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Abstract

Large language models are often ranked according to their level of alignment with
human preferences—a model is better than other models if its outputs are more fre-
quently preferred by humans. One of the popular ways to elicit human preferences
utilizes pairwise comparisons between the outputs provided by different models
to the same inputs. However, since gathering pairwise comparisons by humans is
costly and time-consuming, it has become a common practice to gather pairwise
comparisons by a strong large language model—a model strongly aligned with
human preferences. Surprisingly, practitioners cannot currently measure the un-
certainty that any mismatch between human and model preferences may introduce
in the constructed rankings. In this work, we develop a statistical framework to
bridge this gap. Given a (small) set of pairwise comparisons by humans and a large
set of pairwise comparisons by a model, our framework provides a rank-set—a set
of possible ranking positions—for each of the models under comparison. More-
over, it guarantees that, with a probability greater than or equal to a user-specified
value, the rank-sets cover the true ranking consistent with the distribution of hu-
man pairwise preferences asymptotically. Using pairwise comparisons made by
humans in the LMSYS Chatbot Arena platform and pairwise comparisons made
by three strong large language models, we empirically demonstrate the effectivity
of our framework and show that the rank-sets constructed using only pairwise
comparisons by the strong large language models are often inconsistent with (the
distribution of) human pairwise preferences.

1 Introduction

During the last years, large language models (LLMs) have shown a remarkable ability to generate
and understand general-purpose language [1]. As a result, there has been an increasing excitement in
their potential to help humans solve a variety of open-ended, complex tasks across many application
domains such as coding [2], healthcare [3] and scientific discovery [4], to name a few. However,
evaluating and comparing the performance of different LLMs has become very challenging [5]. The
main reason is that, in contrast to traditional machine learning models, LLMs can solve a large
number of different tasks and, in many of these tasks, there is not a unique, structured solution. As a
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consequence, there has been a paradigm shift towards evaluating their performance according to their
level of alignment with human preferences—a model is better than other models if its outputs are
more frequently preferred by humans [6–10].

One of the most popular paradigms to rank a set of LLMs according to their level of alignment
with human preferences utilizes pairwise comparisons [10–17]. Under this paradigm, each pairwise
comparison comprises the outputs of two different models picked uniformly at random to an input
sampled from a given distribution of inputs. Moreover, the pairwise comparisons are used to rank the
models with a variety of methods such as the Elo rating [18–22], the Bradley-Terry model [10, 17, 23]
or the win-rate [12, 17, 23]. While it is widely agreed that, given a sufficiently large set of pairwise
comparisons, higher (lower) ranking under this paradigm corresponds to better (worse) human
alignment, there have also been increasing concerns that this paradigm is too costly and time-
consuming to be practical, especially given the pace at which models are updated and new models
are developed.

To lower the cost and increase the efficiency of ranking from pairwise comparisons, it has become a
common practice to ask a strong LLM—a model known to strongly align with human preferences—to
perform pairwise comparisons [24–33]. The rationale is that, if a model strongly aligns with human
preferences, then, the distributions of pairwise comparisons by the model and by the human should
in principle match [24, 27, 34]. Worryingly, there are multiple lines of evidence, including our
experimental findings in Figure 3, showing that the rankings constructed using pairwise comparisons
made by a strong LLM are sometimes different to those constructed using pairwise comparisons by
humans [12, 14–16, 19, 35, 36], questioning the rationale above. In this work, we introduce a statisti-
cal framework to measure the uncertainty in the rankings constructed using pairwise comparisons
made by a model, which may be introduced by a mismatch between human and model preferences or
by the fact that we use a finite number of pairwise comparisons.

Our contributions. Our framework measures uncertainty using rank-sets—sets of possible ranking
positions that each model can take. If the rank-set of a model is large (small), it means that there is high
(low) uncertainty in the ranking position of the model. To construct the rank-sets, our framework first
leverages a (small) set of pairwise comparisons by humans and a large set of pairwise comparisons
by a strong LLM to create a confidence ellipsoid. By using prediction-powered inference [37–39],
this confidence ellipsoid is guaranteed to contain the vector of (true) probabilities that each model is
preferred over others by humans—the win-rates—with a user-specified coverage probability 1− α.
Then, it uses the distance between this ellipsoid and the hyperplanes under which pairs of models
have the same probability values of being preferred over others to efficiently construct the rank-sets.
Importantly, we can show that, with probability greater than or equal to 1 − α, the constructed
rank-sets are guaranteed to cover the ranking consistent with the (true) probability that each model
is preferred over others by humans asymptotically. Moreover, our framework does not make any
assumptions on the distribution of human preferences nor about the degree of alignment between
pairwise preferences of humans and the strong LLM. Experiments on pairwise comparisons made
by humans in the LMSYS Chatbot Arena platform [28] and pairwise comparisons made by three
strong LLMs, namely GPT 3.5, Claude 3 and GPT 4, empirically demonstrate that the rank-sets
constructed using our framework are more likely to cover the true ranking consistent with (the
distribution of) human pairwise preferences than the rank-sets constructed using only pairwise
comparisons made by the strong LLMs. An open-source implementation of our methodology as
well as the data on pairwise preferences of strong LLMs used in our experiments are available at
https://github.com/Networks-Learning/prediction-powered-ranking.

Further related work. Our work builds upon recent work on prediction-powered inference, ranking
under uncertainty, and ranking of LLMs.

Prediction-powered inference [37–39] is a recently introduced statistical framework to obtain valid
p-values and confidence intervals about a population-level quantity such as the mean outcome or
a regression coefficient using a small labeled dataset and a large unlabeled dataset, whose labels
are imputed using a black-box machine learning model. However, our work is the first to use
prediction-powered inference (as a subroutine) to construct rank-sets with coverage guarantees. In
this context, it is worth acknowledging that a very recent work by Saad-Falcon et al. [40] has used
prediction-powered inference to construct (single) rankings, rather than rank-sets. However, their
rankings do not enjoy coverage guarantees with respect to the true ranking consistent with (the
distribution of) the human preferences. Moreover, an independent, concurrent work by Boyeau
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et al. [23] has also used prediction-powered inference to construct (single) rankings based on the
estimated coefficients of a Bradley-Terry model. However, the estimated coefficients come with large,
overlapping confidence intervals, which would have led to uninformative rank-sets, had the authors
used them to construct rank-sets.

The vast majority of the literature on ranking under uncertainty has focused on confidence intervals
for individual ranking positions [41–47]. Only recently, a paucity of work has focused on joint
measures of uncertainty for rankings [48–51]. Similarly as in our work, this line of work also seeks
to construct rank-sets with coverage guarantees. However, in contrast to our work, it estimates the
quality metric (in our work, the probability that an LLM is preferred over others) and the confidence
intervals separately for each of the items (in our work, LLMs) using independent samples. As a
consequence, it needs to perform multiple comparison correction to create the rank-sets.

