
DrugAgent: Automating AI-aided Drug Discovery Programming through
LLM Multi-Agent Collaboration

Anonymous ACL submission

Abstract

Recent progress in Large Language Models001
(LLMs) has drawn attention to their potential002
for accelerating drug discovery. However, a003
central problem remains: translating theoret-004
ical ideas into robust implementations in the005
highly specialized context of pharmaceutical006
research. This limitation prevents practitioners007
from making full use of the latest AI develop-008
ments in drug discovery. To address this chal-009
lenge, we introduce DrugAgent, a multi-agent010
framework that automates machine learning011
(ML) programming for drug discovery tasks.012
DrugAgent employs an LLM Planner that for-013
mulates high-level ideas and an LLM Instructor014
that identifies and integrates domain knowledge015
when implementing those ideas. We present016
case studies on three representative drug discov-017
ery tasks. Our results show that DrugAgent con-018
sistently outperforms leading baselines, includ-019
ing a relative improvement of 4.92% in ROC-020
AUC compared to ReAct for drug-target inter-021
action (DTI). DrugAgent is publicly available022
at the anonymous link https://anonymous.023
4open.science/r/drugagent-5C42/.024

1 Introduction and Related Work025

Artificial intelligence (AI) is changing many as-026

pects of drug discovery (Huang et al., 2022).027

Since experimental measurements of drug prop-028

erties are costly and time-consuming, researchers029

have turned to automated approaches for diverse030

stages of drug development (Pushpakom et al.,031

2019). AI-ready datasets and benchmarks, such032

as ADMET prediction, drug-target interaction, and033

high-throughput screening, are now widely acces-034

sible (Huang et al., 2021; Chen et al., 2024a; Wang035

et al., 2024c). Meanwhile, deep learning has shown036

promise in lead optimization and drug-target inter-037

action prediction (Huang et al., 2020a), pointing to-038

ward possible reductions in the resources required039

for traditional experimentation.040

Yet building machine learning (ML) pipelines 041

for drug discovery is challenging, given that it in- 042

volves biology, chemistry, pharmaceutical science, 043

and computer science (Huang et al., 2022). While 044

Large Language Models (LLMs) offer automated 045

reasoning and coding assistance, domain-specific 046

subtleties remain difficult to handle in standard 047

frameworks. General-purpose agent-based systems 048

for ML, such as MLAgentBench (Huang et al., 049

2024a) and AI-Scientist (Lu et al., 2024a), have 050

been proposed for end-to-end ML programming, 051

but they lack expert-level knowledge of drug dis- 052

covery workflows. Small mistakes, such as using 053

the wrong domain-specific library or misinterpret- 054

ing biological data types, can be difficult to debug 055

in specialized projects. In contrast, frameworks like 056

ChemCrow (M. Bran et al., 2024) and MultiTool- 057

CoT (Chain of Thought) (Inaba et al., 2023) include 058

chemical tools but offer limited support for larger- 059

scale ML tasks. This highlights the need for an 060

ML-focused system with domain awareness, span- 061

ning data preprocessing through model evaluation. 062

Present Work: DrugAgent. We introduce Dru- 063

gAgent, a multi-agent LLM framework that uni- 064

fies ML programming with biomedical expertise 065

to address the demands of modern drug discov- 066

ery. First, DrugAgent systematically checks where 067

domain knowledge is required, then deploys spe- 068

cialized resources before proceeding with coding. 069

Second, it uses a dynamic approach to manage 070

ML ideas, creating diverse options early on and 071

refining them based on empirical results. Third, 072

DrugAgent features a carefully curated library of 073

domain-specific documentation covering data ac- 074

quisition, data transformation, and advanced model 075

design, supporting critical tasks in drug discov- 076

ery. We evaluate DrugAgent on three representa- 077

tive tasks and find that it exceeds the performance 078

of general-purpose baselines and matches or sur- 079

passes expert-written methods. Our key contri- 080

butions include: (1) a systematic workflow that 081
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Table 1: Key differences between DrugAgent and existing agent methods. DrugAgent stands out by: 1)
interacting with the environment, 2) specializing in ML programming, 3) incorporating domain knowledge specific
to drug discovery, and 4) planning at the idea space level.

