, and the ability to train under dis-
tant supervision — are surprisingly hard to find. Plausible baselines from the neural network and
machine learning community include six unsupervised methods, viz., (1) EGN (Karalias & Loukas,
2020), (2) SCT (Min et al., 2022), (3) SFE (Karalias et al., 2022), (4) NSFE (Karalias et al., 2022),
(5) ST (Bengio et al., 2013), (6) Reinforce (Williams, 1992); two variants of Difusco (Sun & Yang,
2024), which are trained under extreme supervision of explicit clique demonstration, viz., (7) Di-
fusco (Cont) and (8) Difusco (Cat), which use continuous (Gaussian) and categorical sampling at
the de-noising stage; one neural subgraph counting based approach trained under distant supervi-
sion– (9) NeurSC (Wang et al., 2022); and two models trained under Reinforcement Learning, viz.,
(10) GFnet (Zhang et al., 2024) and (11) VAG-CO (Sanokowski et al., 2023). None of these methods
is trained under distant supervision, nor are they able to estimate the clique numbers without making
implicit or explicit hard decisions about which nodes constitute the clique.

Heavy-lifting decoders A differentiable network, as well as many heuristic MCP solvers or relax-
ations of integer programs, will usually associate a score with each node u ∈ V (G) that u indicating
its membership in the maximal clique it has identified. We call this a heatmap on the nodes. To
demonstrate a concrete clique, these methods then feed these heatmap into the decoder, which is
generally procedural, not declarative, and therefore not differentiable. EGN, SCT, Difusco, GFnet,
and VAG-COuse such non-differentiable decoders. Appendix E.3 discusses decoders at length.

Evaluation In the face of such heterogeneity and “culture differences”, it is difficult to compare
competing systems with a single yardstick. We first present comparisons segregated between meth-
ods with and without decoders. MXNET easily beats all non-decoder methods, and even most
decoder-based methods on many data sets. Later, we allow decoders, but we must carefully control
the computational costs of sampling inside decoders. Some more details are in Appendix E.3.

We split each datasetD = {Gi, ω(Gi) | i ∈ [I]} into 60% training, 20% eval, and 20% test folds. We
report Mean Squared Error (MSE) between the predicted clique number and the ground truth clique
number. Appendix E.4 explains why traditional metrics like approximation ratio are not suitable.

4.2 RESULTS

Comparison with baselines Here, we compare the performance of MXNET (Composite) against
all the ten neural baselines in terms of MSE. We use two variants of MXNET, viz., MXNET
(ES:MSS) which uses early stopping using MSS loss LMSS and MXNET (ES:Bi) which uses bi-
criteria early stopping (Section 3.3). Table 1 summarizes the results. The key observations are as
follows. (1) Although six out of ten baselines use combinatorial decoders during inference, and two
of them use extreme supervision, MXNET achieves the best performance on five datasets and the
second best performance on the remaining three datasets. In these datasets, EGN is the second-best
performer in the first five and the best in the last three. (2) The baselines that do not use a decoder
(the last four methods in Table 1) are massively outperformed by MXNET. In fact, they are out-
performed by every baseline that uses a decoder. Remarkably, MXNET is the only model that does
not use a decoder and yet not only competes with but often surpasses the decoder-based baselines.
(3) Overall, GFnet is the third-best performer in four out of eight datasets. (4) Difusco (Cat) con-
sistently outperforms Difusco (Cont) across all datasets, aligning with the observations reported in
their original paper.

1https://en.wikipedia.org/wiki/Modular_product_of_graphs
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Table 1: Performance in terms of mean squared error (MSE) between predicted and true clique
numbers for two variants of MXNET (MXNET (ES:MSS), MXNET (ES:Bi)), EGN (Karalias &
Loukas, 2020), SCT (Min et al., 2022), Difusco (Cont, Cat) (Sun & Yang, 2024), GFnet (Zhang
et al., 2024), VAG-CO (Sanokowski et al., 2023), SFE (Karalias et al., 2022), NSFE (Karalias et al.,
2022), ST (Bengio et al., 2013), Reinforce (Williams, 1992) and NeurSC (Wang et al., 2022) on
20% test set. MXNET (ES:MSS) uses early stopping using LMSS, whereas MXNET (ES:Bi) uses
bicriteria early stopping described in Section 3.3. In all cases, we use MXNET (Composite), which
is trained using the composite loss (10). First six (last seven) methods (do not) use decoder. Green,
blue, and yellow show the best, second-best, and third-best methods, respectively.

IMDB AIDS-m PTC-MM-m DSJC Brock Enzymes RB MUTAG-m

D
ec

od
er





EGN (Karalias & Loukas, 2020) 0.102 0.610 0.284 0.030 1.310 0.109 15.615 1.010
SCT (Min et al., 2022) 4.102 3.865 1.802 92.675 35.885 0.891 50.230 11.105
Difusco (Cont) (Sun & Yang, 2024) 5.333 4.665 2.621 59.820 39.040 1.034 63.490 10.590
Difusco (Cat) (Sun & Yang, 2024) 1.361 4.170 2.244 1.560 10.595 0.950 55.630 10.965
GFnet (Zhang et al., 2024), 2.815 0.740 0.554 4.820 8.975 0.857 34.200 2.565
VAG-CO (Sanokowski et al., 2023) 5.037 33.905 19.962 7.665 15.450 4.244 320.240 132.700

N
on

-D
ec

od
er





SFE (Karalias et al., 2022) 4.833 44.340 26.568 12.465 53.595 1.630 72.020 110.905
NSFE (Karalias et al., 2022) 3.185 36.005 19.800 5.255 47.920 1.118 78.890 96.445
ST (Bengio et al., 2013) 8.972 44.885 26.703 5.410 55.740 5.454 131.230 111.020
Reinforce (Williams, 1992) 16.472 59.170 37.455 13.280 403.095 1.731 229.435 132.700
NeurSC (Wang et al., 2022) 5.33 1.24 1.51 15.35 88.79 0.63 10.08 3.52
MXNET (ES:MSS) 0.056 0.350 0.204 0.200 7.615 0.235 7.170 0.890
MXNET (ES:Bi) 0.056 0.350 0.204 0.240 9.260 0.235 9.820 4.220

Table 2: Comparison of MXNET (MSS), MXNET (SubMatch), and MXNET (Composite) in terms
of Mean Squared Error (MSE) on eight datasets. Numbers in green, blue indicate the best performers
and second best performers respectively.

IMDB AIDS-m PTC-MM-m DSJC Brock Enzymes RB MUTAG-m
MXNET (MSS) 24.454 0.360 2.364 0.190 7.685 0.235 10.500 4.220
MXNET (SubMatch) 1.750 1.135 0.691 97.440 221.640 0.277 12.140 4.040
MXNET (Composite) 0.056 0.350 0.204 0.200 7.615 0.235 7.170 0.890

Ablation study on variants of MXNET. We compare the performance of the three variants of
our method, viz., MXNET (MSS), MXNET (SubMatch) and MXNET (Composite), whose training
losses are LMSS, LSubMatch (9) and LComposite (10), respectively. Table 2 shows the results. The key
observations are as follows. (1) MXNET (Composite) emerges as the exclusively best performer in
six out of eight datasets, with a comparable performance to MXNET (MSS) in Enzymes, and being
outperformed by MXNET (MSS) in DSJC. Particularly noteworthy is the substantial improvement
in MXNET’s performance in datasets like IMDB, MUTAG-m, and RB, highlighting the efficacy of
combining LMSS and LSubMatch for accurate clique prediction tasks; (2) In five out of eight datasets,
MXNET (MSS) significantly outperforms MXNET (SubMatch), thereby demonstrating its better
capability at predicting the clique number directly. (3) MXNET (SubMatch) is never the top per-
former on its own, highlighting that while it provides important signals for MXNET’s performance,
its indirect signal about clique sizes is insufficient for accurately predicting clique number.

Table 3: Performance of MXNET (Composite) for different early stopping criteria, which are based
on LMSS, LSubMatch and LComposite respectively. For each of these early stopping criteria, we use
MXNET (MSS) and MXNET (SubMatch) (denoted as MSS and SubMatch) components to measure
the performance in terms of MSE on the test set. Numbers in green indicate the best performers.

IMDB AIDS-m PTC-MM-m DSJC
MSS SubMatch MSS SubMatch MSS SubMatch MSS SubMatch

MXNET (ES:MSS) 0.056 0.815 0.350 1.135 0.204 0.507 0.200 2.225
MXNET (ES:SubMatch) 0.093 0.731 0.365 0.490 0.341 0.537 0.445 33.690
MXNET (ES:Bi) 0.056 0.815 0.350 1.135 0.204 0.507 0.240 46.355

Brock Enzymes RB MUTAG-m
MSS SubMatch MSS SubMatch MSS SubMatch MSS SubMatch

MXNET (ES:MSS) 7.615 1400.000 0.235 0.328 7.170 192.200 0.890 91.340
MXNET (ES:SubMatch) 21.265 227.910 0.235 0.353 9.820 11.145 1.665 4.130
MXNET (ES:Bi) 9.260 307.905 0.235 0.261 9.820 11.145 4.220 4.540

Effect of bicriteria early stopping We investigate the impact of training MXNET (Compos-
ite) under the bicriteria early stopping mechanism (MXNET (ES:Bi)), by comparing it against
two early stopping criteria, based solely on LMSS (MXNET (ES:MSS)) and LSubMatch (MXNET
(ES:SubMatch)). We use the inference methods corresponding to both MXNET (MSS) and
MXNET (SubMatch) on the test set. Table 3 reports the MSE numbers, which reveal the follow-
ing observations. (1) MXNET (ES:MSS) shows extremely strong performance across all datasets,
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consistently achieving the best MSE results, when the inference is performed using MXNET (MSS).
However, as often seen, most notably in MUTAG-m, RB and Brock, this sometimes comes at a
significant cost of MSE resulted from inference using MXNET (SubMatch), which indicates poten-
tial overfitting. (2) MXNET (ES:SubMatch) achieves best MSE results across five out of eight
datasets, when inference is performed using MXNET (SubMatch). However the performance mea-
sured in terms of MSE resulted from MXNET (MSS) based inference is not as strong, except for
Enzymes where it matches the best performance; (3) MXNET (ES:Bi) provides a more balanced
approach, and we found bicriteria early stopping to be an effective guardrail against potential over-
fitting of MXNET (MSS). As seen in Table 3, MXNET (ES:Bi) prevents extreme overfitting in
datasets like MUTAG-m, RB and Brock, while matching the MSE achieved by MXNET (MSS) in
datasets such as IMDB, AIDS-m, PTC-MM-m, and Enzymes. Therefore, while MXNET (ES:Bi)
does not directly enhance performance, it ensures that inference via MXNET (SubMatch) does not
degrade significantly. This makes bicriteria early stopping a reliable mediator.

Table 4: Decoder vs No-decoder. green,
blue, and yellow indicate the best, second-
best, and third-best performers

IMDB PTC-MM-m
MSE Time (s) MSE Time (s)

EGN 0.102 0.117 0.284 0.149
EGN (4x) 0.102 0.236 0.183 0.410
Heuristic 2.824 0.146 0.861 0.159
Heuristic(4x) 0.222 0.137 0.497 0.493
SCT 4.102 0.051 1.802 0.039
SCT (4x) 0.259 0.048 0.701 0.063
Heuristic 3.287 0.002 0.922 0.016
Heuristic (4x) 0.250 0.007 0.480 0.030
Difusco (Cat) 1.361 0.789 2.244 0.690
Difusco (Cat) (4x) 0.231 0.722 0.979 0.799
Heuristic 2.741 0.011 0.931 0.045
Heuristic (4x) 2.741 0.010 0.931 0.058
GFnet 2.815 0.032 0.554 0.011
GFnet (4x) 0.167 0.081 0.166 0.035
Heuristic 2.333 0.018 2.623 0.027
Heuristic (4x) 0.213 0.053 1.160 0.143
MXNET 0.056 0.029 0.204 0.018

Contribution of combinatorial decoder Here, we
compare the performance of each decoder based neu-
ral model against its corresponding non-neural variant
(named as Heuristic), which consists of only its own con-
stituent decoder. The initial node heatmap input to the
decoder is computed using a structure guided node score,
selected from node degree, PageRank and clustering co-
efficient, based on minimum validation error. In addition,
we also empower all methods by increasing the number
of clique proposals by 4x from Table 1. Table 4 presents
the results on two datasets in terms of both MSE and
time. We observe that: (1) In some cases, the non-neural
Heuristic variants are comparable to or even outperform
the neural variants. This is particularly noticeable in SCT
baseline for all variants, Difusco (Cat) in PTC-MM-m,
and GFnet in IMDB. This highlights the significant role
of the decoder in the clique detection tasks. (2) While MXNET still outperforms all baselines in
IMDB despite their improvements, it ranks third in PTC-MM-m, behind EGN (4x) and GFnet (4x).
However, this improvement in the baselines comes with an almost 2x increase in run-time, making
our method more efficient in terms of inference time latency.
Effect of distribution shift We construct an OOD (out-of-distribution) dataset based on the orig-
inal PTC-MM-m dataset as follows: Given the dataset D = (Gi, ω(Gi))

|I|
i=1, we select all graphs

with |Vi| ≥ 80 and ωi ≥ 7 for the test set, while randomly partitioning the remaining graphs into
training and validation splits. Consequently, during training, neither MXNET nor the baselines are
exposed to large graphs with large clique sizes. We then evaluate the performance of all methods in
predicting clique numbers on the test set. As the test dataset is out-of-distribution, we observe per-
formance drops for all methods (Table 5). Nevertheless, MXNET consistently outperforms others.
Table 5: Performance in terms of mean squared error (MSE) between the predicted and true clique
numbers for two variants of PTC-MM-m dataset: (1) Default: which has been used in all experi-
ments, and (2) OOD: which consists of a specialized test set with all graphs containing |V | ≥ 80
and ω(G) ≥ 7. Numbers in green, blue indicate the best and second best performers respectively.