In recent years, there has also been a flurry of work on ranking LLMs using benchmark datasets with
manually hand-crafted inputs and ground-truth outputs [52–58]. However, it has become increasingly
clear that oftentimes rankings derived from benchmark datasets do not correlate well with rankings
derived from human preferences—an improved ranking position in the former does not lead to an
improved ranking position in the latter [12–14, 17, 26]. Within the literature on ranking LLMs from
pairwise comparisons, most studies use the Elo rating system [18–22], originally introduced for chess
tournaments [59]. However, Elo-based rankings are sensitive to the order of pairwise comparisons,
as newer comparisons have more weight than older ones, which leads to unstable rankings [15].
To address this limitation, several studies have instead used the Bradley-Terry model [10, 17, 23],
which weighs pairwise comparisons equally regardless of their order. Nevertheless, both the Elo
rating system and the Bradley-Terry model have faced criticism, as pairwise comparisons often fail to
satisfy the fundamental axiom of transitivity, upon which both approaches rely [15, 60], Recently,
several studies have used the win-rate [12, 17, 23], which weighs comparisons equally regardless of
their order and does not require the transitivity assumption, but requires humans to make pairwise
comparisons between every pair of models. In our work, we build upon the win-rate and lift the
above requirement by using pairwise comparisons made by a strong LLM.

2 LLM Ranking under Uncertainty

Let M be a set of k large language models (LLMs) and P (Q) be a distribution of inputs on a discrete
set of inputs Q. Moreover, assume that, for each input q ∼ P (Q),1 each model m ∈ M may provide
an output r ∼ Pm(R |Q = q) from a discrete set of outputs R. Further, given two outputs r, r′ ∈ R
from two different models, the (binary) variables w,w′ ∼ P (W,W ′ |Q = q,R = r,R′ = r′)
indicate whether a human prefers r over r′ (w = 1, w′ = 0) or viceversa (w = 0, w′ = 1). In the
case of a tie, then w = w′ = 0. In what follows, we use m(r) and m(r′) to denote the models that
provide outputs r and r′ respectively, and without loss of generality, we assume that the output r is
shown first. Then, our goal is to rank all models according to the (empirical) probability θm that their
outputs are preferred over the outputs of any other model picked uniformly at random.

To this end, we start by writing the probability θm as an expectation over the distribution of inputs,
outputs and pairwise preferences:

θm =
1

k − 1

∑
m̃∈M\{m}

EQ

[
1

2
ER∼Pm,R′∼Pm̃

[EW [W |Q,R,R′]] +

1

2
ER∼Pm̃,R′∼Pm

[EW ′ [W ′ |Q,R,R′]]

]
,

(1)

where note that the order of the pairs of outputs is picked at random. Next, following previous
work [48, 50], we formally characterize the ranking position of each model m ∈ M in the ranking
induced by the probabilities θm using a rank-set [l(m), u(m)], where

l(m) = 1 +
∑

m̃∈M\{m}

1{θm < θm̃} and u(m) = k −
∑

m̃∈M\{m}

1{θm > θm̃}, (2)

are the lower and upper ranking position respectively and smaller ranking position indicates better
alignment with human preferences. Here, note that it often holds that θm ̸= θm̃ for all m̃ ∈ M\{m}
and then the rank-set reduces to a singleton, i.e., l(m) = u(m).

1We denote random variables with capital letters and realizations of random variables with lower case letters.

3



In general, we cannot directly construct the rank-sets as defined above because the probabilities θm
are unknown. Consequently, the typical strategy reduces to first gathering pairwise comparisons by
humans to compute unbiased estimates of the above probabilities using sample averages and then
construct estimates [l̂(m), û(m)] of the rank-sets using Eq. 2 with θ̂m rather than θm. Under this strate-
gy, if the amount of pairwise comparisons we gather is sufficiently large, the estimates of the rank-sets
will closely match the true rank-sets. However, since gathering pairwise comparisons from humans is
costly and time-consuming, it has become a very common practice to gather pairwise comparisons
ŵ, ŵ′ by a strong LLM, rather than pairwise comparisons w,w′ by humans [12–14, 28, 29, 31, 61–
64], and then utilize them to compute unbiased estimates of the probabilities θ̆m that the outputs
provided by each model is preferred over others by the strong LLM, which can be written in terms of
expectations as follows:

θ̆m =
1

k − 1

∑
m̃∈M\{m}

EQ

[
1

2
ER∼Pm,R′∼Pm̃

[
EŴ [Ŵ |Q,R,R′]

]
+

1

2
ER∼Pm̃,R′∼Pm

[
EŴ ′ [Ŵ

′ |Q,R,R′]
]]

.

(3)

In general, one can only draw valid conclusions about θ using (an estimate of) θ̆ if the distribution of
the pairwise comparisons by the strong LLM P (Ŵ , Ŵ ′ |Q = q,R = r,R′ = r′) closely matches
the distribution of pairwise comparisons by the humans P (W,W ′ |Q = q,R = r,R′ = r′) for
any q ∈ Q and r, r′ ∈ R. However, there are multiple lines of evidence showing that there is a
mismatch between the distributions, questioning the validity of the conclusions drawn by a myriad of
papers. In what follows, we introduce a statistical framework that, by complementing a (large) set
of N + n pairwise comparisons ŵ, ŵ′ by a strong LLM with a small set of n pairwise comparisons
w,w′ by humans, is able to construct estimates [l̂(m), û(m)] of the rank-sets with provable coverage
guarantees. More formally, given a user-specified value α ∈ (0, 1), the estimates of the rank-sets
satisfy that

lim
n

P

( ⋂
m∈M

[l(m), u(m)] ⊆ [l̂(m), û(m)]

)
≥ 1− α. (4)

To this end, we will first use prediction-powered inference [37, 38] to construct a confidence ellipsoid
that, with probability 1 − α, is guaranteed to contain the (column) vector of (true) probabilities
θ = (θm)m∈M. Then, we will use the distance between this ellipsoid and the hyperplanes under
which each pair of models m, m̃ ∈ M have the same probability values of being preferred over
others, to efficiently construct the estimates [l̂(m), û(m)] of the rank-sets.

3 Constructing Confidence Regions with Prediction-Powered Inference

Let the set DN = {(qi, ri, r′i,m(ri),m(r′i), ŵi, ŵ
′
i)}Ni=1 comprise pairwise comparisons by a strong

LLM to N inputs and the set Dn = {(qi, ri, r′i,m(ri),m(r′i), wi, w
′
i, ŵi, ŵ

′
i)}ni=1 comprise pairwise

comparisons by the same strong LLM and by humans to n inputs, with n ≪ N . In what follows,
for each pairwise comparison, we will refer to the models m(r) and m(r′) that provided the first
and second output using one-hot (column) vectors m and m′, respectively. Moreover, to summarize
the pairwise comparisons2 in DN and Dn, we will stack the one-hot vectors m and m′ into four
matrices, MN and M ′

N for DN and Mn and M ′
n for Dn, where each column corresponds to a

one-hot vector, and the indicators w and ŵ into six (column) vectors, ŵN and ŵ′
N for DN and ŵn,

ŵ′
n, wn and w′

n for Dn.