Interaction with Env ML Specialization Domain Knowledge Idea Space Planning

ReAct (Yao et al., 2023) ✔ ✗ ✗ ✗

ResearchAgent (Huang et al., 2024a) ✔ ✔ ✗ ✗

ChemCrow (M. Bran et al., 2024) ✔ ✗ ✔ ✗

DrugAgent (Ours) ✔ ✔ ✔ ✔
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Figure 1: Overview of the DrugAgent framework. Given a drug discovery task described in natural language (i.e.,
user’s input, e.g., design an AI model to predict Absorption (one of the ADMET properties) using the PAMPA
dataset (Siramshetty et al., 2021)), the LLM Planner collaborates with the LLM Instructor to iteratively search for
actionable, high-performing solutions.

emphasizes when and how to incorporate domain082

knowledge for ML-driven drug discovery, (2) an083

iterative planning strategy guided by experimen-084

tal observations, and (3) a broad set of specialized085

tools and documentation for biological data pro-086

cessing and modeling. A detailed comparison with087

existing approaches is in Table 1 and Appendix A.088

2 Methodology089

We present DrugAgent, a multi-agent LLM frame-090

work designed to handle the specialized challenges091

of AI-driven drug discovery. As illustrated in Fig-092

ure 1, DrugAgent integrates two primary agents:093

(1) an LLM Planner, which manages the high-094

level generation and refinement of solution ideas,095

and (2) an LLM Instructor, which translates these096

ideas into concrete code, drawing on domain-097

specific knowledge to address the complex needs098

of drug discovery tasks.099

Problem Formulation. Following Huang et al.100

(2024a), an ML programming task consists of three101

components: (1) a Task Description, which spec-102

ifies the objectives and constraints in natural lan-103

guage, (2) Starter Files, which provide initial re-104

sources like datasets or code templates, and (3)105

Evaluator, which is a performance metric function 106

used to assess the output quality. 107

LLM Planner: Idea Space Management. 108

Open-ended ML tasks in drug discovery can be 109

approached by multiple strategies with no single 110

deterministic solution, and single-agent systems 111

risk missing promising alternatives (Wang et al., 112

2024a). Additionally, LLMs sometimes make im- 113

practical suggestions if they lack specific domain 114

expertise or rely on hallucinated information. To 115

address these concerns, the Planner has two phases: 116

1. Idea Generation. From the task description, the 117

Planner derives K possible solution ideas. 118

2. Exploration. The Planner selects one idea and 119

sends it to the Instructor for experimental eval- 120

uation. Based on success or failure reports, it 121

revises the idea set, discarding those that under- 122

perform or are not feasible. 123

The process repeats until a maximum iteration limit 124

is reached, after which the highest-performing idea 125

is submitted as the final solution. 126

LLM Instructor: Domain-specific Knowledge 127

and Tool Preparation. Drug discovery depends 128
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on specialized workflows, e.g., the correct handling129