EGN SCAT GFNET SFE NSFE ST REINFORCE MXNET
PTC-MM-m (Default) 0.284 1.802 0.554 26.568 19.800 26.703 37.455 0.204
PTC-MM-m (OOD) 3.26 1.256 0.832 42.328 33.129 42.644 56.682 0.646

5 CONCLUSIONS
The proposed MCP method, MXNET, introduces an end-to-end differentiable neural approach for
predicting clique numbers of graphs. It can seamlessly integrate into existing deep learning frame-
works (for retrieval applications, e.g.), where clique numbers serve as critical latent signals. By
combining MXNET (MSS) and MXNET (SubMatch), we achieve a robust balance between high
prediction accuracy and interpretability. Future work could focus on enhancing interpretability, han-
dling dynamic graphs, and integrating domain knowledge through dense node/edge features within
relevance learning frameworks. This research also paves the way for exploring differentiable pre-
dictions of other combinatorial optimization challenges on graphs, extending applications in graph
analysis and beyond.
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reasoning for combinatorial optimisation. In Learning on Graphs Conference, pp. 28–1. PMLR,
2024.

Luana E. Gibbons, Donald W. Hearn, Panos M. Pardalos, and Motakuri V. Ramana. Continuous
characterizations of the maximum clique problem. Mathematics of Operations Research, 22(3):
754–768, 1997. ISSN 0364765X, 15265471. URL http://www.jstor.org/stable/
3690403.

Katayoon Goshvadi, Haoran Sun, Xingchao Liu, Azade Nova, Ruqi Zhang, Will Sussman Grath-
wohl, Dale Schuurmans, and Hanjun Dai. Discs: A benchmark for discrete sampling. In Advances
in Neural Information Processing Systems (NeurIPS), 2023.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL https://www.
gurobi.com.

Johan Hastad. Clique is hard to approximate within n/sup 1-/spl epsiv. In Proceedings of 37th
Conference on Foundations of Computer Science, pp. 627–636. IEEE, 1996.

Yizhang He, Kai Wang, Wenjie Zhang, Xuemin Lin, and Ying Zhang. Scaling up k-clique densest
subgraph detection. Proceedings of the ACM on Management of Data, 1(1):1–26, 2023.

Borja Ibarz, Vitaly Kurin, George Papamakarios, Kyriacos Nikiforou, Mehdi Bennani, Róbert
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A LIMITATIONS

While MXNET presents an end-to-end differentiable mechanism for robust prediction of clique num-
bers in graphs, several potential limitations should be considered.

1. The method’s reliance on node permutations and subgraph matching may lead to memory
or computational constraints when dealing with large or dense graphs. Although scaling
concerns are common among combinatorial and neural approaches, our method still war-
rants additional attention in this regard.

2. In various graph applications where cliques are important latent signals, graphs often come
with domain knowledge encoded as dense node or edge features. While our integration with
common GNN-based encoders provides a solution to incorporate such domain information,
disentangled modeling of these influences in relevance judgments may be needed.

3. While MXNET demonstrates remarkable capability in navigating the exponentially large
space of permutations, as seen in the experiments, there is still room for improvement,
especially compared to combinatorial methods or decoder-based pipelines. This requires
further investigation into improving model decisions, perhaps through better search tech-
niques leading to more interpretable certificates of clique presence.

4. This proposal highlights significant opportunities for developing fully differentiable and
backpropagable neural pipelines for solving combinatorial problems on graphs. While
existing neural architectures have successfully reduced amortized solution costs compared
to combinatorial approaches, these methods could not be seamlessly integrated into existing
neural network pipelines. While our proposal addresses clique number estimation tasks,
extension to other combinatorial challenges requires further research.

B BROADER IMPACT

Our proposed work on MXNET has significant broader impact across various domains of research
and applications.

1. In biological networks, cliques represent highly connected functional units such as protein
complexes and regulatory modules (Spirin & Mirny, 2003). Our neural clique number
prediction module can assist in studying these biological systems and their functions.

2. In social networks, cliques represent tightly interconnected communities. Our model can
provide insights related to community detection, influence propagation, maximization, and
studying other network dynamics.

3. In recommendation systems, cliques often represent closely connected sets of items and
users. Additionally, structural notions of pairwise similarity, such as the maximum com-
mon induced subgraph (MCIS), use clique number prediction as a subroutine. Accurate
prediction of clique numbers can enhance recommendation pipelines by identifying rele-
vant items and modeling user interest overlap.

4. Furthermore, the combination of MXNET (MSS) and MXNET (SubMatch) ensures not
only high prediction accuracy but also interpretability. This is crucial in applications where
understanding the reasoning behind predictions is essential for decision-making.

5. Since our proposed method MXNET primarily focuses on improving the accuracy and in-
terpretability of predicting clique numbers in graphs using neural networks, there are no
significant ethical concerns. The method does not involve human subjects or personal data,
and it is not directly applicable to negative societal impacts.
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C FURTHER DISCUSSION OF RELATED WORK

Combinatorial for maximum clique detection The maximum clique problem (MCP) is NP-
complete (Karp, 2010). It is notoriously hard to even approximate (Feige et al., 1991; Arora et al.,
1998). Strong motivation from applications have nevertheless driven the development of combinato-
rial and math programming methods to find large cliques in real-life scenarios. The Bron–Kerbosch
algorithm (Bron & Kerbosch, 1973) is among the well-known enumerative algorithms for MCP.
Other systems (Choudhary et al., 2015) are tailored for social network analysis in massive graphs.
Lu et al. (2017); Chang (2019) provide heuristics for exact maximum clique detection. He et al.

(2023) is for approximate k-clique detection with theoretical guarantee. One can adapt this tech-
nique to predict the clique number.

Neural models for maximum clique detection Neural maximum clique detection methods fall
into three main categories: supervised learning, unsupervised learning, and reinforcement learning.

— Supervised approaches: Recent advancements, such as Difusco (Sun & Yang, 2024), propose
a diffusion-based generative model trained using node-level supervision of ground truth cliques,
enabling non-autoregressive one-shot prediction of cliques. However, given the NP-Completeness
of the problem, obtaining large quantities of labeled data with fine-grained optimal node-labels is
impractical, which is essential for providing explicit guidance to training algorithms regarding clique
structures.

— Unsupervised approaches: Consequently, the research community has shifted towards unsuper-
vised (Karalias et al., 2022; Karalias & Loukas, 2020; Min et al., 2022) or reinforcement learn-
ing (Sanokowski et al., 2023; Zhang et al., 2024) approaches. Unsupervised methods learn a pa-
rameterized distribution over candidate solutions (Karalias & Loukas, 2020; Min et al., 2022), gen-
erating node-level heatmaps that indicate the likelihood of node participation in cliques. Yet, due
to the problem’s multimodal nature, such approaches resort to a greedy decoder with built-in clique
maximization heuristics for autoregressive clique generation, limiting scalability and rendering end-
to-end differentiable pipelines unfeasible. Our experiments reveal that the performance of such
approaches heavily relies on the non-differentiable greedy decoder, as its removal leads to consid-
erable performance degradation. Interestingly, these methods underscore the potency of decoding
heuristics, where synergies between random graph structure-based signals and the decoder yield
comparable or superior performance to neural mechanisms.

— Reinforcement learning approaches: In a concurrent line of research, reinforcement learning
models (Sanokowski et al., 2023; Zhang et al., 2024) frame maximum clique detection as a se-
quential decoding process, training a Markov Decision Process (MDP) with a final reward based
on detected maximum clique size. While such methods offer high accuracy and reduced amortized
solution generation times, the costly decoding process and sparse reward structure render them in-
compatible with certain applications. Additionally, our experiments indicate that substituting the
learned policy with graph statistic-based heuristics often yields comparable performance.

Neural Algorithmic Reasoning (NAR) In recent years, a body of work study the design of
neural network to mimic procedural algorithms (e.g., sorting, searching, fundamental graph al-
gorithms, etc), predominantly by leveraging the message passing module of graph neural net-
work (GNN) (Veličković & Blundell, 2021; Bevilacqua et al., 2023; Rodionov & Prokhorenkova,
2024; Georgiev et al., 2024; Xu & Veličković, 2024; Ibarz et al., 2022; Veličković et al., 2022;
Jürß et al., 2024; Bohde et al., 2024). Veličković & Blundell (2021) introduced this problem,
where they provided intermediate states of the underlying procedural algorithm into the underly-
ing GNN. Bevilacqua et al. (2023) apply causal regularization on top of the NAR framework. Ro-
dionov & Prokhorenkova (2024) tackles NAR with intermediate states of the underlying algo-
rithm. Veličković et al. (2022) performs benchmarking on a wide variety of popular algorithms from
CLRS textbook. Very recently, Bohde et al. (2024) designs NAR model which preserves Markov
property of algorithmic execution.

Subgraph counting based methods for clique detection Neural Subgraph Counting with
Wasserstein Estimator (Wang et al., 2022) NeurSC addresses the subgraph counting problem using
neural networks with GNN-based estimators that leverage both intra-graph and inter-graph neural
architectures, complemented by a Wasserstein discriminator. Li & Yu (2024) provide a combinato-
rial algorithm for subgraph counting. The methods of these papers can be used for clique number
prediction. Here, one can check if for each k = 1, 2, . . ., k-clique are subgraph of G or not. If a
clique of size k∗ is present but a clique of size k∗ + 1 is not present, then ω(G) = k∗
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D IMPLEMENTATION DETAILS

D.1 DETAILS OF OUR NETWORK ARCHITECTURE

Our approach consists of three key components: the graph neural network GNNθ, transformation
network Tϕ, and neural relaxations DPmsgψ,DPupdateψ , and DPreadoutψ . The graph neural
network GNNθ consists of a L = 5 layer graph neural network, that projects the initial node
features to a d = 10 dimension embedding space. For all datasets, we set xu(0) = [1] as the
initial node features. Following the methodology proposed in (Li et al., 2015; 2019), we com-
pute the updated node embeddings as follows using a Gated Recurrent Unit (GRU) as follows:
xℓ(u) = GRUθ

(
xℓ−1(u),

∑
v∈nbr(u) LINEARθ(xℓ−1(u),xℓ−1(v)

)
where LINEARθ is a single lin-

ear layer with both input dimension and output dimensions set to 10, and GRUθ is the GRU network
where the computed node embedding is utilized in the hidden state. After L = 5 such iterations, we
derive X = [xL(u)]u∈[N ] as the final node embeddings. The transformation network Tϕ consists
of a 2-layer feedforward network which consists of a linear layer followed by ReLU activation and
a linear layer. This maps the embeddings X from d = 10 dimensions to N dimensions, where
N represents the number of nodes in the padded graph. Following the Sinkhorn iterations with
τmax = 20, where the sinkhorn temperature is chosen from τ ∈ {0.01, 0.05}, the input matrix to the
neural MSS algorithm ∈ RN×N , and SWS⊤[i, j] ∈ Rd′ where d′ = 1. For the neural relaxation
of the MSS algorithm, DPmsgψ and DPupdateψ are 2-layer feedforward networks with ReLU ac-
tivation mapping from 2d′ to d′. Meanwhile, DPreadoutψ is a 2-layer feedforward network with
ReLU activation mapping from d′ to 1, which outputs the predicted clique number. For the design
of LComposite, we set δ = 1, and search for γ, λ in {0.25, 0.75}, and {0.1, 1} respectively. Hence, the
total search space for hyperparameters consists of 8 combinations ({τ}×{γ}×{λ}), and we select
the best model out of the 8 hyperparameter configurations.

D.2 DETAILS ABOUT OUR TRAINING

For the early stopping criteria based on the validation MSE, we use a patience parameter as 200
epochs. All models are trained using the Adam optimizer, with a learning rate of 10−3, and weight
decay 5× 10−4.

D.3 COMPLEXITY ANALYSIS OF MXNET

Considering |V (G)| = N , we compute the computational complexity of MXNET (MSS) and
MXNET (SubMatch) as follows:

• MXNET (MSS): Since X ∈ RN×d, the complexity of computing W = A ⊙ XX⊤ is
O(N2d). Further, the computation of S has complexity O(N2). Since S approximates a
permutation matrix, and the temperature λ is small, we have a constant order of elements
in each row and column leading to an O(N2) complexity for computing SWS⊤. Finally,
Algorithm 1 runs for N2 iteration, giving an overall complexity of O(N2d).