2We assume that each model m ∈M participates in at least one pairwise comparison in both DN and Dn.
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Algorithm 1: It estimates θ̂ and Σ̂ using prediction-powered inference.
Input: k, DN , Dn

Output: θ̂, Σ̂

1 ŵN , ŵ′
N ,MN ,M ′

N ← SUMMARIZE(DN , k)
2 wn,w

′
n, ŵn, ŵ

′
n,Mn,M

′
n ←SUMMARIZE(Dn, k)

3 λ← LAMBDA(k, ŵN , ŵ′
N ,MN ,M ′

N ,wn,w
′
n, ŵn, ŵ

′
n,Mn,M

′
n) // Algorithm 4

4 a←
(
1k ((MN +M ′

N )1N )
⊤ ⊙ Ik

)−1

(MN · λŵN +M ′
N · λŵ′

N )

5 b←
(
1k ((Mn +M ′

n)1n)
⊤ ⊙ Ik

)−1

(Mn(λŵn −wn) +M ′
n (λŵ′

n −w′
n))

6 θ̂ ← a− b // prediction-powered estimate (Eq. 5)

7 A←
((
1k(λŵN −M⊤

Na)⊤
)
⊙MN +

(
1k(λŵ

′
N −M ′⊤

N a)⊤
)
⊙M ′

N

)
8 B ←

(
1k(λŵn −wn −M⊤

n b)⊤
)
⊙Mn +

(
1k(λŵ

′
n −w′

n −M ′⊤
n b)⊤

)
⊙M ′

n

9 Σ̂← 1
N2AA⊤ + 1

n2BB⊤ // estimate of covariance (Eq. 7)
10 return θ̂, Σ̂

Then, building upon the recent framework of prediction-powered inference [37], we compute an
unbiased estimate θ̂ of the vector of (true) probabilities θ:

θ̂ =
(
1k ((MN +M ′

N )1N )
⊤ ⊙ Ik

)−1

(MN · λŵN +M ′
N · λŵ′

N )︸ ︷︷ ︸
a

−
(
1k ((Mn +M ′

n)1n)
⊤ ⊙ Ik

)−1

(Mn(λŵn −wn) +M ′
n (λŵ

′
n −w′

n))︸ ︷︷ ︸
b

, (5)

where 1d denotes a d-dimensional column vector where each dimension has value 1 and Ik denotes a
k-dimensional identity matrix. Here, note that the first term a utilizes the pairwise comparisons by
the strong LLM from DN to compute an unbiased estimate of the vector of probabilities θ̆ defined in
Eq. 3 using sample averages, and the second term b utilizes the pairwise comparisons by the strong
LLM and by humans from Dn to compute an unbiased estimate of the difference of probabilities
θ − θ̆ defined in Eqs. 1 and 3, also using sample averages. The parameter λ ∈ [0, 1] weighs the
comparisons ŵ, ŵ′ differently than the comparisons w,w′. Details on why this can be useful and on
the selection of λ are in Appendix B.2.

Further, as shown in Angelopoulos et al. [38], the difference of probabilities θ̂ − θ converges in
distribution to a k-dimensional normal Nk(0,Σ), where Σ = E[(θ̂ − θ)(θ̂ − θ)⊤], and thus the
confidence region

Cα =

{
x ∈ Rk |

(
x− θ̂

)⊤( Σ̂−1

χ2
k,1−α

)(
x− θ̂

)
≤ 1

}
, (6)

where Σ̂ is an empirical estimate of the covariance matrix Σ using pairwise comparisons from DN

and Dn, i.e.,

Σ̂ =
1

N2
AA⊤ +

1

n2
BB⊤, (7)

with

A =
((
1k(λŵN −M⊤

Na)⊤
)
⊙MN +

(
1k(λŵ

′
N −M ′⊤

N a)⊤
)
⊙M ′

N

)
,

B =
(
1k(λŵn −wn −M⊤

n b)⊤
)
⊙Mn +

(
1k(λŵ

′
n −w′

n −M ′⊤
n b)⊤

)
⊙M ′

n,

and χ2
k,1−α is the 1− α quantile of the χ2 distribution with k degrees of freedom, satisfies that

lim
n

P(θ ∈ Cα) = 1− α. (8)

Algorithm 1 summarizes the overall procedure to compute θ̂ and Σ̂, which runs in O(k2(N + n))
time.

5



Algorithm 2: It constructs [l̂(m), û(m)] for all m ∈ M
Input:M, DN , Dn, α
Output: {[l̂(m), û(m)]}m∈M

1 k ← |M|
2 θ̂, Σ̂← CONFIDENCE-ELLIPSOID(k,DN ,Dn) // Algorithm 1
3 for m ∈M do
4 l̂(m)← 1, û(m)← k
5 for m̃ ∈M \ {m} do
6 d← |θ̂m−θ̂m̃|√

2
−

√
1
2
(Σ̂m,m + Σ̂m̃,m̃ − 2Σ̂m,m̃)χ2

k,1−α // Eq. 10

7 if d > 0 and θ̂m < θ̂m̃ then
8 l̂(m)← l̂(m) + 1

9 else if d > 0 and θ̂m > θ̂m̃ then
10 û(m)← û(m)− 1

11 return {[l̂(m), û(m)]}m∈M

4 Constructing Rank-Sets with Coverage Guarantees

For each pair of models m, m̃ ∈ M such that m ̸= m̃, we first define a hyperplane Hm,m̃ ⊆ Rk as
follows:

Hm,m̃ = {x ∈ Rk |xm = xm̃}. (9)

Then, for each of these hyperplanes Hm,m̃, we calculate the distance d(Cα, Hm,m̃) between Hm,m̃

and the confidence region Cα defined by Eq. 6, i.e.,

d(Cα, Hm,m̃) =
|θ̂m − θ̂m̃| −

√
(Σ̂m,m + Σ̂m̃,m̃ − 2Σ̂m,m̃)χ2

k,1−α√
2

, (10)

where Σ̂ is the empirical covariance matrix defined by Eq. 7.

Now, for each pair of models m,m′ ∈ M, we can readily conclude that, if the distance
d(Cα, Hm,m̃) > 0, then, the confidence region Cα either lies in the half-space of Rk where xm > xm̃

if θ̂m > θ̂m̃ or it lies in the half space of Rk where xm < xm̃ if θ̂m < θ̂m̃. Building upon this
observation, for each model m ∈ M, we construct the following estimates [l̂(m), û(m)] of the
rank-sets [l(m), u(m)]:

l̂(m) = 1 +
∑

m̃∈M\{m}

1{d(Cα, Hm,m̃) > 0} · 1{θ̂m < θ̂m̃}

û(m) = k −
∑

m̃∈M\{m}

1{d(Cα, Hm,m̃) > 0} · 1{θ̂m > θ̂m̃}.
(11)

Importantly, using a similar proof technique as in Lemma 1 in Neuhof and Benjamini [48], we
can show that the above rank-sets estimates enjoy provable coverage guarantees with respect to the
rank-sets [l(m), u(m)] induced by the probabilities θ that the outputs of each model is preferred over
any other model by humans (proven in Appendix A):

Theorem 4.1 The estimates [l̂(m), û(m)] of the rank-sets defined by Eq. 11 satisfy that

lim
n

P

( ⋂
m∈M

[l(m), u(m)] ⊆ [l̂(m), û(m)]

)
≥ 1− α. (12)

Algorithm 2 summarizes the overall procedure to construct the rank-sets [l̂(m), û(m)] for all m ∈ M,
which runs in O(k2(N + n)).
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5 Experiments

We apply our framework to construct rank-sets for 12 popular LLMs using pairwise comparisons
made by humans in the LMSYS Chatbot Arena platform3 and pairwise comparisons made by three
strong LLMs. We show that the rank-sets constructed using our framework are significantly more
likely to cover the true ranking consistent with (the distribution of) human pairwise preferences than
the rank-sets constructed using only pairwise comparisons made by the strong LLMs.