of SMILES strings and tailored data preprocess-130

ing. When standard code-generation approaches ig-131

nore this domain requirements (Huang et al., 2023,132

2024b), the resulting errors are hard to debug.133

Within DrugAgent, the Instructor incorporates134

domain knowledge at every step of the coding pro-135

cess. It can execute standard ML actions (e.g.,136

reading or editing scripts, running code; see Ap-137

pendix B) and references a set of targeted doc-138

uments to build or refine specialized tools. The139

Instructor then generates a performance report—if140

critical functionalities are absent, it returns a failure141

report instead. Specifically, the Instructor relies on142

three curated types of documentation:143

• Raw Data Acquisition: Methods for retrieving144

and preprocessing biological data.145

• Featurizing Biological Data: Techniques for en-146

coding molecules and proteins (e.g., fingerprints,147

graph-based representations).148

• Domain-Specific Models: Pretrained founda-149

tion models such as ChemBERTa (Nowakowska,150

2023) (small molecules) and ESM (Evolutionary151

Scale Modeling for protein sequence) (Lin et al.,152

2022).153

Further details about these resources appear in Ap-154

pendix C. By explicitly integrating domain guid-155

ance into the coding workflow, DrugAgent aims to156

reduce errors that arise from incomplete or incor-157

rect handling of drug discovery subtleties.158

3 Experiment159

3.1 Experimental Setup160

AI-solvable Drug Discovery Tasks. We propose161

three representative AI-solvable drug discovery162

tasks to validate the effectiveness of DrugAgent.163

ADMET prediction forecasts pharmacokinetic164

properties (Absorption, Distribution, Metabolism,165

Excretion, and Toxicity) from a drug’s molecular166

structure, crucial for assessing a drug’s efficacy and167

safety (Niu et al., 2024; Lu et al., 2022, 2024b;168

Chen et al., 2021, 2024b). High-throughput169

screening (HTS) leverages ML models to predict170

assay outcomes based on molecular structure, im-171

proving the efficiency and reducing the cost of172

evaluating the biological activity of large chemical173

libraries (Pham et al., 2021). Drug-target interac-174

tion (DTI) prediction forecasts the binding affinity175

between drugs and proteins using compound struc- 176

tures and amino acid sequences, supporting virtual 177

screening, drug repurposing, and side effect predic- 178

tion (Liu et al., 2024; Zhang et al., 2021). All these 179

problems are binary classification tasks. 180

Dataset. We select one dataset for each task: 181

PAMPA (Siramshetty et al., 2021) for ADMET 182

prediction, DAVIS (Davis et al., 2011) for DTI 183

prediction, and HIV (Wu et al., 2018) for HTS. A 184

detailed description of the datasets and the data 185

splitting methods can be found in Appendix D. 186

Baselines. We use GPT-4o-2024-08-06 (Ope- 187

nAI, 2024) to build all AI-based methods in our 188

study. We compare DrugAgent against three AI- 189

based methods and one Human baseline. CoT 190

(Chain of Thought) is a simple baseline where the 191

agent generates a solution by breaking the problem 192

into substeps (Wei et al., 2022). ReAct follows 193

an interleaved reasoning and action approach, en- 194

abling interactive analysis and execution (Yao et al., 195

2023). ResearchAgent is designed for ML tasks, 196

maintaining a research plan and executing key ac- 197

tions such as file understanding, script editing, and 198

task reflection (Huang et al., 2024a). The Human 199

baseline relies on model choices reported as effec- 200

tive in the literature and selected by experts, with 201

details provided in Appendix E. 202

These baselines are compared with two vari- 203

ants of DrugAgent: DrugAgent@Top1, where the 204

agent selects the best solution based on validation 205

results, and DrugAgent@Top3, where the agent 206

submits the top three solutions based on validation 207

results, and reports the best test set outcome. The 208

detailed experimental settings for all agent frame- 209

works are provided in Appendix F. 210

Evaluation Metrics. We conduct eight indepen- 211

dent runs for each AI-based method. A submission 212

is considered valid if (1) the generated code is free 213

of bugs and, when executed, produces a submission 214

file, (2) the submission file adheres to our format 215

requirements, and (3) the performance does not fall 216

more than 10% below the human baseline. The 217

average metric (ROC-AUC) across all valid sub- 218

missions is reported. If all eight submissions are 219

invalid, the results are marked as N/A. 220

3.2 Quantitative Results 221

Table 2 reports the performance across all datasets. 222

DrugAgent achieves the highest ROC-AUC and 223

Valid Rate among all AI-based methods, perform- 224

ing comparably to baselines selected by human 225
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ADMET HTS DTI

Method ROC-AUC (↑) Valid Rate (↑) ROC-AUC (↑) Valid Rate (↑) ROC-AUC (↑) Valid Rate (↑)

Human 0.8173 — 0.8305 — 0.8940 —
CoT 0.7599 62.5% 0.7524 50.0% N/A 0.0%
React 0.7385 87.5% 0.7653 75.0% 0.8530 50.0%
ResearchAgent 0.7957 100.0% 0.7913 100.0% 0.8793 75.0%
DrugAgent@Top1 0.7667 100.0% 0.7919 100.0% 0.8950 87.5%
DrugAgent@Top3 0.8206 100.0% 0.8257 100.0% 0.8950 87.5%

Table 2: ROC-AUC and Valid Rate for PAMPA (ADMET), HIV (HTS), and DAVIS (DTI) datasets.