• MXNET (SubMatch): Since X ∈ RN×d, and S is sparse, computation of SX has com-
plexity O(Nd) and we can compute

∑
i,j [Qc − SX]+[i, j] in O(N) time. However, due

to extensive tensorization in our implementations, the effective time complexity is much
less. In Table 6, we compare the time (in ms) for a forward pass for different values of
N = |V |.

Table 6: Time (in ms) for a forward pass for MXNET (SubMatch) on graphs with increasing |V |
from 100 to 900.

|V | 100 200 300 400 500 600 700 800 900
Time (ms) 21.78 20.94 21.58 21.47 21.94 22.12 21.83 22.29 23.11

Further, note that since we store the adjacency matrices and the FF matrix from Algorithm 1 explic-
itly, our space complexity is O(N2).
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D.4 DETAILS ABOUT BASELINES

For all methods, we set the number of GNN propagation layers to L = 5, and the embedding
dimension to d = 10. We use the default implementations publicly available on GitHub for all
methods – (1) EGN 2, (2) SCT 3, (3) Difusco 4, (4) GFnet 5, (5) VAG-CO 6, and (6) SFE, NSFE, ST,
Reinforce 7.

D.5 HARDWARE AND LICENSE

We implement our models using Python 3.10 and PyTorch 2.3.0. The training of our models and the
baselines was performed on servers containing AMD EPYC 7642 48-Core Processors at 2.30GHz
CPUs, and Nvidia RTX A6000 GPUs. Running times of all methods are compared on a clean
machine with the above specifications.

E DETAILS ABOUT EXPERIMENTAL SETUP

E.1 DATASETS DESCRIPTION

We perform comprehensive experiments on eight datasets, including five real-world and three syn-
thetic datasets. For the real-world datasets, following (Sanokowski et al., 2023), we use (1) IMDB-
BINARY (IMDB), (2) ENZYMES (Enzymes) and modular product graphs from three real-world
datasets sourced from the TUDatasets repository (Morris et al., 2020): (3) PTC-MM, (4) AIDS
and (5) Mutagenicity. We use PTC-MM-m, AIDS-m and MUTAG-m to denote these datasets
consisting of modular products. The clique number in these graphs represents the size of the max-
imum common induced subgraph. Given graph G1, G2, the modular product graph H = G1 ⋄ G2

has V (H) = V (G1) × V (G2), and nodes (u1, u2), (v1, v2) ∈ V (H) have an edge if (i) u1 =
v1∧(u2, v2) ∈ E(G2), (ii) u2 = v2∧(u1, v1) ∈ E(G1), (iii) (u1, v1) ∈ E(G1)∧(u2, v2) ∈ E(G2),
or (iv) (u1, v1) /∈ E(G1) ∧ (u2, v2) /∈ ∧E(G2). It is known that ω(H) is the size of the maximum
common induced subgraph of G1 and G2. In addition to these five real datasets, we also gener-
ate three synthetic datasets— (6) DSJC (Johnson & Trick, 1996), consisting of k-partite random
graphs with at least one k-clique; (7) Brockington (Johnson & Trick, 1996), consisting of graphs
with cliques hidden within low-degree nodes; and (8) RB (RB) (Xu et al., 2007), representing ran-
dom hard constraint satisfaction problem instances that yield hard-to-find cliques. We generate one
dataset consisting of 50 nodes sized graphs from DSJC (DSJC) and Brockington (Brock) families.
We use the Gurobi solver (Gurobi Optimization, LLC, 2023) (with no time-limit) to generate the
gold ground truth clique numbers for distant supervision.

E.2 DATASETS STATISTICS

Table 7: Description of the datasets used for training and evaluation on clique number estimation.
Table reports number of graphs, average and maximum number of nodes (|V |), average and maxi-
mum number of edges |E|, average edge density (|E|/

(|V |
2

)
) and the average and maximum ground

truth clique numbers (ω).
Num Graphs Avg. |V | Max. |V | Avg. |E| Max. |E| Avg. |E|/

(|V |
2

)
Avg. ω Max. ω

IMDB (Morris et al., 2020) 537 23.382 136 106.317 1249 0.413 9.724 30
Brock (Johnson & Trick, 1996) 1000 50.000 50 857.029 1225 0.700 24.875 50
DSJC (Johnson & Trick, 1996) 1000 50.000 50 730.820 936 0.597 20.640 36
AIDS-m (Morris et al., 2020) 1000 96.039 110 2470.012 3528 0.523 7.678 10
PTC-MM-m (Morris et al., 2020) 2372 79.847 100 1518.133 2700 0.453 5.962 9
Enzymes (Morris et al., 2020) 595 32.482 125 62.168 149 0.160 3.797 5
MUTAG-m (Morris et al., 2020) 1000 258.435 300 22352.642 31654 0.660 11.203 15
RB (Xu et al., 2007) 1000 252.276 300 4069.608 8805 0.126 17.428 26

E.3 FURTHER NOTES ON HEAVY-LIFTING DECODERS

Our experiments suggest that some decoders in prior methods are very powerful, capable of returning
near-maximal cliques starting from even uninformative heatmaps from naive heuristics. For some
datasets, just sorting the nodes in decreasing order of degree or PageRank, and then including nodes

2https://github.com/Stalence/erdos_neu
3https://github.com/yimengmin/GeometricScatteringMaximalClique
4https://github.com/Edward-Sun/DIFUSCO
5https://github.com/zdhNarsil/GFlowNet-CombOpt
6https://github.com/ml-jku/VAG-CO
7https://github.com/Stalence/NeuralExt
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that form a clique with already-included nodes, performs quite well. In some cases, removing the
decoder and estimating the clique number directly from the heatmap resulted in drastic degradation
of accuracy. This is a testament to how much value the decoder adds to the overall method, com-
pared to the module that computes the heatmap. Some decoders involve backtracking search over
node selection decisions informed by the heatmap. Some of the decoders simply consist of repeated
sampling from the heatmap distribution and checking if the sample forms a clique — with such de-
coders, performance increases monotonically with increased investment of decoding time. In some
implementations, sampling more costs predictably more time. In others, clever tensorization masks
such costs effectively. This makes time-accuracy comparisons of non-standardized implementations
based on wall-clock time quite misleading.

E.4 FURTHER NOTES ON EVALUATION METRICS

We have proposed (R)MSE as a robust measure of estimation quality. In the combinatorial opti-
mization literature, it is common to measure the approximation ratio between the reported clique
size and the ground truth clique size, which is at most 1 (for methods that find actual cliques), aver-
aged over instances. Approximation ratio is not appropriate for methods that can both overestimate
and underestimate the ground truth clique size, because estimation errors across multiple instances
may cancel out, giving an excessively optimistic impression of a method.

E.5 DISCUSSION ON BASELINES

In the context of maximum clique detection, methods can be broadly classified into supervised
learning, unsupervised learning and reinforcement learning based approaches.

Supervised under extreme supervision: DIFUSCO (Sun & Yang, 2024) uses extreme supervision
by incorporating the exact maximum clique as input features and employing Cross Entropy Loss for
training. This method is paired with a non-differentiable greedy clique number decoder.

Unsupervised: Several methods estimate the clique number without supervision. Our experiments
include: (1) SFE and NSFE (Karalias et al., 2022), which are end-to-end differentiable methods
that extend set functions to continuous domains; (2) REINFORCE algorithm (Williams, 1992) and
(3) Straight-Through (ST) Estimator (Bengio et al., 2013), which enable backpropagation through
discrete functions; (4) EGN (Karalias & Loukas, 2020), which trains a GNN with a probabilistic
penalty loss function and retrieves the clique number using a probabilistic-sampling-based decoder;
and (4) Scattering GCN (SCT) (Min et al., 2022), which trains a scattering GNN with a probabilistic
penalty loss and uses a non-differentiable walk-based decoder. (5) NeurSC: Neural Subgraph Count-
ing with Wasserstein Estimator (NeurSC) NeurSC addresses the subgraph counting problem using
neural networks with GNN-based estimators that leverage both intra-graph and inter-graph neural
architectures, complemented by a Wasserstein discriminator. We adapted NeurSC as a baseline for
our clique number prediction framework by employing increasing k-cliques as query graphs and
determining the subgraph count for each. The clique number is then estimated as the largest value
of k for which a non-zero count is returned.

In its default implementation, NeurSC employs a neural network with a final ReLU layer to ensure
non-negative count predictions. After experimenting with various loss functions, we found that the
best performance is achieved by removing the final ReLU layer and training the model to output
positive scores for query cliques with ( k ≤ ω(G) ) the ground truth clique number and negative
scores for ( k > ω(G) ) the ground truth. This adaptation simplifies inference by identifying the
point in the sequence of query cliques where the predicted score transitions from positive to negative,
while also enabling effective training.

Reinforcement Learning: We include: (1) VAG-CO (Sanokowski et al., 2023), which frames
the clique number problem as a variational learning problem in an RL setting and uses a non-
differentiable decoder to sample the clique number. (2) GFlowNet (GFNET) (Zhang et al., 2024),
which designs an MDP with states forming a latent flow network and estimates the clique number
through a non-differentiable heuristic-based decoder.

Details about Decoder-reliant baselines We observe that methods with a non-differentiable com-
ponent in the neural pipeline rely on decoders to generate the clique number from the output of the
model. We describe each of the baselines below:

1. Heuristic: This generates heatmap values for a graph– which may be based upon graph statistics
such as node degree, clustering coefficient or pagerank . It first sorts these values in non-increasing
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order and iterates over the nodes, adding them to the solution set if (i) the total number of edges in
the clique increases, and (ii) the clique constraint is not violated. We use the greedy decoder with
the Difusco (Cont) and Difusco (Cat) baselines, as described next.

2. Difusco: Difusco generates multimodal distribution heatmaps for the underlying task, with two
variants: Difusco (Cont) for diffusion with continuous Gaussian noise, and Difusco (Cat) for diffu-
sion with categorical Bernoulli noise. Originally evaluated on the traveling salesman problem and
the maximum independent set (MIS), for which a greedy decoder is used, we implement a similar
greedy decoder for the clique number problem and evaluate DIFUSCO on this task.

3. EGN: EGN outputs the probability of each node belonging to the maximum clique. The proba-
bilistic decoder used by EGN sorts these probability values in non-increasing order and iteratively
adds each node to the solution set if it decreases a constrained probabilistic loss function, which
is zero when a clique is detected. The maximum over multiple solutions is reported as the clique
number.

4. SCT: Similar to EGN, SCAT outputs a probability value for each node indicating its likelihood of
being in the maximum clique. The SCAT decoder sorts these values in non-decreasing order and
iterates over the nodes. At each step, it starts a walk on the remaining nodes, adding a node to the
solution set if the clique property is satisfied. The maximum cardinality of all found solutions is
returned.

5. VAG-CO: VAG-CO approaches to solve the clique number problem by framing it in the space
of Ising Models, and trains it in an RL manner, and finally samples solutions from a learned
autoregressive parameterized distribution

6. GFnet: Since GFnet is a RL method, it maintains states and actions. At each iteration step, it
samples an action, which decides which node to include in the clique. If the node inclusion
violates the clique condition in the solution, it is removed from the solution set. Moreover, after
addition of a node, it does a degree-based pruning to remove any node which might not be feasible.
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F ADDITIONAL EXPERIMENTS

F.1 RESULTS ON COMPARISONS WITH STATE-OF-THE-ART BASELINES WITH STANDARD
ERROR

In the main paper, Table 1 compares MXNET and MXNET (MSS), against all the state-of-the art
baselines. We were unable to report standard error due to space constraints. In Table 8, we report
the results along with the standard error on all eight datasets. The standard error is computed over
the squared error over all of the graphs in each dataset.

Table 8: Comparison of MXNET against state-of-the-art baselines in terms of Mean Squared Er-
ror (MSE) with standard error (lower is better). The baselines include EGN (Karalias & Loukas,
2020), SCT (Min et al., 2022), Difusco (Cat) (Sun & Yang, 2024), Difusco (Cont) (Sun & Yang,
2024), GFnet (Zhang et al., 2024), VAG-CO (Sanokowski et al., 2023), SFE (Karalias et al., 2022),
NSFE (Karalias et al., 2022), ST (Bengio et al., 2013), and Reinforce (Williams, 1992). Baselines
are divided into two categories: (i) those with a decoder, and (ii) those without. Numbers in green,
blue, and yellow indicate the best, second-best, and third-best performers, respectively.