Experimental setup. Our starting point is the Chatbot Arena dataset [12], which comprises 33,481
pairwise comparisons made by 13,383 humans about the responses given by 20 different LLMs to
26,968 unique queries. In what follows, we refer to each pair of responses to a query by two different
LLMs and the query itself as an instance. As an initial pre-processing, we filter out any instance
whose corresponding query is flagged as toxic or multiturn. Then, we gather pairwise comparisons
made by three strong LLMs, namely GPT-3.5-turbo-0125 (GPT3.5), GPT-4-0125-preview (GPT4)
and Claude-3-Opus-20240229 (CL3), about all the (pre-processed) instances from the Chatbot Arena
dataset. To this end, we use (almost) the same prompt as in Zheng et al. [12], which instructs each
strong LLM to output option ‘A’ (‘B’) if it prefers the response of first (second) LLM, or option ‘C’
if it declares a tie. Further, we filter out any instances for which at least one strong LLM provides
a verbose output instead of ‘A’, ‘B’, or ‘C’, and focus on a set of LLMs with at least 96 pairwise
comparisons between every pair of LLMs in the set. After these pre-processing steps, we have 14,947
instances comprising 13,697 unique queries and 12 different LLMs and, for each instance, we have
one pairwise comparison made by a human and three pairwise comparisons by the three strong
LLMs. Refer to Appendix C for more information regarding the 12 LLMs, the number of pairwise
comparisons between every pair of LLMs, and the prompt used to gather pairwise comparisons made
by the three strong LLMs.

To draw reliable conclusions, in each experiment, we construct rank-sets 1,000 times and, each time,
we use a random set of N + n = 6,336 instances with an equal number of instances per pair of
models, out of the 14,947 instances. The values of N and n vary across experiments and they define
two random subsets, also with an equal number of instances per pair of models.

Methods. In our experiments, we construct rank-sets using the following methods:

a) BASELINE: it constructs (unbiased) rank-sets using the pairwise comparisons made by hu-
mans corresponding to the random set of N + n instances via Algorithms 2 and 3, shown in
Appendix B.1. The constructed rank-sets are presumably likely to cover the true rank-sets.

b) LLM GPT4, LLM GPT3.5 and LLM CL3: they construct (possibly biased) rank-sets using the
pairwise comparisons made by one of the three strong LLMs corresponding to the random set of
N + n instances via Algorithms 2 and 3.

c) PPR GPT4, PPR GPT3.5 and PPR CL3: they construct (unbiased) rank-sets using pairwise compar-
isons made by one of the three strong LLMs corresponding to the random set of N +n instances
and pairwise comparisons made by humans corresponding to the random subset of n instances
via Algorithms 1 and 2.

d) HUMAN ONLY: it constructs (unbiased) rank-sets using the pairwise comparisons made by
humans corresponding to the random subset of n instances via Algorithms 2 and 3.

In the above, note that a), b) and d) use linear regression to construct a confidence region Cα using
only pairwise comparisons by either humans or a strong LLM via Algorithm 3, which runs in
O(k2(N + n)) in a)-b) and in O(k2n) in d), and then use this confidence region to construct the
rank-sets via Algorithm 2.

Quality metrics. Since the true probabilities θ are unknown, we cannot compute the true rank-sets of
the 12 LLMs under comparison, which presumably may be singletons. As a result, we cannot estimate
the (empirical) coverage probability—the probability that the rank-sets constructed using the above
methods cover the true rank-sets, which Theorem 4.1 refers to. To overcome this, we assess the quality
of the rank-sets using two alternative metrics: rank-set size and baseline intersection probability.
Here, smaller (larger) rank-set sizes and larger (smaller) intersection probabilities are better (worse).
The baseline intersection probability is just the (empirical) probability that the rank-sets [l̂(m), û(m)]

3https://chat.lmsys.org/
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Figure 1: Average rank-set size against baseline intersection probability for rank-sets constructed
using only pairwise comparisons by a strong LLM (LLM GPT4, LLM GPT3.5 and LLM CL3), only
pairwise comparisons by humans (HUMAN ONLY), and pairwise comparisons by both a strong LLM
and humans (PPR GPT4, PPR GPT3.5 and PPR CL3) for different values of α and n = 990. Smaller
(larger) average rank-set sizes and larger (smaller) intersection probabilities are better (worse). In all
panels, 95% confidence bars for the rank-set size are not shown, as they are always below 0.02.
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Figure 2: Average rank-set size against baseline intersection probability for rank-sets constructed
using pairwise comparisons by both a strong LLM and humans for different values of n and α. Smaller
(larger) average rank-set sizes and larger (smaller) intersection probabilities are better (worse). In all
panels, 95% confidence bars for the rank-set size are not shown, as they are always below 0.04.

constructed using one of the above methods intersect with the rank-sets [l̃(m), ũ(m)] constructed
using the BASELINE method, i.e., P

(⋂
m∈M 1

{
[l̃(m), ũ(m)] ∩ [l̂(m), û(m)]

})
. Intuitively, we

expect that the larger the baseline intersection probability, the larger the coverage probability since the
BASELINE method uses a large(r) number of pairwise comparisons by humans to construct (unbiased)
rank-sets and thus it is expected to approximate well the true rank-sets. Further, note that the baseline
intersection probability tells us how frequently there exists at least one single ranking covered by
both one of the above methods and the BASELINE method. In Appendix D.2, we experiment with an
alternative metric, namely baseline coverage probability, which is the (empirical) probability that
the rank-sets constructed using one of the above methods covers the rank-sets constructed using the
BASELINE method. In Appendix E, we additionally evaluate our framework in a synthetic setting
where the true rank-sets are known, allowing us to compute the coverage probability and rank-biased
overlap (RBO) [65].

Quality of the rank-sets. Figure 1 shows the average rank-set size against the baseline intersection
probability for rank-sets constructed using all methods4 except BASELINE for different α values5

and n = 990. The results show several interesting insights. First, we find that rank-sets constructed
using only pairwise comparisons by a strong LLM (LLM GPT4, LLM GPT3.5 and LLM CL3) achieve
much lower baseline intersection probability, even orders of magnitude lower, than those constructed
using only pairwise comparisons by humans (HUMAN ONLY) or using both pairwise comparisons by a

4In Appendix D.1, we include a version of this figure with three panels, where each panel contains the results
for one strong LLM and confidence regions for the rank-set sizes.