Method ROC-AUC (↑) Valid Rate (↑)

DrugAgent 0.8950 87.5%
DrugAgent w/o Planner 0.8845 87.5%
DrugAgent w/o Instructor 0.8770 75.0%

Table 3: Ablation study on the DAVIS (DTI) task,
demonstrating how removing the Planner or Instruc-
tor from DrugAgent affects ROC-AUC and Valid Rate.
Results are averaged across runs.

experts. Notably, it outperforms ReAct in the226

DTI task, achieving a relative improvement of227

4.92% in ROC-AUC. We also observe that Dru-228

gAgent@Top3 surpasses DrugAgent@Top1 in the229

ADMET and HTS tasks. This suggests that vali-230

dation set performance does not always strongly231

correlate with test set performance, sometimes lead-232

ing the agent to select a suboptimal idea for final233

submission. However, considering multiple sub-234

missions can help mitigate this problem.235

Figure 3 highlights the importance of each agent236

in our framework, demonstrating that both the Plan-237

ner and Instructor contribute significantly to over-238

all performance. Additional qualitative analysis of239

their roles is provided in Appendix G.240

3.3 Case Study241

Comparing DrugAgent with ReAct. We con-242

duct a case study to compare our framework with243

ReAct (see Appendix H for detailed traces and244

analysis). The results highlight our framework’s245

effectiveness in diversifying ideas, accurately in-246

tegrating domain knowledge, and learning from247

failures.248

Trace Analysis. To further assess the agent’s rea-249

soning and decision-making process, we analyze250

the traces of all runs for the DTI task and categorize251

the top four error types. A detailed description of252

each failure type is provided in Appendix I. Figure253

2 illustrates that for general agent frameworks like254

ReAct and ResearchAgent, most errors occur due255

Figure 2: Percentage of runs over DAVIS (DTI) dataset
that falls into different error modes.

to poor performance caused by incorrect operations 256

in steps requiring domain knowledge. In contrast, 257

DrugAgent exhibits no errors in this category and 258

achieves the lowest overall error rate, highlight- 259

ing the effectiveness of our framework in utilizing 260

domain knowledge. 261

4 Conclusion 262

In this paper, we have introduced DrugAgent, a 263

multi-agent framework that marks a significant 264

advancement in leveraging large language mod- 265

els for automating critical aspects of drug discov- 266

ery. Through case studies in three drug discov- 267

ery tasks, DrugAgent demonstrates remarkable 268

improvements over general-purpose agent frame- 269

works, such as ReAct and ResearchAgent. This can 270

largely be attributed to the planner agent, which ef- 271

fectively generates and searches for ideas, and the 272

instructor agent, which ensures reliable implemen- 273

tation by integrating a specialized toolset. Together, 274

these agents enable DrugAgent to bridge the gap 275

between generalized AI capabilities and the nu- 276

anced demands of pharmaceutical research. We 277

believe this work opens exciting new avenues for 278

research and collaboration, pushing the boundaries 279

of AI-driven drug discovery. 280
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Limitations281

This study has several limitations. First, we eval-282

uate the performance of DrugAgent on three case283

study tasks. However, these tasks are not suffi-284

cient for a comprehensive evaluation, and there285

is a need for more extensive benchmarks to as-286

sess machine learning programming tasks in drug287

discovery settings. Second, although DrugAgent288

can generate solutions comparable to human base-289

lines, it is still limited to classic state-of-the-art290

baselines rather than the latest cutting-edge meth-291

ods. Advancing agent capabilities in this domain292

will require significant research efforts. Third, the293

current documentation for DrugAgent is relatively294

basic and could be expanded in the future to cover295

additional aspects of the drug discovery process.296

Lastly, the agent framework has the potential to in-297

corporate a ’human-in-the-loop’ approach, which298

would enhance its usability for scientists working299

on real-world drug discovery tasks.300

Ethics Statement301

We do not foresee any immediate ethical or soci-302

etal concerns arising from our work. However, we303

acknowledge that, due to challenges like hallucina-304

tion, the current version of DrugAgent is not yet305

ready for direct deployment in the drug discovery306

pipeline. For instance, errors such as fabricating307

results could lead to inaccurate predictions, which308

might waste resources in the wet lab verification309

process or misguide the drug discovery direction.310

As a result, further safety checks and human over-311

sight are essential. Moreover, as AI agents advance,312

there is potential for them to replace human engi-313

neers in ML programming tasks within drug discov-314

ery. This highlights the need for human workers to315

learn how to effectively collaborate with the agent316

and understand its underlying implementation. By317

fostering this collaboration, AI can enhance and318

complement professional expertise rather than re-319

place it.320
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A Related Work 579