IMDB AIDS-m PTC-MM-m DSJC

D
ec

od
er





EGN (Karalias & Loukas, 2020) 0.102 ± 0.054 0.610 ± 0.060 0.284 ± 0.026 0.030 ± 0.021
SCT (Min et al., 2022) 4.102 ± 0.810 3.865 ± 0.278 1.802 ± 0.109 92.675 ± 8.394
Difusco (Cont) (Sun & Yang, 2024) 5.333 ± 2.174 4.665 ± 0.277 2.621 ± 0.139 59.820 ± 6.776
Difusco (Cat) (Sun & Yang, 2024) 1.361 ± 0.510 4.170 ± 0.289 2.244 ± 0.129 1.560 ± 0.473
GFnet (Zhang et al., 2024) 2.815 ± 0.779 0.740 ± 0.085 0.554 ± 0.045 4.820 ± 1.388
VAG-CO (Sanokowski et al., 2023) 5.037 ± 1.896 33.905 ± 0.800 19.962 ± 0.540 7.665 ± 0.529

N
on

-D
ec

od
er





SFE (Karalias et al., 2022) 4.833 ± 1.556 44.340 ± 0.853 26.568 ± 0.649 12.465 ± 1.803
NSFE (Karalias et al., 2022) 3.185 ± 1.394 36.005 ± 0.911 19.800 ± 0.583 5.255 ± 1.048
ST (Bengio et al., 2013) 8.972 ± 2.595 44.885 ± 0.882 26.703 ± 0.640 5.410 ± 0.991
Reinforce (Williams, 1992) 16.472 ± 4.341 59.170 ± 1.014 37.455 ± 0.797 13.280 ± 3.884
MXNET (ES:MSS) 0.056 ± 0.022 0.350 ± 0.042 0.204 ± 0.019 0.200 ± 0.041
MXNET (ES:Bi) 0.056 ± 0.022 0.350 ± 0.042 0.204 ± 0.019 0.240 ± 0.039

Brock Enzymes RB MUTAG-m

D
ec

od
er





EGN (Karalias & Loukas, 2020) 1.310 ± 0.453 0.109 ± 0.041 15.615 ± 1.738 1.010 ± 0.101
SCT (Min et al., 2022) 35.885 ± 5.868 0.891 ± 0.124 50.230 ± 3.489 11.105 ± 0.855
Difusco (Cont) (Sun & Yang, 2024) 39.040 ± 12.402 1.034 ± 0.133 63.490 ± 4.258 10.590 ± 0.610
Difusco (Cat) (Sun & Yang, 2024) 10.595 ± 2.584 0.950 ± 0.103 55.630 ± 4.118 10.965 ± 0.598
GFnet (Zhang et al., 2024) 8.975 ± 1.574 0.857 ± 0.093 34.200 ± 2.989 2.565 ± 0.208
VAG-CO (Sanokowski et al., 2023) 15.450 ± 2.186 4.244 ± 0.244 320.240 ± 7.867 132.700 ± 3.046

N
on

-D
ec

od
er





SFE (Karalias et al., 2022) 53.595 ± 6.124 1.630 ± 0.210 72.020 ± 3.002 110.905 ± 2.764
NSFE (Karalias et al., 2022) 47.920 ± 5.543 1.118 ± 0.170 78.890 ± 4.220 96.445 ± 2.636
ST (Bengio et al., 2013) 55.740 ± 6.363 5.454 ± 0.284 131.230 ± 6.584 111.020 ± 2.769
Reinforce (Williams, 1992) 403.095 ± 37.037 1.731 ± 0.142 229.435 ± 10.409 132.700 ± 3.054
MXNET (ES:MSS) 7.615 ± 0.929 0.235 ± 0.039 7.170 ± 0.670 0.890 ± 0.093
MXNET (ES:Bi) 9.260 ± 1.247 0.235 ± 0.039 9.820 ± 0.828 4.220 ± 0.379
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F.2 INVESTIGATING THE EFFECT OF BICRITERIA EARLY STOPPING

In Table 3, we compared the effect of training with the three different early stopping strategies,
leading to MXNET (ES:MSS), MXNET (ES:SubMatch) and MXNET (ES:Bi). Due to space
constraints, we could not report the standard error numbers in the main paper. Here, in Table 9 we
present results in terms of MSE and standard error for all eight datasets.

Table 9: Performance of MXNET (Composite) for different early stopping criteria, which are based
on LMSS, LSubMatch and LComposite respectively. For each of these early stopping criteria, we use
MXNET (MSS) and MXNET (SubMatch) (denoted as MSS and SubMatch respectively) components
to measure the performance in terms of MSE on the test set. Numbers in green indicate the best
performers.

IMDB AIDS-m PTC-MM-m DSJC
MSS SubMatch MSS SubMatch MSS SubMatch MSS SubMatch

MXNET(ES:MSS) 0.056 ± 0.022 0.815 ± 0.276 0.350 ± 0.042 1.135 ± 0.168 0.204 ± 0.019 0.507 ± 0.064 0.200 ± 0.041 2.225 ± 0.343
MXNET(ES:SubMatch) 0.093 ± 0.043 0.731 ± 0.201 0.365 ± 0.042 0.490 ± 0.053 0.341 ± 0.022 0.537 ± 0.040 0.445 ± 0.083 33.690 ± 5.534

MXNET(ES:Bi) 0.056 ± 0.022 0.815 ± 0.276 0.350 ± 0.042 1.135 ± 0.168 0.204 ± 0.019 0.507 ± 0.064 0.240 ± 0.039 46.355 ± 7.735
Brock Enzymes RB MUTAG-m

MSS SubMatch MSS SubMatch MSS MSS MSS SubMatch
MXNET(ES:MSS) 7.615 ± 0.929 1400.000 ± 61.512 0.235 ± 0.039 0.328 ± 0.060 7.170 ± 0.670 192.200 ± 10.757 0.890 ± 0.093 91.340 ± 2.484

MXNET(ES:SubMatch) 21.265 ± 2.035 227.910 ± 15.860 0.235 ± 0.039 0.353 ± 0.073 9.820 ± 0.828 11.145 ± 1.066 1.665 ± 0.125 4.130 ± 0.359
MXNET(ES:Bi) 9.260 ± 1.247 307.905 ± 25.292 0.235 ± 0.039 0.261 ± 0.050 9.820 ± 0.828 11.145 ± 1.066 4.220 ± 0.379 4.540 ± 0.546

F.3 ABLATION STUDY ON VARIANTS OF MXNET

In the main paper, Table 2 presents an ablation study where we compare the impact of the three pos-
sible variations of our models, viz.MXNET (MSS), MXNET (SubMatch), and MXNET (Composite)
in terms of MSE. Due to space constraints, we did not report the standard error numbers in the main.
We now do so in Table 10.
Table 10: Comparison of MXNET (MSS), MXNET (SubMatch), and MXNET variants in terms of
Mean Squared Error (MSE) on eight datasets. Numbers in green, blue indicate the best performers
and second best performers respectively.

IMDB AIDS-m PTC-MM-m DSJC
MXNET (MSS) 24.454 ± 7.273 0.360 ± 0.042 2.364 ± 0.174 0.190 ± 0.044
MXNET (SubMatch) 1.750 ± 0.779 1.135 ± 0.168 0.691 ± 0.049 97.440 ± 9.840
MXNET 0.056 ± 0.022 0.350 ± 0.042 0.204 ± 0.019 0.200 ± 0.041

Brock Enzymes RB MUTAG-m
MXNET (MSS) 7.685 ± 1.141 0.235 ± 0.039 10.500 ± 0.895 4.220 ± 0.379
MXNET (SubMatch) 221.640 ± 15.649 0.277 ± 0.058 12.140 ± 1.144 4.040 ± 0.333
MXNET 7.615 ± 0.929 0.235 ± 0.039 7.170 ± 0.670 0.890 ± 0.093
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F.4 ADAPTION OF BASELINES TO LEARNING UNDER DISTANT SUPERVISION

Here, we expand our exploration of supervised methods by adapting decoder-based baselines to our
direct clique prediction objective. Although there are no clear guidelines for customizing decoder
techniques specifically for our purposes, we outline our adaptation attempts for each baseline below.

Extension to Non-decoder Unsupervised baselines We have four baselines based on the Set
Function Extension (SFE) paradigm proposed by Karalias et al. (2022). These methods, while unsu-
pervised and devoid of iterative decoding mechanisms, leverage SFEs to design loss functions cen-
tered on discrete objectives arising from the maximum clique detection task, which involves binary
prediction of clique-affiliated nodes. To align this with our clique detection objective, we introduce
a supervised mean square error (MSE) loss component to their original loss function, treating the
predicted clique number as the summation of their predicted set indicator values. This combined loss
function aims to minimize both the original SFE-based objective and the discrepancy between the
predicted and ground truth clique-affiliated nodes. Consequently, we derive four supervised variants
of the corresponding baselines: SFE-SUP, NSFE-SUP, Reinforce-SUP, and ST-SUP.

EGN While the original implementation of EGN is unsupervised, we enhance it by providing a
supervision signal derived from the ground truth clique number. First, we obtain the node-level
heatmap output by EGN for a graph G, which indicates the probability pi of each node partic-
ipating in the maximum clique. Then, we add an additional MSE loss term to their objective:
(
∑
i pi−ω(G)))2. During inference, we use the node-level heatmaps to threshold to binary (clique-

participation) indicators and then sum them to obtain the predicted clique number as
∑
i 1[pi ≥ 0.5],

resulting in the supervised baseline EGN-SUP.

SCT It uses a distinct scattering GCN-based encoder that also outputs a node-level heatmap. This
heatmap is subsequently fed into their walk-based decoder. Following a similar approach as with
EGN, we were able to incorporate supervision by adding an MSE loss term based on the predicted
node participation probabilities in the maximum clique. This adaptation results in the supervised
baseline SCT-SUP.

Difusco They employ extreme supervision based on binary indicators of ground truth node-level
clique participation. Their model generates multi-modal distribution heatmaps over nodes using
either categorical (Difusco (Cat)) or Gaussian (Difusco (Cont)) noise, trained under cross-entropy
loss. Subsequently, they use a greedy decoder. For our purposes, we allow them to continue using
their extreme supervision pipeline but replace their decoder with a thresholding mechanism to obtain
the clique number as

∑
i 1[pi ≥ 0.5], where pi are the entries of the diffusion denoising output

mechanism, normalized to values between 0 and 1. This approach gives rise to the two baselines
Difusco (Cat)-SUP and Difusco (Cont)-SUP.

Table 11: Comparison of MXNET against all the baselines in terms of MSE. Here, the baselines
are modified to be trained under distance supervision. We name each baseline as “baseline-SUP”.
Numbers in green, blue, and yellow indicate the best, second-best, and third-best performers, re-
spectively.

IMDB AIDS-m PTC-MM-m DSJC Brock Enzymes RB MUTAG-m
EGN-SUP 13.5556 18.9350 10.0589 1.7950 140.4650 43.9916 59.5200 493.0050
SCT-SUP 265.2037 5638.2300 2536.1389 440.0850 338.0600 101.5714 25617.3203 27464.9141
Difusco (Cont)-SUP 110.3426 1372.7999 1091.7263 432.9300 313.1450 304.0672 22398.1895 4736.3198
Difusco (Cat)-SUP 16.2870 59.1700 20.8716 10.9500 60.5550 9.9496 142.5900 132.7000
SFE-SUP 4.2222 44.7800 26.5116 12.3950 55.0400 2.0924 76.9500 110.8500
NSFE-SUP 4.3981 34.5100 21.0653 9.6850 47.2650 1.5966 88.5000 89.0150
ST-SUP 5.6111 44.4900 26.6337 5.1850 56.5700 5.5126 147.4450 110.8950
Reinforce-SUP 12.1667 59.1700 37.5221 11.7800 366.5650 1.6639 202.2800 132.7000
MXNET 0.0556 0.3500 0.2042 0.2000 7.6150 0.2353 7.1700 0.8900

Table 11 compares all these baselines in terms of MSE across eight datasets. We observe that:

(1) MXNET still outperforms all the supervised baselines by a significant margin. This is not sur-
prising given that the baselines were not originally designed for the clique prediction task. Instead,
they are optimized to provide a heatmap-based node ordering, which reduces the amortized solution
generation time for their greedy decoder. However, we had no better alternative than attempting the
approach as described.

(2) EGN-SUP maintains its position as ”first among equals” by being the second best performer in
four out of eight datasets, while NSFE-SUP is second best in three out of eight, and SFE-SUP is
second best in the remaining one.
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(3) In general, Difusco (Cat)-SUP and Difusco (Cont)-SUP are unable to match the performance
of the other baselines, highlighting their significant dependence on the non-differentiable greedy
decoding component.

(4) Reinforce-SUP is the third best performer in the Enzymes dataset and shows reasonable perfor-
mance in the remaining datasets, although being behind EGN-SUP and NSFE-SUP.

F.5 ZOOMING IN ON THE RESULTS OF COMPETITORS CLOSEST TO MXNET

Among all baselines, SFE, NSFE, ST Reinforce and NeurSC do not use a decoder and they are
end-to-end differentiable. Hence, they are closest to our setup. Here we focus on them in isolation.

Table 12: Effect of distant supervision on unsupervised non-decoder baselines. Numbers in green
indicate best performer overall, while numbers in blue indicate the second-best performer overall,
and the better performer among the two variants per baseline.