5α ∈ {0.4, 0.3, 0.25, 0.2, 0.15, 0.1, 0.075, 0.05, 0.025, 0.01}.
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Figure 3: Empirical probability that each ranking position is included in the rank-sets constructed by
BASELINE, LLM GPT4 and PPR GPT4 for each of the LLMs under comparison. In all panels, n = 990
and α = 0.05. Larger (smaller) dots indicate higher (lower) empirical probability.
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Figure 4: Empirical probability of each rank-set constructed by BASELINE, LLM GPT4 and PPR GPT4
for GPT 4 (left), Claude 1 (middle left), Vicuna (middle right) and PaLM 2 (right). In all panels,
n = 990 and α = 0.05.

strong LLM and humans (PPR GPT4, PPR GPT3.5 and PPR CL3). This suggests that the distributions
of pairwise comparisons by strong LLMs and humans are actually different, questioning the rationale
used by an extensive line of work that proposed using only pairwise comparisons by strong LLMs
to rank LLMs [12, 25–29, 31]. Second, we find that rank-sets constructed using both pairwise
comparisons by two of the strong LLMs and humans (PPR GPT4 and PPR CL3) achieve a better
trade-off between average rank-set size and baseline intersection probability than those constructed
using only pairwise comparisons by humans (HUMAN ONLY). This suggests that pairwise comparisons
by strong LLMs are valuable if they are complemented with (a few) pairwise comparisons by humans.
Third, we find that, among the three strong LLMs, GPT 4 stands out as the best performer.

Figure 2 shows the average rank-set size against the baseline intersection probability for rank-sets
constructed using PPR GPT4, PPR GPT3.5 and PPR CL3 for different values of n and α (the same
values as in Figure 1).6 The results show that the trade-off between rank-sets and baseline intersection
probabilities improves rapidly as the number of pairwise comparisons by humans n increases but
with diminishing returns.

Structure of the rank-sets. In this section, we take a closer look to the structure of the rank-sets
constructed using BASELINE, LLM GPT4 and PPR GPT4. In Appendix D.3, we include additional
results for all other methods.

First, we compute the empirical probability that each ranking position is included in the rank-sets
constructed by BASELINE, LLM GPT4 and PPR GPT4 of each of the LLMs under comparison. Figure 3
summarizes the results for n = 990 and α = 0.05, which reveal several interesting insights. We find
that there is lower uncertainty regarding the ranking position of each model for LLM GPT4 than for
PPR GPT4. However, for LLM GPT4, the ranking position with the highest probability mass differs
from BASELINE in 7 out of 12 LLMs, including the top-2 performers. In contrast, for PPR GPT4, it
only differs from BASELINE in 3 out of 12 LLMs. This questions once more the status quo, which
proposed using only pairwise comparisons by strong LLMs to rank LLMs [12, 25–29, 31].

6n ∈ {66, 132, 198, 462, 990, 1452, 1980, 2442, 2970}.
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Next, we compute the empirical probability of each rank-set constructed by BASELINE, LLM GPT4 and
PPR GPT4 for each of the LLMs under comparison. Figure 4 summarizes the results for GPT 4, Claude
1, Vicuna and PaLM 2 for n = 990 and α = 0.05. In agreement with the findings derived from
Figure 3, we observe that the distribution of rank-sets constructed by LLM GPT4 is more concentrated
than the distribution of rank sets constructed by PPR GPT4. However, the rank-sets with the highest
probability mass constructed by LLM GPT4 coincide with those constructed by BASELINE much less
frequently than those constructed by PPR GPT4. Refer to Appendix D.3 for qualitatively similar
results for other LLMs.

6 Discussion and Limitations
In this section, we highlight several limitations of our work, discuss its broader impact, and propose
avenues for future work.

Data. Our framework assumes that the queries and the pairwise comparisons made by humans and
the strong LLMs are drawn i.i.d. from fixed distributions. In future work, it would be very interesting
to lift these assumptions and allow for distribution shift. Moreover, our framework assumes that the
pairwise comparisons made by humans are truthful. However, an adversary could have an economic
incentive to make pairwise comparisons strategically in order to favor a specific model over others. In
this context, it would be interesting to extend our framework so that it is robust to strategic behavior.

Methodology. Our framework utilizes rank-sets as a measure of uncertainty in rankings. However,
in case of limited pairwise comparison data, rank-sets may be large and overlapping, reducing their
value. In such situations, it may be worthwhile to explore other measures of uncertainty for rankings
beyond rank-sets. Further, to measure the level of alignment with human preferences, our framework
utilizes the win-rate—the probability that the outputs of each model are preferred over the outputs of
any other model picked uniformly at random. However, if we need to rank k LLMs and k is large,
win-rate may be impractical since, to obtain reliable estimates, we need to gather O(k2) pairwise
comparisons made by humans. Finally, our framework constructs rank-sets with asymptotic coverage
guarantees, however, it would be interesting to derive PAC-style, finite-sample coverage guarantees.

Evaluation. We have showcased our framework using pairwise comparisons made by humans in a
single platform, namely LMSYS Chatbot Arena, and pairwise comparisons made by just three strong
LLMs. As a result, one may question the generalizability of the conclusion derived from the rank-sets
estimated using our framework. In this context, it is also important to acknowledge that, in LMSYS
Chatbot Arena, the queries are chosen by the humans who make pairwise comparisons and this may
introduce a variety of biases. Therefore, it would be interesting to apply our framework to human
data from other platforms.

Broader Impact. Our framework rank LLMs according to their level of alignment with human
preferences—a LLM is ranked higher than others if its outputs are more frequently preferred by
humans. However, in many application domains, especially in high-stakes scenarios, it may be
important to account for other important factors such as accuracy, fairness, bias and toxicity [57].

7 Conclusions
We have introduced a statistical framework to construct a ranking of a collection of LLMs consistent
with their level of alignment with human preferences using a small set of pairwise comparisons
by humans and a large set of pairwise comparisons by a strong LLM. Our framework quantifies
uncertainty in the ranking by providing a rank-set—a set of possible ranking positions—for each of
the models under comparison. Moreover, it guarantees that, with a probability greater than or equal
to a user-specific value, the rank-sets cover the ranking consistent with the (true) probability that each
model is preferred over others by humans asymptotically. Finally, we have empirically demonstrated
that the rank-sets constructed using our framework are more likely to cover the true ranking consistent
with (the distribution of) human pairwise preferences than the rank-sets constructed using only
pairwise comparisons made by the strong LLMs.
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A Proof of Theorem 4.1

Note that Eq. 12 holds if and only if:

lim
n

P
(
∃m ∈ M : [l(m), u(m)] ̸⊆ [l̂(m), û(m)]

)
≤ α (13)

Therefore, to prove the theorem, it is sufficient to prove that Eq. 13 holds. Now, to prove that Eq. 13,
we first show that the probability on the left hand side of the above equation is smaller than or equal
to the probability P(θ /∈ Cα).
To this end, first note that, if for at least one model m ∈ M, we have that l̂(m) > l(m) or
û(m) < u(m), then it holds that ⋂

m∈M
[l(m), u(m)] ̸⊆ [l̂(m), û(m)].