This section provides a more detailed overview of 580

related work on LLM agents and their applications 581

in ML programming and biomedical discovery. 582

LLM Agents An LLM agent is a system that 583

uses large language models to interact with users 584

or other systems, perform tasks, and make deci- 585

sions autonomously. Empowered by LLMs, LLM 586

agents have the capability to perform multi-step 587

reasoning, planning, and action execution beyond 588

static text generation (Wang et al., 2024b). Previ- 589

ous works have equipped LLM agents with mod- 590

ules to dynamically interact with external tools, 591

retrieve information, and adapt based on real-time 592

feedback (Schick et al., 2023; Yoon et al., 2024; 593

Qin et al., 2023; Ravuru et al., 2024; Lála et al., 594

2023). This allows them to solve complex, evolv- 595

ing tasks such as code writing, long-term reasoning, 596

and decision-making in various contexts (Guo et al., 597

2024; Jiang et al., 2024). In this work, we tailor 598

the LLM multi-agent framework to drug discovery 599

tasks. 600

LLM for ML Programming Recent work has 601

focused on accelerating traditionally manual re- 602

search processes by automating ML programming. 603

AIDE acts as a data science agent, exploring a vast 604
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solution space and iteratively refining its approach605

to reach optimal solutions (WecoAI, 2024). AutoK-606

aggle introduces a specialized multi-agent frame-607

work for Kaggle data science competitions (Li608

et al., 2024b). AI-Scientist enables LLMs to con-609

duct research autonomously, from idea generation610

to paper drafting, focusing on ML-related top-611

ics (Lu et al., 2024a). In parallel, benchmarks have612

been developed that provide a suite of 13 tasks613

to evaluate LLMs’ capabilities in conducting ML614

programming (Huang et al., 2024a). However, ex-615

isting works cannot handle domain-specific ML616

tasks requiring complex domain knowledge, e.g.,617

AI-aided drug discovery. To address this, we de-618

sign workflows to insert domain knowledge and619

call domain-specific tools automatically.620

LLM for Biomedical Discovery Many stud-621

ies have highlighted the applications of LLMs in622

biomedical discovery, particularly when integrated623

with domain-specific tools. For instance, Chem-624

Crow demonstrates the potential of LLM agents625

in organic synthesis, drug discovery, and material626

design (M. Bran et al., 2024). Similarly, MMedA-627

gent is a multimodal medical agent designed to628

handle complex language and multimodal tasks,629

demonstrating LLM versatility in medical applica-630

tions (Li et al., 2024a). The multi-agent approach631

is exemplified by ClinicalAgent (Yue et al., 2024),632

which introduces a framework for clinical trial out-633

come prediction by decomposing it into subprob-634

lems, allowing individual agents to collaborate and635

generate a comprehensive outcome. Existing ML636

biomedical agents, however, generally lack the ML-637

specific expertise required to perform end-to-end638

programming.639

B Action640

Below is a set of machine learning (ML)-related641

actions available to the instructor: List Files, Read642

File, Write File, Append File, Copy File, Inspect643

Script Lines, Undo Edit Script, Execute Script, Fi-644

nal Answer, Understand File, Edit Script, and Edit645

Script Segment. Since these actions are commonly646

used across general ML agents, we recommend647

referring to MLAgentBench (Huang et al., 2024a)648

for a detailed explanation of each action.649

C Documentation650

Raw Data Preprocessing: We compiled documen-651

tation from the TDC library (Huang et al., 2021),652

which includes 66 AI/ML-ready datasets for drug 653

discovery. 654

Drug Preprocessing: We documented seven 655

molecular fingerprinting methods, two molecu- 656

lar graph construction methods, and one one-hot 657

encoding method, using a combination of the 658

TDC (Huang et al., 2021), DGL-LifeSci (Li et al., 659

2021), and RDKit (Landrum, 2023) libraries. 660

Protein Preprocessing: We documented three 661

protein fingerprinting methods and one one-hot 662

encoding method, utilizing the PyBioMed (CBDD 663

Group, 2020) library. 664

Domain-Specific Models: We documented 665

the ChemBERTa (Nowakowska, 2023) and 666

ESM (Rives et al., 2019) models, using the Trans- 667

formers library (Wolf et al., 2020). 668

The complete documentation, along with 669

the code for our framework, is available 670

at https://anonymous.4open.science/r/ 671

drugagent-5C42/. It is important to note that this 672

documentation can be easily extended based on 673

specific needs and available resources. 674

D Dataset Description 675