IMDB AIDS-m PTC-MM-m DSJC Brock Enzymes RB MUTAG-m
SFE 4.833 44.340 26.568 12.465 53.595 1.630 72.020 110.905
SFE (Supervised) 4.222 44.780 26.512 12.395 55.040 2.092 76.950 110.850
NSFE 3.185 36.005 19.800 5.255 47.920 1.118 78.890 96.445
NSFE (Supervised) 4.398 34.510 21.065 9.6850 47.265 1.597 88.500 89.015
ST 8.972 44.885 26.703 5.410 55.740 5.454 131.230 111.020
ST (Supervised) 5.611 44.490 26.634 5.185 56.570 5.513 147.445 110.895
Reinforce 16.472 59.170 37.455 13.280 403.095 1.731 229.435 132.700
Reinforce (Supervised) 12.167 59.170 37.522 11.780 366.565 1.664 202.280 132.700
MXNET 0.0556 0.3500 0.2042 0.2000 7.6150 0.2353 7.1700 0.8900

We first look into the effect of supervision on end-to-end differentiable unsupervised baselines.Here,
NeurSC, being a supervised method, is excluded from consideration. In Table 12, we compare the
effect of additional supervision loss on the performance of these baselines: SFE vs SFE-SUP, NSFE
vs NSFE-SUP, Reinforce vs Reinforce-SUP, and ST vs ST-SUP. We observe that:

(1) For SFE, Reinforce, and ST, the supervision leads to a moderate improvement in final clique
prediction accuracy in approximately 60% of the cases.

(2) In NSFE, however, the supervision actually causes performance to drop in most cases. This
suggests that the set function extension pipeline as currently leveraged is not very conducive to
effective backpropagation-guided training through supervised loss terms.

In the main paper, Table 1 compares MXNET and MXNET (MSS) against all the state-of-the-art
baselines, along with the four unsupervised end-to-end differentiable baselines. Due to space con-
straints, we were unable to report standard error or timing analysis. In Table 13, we provide the
results along with the standard error, with the time in brackets alongside, across all eight datasets.
The standard error is computed over the squared error of all graphs in each dataset. Brackets indicate
the amortized running time per graph in seconds. We observe that:

(1) MXNET maintains a significant lead against all four baselines even when standard error is con-
sidered. Additionally, MXNET exhibits significantly lower standard error compared to all of the
baselines.

(2) In terms of amortized run time, all four methods are comparable to, and often 2-3x faster than
MXNET. This is due to their avoidance of any greedy decoding heuristic, resulting in extremely low
inference time latency. However, despite MXNET being slightly behind them in terms of run-time,
it still significantly outperforms them.

F.6 ABLATIONS ON BASELINES AND DECODERS

We thoroughly investigate each of the decoder-reliant baselines to identify the contributions of their
neural and decoder-based components to the clique detection and prediction task. The baselines,
namely EGN, SCT, Difusco, and GFnet, each employ their own decoder mechanisms, warranting
individual examination. Our ablation studies follow this theme:

Increasing the number of parallel samples allowed In contrast to Table 4, where each decoder-
based baseline could propose only one or four cliques, here we empower them to propose up to 8
cliques. We then take the maximum of these eight proposals as the predicted clique.

Non-neural heuristic version To isolate the impact of the decoder-based components, we design
non-neural versions of these baselines. Here, we generate three alternative non-neural heatmaps

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 13: Comparison of MXNET against state-of-the-art baselines, which do not use a decoder and
are end-to-end differentiable, in terms of Mean Squared Error (MSE) with standard error (lower is
better). Numbers highlighted in green, blue, and yellow indicate the best, second-best, and third-
best performers, respectively. Brackets denote the amortized running time per graph in seconds.
Best runtime (lowest inference latency) bolded for each dataset.

IMDB AIDS-m PTC-MM-m DSJC
SFE 4.833 ± 1.556 (0.013) 44.340 ± 0.853 (0.013) 26.568 ± 0.649 (0.009) 12.465 ± 1.803 (0.010)
NSFE 3.185 ± 1.394 (0.025) 36.005 ± 0.911 (0.046) 19.800 ± 0.583 (0.037) 5.255 ± 1.048 (0.034)
ST 8.972 ± 2.595 (0.013) 44.885 ± 0.882 (0.014) 26.703 ± 0.640 (0.009) 5.410 ± 0.991 (0.009)
Reinforce 16.472 ± 4.341 (0.012) 59.170 ± 1.014 (0.007) 37.455 ± 0.797 (0.005) 13.280 ± 3.884 (0.007)
MXNET 0.056 ± 0.022 (0.029) 0.350 ± 0.042 (0.021) 0.204 ± 0.019 (0.018) 0.200 ± 0.041 (0.014)

Brock Enzymes RB MUTAG-m
SFE 53.595 ± 6.124 (0.009) 1.630 ± 0.210 (0.013) 72.020 ± 3.002 (0.024) 110.905 ± 2.764 (0.024)
NSFE 47.920 ± 5.543 (0.026) 1.118 ± 0.170 (0.026) 78.890 ± 4.220 (0.066) 96.445 ± 2.636 (0.066)
ST 55.740 ± 6.363 (0.009) 5.454 ± 0.284 (0.013) 131.230 ± 6.584 (0.020) 111.020 ± 2.769 (0.020)
Reinforce 403.095 ± 37.037 (0.008) 1.731 ± 0.142 (0.011) 229.435 ± 10.409 (0.008) 132.700 ± 3.054 (0.010)
MXNET 7.615 ± 0.929 (0.014) 0.235 ± 0.039 (0.023) 7.170 ± 0.670 (0.119) 0.890 ± 0.093 (0.134)

based on elementary graph statistics: node degree, clustering coefficient, and pagerank. We provide
each of these three resultant heatmaps in turn to each of the baseline decoder variants and evaluate
their performance. We prefix the names of these non-neural baselines with Heuristic-•.

In the main paper, Table 1 compares MXNET and MXNET (MSS), against all the state-of-the art
baselines. We were unable to report standard error due to space constraints. In Table 8, we report
the results along with the standard error on all eight datasets. The standard error is computed over
the squared error over all of the graphs in each dataset.

F.6.1 ABLATION ON EGN

Table 14: Performance variation of EGN, across its non neural variants (Heuristic - •) and different
number of clique proposal samples used to select the clique. Results in terms of Mean Squared
Error (MSE) with standard error (lower is better), along with amortized inference time per graph (in
seconds). Numbers highlighted in green, blue, and yellow indicate the best, second-best, and third-
best performers, respectively. Brackets denote the amortized running time per graph in seconds.
Best runtime (lowest inference latency) bolded for each dataset.

IMDB AIDS-m PTC-MM-m DSJC
EGN 0.102 ± 0.054 (0.117) 0.610 ± 0.060 (0.190) 0.284 ± 0.026 (0.149) 0.030 ± 0.021 (0.152)
EGN (4x) 0.102 ± 0.054 (0.236) 0.340 ± 0.038 (0.533) 0.183 ± 0.019 (0.410) 0.005 ± 0.005 (0.525)
EGN (8x) 0.102 ± 0.054 (0.351) 0.280 ± 0.036 (1.007) 0.141 ± 0.018 (0.781) 0.000 ± 0.000 (0.718)
Heuristic-Degree-EGN 2.824 ± 1.389 (0.146) 3.920 ± 0.223 (0.221) 2.411 ± 0.121 (0.229) 0.820 ± 0.278 (0.149)
Heuristic-Degree-EGN (4x) 1.806 ± 1.159 (0.227) 3.100 ± 0.201 (0.668) 1.827 ± 0.101 (0.518) 0.400 ± 0.179 (0.424)
Heuristic-Degree-EGN (8x) 0.769 ± 0.750 (0.382) 2.500 ± 0.169 (1.338) 1.554 ± 0.088 (0.931) 0.215 ± 0.134 (0.944)
Heuristic-ClusterCoeff-EGN 3.750 ± 0.787 (0.079) 1.500 ± 0.139 (0.198) 0.861 ± 0.074 (0.159) 5.490 ± 1.680 (0.138)
Heuristic-ClusterCoeff-EGN (4x) 0.222 ± 0.069 (0.137) 0.965 ± 0.101 (0.662) 0.497 ± 0.048 (0.493) 0.395 ± 0.322 (0.355)
Heuristic-ClusterCoeff-EGN (8x) 0.065 ± 0.040 (0.271) 0.675 ± 0.079 (0.939) 0.366 ± 0.038 (0.698) 0.035 ± 0.022 (0.668)
Heuristic-PageRank-EGN 4.806 ± 1.094 (0.116) 3.515 ± 0.212 (0.295) 2.596 ± 0.140 (0.184) 0.960 ± 0.304 (0.167)
Heuristic-PageRank-EGN (4x) 2.139 ± 0.898 (0.257) 2.755 ± 0.190 (0.672) 2.080 ± 0.120 (0.491) 0.490 ± 0.204 (0.418)
Heuristic-PageRank-EGN (8x) 0.778 ± 0.750 (0.376) 2.100 ± 0.155 (1.224) 1.676 ± 0.096 (0.942) 0.265 ± 0.141 (0.735)
MXNET 0.056 ± 0.022 (0.029) 0.350 ± 0.042 (0.021) 0.204 ± 0.019 (0.018) 0.200 ± 0.041 (0.014)

Brock Enzymes RB MUTAG-m
EGN 1.310 ± 0.453 (0.151) 0.109 ± 0.041 (0.087) 15.615 ± 1.738 (0.201) 1.010 ± 0.101 (0.473)
EGN (4x) 0.315 ± 0.079 (0.462) 0.042 ± 0.018 (0.150) 12.635 ± 1.620 (0.529) 0.665 ± 0.085 (1.480)
EGN (8x) 0.175 ± 0.050 (0.977) 0.034 ± 0.017 (0.173) 9.645 ± 1.380 (1.003) 0.555 ± 0.080 (2.712)
Heuristic-Degree-EGN 7.580 ± 1.820 (0.157) 0.412 ± 0.054 (0.080) 47.700 ± 3.372 (0.309) 9.320 ± 0.412 (0.686)
Heuristic-Degree-EGN (4x) 6.405 ± 1.637 (0.435) 0.227 ± 0.039 (0.129) 40.070 ± 2.904 (0.837) 7.990 ± 0.374 (2.117)
Heuristic-Degree-EGN (8x) 4.375 ± 1.152 (0.792) 0.101 ± 0.028 (0.189) 33.135 ± 2.632 (1.186) 7.245 ± 0.363 (4.053)
Heuristic-ClusterCoeff-EGN 14.900 ± 6.377 (0.151) 0.143 ± 0.032 (0.069) 61.270 ± 2.933 (0.198) 4.475 ± 0.289 (1.110)
Heuristic-ClusterCoeff-EGN (4x) 2.315 ± 0.497 (0.380) 0.067 ± 0.023 (0.135) 57.705 ± 2.986 (0.281) 3.295 ± 0.246 (2.265)
Heuristic-ClusterCoeff-EGN (8x) 1.360 ± 0.394 (0.715) 0.034 ± 0.017 (0.196) 54.740 ± 3.004 (0.425) 2.875 ± 0.220 (3.647)
Heuristic-PageRank-EGN 7.030 ± 1.741 (0.163) 0.588 ± 0.074 (0.102) 48.200 ± 3.438 (0.256) 7.320 ± 0.367 (0.957)
Heuristic-PageRank-EGN (4x) 6.215 ± 1.646 (0.422) 0.202 ± 0.037 (0.127) 39.665 ± 2.853 (0.673) 6.670 ± 0.348 (2.307)
Heuristic-PageRank-EGN (8x) 3.725 ± 0.880 (1.031) 0.118 ± 0.030 (0.245) 33.525 ± 2.659 (1.213) 6.095 ± 0.331 (4.261)
MXNET 7.615 ± 0.929 (0.014) 0.235 ± 0.039 (0.023) 7.170 ± 0.670 (0.119) 0.890 ± 0.093 (0.134)

In Table 14, we present the results of our ablation study in terms of Mean Squared Error (MSE)
with standard error, along with per-graph amortized run-time in brackets. We evaluate three vari-
ants of the original baseline EGN with multiple samples: namely EGN, EGN (4x), and EGN (8x).
Additionally, we examine three non-neural heuristic baselines based on node degree, clustering co-
efficient, and PageRank, each of which is allowed one, four, or eight samples. In the last row, we
report the results for MXNET. We observe that:
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(1) EGN shows significant improvement as the number of samples increases, with a 2-3x reduction
in MSE in most cases. Notably, in Brock, there is an 8x improvement with the increase in samples.

(2) The performance improvement in EGN comes at the cost of increased inference time. For in-
stance, in MUTAG-m, EGN (8x) results in almost 20X higher latency compared to MXNET, while
providing only around a 50% improvement in MSE.

(3) The heuristic-driven baselines generally perform worse than their neural counterparts, highlight-
ing the relative effectiveness of neural learning procedures.