Next, without loss of generality, assume that, for model m, we have that l̂(m) > l(m). In this case,
from Eqs. 11 and 2 we get:∑

m̃∈M\{m}

1{d(Cα, Hm,m̃) > 0} · 1{θ̂m < θ̂m̃} >
∑

m̃∈M\{m}

1{θm < θm̃},

which means that there must be at least one model m̃ ∈ M such that xm < xm̃ ∀x ∈ Cα and
θm > θm̃, which implies that θ /∈ Cα. As a result, we can immediately conclude that,

lim
n

P
(
∃m ∈ M : [l(m), u(m)] ̸⊆ [l̂(m), û(m)]

)
≤ lim

n
P(θ /∈ Cα) = α.

This concludes the proof.
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B Algorithms

B.1 Algorithm 3

In this section, we present a pseudocode implementation of the algorithm to construct confidence
regions using linear regression.

Algorithm 3: It estimates θ̂ and Σ̂ using linear regression.
Input: k, D
Output: θ̂, Σ̂

1 w̄, w̄′,M ,M ′ ← SUMMARIZE(D, k)

2 θ̂ ←
(
1k

(
(M +M ′)1|D|

)⊤ ⊙ Ik
)−1

(M · w̄ +M ′ · w̄′) // linear reg. estimate

3 A←
((

1k(w̄ −M⊤θ̂)⊤
)
⊙M +

(
1k(w̄

′ −M ′⊤θ̂)⊤
)
⊙M ′

)
4 Σ̂← 1

|D|2AA⊤ // estimate of covariance

5 return θ̂, Σ̂

Note that, in Algorithm 2, θ̂ and Σ̂ can alternatively be computed by calling Algorithm 3 instead of
Algorithm 1. Algorithm 3 runs in O(k2|D|) time.

B.2 Algorithm to set λ

The parameter λ ∈ [0, 1] weighs the comparisons ŵ, ŵ′ by the strong LLM differently than the
comparisons w,w′ by humans. This way, if the strong LLM’s preferences are strongly aligned with
human preferences, the pairwise comparisons by the strong LLM can be weighed close to or equally
with the pairwise comparisons by humans. Conversely, if the strong LLM’s preferences are not well
aligned with human preferences, the pairwise comparisons ŵ, ŵ′ can be weighed lower than the
pairwise comparisons w,w′. Following Angelopoulous et al. [38], we select the λ that minimizes
tr(Σ), where Σ = E[(θ̂ − θ)(θ̂ − θ)⊤]:

λ =
n

n+N

tr(Σn)

tr(ΣN )
(14)

where ΣN is the sample covariance matrix of the estimate of θ̆ computed from Algorithm 3 using
the pairwise comparisons by the strong LLM DN , and Σn is the sample covariance matrix of the
estimates of θ̆ and θ computed via Algorithm 3 using the pairwise comparisons by the strong LLM
and by humans respectively in dataset Dn. Detailed computation of λ is shown in Algorithm 4, which
runs in O(k2(N + n)).

Algorithm 4: It computes λ
Input: k, DN , Dn

Output: λ
1 wn,w

′
n, ŵn, ŵ

′
n,Mn,M

′
n ←SUMMARIZE(Dn, k)

2 ân ←
(
1k ((Mn +M ′

n)1n)
⊤ ⊙ Ik

)−1

(Mn · ŵn +M ′
n · ŵ′

n)

3 an ←
(
1k ((Mn +M ′

n)1n)
⊤ ⊙ Ik

)−1

(Mn ·wn +M ′
n ·w′

n)

4 Ân ←
((
1k(ŵn −M⊤

n ân)
⊤)⊙Mn +

(
1k(ŵ

′
n −M ′⊤

n ân)
⊤)⊙M ′

n

)
5 An ←

((
1k(wn −M⊤

n an)
⊤)⊙Mn +

(
1k(w

′
n −M ′⊤

n an)
⊤)⊙M ′

n

)
6 Σn ← 1

n2 ÂnA
−1
n

7 −,ΣN ← CONFIDENCE-ELLIPSOID(k,DN ) // Algorithm 3
8 λ← n

n+N
tr(Σn)
tr(ΣN )

9 return λ
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[System]
Act as an impartial judge and evaluate the responses of two AI
assistants to the user ’s question displayed below. Your evaluation
should consider factors such as relevance , helpfulness , accuracy ,
creativity and level of detail of their responses. Output your final
verdict by strictly following this format: ’A’ if the response of
assistant A is better , ’B’ if the response of assistant B is better ,
and ’C’ for a tie. Do not give any justification or explanation for
your response.

[User]
Question:
{Query}

Response of assistant A:
{Response A}

Response of assistant B:
{Response B}

Listing 1: The prompt used for gathering pairwise preferences of strong LLMs.

C Additional Details of the Experimental Setup

In this section, we provide the implementation details and computational resources used to execute
the experiments discussed in Section 5. Our algorithms are implemented in Python 3.11.2 pro-
gramming language using NumPy and SciPy open-source libraries for efficient matrix operations.
Further, we use the matplotlib package to facilitate visualizations of our results. The complete
details of the software requirements can be found in the source code provided as part of the sup-
plementary materials. Our experiments are executed on a compute server equipped with 2× AMD
EPYC 7702 processor with 64 cores per processor and 2 TB of main memory. It is worth noting that,
our experiments are not resource intensive and can be executed on a standard desktop computer or a
laptop.

Pairwise comparisons and preprocessing. Using the dataset from LMSYS Chatbot Arena7,
we gathered pairwise comparisons of three strong LLMs via API calls to OpenAI API version
2024-02-15-preview for GPT 3.5 and GPT 4, and Anthropic API version 2023-06-01 for
Claude 3. To this end, we use (almost) the same prompt as in Zheng et al. [12] that instructs each
strong LLM to output option ‘A’ (‘B’) if it prefers the response of first (second) model, or option
‘C’ if it declares a tie. The prompt used to obtain pairwise preferences of is available in Listing 1.
We preprocess the dataset by filtering out instances—an instance is a pair of responses to a query
by two different models and the query itself—for which at least one strong LLM returned a verbose
output instead of ‘A’, ‘B’ or ‘C’, and choose a set of 12 popular large language models for our
experiments. The chosen models, along with their specific versions, are listed in Table 1. In Figure 5,
we show the number of pairwise comparisons per each pair of these chosen models after completing
all preprocessing steps.

7The user prompts are licensed under CC-BY-4.0, while the model outputs are licensed under CC-BY-NC-4.0.
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Table 1: The names and versions of the 12 popular large language models considered for our
experiments after preprocessing the Chatbot Arena dataset.

Large Language Model Version
GPT 4 GPT 4
Claude 1 Claude v1
Claude 1-I Claude Instant v1
GPT 3.5 GPT 3.5 turbo
Vicuna Vicuna 13B
PaLM 2 PaLM 2
Koala Koala 13B
RWKV RWKV 4 Raven 14B
Pythia OpenAssistant Pythia 12B
Alpaca Alpaca 13B
ChatGLM ChatGLM 6B
FastChat FastChat T5 3B
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GPT 3.5

GPT 4

Pythia

Alpaca

Claude 1

RWKV

ChatGLM

FastChat

PaLM 2

Claude 1-I

0 712 305 283 470 368 261 243 306 208 187 169

712 0 342 282 396 345 285 225 242 251 184 144

305 342 0 299 291 290 288 263 182 232 187 135

283 282 299 0 273 214 272 262 195 192 177 134

470 396 291 273 0 302 263 210 236 207 155 122

368 345 290 214 302 0 250 194 253 202 123 115

261 285 288 272 263 250 0 256 161 169 179 125

243 225 263 262 210 194 256 0 149 147 156 129

306 242 182 195 236 253 161 149 0 142 109 96

208 251 232 192 207 202 169 147 142 0 127 108

187 184 187 177 155 123 179 156 109 127 0 168

169 144 135 134 122 115 125 129 96 108 168 0

Figure 5: The number of pairwise comparisons per each pair of models after all preprocessing steps.
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D Additional Experimental Results

In this section, we discuss additional experimental results that were omitted from the main paper due
to space limitations.