Table 4 provides an overview of the selected drug 676

discovery tasks and datasets used in our case study. 677

DAVIS: This dataset contains 68 drugs and 678

379 proteins, with 2086, 3006, and 6011 sam- 679

ples allocated for training, validation, and test- 680

ing, respectively. A detailed description of 681

the dataset and preprocessing methods can be 682

found in MolTrans (Huang et al., 2020b). The 683

dataset is available at https://github.com/ 684

kexinhuang12345/moltrans. 685

PAMPA: This dataset includes 1424 training 686

samples, 203 validation samples, and 407 test sam- 687

ples. The data is split using the TDC random split 688

strategy. More details can be found on the TDC 689

website: https://tdcommons.ai/single_pred_ 690

tasks/adme. 691

HIV: This dataset consists of 28,789 training 692

samples, 4,113 validation samples, and 8,225 test 693

samples. The split follows the TDC random split 694

strategy. Further information is available on the 695

TDC website: https://tdcommons.ai/single_ 696

pred_tasks/hts. 697

E Human Baseline 698

Previous research (Xia et al., 2023) has shown that 699

for ADMET and HTS tasks, tree-based models 700

consistently outperform other approaches such as 701
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ADMET Prediction HTS Prediction DTI Prediction

Type Single-instance predic-
tion

Single-instance predic-
tion

Multi-instance predic-
tion

Input SMILES string SMILES string SMILES string and pro-
tein amino acid se-
quence

Impact Prevents clinical trial
failures through early
and accurate ADMET
profiling

Reduces experimental
screening costs by pre-
dicting assay outcomes

Reduces experimental
screening needs by pri-
oritizing drug candi-
dates with high binding
affinity

Dataset (Case Study) PAMPA (Siramshetty
et al., 2021)

HIV (Wu et al., 2018) DAVIS (Davis et al.,
2011)

Table 4: Task overview: ADMET, HTS, and DTI. In this paper, we focus on small-molecule drugs, which constitute
over 90% of all approved drugs. Small molecules are represented as SMILES strings, a compact ASCII notation
describing chemical structures.

GCN, DNN, SVM, CNN, RNN, and MPNN. These702

models serve as a simple yet strong baseline that is703

difficult to beat. Therefore, we use a random forest704

model combined with Morgan fingerprinting as the705

human baseline for these two tasks.706

For the DTI task, DeepDTA (Öztürk et al., 2018),707

which employs two CNN encoders for drug and708

protein representations, is a well-established deep709

learning baseline. It is widely adopted as a SOTA710

baseline in DTI studies (Huang et al., 2020b; Liu711

et al., 2024, 2025) and is considered the human712

baseline for this task.713

F Settings714

For all agent frameworks, we allow a maximum715

of 100 actions. For a detailed definition of an716

action, refer to Appendix B and the MLAgent-717

Bench (Huang et al., 2024a) paper. For the Re-718

searchAgent baseline, we made the following ad-719

justments to improve performance:720

• For the understand_file action, we process721

only the first 3 blocks to save resources in case722

the file is too large (e.g., when understanding723

a CSV file).724

• We also print error messages in the observa-725

tion to assist the agent with debugging.726

G Ablation Study 727

G.1 Without Instructor 728

We found that although exploring multiple ideas 729

improves the overall performance compared to the 730

original ReAct framework, the results are still not 731

satisfactory. The primary reason is that the model 732

sometimes encodes molecules in an ineffective 733

manner. Below is an example of code generated 734

by the ReAct Agent that naively encodes a protein, 735

leading to poor results despite a promising idea. 736

1 def protein_to_features(protein_sequence):
2 # Convert amino acid sequence into a feature

vector of fixed length 1024
3 features = np.zeros(1024, dtype=int) # fixed

length vector
4 for i, c in

enumerate(protein_sequence[:1024]):
5 features[i] = ord(c)
6 return features

G.2 Without Planner 737

We found that even when prompted to iteratively 738

experiment with different models, the agent fails to 739

sufficiently diversify its approach, often focusing 740

on variations of similar ideas. For example, it may 741

compare logistic regression with logistic regression 742

incorporating feature engineering, which limits its 743

ability to explore more optimal approaches. 744

H Comparing DrugAgent with ReAct 745

To demonstrate the effectiveness of DrugAgent, 746

we conducted a case study on a DTI prediction 747
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Input: Designing and evaluating a model for DTI prediction (DAVIS dataset).
Step 0: Human intervention needed to download raw data.