(4) Although the neural baselines show slightly worse average MSE than the neural variants with
decoders, they significantly outperform the decoder-free baselines. This underscores the significant
enhancement in prediction accuracy achieved by using decoders, despite their non-differentiable
nature.

F.6.2 ABLATION ON SCT

Table 15: Performance variation of SCT, across its non neural variants (Heuristic - •) and different
number of clique proposal samples used to select the clique. Results in terms of Mean Squared
Error (MSE) with standard error (lower is better), along with amortized inference time per graph (in
seconds). Numbers highlighted in green, blue, and yellow indicate the best, second-best, and third-
best performers, respectively. Brackets denote the amortized running time per graph in seconds.
Best runtime (lowest inference latency) bolded for each dataset.

IMDB AIDS-m PTC-MM-m DSJC
SCT 4.102 ± 0.810 (0.051) 3.865 ± 0.278 (0.037) 1.802 ± 0.109 (0.039) 92.675 ± 8.394 (0.039)
SCT (4x) 0.259 ± 0.077 (0.048) 1.685 ± 0.146 (0.081) 0.701 ± 0.058 (0.063) 37.415 ± 4.525 (0.052)
SCT (8x) 0.046 ± 0.020 (0.059) 1.070 ± 0.108 (0.095) 0.406 ± 0.037 (0.102) 18.280 ± 2.676 (0.076)
Heuristic-Degree-SCT 3.287 ± 1.410 (0.002) 3.885 ± 0.220 (0.008) 2.600 ± 0.125 (0.005) 1.025 ± 0.312 (0.003)
Heuristic-Degree-SCT (4x) 1.944 ± 1.342 (0.005) 2.600 ± 0.172 (0.023) 1.632 ± 0.088 (0.022) 0.515 ± 0.186 (0.013)
Heuristic-Degree-SCT (8x) 0.630 ± 0.177 (0.010) 1.935 ± 0.144 (0.055) 1.291 ± 0.075 (0.046) 0.365 ± 0.150 (0.027)
Heuristic-ClusterCoeff-SCT 10.556 ± 5.070 (0.002) 1.545 ± 0.140 (0.030) 0.922 ± 0.078 (0.016) 5.490 ± 1.680 (0.008)
Heuristic-ClusterCoeff-SCT (4x) 0.250 ± 0.100 (0.007) 0.885 ± 0.093 (0.045) 0.480 ± 0.049 (0.030) 0.425 ± 0.322 (0.019)
Heuristic-ClusterCoeff-SCT (8x) 0.019 ± 0.013 (0.012) 0.555 ± 0.072 (0.076) 0.364 ± 0.037 (0.046) 0.185 ± 0.088 (0.025)
Heuristic-PageRank-SCT 4.806 ± 1.094 (0.004) 3.390 ± 0.208 (0.012) 2.602 ± 0.141 (0.010) 0.960 ± 0.304 (0.006)
Heuristic-PageRank-SCT (4x) 1.028 ± 0.261 (0.008) 2.310 ± 0.168 (0.026) 1.785 ± 0.098 (0.028) 0.470 ± 0.181 (0.015)
Heuristic-PageRank-SCT (8x) 0.843 ± 0.197 (0.013) 1.845 ± 0.145 (0.058) 1.413 ± 0.075 (0.046) 0.315 ± 0.144 (0.027)
MXNET 0.056 ± 0.022 (0.029) 0.350 ± 0.042 (0.021) 0.204 ± 0.019 (0.018) 0.200 ± 0.041 (0.014)

Brock Enzymes RB MUTAG-m
SCT 35.885 ± 5.868 (0.037) 0.891 ± 0.124 (0.035) 50.230 ± 3.489 (0.064) 11.105 ± 0.855 (0.088)
SCT (4x) 12.070 ± 2.144 (0.052) 0.277 ± 0.051 (0.055) 44.040 ± 2.875 (0.156) 6.830 ± 0.558 (0.241)
SCT (8x) 8.015 ± 1.452 (0.074) 0.202 ± 0.047 (0.071) 39.615 ± 2.716 (0.278) 5.040 ± 0.450 (0.395)
Heuristic-Degree-SCT 6.700 ± 1.648 (0.004) 0.513 ± 0.068 (0.002) 48.100 ± 3.309 (0.017) 9.125 ± 0.392 (0.040)
Heuristic-Degree-SCT (4x) 5.280 ± 1.438 (0.013) 0.176 ± 0.035 (0.007) 37.820 ± 2.899 (0.089) 7.640 ± 0.357 (0.147)
Heuristic-Degree-SCT (8x) 3.145 ± 0.802 (0.020) 0.143 ± 0.032 (0.014) 31.565 ± 2.767 (0.139) 7.020 ± 0.334 (0.292)
Heuristic-ClusterCoeff-SCT 20.340 ± 8.738 (0.009) 0.134 ± 0.031 (0.003) 62.950 ± 2.998 (0.055) 4.930 ± 0.310 (0.544)
Heuristic-ClusterCoeff-SCT (4x) 2.200 ± 0.496 (0.017) 0.067 ± 0.023 (0.008) 56.120 ± 3.138 (0.120) 3.250 ± 0.244 (0.648)
Heuristic-ClusterCoeff-SCT (8x) 1.755 ± 0.431 (0.031) 0.017 ± 0.012 (0.018) 52.550 ± 3.140 (0.201) 2.750 ± 0.207 (0.793)
Heuristic-PageRank-SCT 7.030 ± 1.741 (0.006) 0.588 ± 0.074 (0.006) 48.200 ± 3.438 (0.032) 7.250 ± 0.370 (0.133)
Heuristic-PageRank-SCT (4x) 4.545 ± 1.129 (0.016) 0.151 ± 0.033 (0.010) 37.485 ± 2.755 (0.095) 6.535 ± 0.351 (0.239)
Heuristic-PageRank-SCT (8x) 3.190 ± 0.770 (0.028) 0.101 ± 0.028 (0.017) 31.315 ± 2.588 (0.166) 5.775 ± 0.317 (0.390)
MXNET 7.615 ± 0.929 (0.014) 0.235 ± 0.039 (0.023) 7.170 ± 0.670 (0.119) 0.890 ± 0.093 (0.134)

In Table 15, we present the results of our ablation study in terms of Mean Squared Error (MSE) with
standard error, along with per-graph amortized run-time in brackets. We evaluate three variants of
the original baseline SCT with multiple samples: namely SCT, SCT (4x), and SCT (8x). Addition-
ally, we examine three non-neural heuristic baselines based on node degree, clustering coefficient,
and PageRank, each of which is allowed one, four, or eight samples. In the last row, we report the
results for MXNET. We observe that:

(1) SCT demonstrates significant performance improvement with an increase in the number of sam-
ples. In most cases, performance improves approximately 2x when going from one to four samples,
and the improvement is even more pronounced with eight samples. Notably, in IMDB, the improve-
ment from one to eight samples is almost 10x.

(2) In general, the inference time latency for SCT is very low, being almost comparable to MXNET
for one sample.

(3) Generally, the performance of SCT is significantly worse than that of MXNET, except in cases
where eight samples are used. Even then, notably in larger graphs like RB and MUTAG-m, the
performance of SCT with eight samples is still around 5-10x lower than MXNET.
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(4) Remarkably, non-neural heuristics in the SCT decoder, particularly when allowed eight samples
along with the clustering coefficient heuristic, perform exceptionally well. This highlights the sub-
stantial power of the SCT decoder, which is almost comparable to its neural variant across most
datasets.

F.6.3 ABLATION ON DIFUSCO

In Table 16, we present the results of our ablation study in terms of Mean Squared Error (MSE)
with standard error, along with per-graph amortized run-time in brackets. We evaluate three variants
of the original baselines Difusco (Cat) and Difusco (Cont) with multiple samples: namely Difusco
(Cat), Difusco (Cont), Difusco (Cat) (4x), Difusco (Cont) (4x), Difusco (Cat) (8x) and Difusco (Cat)
(8x). Additionally, we examine three non-neural heuristic baselines based on node degree, clustering
coefficient, and PageRank. It’s important to note that a key aspect of Difusco is that the randomness
in the sampling procedure arises from the diffusion noise generation process. The greedy decoder
used by Difusco is deterministic and does not allow for multiple samples. Therefore, unlike other
baselines, every non-neural heuristic has only one set of observations based on a single sample. In
the last row, we report the results for MXNET.

Table 16: Performance variation of Difusco (Cat) and Difusco (Cont), across its non neural variants
(Heuristic - •) and different number of clique proposal samples used to select the clique. Results
in terms of Mean Squared Error (MSE) with standard error (lower is better), along with amortized
inference time per graph (in seconds). Numbers highlighted in green, blue, and yellow indicate the
best, second-best, and third-best performers, respectively. Brackets denote the amortized running
time per graph in seconds. Best runtime (lowest inference latency) bolded for each dataset.

IMDB AIDS-m PTC-MM-m DSJC
Difusco (Cat) 1.361 ± 0.510 (0.789) 4.170 ± 0.289 (0.705) 2.244 ± 0.129 (0.690) 1.560 ± 0.473 (0.686)
Difusco (Cat) (4x) 0.231 ± 0.153 (0.722) 1.865 ± 0.145 (0.837) 0.979 ± 0.066 (0.799) 0.175 ± 0.094 (0.771)
Difusco (Cat) (8x) 0.185 ± 0.149 (0.766) 1.345 ± 0.117 (1.006) 0.644 ± 0.047 (0.923) 0.045 ± 0.023 (0.862)
Difusco (Cont) 5.333 ± 2.174 (0.745) 4.665 ± 0.277 (0.657) 2.621 ± 0.139 (0.654) 59.820 ± 6.776 (0.646)
Difusco (Cont) (4x) 0.120 ± 0.055 (0.798) 1.830 ± 0.131 (0.782) 1.133 ± 0.072 (0.772) 8.220 ± 1.573 (0.713)
Difusco (Cont) (8x) 0.000 ± 0.000 (0.711) 1.345 ± 0.107 (0.942) 0.705 ± 0.049 (0.883) 2.605 ± 0.546 (0.822)
Heuristic-Degree-Difusco (Cat) 2.741 ± 1.388 (0.011) 4.200 ± 0.247 (0.056) 2.703 ± 0.132 (0.047) 0.840 ± 0.258 (0.022)
Heuristic-ClusterCoeff-Difusco (Cat) 12.370 ± 6.667 (0.012) 1.495 ± 0.136 (0.077) 0.931 ± 0.079 (0.045) 5.490 ± 1.680 (0.029)
Heuristic-PageRank-Difusco (Cat) 4.806 ± 1.094 (0.017) 3.455 ± 0.211 (0.061) 2.617 ± 0.141 (0.037) 0.960 ± 0.304 (0.024)
MXNET 0.056 ± 0.022 (0.029) 0.350 ± 0.042 (0.021) 0.204 ± 0.019 (0.018) 0.200 ± 0.041 (0.014)

Brock Enzymes RB MUTAG-m
Difusco (Cat) 10.595 ± 2.584 (0.796) 0.950 ± 0.103 (0.789) 55.630 ± 4.118 (0.906) 10.965 ± 0.598 (0.827)
Difusco (Cat) (4x) 4.820 ± 1.400 (0.746) 0.311 ± 0.059 (0.715) 28.595 ± 2.690 (1.090) 6.095 ± 0.321 (2.193)
Difusco (Cat) (8x) 2.625 ± 0.726 (0.846) 0.151 ± 0.033 (0.782) 22.070 ± 2.475 (1.626) 4.815 ± 0.269 (3.970)
Difusco (Cont) 39.040 ± 12.402 (0.759) 1.034 ± 0.133 (0.637) 63.490 ± 4.258 (0.792) 10.590 ± 0.610 (0.780)
Difusco (Cont) (4x) 10.185 ± 3.823 (0.719) 0.286 ± 0.051 (0.814) 36.450 ± 3.063 (1.030) 3.965 ± 0.301 (2.097)
Difusco (Cont) (8x) 7.355 ± 4.001 (0.954) 0.118 ± 0.030 (0.763) 14.555 ± 1.787 (1.603) 3.245 ± 0.275 (4.271)
Heuristic-Degree-Difusco (Cat) 6.855 ± 1.723 (0.021) 0.605 ± 0.089 (0.016) 48.555 ± 3.418 (0.099) 9.490 ± 0.440 (0.110)
Heuristic-ClusterCoeff-Difusco (Cat) 20.520 ± 8.762 (0.036) 0.143 ± 0.032 (0.017) 62.960 ± 3.001 (0.152) 4.805 ± 0.313 (0.615)
Heuristic-PageRank-Difusco (Cat) 7.030 ± 1.741 (0.025) 0.588 ± 0.074 (0.026) 48.200 ± 3.438 (0.148) 7.200 ± 0.363 (0.203)
MXNET 7.615 ± 0.929 (0.014) 0.235 ± 0.039 (0.023) 7.170 ± 0.670 (0.119) 0.890 ± 0.093 (0.134)

We observe that:

(1) Difusco (Cat) generally performs better than Difusco (Cont) across the board. This demonstrates
that Difusco (Cat)’s Bernoulli noise generation process is most suitable for the task of predicting
discrete labels indicating node participation in a maximum clique, confirming claims made by the
original authors (Sun & Yang, 2024).