D.1 Quality of the Rank-sets

In Figure 6, we show a more detailed analysis of the average rank-set size plotted against the baseline
intersection probability, with individual plots for each strong LLM: GPT4 (top), CL3 (middle) and
GPT3.5 (bottom), for n = 990 and different α values.8 All observations made in Figure 1 apply
to Figure 6 as well. Moreover, it is evident that among the three strong LLMs, GPT 4 clearly
outperforms the others, achieving higher baseline intersection probability and returning rank-sets
with smaller average size. Specifically, in Figure 6 (a), the difference between average rank-set size
between HUMAN ONLY and PPR GPT4 is significantly pronounced, while the gap gradually narrows in
subsequent plots for PPR CL3 and PPR GPT3.5.

D.2 Baseline Coverage Probability

In this subsection, we investigate a more conservative quality metric, namely baseline coverage
probability, which is the (empirical) probability that the rank-sets [l̂(m), û(m)] constructed by any
method cover the rank-sets [l̃(m), ũ(m)] constructed using the BASELINE method, i.e.,

P

( ⋂
m∈M

1
{
[l̃(m), ũ(m)] ⊆ [l̂(m), û(m)]

})
(15)

The baseline intersection probability, which we discussed in Section 5 and illustrated in Figure 1, is a
less conservative metric compared to the baseline coverage probability. While the latter represents
the probability that all rank-sets are covered by the BASELINE rank-sets, the former only considers the
probability that the rank-sets intersect. Thus, achieving high baseline coverage probability is difficult,
particularly when the BASELINE rank-sets are larger.

Quality of the rank-sets when considering the baseline coverage probability. In Figure 7, we
show the average rank-set size against the baseline coverage probability for rank-sets constructed
using all methods (except BASELINE) for n = 990 and different values of α (the same values as in
Figure 6). Immediately, we notice that the baseline coverage probability of all methods is very low.
For rank-sets constructed using pairwise comparisons only by a strong LLM (LLM GPT4, LLM CL3 and
LLM GPT3.5), the baseline coverage probability is close to (or exactly) zero. Rank-sets constructed
using only pairwise comparisons by humans (HUMAN ONLY) or prediction-powered ranking using
a strong LLM (PPR GPT4, PPR CL3 and PPR GPT3.5) achieve better baseline coverage probability.
However, the difference in performance among these methods is not clear to distinguish, which
motivated us to consider the baseline intersection probability metric for our experimental results in
Section 5.

In Figure 8, we show the average rank-set size against the baseline coverage probability for rank-sets
constructed using PPR GPT4, PPR GPT3.5 and PPR CL3 for different values 9 of n and α (the same α
values as in Figure 6). Similarly as in Figure 2, results show that there is a trade-off between average
rank-set size and the baseline coverage probability, which improves rapidly as the number of pairwise
comparisons by humans n increases, but with diminishing returns.

8α ∈ {0.4, 0.3, 0.25, 0.2, 0.15, 0.1, 0.075, 0.05, 0.025, 0.01}
9n ∈ {66, 132, 198, 462, 990, 1452, 1980, 2442, 2970}.
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Figure 6: Average rank-set size against baseline intersection probability for rank-sets constructed us-
ing only pairwise comparisons by a strong LLM: LLM GPT4 (top), LLM CL3 (middle) and LLM GPT3.5
(bottom), only pairwise comparisons by humans (HUMAN ONLY), and pairwise comparisons by both
a strong LLM and humans (PPR GPT4 top, PPR CL3 middle and PPR GPT3.5 bottom) for different
α values and n = 990. Smaller (larger) average rank-set sizes and larger (smaller) intersection
probabilities are better (worse). The shaded region shows a 95% confidence interval for the rank-set
size of all rank-sets among all 1, 000 repetitions.
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Figure 7: Average rank-set size against baseline coverage probability for rank-sets constructed using
only pairwise comparisons by a strong LLM (LLM GPT4, LLM GPT3.5 and LLM CL3), only pairwise
comparisons by humans (HUMAN ONLY), and pairwise comparisons by both a strong LLM and
humans (PPR GPT4, PPR GPT3.5 and PPR CL3) for different α values and n = 990. Smaller (larger)
average rank-set sizes and larger (smaller) coverage probabilities are better (worse). In all panels,
95% confidence bars for the rank-set size are not shown, as they are below 0.02.

0.0 0.1 0.2 0.3 0.4
Baseline coverage probability

1

2

3

4

5

A
ve

ra
ge

ra
n

k-
se

t
si

ze

Ppr Gpt4

0.0 0.1 0.2 0.3 0.4
Baseline coverage probability

Ppr Cl3

0.0 0.1 0.2 0.3 0.4
Baseline coverage probability

Ppr Gpt3.5

n 0

1000

2000

3000

Figure 8: Average rank-set size against baseline coverage probability for rank-sets constructed using
pairwise comparisons by both a strong LLM and humans for different n and α values. Smaller
(larger) average rank-set sizes and larger (smaller) coverage probabilities are better (worse). In all
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Figure 9: Empirical probability that each ranking position is included in the rank-sets constructed by
all methods for each of the LLMs under comparison. In all panels, n = 990 and α = 0.05. Larger
(smaller) dots indicate higher (lower) empirical probability.

D.3 Structure of the Rank-sets

In this subsection, we take closer look at the structure of the rank-sets constructed by all methods. We
compute the empirical probability that each ranking position is included in the rank-sets constructed
by all methods, of each of the LLMs under comparison. The results are summarized in Figure 9 for
α = 0.05 and n = 990.

Empirical probability of ranking positions. Our first observation is that, the ranking positions
of each model in LLM GPT4 and LLM CL3 have lower uncertainty compared to PPR GPT3.5 and
PPR CL3, respectively. However, LLM GPT3.5 exhibits higher uncertainty compared to PPR GPT3.5.
Nonetheless, the ranking positions with the highest probability mass in LLM GPT4, LLM CL3 and
LLM GPT3.5 significantly deviate from the BASELINE. Specifically, the ranking position with highest
probability mass differs for 7 out of 12 models. In contrast, for PPR GPT4, PPR CL3 and PPR GPT3.5
it only differs from the BASELINE for 3 out of 12 LLMs. These findings once again question the
rationale of relying solely on pairwise comparisons by strong LLMs to rank LLMs [12, 25–29, 31].
Our second observation is that there is no significant difference in the uncertainty in ranking positions
across HUMAN ONLY, PPR GPT4, PPR CL3 and PPR GPT4. However, the distribution of probability
mass across different ranking positions differs slightly among these methods. This observation is
clearly seen in PPR GPT4, where the Alpaca model has zero probability mass for position 6.