Step 1: Edit script to train Logistic Regression.
Observation: Execution error

Step 2: Debug and use "CountVectorizer" for protein preprocessing.
Observation: Fixed preprocessing issue. Validation ROC-AUC = 0.8522

Step 3: Refine Logistic Regression model.
Observation: No performance improvement.

Final Submission: Logistic Regression 

Test ROC-AUC = 0.8726

(a) ReAct

(b) DrugAgent

Step 1: Generate multiple ideas: GNN, pre-trained model, random forest, etc.
Step 2: Start with GNN. Identify required domain knowledge: dataset
downloading, molecular graph construction.
Step 3: Dataset downloaded successfully! Added to toolbox.
Step 4: Molecular graph construction failed. Idea manager stops exploration
of the GNN idea.
Step 5-10: Attempt pre-trained model. Fetch documentation for ChemBERTa API 

Step 10-15: Try random forest.Successfully fingerprinted molecule 
Step 16: Maximum steps reached, return best result from random forest.

   Suboptimal encoding method

Step 0: If no raw data provided, the Agent download and split data using the
TDC library. 

Step 1: Planner initialize the idea space
Observation: LR with One-hot Encoding, GNN for both protein and drug, Random
Forest with fingerprinting, etc.

Step 2: Planner begin by investigating the LR method. 
Observation 2: The Instructor successfully implemented and report validation
ROC-AUC = 0.7673. (no domain knowledge required for one-hot encoding)

Step 3: Planner choose to investigate GNN - a slightly more advanced method.
Observation 3: The Instructor report failure: protein graph cannot be
generated with 1D sequence input.

Step 4: Planner will prevent graph-based method to encode protein in the
future. Choose Random Forest as the next idea.
Observation: The Instructor successfully impleennted and report validation
ROC-AUC = 0.922. Integrate domain knowlege: ECFP4 encoding for Drug and CT
encoding for protein.

Final Submission: Random Forest with test set performance 0.9136

   Successfully diversified ideas

Step 0: If no raw data provided, Agent downloads and splits data (TDC library). 

Step 1: Planner initializes idea space.
Observation: LR (one-hot encoding), GNN, Random Forest (fingerprinting), DNN, etc.

Step 2: Planner investigates LR.
Observation: Successful. Validation ROC-AUC = 0.7673.

Step 3: Planner investigates GNN.
Observation: Failure. Protein graph cannot be generated from 1D sequence.

Step 4: Planner skips graph-based methods for protein encoding. Tries Random Forest.
Observation: Successful. Validation ROC-AUC = 0.922 (ECFP4 for drug, CT for protein).

Final Submission: Random Forest with feature engineering 

   Accurately identified and integrated domain knowledge

   Failed to identify the need for protein preprocessing

   Failure to diversify methods

   Failure to diversify methods

   Test ROC-AUC = 0.8726

   Test ROC-AUC = 0.9136

   Reported failure to inform and refine future idea exploration.

Figure 3: Comparison of ReAct and DrugAgent on a DTI task. (a) ReAct, a general-purpose framework, delivers
lower performance due to a lack of idea diversification and failure to recognize and incorporate domain knowledge.
(b) DrugAgent systematically explores a variety of approaches, successfully identifying optimal models and
preprocessing methods to achieve strong performance.

task and compared its performance to ReAct, as748

illustrated in Fig. 3. This comparison underscores749

the challenges LLMs face in domain-specific tasks750

and highlights how DrugAgent overcomes these751

limitations.752

First, while ReAct (Yao et al., 2023) is prompted753

to iteratively select the best model, it lacks a high-754

level planning mechanism, instead focusing on im-755

plementing and refining a single approach. In con-756

trast, DrugAgent leverages a planner agent to di-757

versify ideas and systematically identify the most758

effective approaches.759

Second, ReAct fails to recognize the need for760

preprocessing protein data early in the process, re-761

sulting in wasted time during debugging and the762

subsequent selection of suboptimal methods for763

molecular data encoding. By comparison, Dru- 764

gAgent correctly identifies substeps that require 765

domain-specific tools and successfully integrates 766

fingerprint-based encoding methods for biological 767

data, delivering a bug-free model on the first at- 768

tempt. 769

Third, ReAct is more prone to failure and strug- 770

gles to recover from bad planning. DrugAgent, on 771

the other hand, learns from observations to guide 772

future idea selection and avoids repeated failures. 773

For instance, in the case study, DrugAgent iden- 774

tifies the limitations of graph-based methods for 775

protein encoding and avoids further exploration of 776

those approaches. These findings highlight DrugA- 777

gent’s ability to automate domain-specific machine 778

learning tasks while systematically selecting and 779
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refining the most effective approaches for the prob-780

lem at hand.781

H.1 Sample Code by DrugAgent782

1 import pandas as pd
2 import numpy as np
3 from sklearn.ensemble import

RandomForestClassifier
4 from sklearn.metrics import roc_auc_score
5 from agent_tools import DrugFeaturizer
6 from agent_tools import ProteinFeaturizer
7