(2) Like other decoder-based baselines, both Difusco (Cat) and Difusco (Cont) exhibit significant
performance improvements when more samples are allowed. In IMDB, Difusco (Cat) achieves an
MSE of zero without a substantial increase in inference time latency.

(3) The increase in inference time latency from one to four to eight samples is not as significant for
Difusco (Cat) and Difusco (Cont) compared to other decoder-based baselines. This is attributed to
the greedy deterministic nature of the decoder, which does not introduce large overhead relative to
the entire pipeline.

(4) However, the average inference time latency of both Difusco (Cat) and Difusco (Cont) is signif-
icantly worse than both other baselines and MXNET. This is due to the costly noise generation and
denoising steps undertaken by Difusco.

(5) Overall, MXNET outperforms both Difusco (Cat) and Difusco (Cont) in most datasets while
maintaining significantly lower inference latency. Notably, in MUTAG-m, one of the larger datasets,
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MXNET’s MSE performance is almost 4x better than Difusco’s best, while being almost 20X faster
at the same time.

(6) The non-neural heuristic baselines of Difusco can perform significantly better (e.g., in DSJC)
or significantly worse (e.g., in IMDB) than Difusco’s best. In general, the neural variants tend to
outperform the non-neural ones, providing confidence in the effectiveness of the neural approach.

F.6.4 ABLATION ON GFNET

In Table 17, we present the results of our ablation study in terms of Mean Squared Error (MSE)
with standard error, along with per-graph amortized run-time in brackets. We evaluate three variants
of the original baseline GFnet with multiple samples: namely GFnet, GFnet (4x), and GFnet (8x).
Additionally, we examine three non-neural heuristic baselines based on node degree, clustering
coefficient, and PageRank, each tested with one, four, or eight samples. GFnet is a reinforcement
learning-based method where actions are sampled from a learned policy, with samples drawn from
multinomial distributions over logits. For non-neural baselines, we replace the logits with graph
statistic-based heatmaps. In the last row, we report the results for MXNET.

Table 17: Performance variation of GFnet, across its non neural variants (Heuristic - •) and different
number of clique proposal samples used to select the clique. Results in terms of Mean Squared
Error (MSE) with standard error (lower is better), along with amortized inference time per graph (in
seconds). Numbers highlighted in green, blue, and yellow indicate the best, second-best, and third-
best performers, respectively. Brackets denote the amortized running time per graph in seconds.
Best runtime (lowest inference latency) bolded for each dataset.

IMDB AIDS-m PTC-MM-m DSJC
GFnet 2.815 ± 0.779 (0.032) 0.740 ± 0.085 (0.017) 0.554 ± 0.045 (0.011) 4.820 ± 1.388 (0.034)
GFnet (4x) 0.167 ± 0.066 (0.081) 0.210 ± 0.034 (0.054) 0.166 ± 0.017 (0.035) 0.175 ± 0.080 (0.109)
GFnet (8x) 0.028 ± 0.016 (0.155) 0.125 ± 0.023 (0.100) 0.067 ± 0.012 (0.068) 0.080 ± 0.050 (0.206)
Heuristic-Degree-GFnet 2.333 ± 1.351 (0.018) 3.865 ± 0.223 (0.035) 2.623 ± 0.130 (0.027) 1.170 ± 0.351 (0.032)
Heuristic-Degree-GFnet (4x) 0.213 ± 0.153 (0.053) 2.070 ± 0.141 (0.144) 1.539 ± 0.086 (0.095) 0.175 ± 0.072 (0.133)
Heuristic-Degree-GFnet (8x) 0.806 ± 0.750 (0.098) 1.660 ± 0.115 (0.281) 1.105 ± 0.069 (0.189) 0.175 ± 0.080 (0.243)
Heuristic-ClusterCoeff-GFnet 8.759 ± 4.564 (0.014) 4.690 ± 0.274 (0.059) 2.817 ± 0.163 (0.034) 134.200 ± 10.512 (0.034)
Heuristic-ClusterCoeff-GFnet (4x) 0.361 ± 0.133 (0.056) 1.865 ± 0.140 (0.234) 1.160 ± 0.074 (0.143) 29.815 ± 3.700 (0.111)
Heuristic-ClusterCoeff-GFnet (8x) 0.083 ± 0.042 (0.087) 1.280 ± 0.101 (0.456) 0.731 ± 0.050 (0.283) 11.290 ± 1.921 (0.241)
Heuristic-PageRank-GFnet 16.213 ± 6.751 (0.018) 4.710 ± 0.285 (0.040) 2.646 ± 0.136 (0.028) 144.875 ± 11.211 (0.028)
Heuristic-PageRank-GFnet (4x) 0.343 ± 0.133 (0.064) 1.970 ± 0.141 (0.159) 1.248 ± 0.080 (0.107) 38.695 ± 4.577 (0.103)
Heuristic-PageRank-GFnet (8x) 0.083 ± 0.042 (0.107) 1.300 ± 0.105 (0.312) 0.718 ± 0.053 (0.202) 11.165 ± 1.908 (0.193)
MXNET 0.056 ± 0.022 (0.029) 0.350 ± 0.042 (0.021) 0.204 ± 0.019 (0.018) 0.200 ± 0.041 (0.014)

Brock Enzymes RB MUTAG-m
GFnet 8.975 ± 1.574 (0.040) 0.857 ± 0.093 (0.016) 34.200 ± 2.989 (0.029) 2.565 ± 0.208 (0.070)
GFnet (4x) 3.625 ± 1.157 (0.148) 0.193 ± 0.036 (0.032) 21.675 ± 2.178 (0.103) 1.055 ± 0.100 (0.290)
GFnet (8x) 1.125 ± 0.328 (0.289) 0.050 ± 0.020 (0.059) 17.745 ± 2.060 (0.203) 0.610 ± 0.072 (0.578)
Heuristic-Degree-GFnet 9.545 ± 2.113 (0.036) 0.706 ± 0.083 (0.009) 49.065 ± 3.533 (0.068) 8.690 ± 0.382 (0.256)
Heuristic-Degree-GFnet (4x) 3.110 ± 0.822 (0.141) 0.227 ± 0.039 (0.027) 39.565 ± 2.963 (0.273) 6.580 ± 0.325 (1.012)
Heuristic-Degree-GFnet (8x) 2.985 ± 0.922 (0.282) 0.101 ± 0.028 (0.048) 37.150 ± 2.802 (0.503) 5.770 ± 0.285 (2.020)
Heuristic-ClusterCoeff-GFnet 85.215 ± 13.559 (0.045) 0.697 ± 0.088 (0.009) 83.235 ± 4.779 (0.104) 11.995 ± 0.577 (0.763)
Heuristic-ClusterCoeff-GFnet (4x) 16.080 ± 3.083 (0.150) 0.244 ± 0.049 (0.028) 43.050 ± 3.504 (0.392) 7.180 ± 0.379 (3.014)
Heuristic-ClusterCoeff-GFnet (8x) 4.720 ± 0.876 (0.305) 0.160 ± 0.045 (0.055) 31.055 ± 2.860 (0.811) 5.355 ± 0.282 (6.022)
Heuristic-PageRank-GFnet 94.455 ± 12.817 (0.036) 0.840 ± 0.098 (0.012) 80.715 ± 4.718 (0.073) 12.290 ± 0.604 (0.339)
Heuristic-PageRank-GFnet (4x) 15.455 ± 3.640 (0.134) 0.361 ± 0.079 (0.036) 47.680 ± 3.746 (0.285) 6.865 ± 0.385 (1.311)
Heuristic-PageRank-GFnet (8x) 6.110 ± 1.368 (0.272) 0.143 ± 0.032 (0.073) 29.160 ± 2.806 (0.549) 4.770 ± 0.262 (2.671)
MXNET 7.615 ± 0.929 (0.014) 0.235 ± 0.039 (0.023) 7.170 ± 0.670 (0.119) 0.890 ± 0.093 (0.134)

Key observations include:

(1) Like earlier decoder-based methods, GFnet shows significant performance boosts with more
samples. In most datasets, performance at least doubles, with the most notable improvement in
DSJC, showing almost a 10x increase.

(2) The performance improvement coincides with increased inference latency. With one sample,
GFnet is either comparable to or faster than MXNET. However, with eight samples, GFnet becomes
significantly slower than MXNET in most cases.

(3) The non-neural variants of GFnet show similar MSE performance vs. inference time latency
trade-offs. Among these, the node-degree heuristic performs best, sometimes ranking second over-
all.

(4) GFnet with eight samples often outperforms MXNET significantly. However, the inference time
for GFnet is much higher. This highlights the trade-off between prediction accuracy and latency,
with decoder-based models iteratively deciding node inclusion in a clique for clique number predic-
tion, compared to a direct prediction neural network like MXNET.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

F.7 FUNCTIONING OF THE SOFT CLIQUE COVERAGE LOSS

Functioning of soft clique coverage loss Here, we demonstrate how the soft clique coverage
loss ρθ,ϕ(c;G) successfully detects the clique number during inference, by looking into specific
examples from real data. Figure 3 shows the variation of ρθ,ϕ(c,G) vs. c for those graphs in AIDS-
m and DSJC datasets, which have clique numbers ω(G) = 8 and ω(G) = 20, respectively. Key
observations include: (1) Curriculum training (9) enables G to align with cliques Kc until some c∗,
leading to the ρθ,ϕ(c,G) = 0 for c < c∗, thanks to the first two terms in Eq. (9); then, it suddenly
fails to make any further alignment, leading to ρθ,ϕ(c,G) > 0 for c > c∗. (2) In a majority of
cases, the first change point c∗, with a jump greater than δ, is close to ω(G), leading to a reasonable
estimate of the clique number.
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Figure 3: ρθ,ϕ(c,G) vs. c.

F.8 VARIATION OF MEAN SQUARED ERROR ACROSS GRAPH AND CLIQUE SIZES

In Figure 4 we present the mean squared errors across varying graph sizes and clique sizes in the
MUTAG-m test set. Notably, we observe two key dataset characteristics: (1) there is minimal
correlation between graph sizes and true clique numbers, and (2) the ground-truth clique numbers
are rather small compared to graph sizes. We note that across all graph sizes, MXNET demonstrates
relatively low squared error (≤ 2). Although error increases for larger ground-truth clique numbers
(≥ 12) in some instances, overall it appears that MXNET can amply refrain from exploiting spurious
shortcuts.
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Figure 4: Variation of MSE values of MXNET across different ground truth clique sizes and graph
sizes on the MUTAG-m test set.
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F.9 JUSTIFICATION OF OUR MODELING CHOICES

(1) Benefits of relaxing binary adjacency matrix to continuous values: In the following, we show
the results of ablation study.

Table 18: Effects of relaxing binary adjacency matrix to continuous values
IMDB PTC-MM-m RB

MXNET 0.056 0.204 7.170
Binary A in MXNET 1.851 2.364 10.500

We observe that smooth surrogate works better. We believe that there are two reasons behind this:
(i) CLIQUE is a classical hard-to-approximate problem in the worst case, so the promise of neural
methods is to take advantage of distributions from which graphs are generated in an application.
A natural [1] way toward this goal is to train node representations xu that simultaneously predict
the graph A (via a generic GNN that aligns x⊤

u xv with A[u, v]), and make clique number predic-
tion feasible (through a suitable task-customized network) — in a graph containing a k-clique that
includes nodes u and v, they share the same k−1 node neighborhood, leading to a high x⊤

u xv value.
(ii) In MxNet (MSS), the goal is to find node permutation S that brings all 1s in SAS⊤ into a
dense submatrix. Achieving this requires moving the zeros to the right places. When S is relaxed
to continuous values, non-zeros spread throughout SAS⊤, making it difficult to detect the MSS.
Various thresholds or nonlinearities may reduce the problem, but also attenuate gradient signals
when x⊤

u xv is very high or very low. Thus, x⊤
u xv scores serve as auxiliary signals for clique

detection, but simply adding them to A contributes much noise in the estimate of ω. In contrast, the
form S(A⊙XX⊤)S⊤ is better at absorbing the signal from xu without succumbing to its noise.
(iii) As a further mechanistic discussion, suppose, instead of A ⊙ XX⊤, we use only the binary
adjacency matrix A. Then, for each parameter θ ∈ R, the gradient term will involve computation of
SAdS⊤

dθ + dS
dθAS⊤. Since S is computed using iterative normalization of rows and columns, start-

ing with an exponential term, dSdθ will contain terms such as S[u, u′]S[v, v′]. Thus, SAdS⊤

dθ contains
terms of the form S[u, u′]S[v, v′]S[w,w′], with each S[•, •] ∈ [0, 1]. This leads to attenuation of
gradient signals. If we keep A ⊙XX⊤, then the gradient will have S[u, u′]S[v, v′]

[
dXX⊤

dθ

]
u,u′

,

which will allow more significant gradient signals. Moreover, due to continuous adjacency en-
tries, S[u, u′]S[v, v′]S[w,w′] will now be replaced with S[u, u′]S[v, v′]S[w,w′]X[u′′, i]X[v′′, j],
where Xs can control the gradient signals better, leading to actual learning of clique number com-
putation for a distribution over graphs.
(2) Relaxing Algorithm 1 using message passing GNN: MSS(B) can accurately compute clique
only when B has (close to) binary values. However our computation of SWST involves general
values in (0, 1) from S and +ve/-ve from W , which makes the entries of B[i, j] to be +ve/-ve real
numbers. Further, multiplication by B[i, j] in line 7 in Algorithm 1 compounds this issue. To reduce
these deleterious effects of fractional numbers on clique detection, several thresholding/clipping
functions, such as Sigmoid, Tanh, ReLU, and ReLU6, may be applied, achieving varying degrees of
success (we tried these). However, the best results were obtained by our final GNN-inspired solution,
which could implement some form of local adaptive soft thresholing, as the message wavefront
progressed. Note that this GNN is extremely lightweight, consisting of only 20 parameters.
Below, we compare the results of the best non-GNN thresholding variant (ReLU1 =
min(max(0, x), 1)) against the results of MSS with the GNN-based Algorithm 1 implementation
variant across three representative datasets of varying sizes: Enzymes ( 30 nodes), PTC-MM ( 80
nodes), and RB ( 250 nodes) on average.