Empirical probability of rank-sets. Next, we compute the empirical probability of each rank-set
constructed by all methods and for each of the LLMs under comparison with n = 990 and α = 0.05.
The results are summarized in Figure 10. Consistent with the observations from Figure 9, we note that
the distribution of rank-sets constructed by LLM GPT4 is more concentrated than those constructed
by other methods. Conversely, LLM GPT3.5 exhibits a more spread-out distribution of rank-sets,
indicating higher uncertainty in its ranking positions. This observation is consistent across all LLMs
considered for ranking. Despite the more concentrated distributions of rank-sets for LLM GPT4 and
LLM CL3, we observed that the ranking positions with the highest probability mass often differed
from those of the BASELINE, with discrepancies observed in 7 out of 12 models. On the contrary, the
rank-sets constructed by PPR GPT4, PPR CL3 and PPR GPT3.5 exhibit distributions that are neither
excessively spread out nor highly concentrated. But the rank-sets with the highest probability mass
constructed by these methods coincide with those constructed by BASELINE more frequently than their
LLM only counterparts. Once again, these findings underscore our argument that rank-sets obtained
using only pairwise comparisons of strong LLMs are not very reliable.
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Figure 10: Empirical probability of each rank-set constructed by all methods for all 12 models (one
model per sub-figure). In all panels, n = 990 and α = 0.05.
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E Synthetic Experiments

In this section, we evaluate our framework in a synthetic setting where the true rank-sets of the
models are known. This allows us to validate the theoretical coverage guarantee of Theorem 4.1
without relying on a proxy metric, and also compute the rank-biased overlap (RBO) [65].

Experimental setup. We consider k = 8 models and, in each experiment, we generate a random
vector of true win probabilities θ (Eq. 1), which induces the true rank-sets of the models.10 To obtain
win probabilities θ̆ (Eq. 3), we add random noise to the vector and then re-normalize θ̆. We sample
the noise from a Uniform(−u, u) distribution, where u a parameter we manually set to simulate
different alignment levels between strong LLMs and human preferences. A larger u indicates a
greater difference between θ and θ̆, meaning the LLM is less aligned with human preference, and
vice versa. In our experiments, we set u ∈ {0.05, 0.1, 0.3} to simulate three different strong LLMs.

To draw reliable conclusions, for each experiment, we create rank-sets 300 times, each time using a
different set of n +N = 50,000 simulated pairwise comparisons by humans and the three strong
LLMs, with an equal number of pairwise comparisons per pair of models. We ensure that each model
provides the first and second response to an equal number of pairwise comparisons. Let ma and mb

be the two models in a pairwise comparison, with ma giving the first response. For each pairwise
comparison, first, we generate a number x ∈ (0, 1) uniformly at random. For the human outcome,
if x < 2 θma

, then the response of model ma is preferred (w = 1). Similarly, for the strong LLM
outcome, if x < 2 θ̆ma

, then the response of model ma is preferred (ŵ = 1). In every comparison we
set w′ = ŵ′ = 0.

Coverage probability. Using the generated pairwise comparisons, we compute rank-sets in a similar
way as described in Section 5, with α = 0.1. Since the true rank-sets are known, we can compute the
(empirical) coverage probability, shown in Figure 11. The results show that the coverage probability
increases with n, consistent with Theorem 4.1. Further, the coverage probability is greater when u is
smaller, indicating that our method achieves better results when the strong LLM is more aligned to
human preference.

Rank-biased overlap (RBO). For each method, we obtain a ranking T̂ by sorting the models in
descending order of their θ̂ values. We then compute the RBO metric relative to their true ranking T
as follows:

RBO(T, T̂ , p) = (1− p)
∑
i∈[k]

pi−1 |T:i ∩ T̂:i|
i

where T:i and T̂:i represents the top i models in ranking T and T̂ , respectively, and p ∈ [0, 1] is a
chosen parameter. When p = 1, all models are weighed equally. As we decrease p, more emphasis is
given to the top-ranked models, and at p = 0, only the top-ranked model is considered. In Figure 12,
we compare RBO values as we increase the number of human pairwise comparisons n, for p = 0.6.
The results show that increasing n improves RBO across all methods. Additionally, combining
human pairwise preferences with a strong LLM further improves RBO values, demonstrating that
our method performs better than those solely relying on strong LLM preferences. We repeated our
experiments with multiple values of p ∈ [0, 1] and observed no significant variation in the results.

10In our experiments, we generate true win probabilities θ with unique values, so the rank-sets are always
singletons, resulting in a unique true rank for each model.
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Figure 11: Empirical coverage probability of the rank-sets constructed using only n synthetic
pairwise comparisons by humans (HUMAN ONLY) and using both n synthetic pairwise comparisons
by humans and N + n synthetic pairwise comparisons by one out of three different simulated
strong LLMs (PPR 0.05, PPR 0.1 and PPR 0.3) with α = 0.1 and N + n = 50000. Each of the
strong LLMs has a different level of alignment with human preferences controlled by a noise value
u ∈ {0.05, 0.1, 0.3}. The dashed line indicates the 1− α target coverage. The empirical coverage of
the rank-sets constructed using only N + n synthetic pairwise comparison by one of the same three
strong LLMs (not shown in the figure) is 0.38 (u = 0.05), 0.13 (u = 0.1) and 0.0 (u = 0.3).
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Figure 12: Average rank-biased overlap (RBO) of rankings constructed by ordering the empirical
win probabilities θ̂ estimated using only N + n synthetic pairwise comparisons by one out of three
different simulated strong LLMs (LLM 0.05, LLM 0.1 and LLM 0.3), only n synthetic pairwise
comparisons by humans (HUMAN ONLY), and both n synthetic pairwise comparisons by humans and
N + n synthetic pairwise comparisons by one out of the same three strong LLMs (PPR 0.05, PPR
0.1 and PPR 0.3) for α = 0.1 and N + n = 50000. Each of the strong LLMs has a different level
of alignment with human preferences controlled by a noise value u ∈ {0.05, 0.1, 0.3}. RBO was
computed with respect to the true ranking constructed by ordering the true win probabilities θ, for
p = 0.6. The shaded region shows a 95% confidence interval for the RBO among all 300 repetitions.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide the proof of Theorem 4.1 in Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide pseudocode implementation of all the algorithms in Appendix B
and describe the setup used in our experiments in Section 5 and Appendix C. In addition,
we have released the code and data at https://github.com/Networks-Learning/prediction-
powered-ranking.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have released the code and data at https://github.com/Networks-
Learning/prediction-powered-ranking.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines

(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the training and test details in Section 5 and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars in Figure 6 in Appendix D.1, and Figure 12 in Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide information on computer resources in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss both potential positive societal impacts and negative social impacts
of our work in Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release any data or models that have a high risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets used in the paper are properly
credited, and the license and terms of use are explicitly mentioned in Appendix C and
properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code and data that we have released at https://github.com/Networks-
Learning/prediction-powered-ranking contains documentation.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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