8 # Load train, validation, and test datasets
9 train_data = pd.read_csv("train.csv")

10 val_data = pd.read_csv("val.csv")
11 test_data = pd.read_csv("test.csv")
12

13 print(f"Loaded {len(train_data)} training
samples, {len(val_data)} validation samples, and
{len(test_data)} test samples.")

14

15 print(train_data.head())
16

17 X_train_drug = train_data['Drug']
18 X_train_protein = train_data['Protein']
19 y_train = train_data['Y']
20

21 X_val_drug = val_data['Drug']
22 X_val_protein = val_data['Protein']
23 y_val = val_data['Y']
24

25 #
***********************************************

26 # In this part of the code, write and train the
model on the above dataset to perform the task.

27 # This part should populate the variable
train_roc_auc and valid_roc_auc on the model
selected

28 #
***********************************************

29

30 # Feature extraction
31 drug_featurizer = DrugFeaturizer(method='ECFP4')
32 protein_featurizer =

ProteinFeaturizer(method='ct')
33

34 # Transformations
35 X_train_drug_features =

drug_featurizer(X_train_drug.tolist())
36 X_train_protein_features =

protein_featurizer(X_train_protein.tolist())
37

38 X_val_drug_features =
drug_featurizer(X_val_drug.tolist())

39 X_val_protein_features =
protein_featurizer(X_val_protein.tolist())

40

41 # Concatenate drug and protein features
42 X_train_features =

np.concatenate([X_train_drug_features,
X_train_protein_features], axis=1)

43 X_val_features =
np.concatenate([X_val_drug_features,
X_val_protein_features], axis=1)

44

45 # Train Random Forest model

46 rf_model =
RandomForestClassifier(n_estimators=100,
random_state=42)

47 rf_model.fit(X_train_features, y_train)
48

49 # Predict probabilities
50 train_preds =

rf_model.predict_proba(X_train_features)[:, 1]
51 val_preds =

rf_model.predict_proba(X_val_features)[:, 1]
52

53 # Compute ROC AUC scores
54 train_roc_auc = roc_auc_score(y_train,

train_preds)
55 valid_roc_auc = roc_auc_score(y_val, val_preds)
56

57 #
***********************************************

58 # End of the main training module
59 #

***********************************************
60

61 print("Train ROC AUC Score: " +
str(train_roc_auc))

62 print("Validation ROC AUC Score: " +
str(valid_roc_auc))

63

64 X_test_drug = test_data['Drug']
65 X_test_protein = test_data['Protein']
66

67 # Transformations for test set
68 X_test_drug_features =

drug_featurizer(X_test_drug.tolist())
69 X_test_protein_features =

protein_featurizer(X_test_protein.tolist())
70 X_test_features =

np.concatenate([X_test_drug_features,
X_test_protein_features], axis=1)

71

72 # Replace with actual predictions
73 test_preds =

rf_model.predict_proba(X_test_features)[:, 1]
74

75 test_data['Predicted'] = test_preds
76

77 output_file = "submission.csv" #do not change
submission file name

78 test_data.to_csv(output_file, index=False)
79

80 print(f"Submission file saved to {output_file}.")

I Error Type 783

1. Hallucination: This occurs when the agent 784

fabricates results or falsely claims progress, 785

such as reporting a submission despite not 786

making any edits to the training script. 787

2. Debugging: The agent fails to resolve issues 788

in its code modifications, such as mismatched 789

tensor shapes. 790

3. Domain Error: Poor performance caused by 791

incorrect operations in steps requiring domain 792

knowledge (e.g., improper methods for finger- 793

printing drugs and proteins). 794
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4. Format Error: The agent altered the submis-795

sion format, making it unrecognizable to the796

evaluator.797

J Code and Reproducibility798

The DrugAgent code is available at our anony-799

mous repository: https://anonymous.4open.800

science/r/drugagent-5C42/ and is under the801

MIT License.802
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