Table 19: Ablation of message passing GNN for Algorithm 1
IMDB PTC-MM-m RB

MXNET 0.056 0.204 7.170
No GNN in Algorithm 1 0.935 0.386 7.626

We observe that using a GNN based implementation for Algorithm 1 affords a performance im-
provement across all datasets.
(3) Relaxing clique coverage loss in MXNET: minP [Kc − PAP⊤]+ is a quadratic assignment
problem (QAP), which is a hard problem to solve. Moreover, the binary values of A and Kc
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attenuate the gradient signals as described in the last para of item (1) above. We overcome the above
challenges by replacing minP [Kc−PAP⊤]+ with [Qc−SX]+. Instead of solving QAP, it solves
a linear assignment problem, which is more tractable; and allows substantial gradient signals.

Table 20: Effect of relaxing coverage loss in MXNET (SubMatch)
IMDB PTC-MM-m RB

MXNET 0.056 0.204 7.170
Hard Clique Loss 0.648 0.425 9.675

We present our results as follows, which shows smooth surrogate performs better.

F.10 PERFORMANCE ON LARGE GRAPHS

There are two reasons why our primary focus was not on large graphs in the initial version. However,
we have now stress-tested our method with additional experiments, as described later.

(1) Our goal is to design an *end-to-end differentiable model* — which is guided by the needs
of practical applications like estimation of size of maximum induced common subgraph for graph
simialrity. These applications typically involves fewer than 200 nodes (but possibly very many
graphs).

Still, some of our datasets are much larger than the datasets used by the baselines. Specifically, our
method uses graphs with upto 33K edges (Mutag-m), which is larger than all other datasets used in
any end-to-end differentiable neural network based method. Moreover, we use the RB dataset, which
is known to be notoriously hard for clique detection. Since clique number computation stands out
as one of the hardest NP-complete problems (Hastad, 1996; Zuckerman, 2006), designing neural
methods for even such moderate sized graphs is already quite challenging. It is unsurprising that
neural methods have all limited themselves to relatively small graphs.

(2) Like any other ML task, neural clique detectors need *multiple* graphs for training and one
entire graph represents one instance of data. Data sets with a single large graph are more common
than data sets containing multiple large graphs with known clique numbers, which prevents a neural
method to test its performance on large graphs. Nevertheless, we have the following proposal to
predict clique number for a large graph, from which all neural models can benefit.

We decompose a large graph G into overlapping subgraphs G1, .., GN each with moderate sizes.
Then, the clique number of G is estimated as maxi ω(Gi). This decomposition is helpful because
(1) ground truth clique number generation is much easier in smaller graphs and (2) a neural clique
detector requires multiple (graph, clique number) pairs for training. The risk of missing a clique
straddling multiple subgraphs can be reduced via various degree based or K-core decomposition
based heuristics.

Here, we worked with Amazon and email-Enron datasets. Amazon has 334,863 nodes and 925,872
edges. email-Enron has 36,692 nodes and 183,831 edges. The table below shows the true and
predicted clique numbers.

Table 21: Results on large dataset
Dataset True clique number Predicted clique number
Amazon 7 6
Email-enron 20 18

We note that in each dataset, (1) MxNet was trained on a small set of subgraphs, sampled from
the available single large graph, with corresponding ground truth clique numbers found using the
Gurobi solver. During inference, MxNet effectively generalized to a much larger set of subgraphs
extracted using degree-based heuristics, to ensure more comprehensive coverage of the large graph;
(2) MxNet correctly identifies the subgraph containing the largest clique of the whole graph, i.e.,
argmaxi ω(Gi) = argmaxi ω̂(Gi); (3) MxNet correctly predicts most of the member nodes of the
maximum clique within the graph; (4) MxNet’s predicted clique number for the large graph closely
approximates the true clique number — much better than the predictions made by baselines, even
with smaller graphs.

F.11 EFFECT OF SINKHORN TEMPERATURE

We found that the performance (MSE) is robust to the temperature of GS network as shown by the
following result for PTC-MM.
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Table 22: Variation of MSE with τ for PTC-MM-m
τ → 0.001 0.01 0.025 0.05 0.1 0.25 1
MSE → 0.237 0.238 0.200 0.204 0.293 0.276 1.796

If the number of nodes |V | is large, the entries of doubly stochastic matrix S become more diffused.
For the same temperature, the highest value in each row/column of S becomes smaller as we in-
crease |V |. Hence, we can decrease the temperature to ensure that S has sufficiently low entropy
to be interpretable. Further, we can use reparameterization of weight matrices (Zhai et al., 2023) in
Sinkhorn network using spectral norm based scaling to facililate training in large graph training.

F.12 ROBUSTNESS WITH RESPECT TO λ

Our experiments show that the proposed method is robust to lambda, as shown below.

Table 23: Variation of MSE with λ for PTC-MM-m
λ→ 0.1 0.25 0.5 1 2 5 10
MSE → 2.364 0.317 0.257 0.204 0.176 0.442 0.446

F.13 FULL CURRICULUM TERMS VS. CURRICULUM LEARNING WITH FEWER TERMS

We performed experiments where in Eq. (9), we limited the first inner summation to only c = ω(G)
and the second summation to only c = ω(G)− 1. The following results show that summation from
2 to ω(G) shows better result.

Table 24: Full curriculum terms vs. curriculum learning with fewer terms
IMDB PTC-MM-m RB

MXNET 0.056 0.204 7.170
MXNET (Few-Curriculum) 0.481 1.339 10.500

This is because, summation from 2 to ω(G) is providing more explicit guidance to the learner that,
K2, ..Kc are subgraphs of G. Otherwise, it is unable to reason that if Kc is a subgraph of G then
also K2, .., are also subgraphs of G.

F.14 COMPARISON WITH COMBINATORIAL METHODS

Here, we discuss several combinatorial methods used as baselines and compare their performance
against MXNET.

Fast Local Subgraph Counting (SCOPE) SCOPE is a tree-decomposition-based method for local
subgraph counting. It estimates the occurrence of a given query graph in the local neighborhood of
each node within the corpus graph and provides a count for every corpus graph node. The method
utilizes tree decomposition and symmetry-breaking rules to minimize redundancy and incorporates
a novel multi-join algorithm for efficient computation. To predict the clique number, we supply
SCOPE with a set of query clique graphs and retrieve the corresponding local subgraph counts. For
every query clique smaller than the clique number, at least one node in the corpus graph contains
the clique pattern in its local neighborhood. We determine clique presence by taking the maximum
of the individual neighborhood counts, and the largest query clique with a non-zero count is deemed
the predicted clique number.

It is important to note that SCOPE addresses a significantly more challenging task: estimating the
count of patterns in each local neighborhood. As such, it naturally requires substantially more
computational time compared to MxNet and earlier global subgraph counting methods. For each
query–corpus graph pair provided to SCOPE, we set a timeout from the range [0.1, 1, 10, 100]
seconds. If the timeout elapses without returning a result, we assume that no cliques were detected,
and the clique number is determined accordingly.

We observe that MxNet significantly outperforms SCOPE across all datasets when SCOPE is lim-
ited to a per-graph time of 0.1 seconds, which is comparable to the highest inference time taken
by MxNet. Furthermore, SCOPE’s MSE consistently improves as it is afforded more computa-
tional time per graph, achieving perfect predictions on datasets such as Enzymes, AIDS-m, and
PTC-MM-m. However, these improvements come at the cost of a substantial increase in inference
time—exceeding 50x compared to MxNet.
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Table 25: Comparison of SCOPE and MxNet across datasets (in terms of MSE) and timeout settings
(in seconds). Numbers highlighted in green, and blue,indicate the best and second-best performers,
respectively.

Timeout (sec) IMDB AIDS-m PTC-MM-m DSJC Brock Enzymes RB MUTAG-m
0.1 42.620 6.140 1.486 274.735 595.545 0.613 185.525 68.565
1 25.000 0.005 0.000 226.165 469.120 0.000 84.975 50.255
10 23.148 0.005 0.000 217.180 430.180 0.000 81.160 32.175
100 20.093 0.000 0.000 192.615 398.050 0.000 68.040 12.515

MxNet 0.056
(0.029 sec)

0.350
(0.021 sec)

0.204
(0.018 sec)

0.200
(0.014 sec)

7.615
(0.014 sec)

0.235
(0.023 sec)

7.170
(0.119 sec)

0.890
(0.134 sec)

Additionally, on several datasets, including IMDB-m, DSJC, Brock, RB, and MUTAG-m, SCOPE is
unable to outperform MxNet even when given up to 100 seconds per graph, while MxNet achieves
superior accuracy at a fraction of the computational cost. This behavior is expected, as SCOPE
tackles a more challenging task of local subgraph counting, a level of granularity that is unnecessary
for the specific task of clique number prediction. These results highlight MxNet’s efficiency and
suitability for practical applications requiring fast and accurate inference.

Scaling Up k-Clique Densest Subgraph Detection (SCTL) The SCTL paper addresses the k-
clique densest subgraph problem. To use SCTL for clique number detection, we initially employed
the same protocol as MxNet, SCOPE, and NeurSC — incrementally increasing k from 2 to ω(G).
However, we found that when k is smaller than ω(G), the increase in the number of k-cliques leads
to prohibitively long runtimes — often hundreds of seconds per graph for a single k, which is far
from the millisecond-level inference times achieved by MxNet and other baselines.

To optimize SCTL’s runtime, we reversed the search direction: starting with the maximum possible
clique size (equal to the graph size), we detect the absence of a clique (which is much faster) and
decrease k until a clique is detected. This adjustment significantly reduces computational overhead.
However, SCTL is still 5x (PTC-MM-m, Brock) to 20x (AIDS-m, MUTAG-m) slower than MxNet.

Comparison with upper and lower bounds on ω(G) We present results on different bound based
methods as follows. We consider the best of the lower bounds and upper bounds as presented by the
paper in terms of MSE, and present them here:

Table 26: Comparison with upper and lower bounds on ω(G)
Enzymes PTC-MM-m RB

MXNET 0.235 0.204 7.170
Best Upper-Bound (UB) (Budinich, 2003, Eq. 1,2,3,4) 1.756 637.70 532.53
Best Lower-Bound (LB) (Budinich, 2003, Eq. 5,6,7) 3.429 15.101 253.800

In particular, the bounds are:

1. (UB) Eq. 1: ω(G) ≤ 3+
√

9−8(|V |−|E|)
2

2. Let ρ(G) denote the spectral radius of the adjacency matrix A of G. Then,
(UB) Eq. 2: ω(G) ≤ ρ(G) + 1

3. Let N−1 = |{λi : λi ≤ −1}| where {λi}|V |
i=1 denote the eigenvalues of A. Then ,

(UB) Eq. 3: ω(G) ≤ N−1 + 1
4. Let Ā denote the adjacency matrix of the complementary graph of G. Then,

(UB) Eq. 4: ω(G) ≤ |V | − rank(Ā)
2

5. (LB) Eq. 5: ω(G) ≥ 1

1− 2|E|
|V |2

6. Let λP denote the Perron eigenvalue of A, and vP denote the corresponding eigenvector.
Then, (LB) Eq. 6: ω(G) ≥ λP

(1⊤vP )2−λP
+ 1

7. Let λj denote an eigenvalue of A, and vj denote the corresponding eigenvector. Define

gj(α) =
α2λj+(1−α2)λP

α(1⊤vj)+
√
1−α2(1⊤vP )

.

For each j, gj(α) is defined on


 max
i:vji>0

−vPi√
v2
Pi + v2

ji

, min
i:vji<0

vPi√
v2
Pi + v2

ji


. Then, for

graphs which are not regular complete multipartite, (LB) Eq. 7: ω(G) ≥ 1
1−maxj,α gj(α)
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