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Abstract

Graph neural networks (GNNs) have recently emerged as a promising approach for solving
the Boolean Satisfiability Problem (SAT), offering potential alternatives to traditional back-
tracking or local search SAT solvers. However, despite the growing volume of literature in
this field, there remains a notable absence of a unified dataset and a fair benchmark to evalu-
ate and compare existing approaches. To address this crucial gap, we present G4SATBench,
the first benchmark study that establishes a comprehensive evaluation framework for GNN-
based SAT solvers. In G4SATBench, we meticulously curate a large and diverse set of SAT
datasets comprising 7 problems with 3 difficulty levels and benchmark a broad range of GNN
models across various prediction tasks, training objectives, and inference algorithms. To ex-
plore the learning abilities and comprehend the strengths and limitations of GNN-based
SAT solvers, we also compare their solving processes with the heuristics in search-based
SAT solvers. Our empirical results provide valuable insights into the performance of GNN-
based SAT solvers and further suggest that existing GNN models can effectively learn a
solving strategy akin to greedy local search but struggle to learn backtracking search in the
latent space. Our codebase is available at https://github.com/zhaoyu-li/G4SATBench.

1 Introduction

The Boolean Satisfiability Problem (SAT) is a crucial problem at the nexus of computer science, logic, and
operations research, which has garnered significant attention over the past five decades. To solve SAT in-
stances efficiently, modern SAT solvers have been developed with backtracking (especially with conflict-driven
clause learning, a.k.a. CDCL) or local search (LS) heuristics that effectively exploit the instance’s structure
and traverse its vast search space (Biere et al., 2009). However, designing such heuristics remains a highly
non-trivial and time-consuming task, with a lack of significant improvement in recent years. Conversely, the
recent rapid advances in graph neural networks (GNNs) (Li et al., 2016; Kipf & Welling, 2017; Xu et al.,
2019) have shown impressive performances in analyzing structured data, offering a promising opportunity
to enhance or even replace modern SAT solvers. As such, there have been massive efforts to leverage GNNs
to solve SAT over the last few years (Holden et al., 2021; Guo et al., 2022).

Despite the recent progress, the question of how (well) GNNs can solve SAT remains unanswered. One
of the main reasons for this is the variety of learning objectives and usage scenarios employed in existing
work, making it difficult to evaluate different methods in a fair and comprehensive manner. For example,
NeuroSAT (Selsam et al., 2019) predicts satisfiability, NeuroCore (Selsam & Bjørner, 2019) classifies unsat-
core variables, QuerySAT (Ozolins et al., 2022) constructs a satisfying assignment, and NSNet (Li & Si, 2022)
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predicts marginal distributions of all satisfying solutions to solve the SAT problem. Moreover, most previous
research has experimented on different datasets that vary in a range of settings (e.g., data distribution,
instance size, and dataset size), which leads to a lack of unified and standardized datasets for training and
evaluation. Additionally, some work (Amizadeh et al., 2019b; Shi et al., 2023; Yan et al., 2023) has noted
the difficulty of re-implementing prior approaches as baselines, rendering it arduous to draw consistent
conclusions about the performance of peer methods. All of these issues impede the development of GNN-
based solvers for SAT solving.

To systematically quantify the progress in this field and facilitate rapid, reproducible, and generalizable
research, we propose G4SATBench, the first comprehensive benchmark study for SAT solving with GNNs.
G4SATBench is characterized as follows:

• First, we construct a large and diverse collection of SAT datasets that includes instances from distinct
sources and difficulty levels. Specifically, our benchmark consists of 7 different datasets from 3 benchmark
families, including random instances, pseudo-industrial instances, and combinatorial problems. It not only
covers a wide range of prior datasets but also introduces 3 levels of difficulty for each dataset to enable
fine-grained analyses.

• Second, we re-implement various GNN-based SAT solvers with unified interfaces and configuration set-
tings, establishing a general evaluation protocol for fair and comprehensive comparisons. Our framework
allows for evaluating different GNN models in SAT solving with various prediction tasks, training objec-
tives, and inference algorithms, encompassing the diverse learning frameworks employed in the existing
literature.

• Third, we present baseline results and conduct thorough analyses of GNN-based SAT solvers, providing a
detailed reference of prior work and laying a solid foundation for future research. Our evaluations assess
the performances of different choices of GNN models (e.g., graph constructions, message-passing schemes)
with particular attention to some critical parameters (e.g., message-passing iterations), as well as their
generalization ability across different distributions.

• Lastly, we conduct a series of in-depth experiments to explore the learning abilities of GNN-based SAT
solvers. Specifically, we compare the training and solving processes of GNNs with the heuristics employed
in both CDCL and LS-based SAT solvers. Our experimental results reveal that GNNs tend to develop a
solving heuristic similar to greedy local search to find a satisfying assignment but fail to effectively learn
the CDCL heuristic in the latent space.

We believe that G4SATBench will help the research community to make significant strides in understanding
the capabilities and limitations of GNNs for solving SAT and facilitate further endeavors in this domain.

2 Related Work

SAT solving with GNNs. Existing GNN-based SAT solvers can be broadly categorized into two
branches (Holden et al., 2021; Guo et al., 2022): standalone neural solvers and neural-guided solvers. Stan-
dalone neural solvers utilize GNNs to solve SAT instances directly. For example, a stream of research (Bünz
& Lamm, 2017; Selsam et al., 2019; Jaszczur et al., 2020; Cameron et al., 2020; Shi et al., 2023) focuses
on predicting the satisfiability of a given formula, while several alternative approaches (Amizadeh et al.,
2019a;b; Ozolins et al., 2022; Li et al., 2023; Yan et al., 2023) aim to construct a satisfying assignment.
Neural-guided solvers, on the other hand, integrate GNNs with modern SAT solvers, trying to improve their
search heuristics with the prediction of GNNs. These methods typically train GNN models using supervised
learning on some tasks such as unsat-core variable prediction (Selsam & Bjørner, 2019; Wang et al., 2021),
satisfying assignment prediction (Zhang et al., 2020), glue variable prediction (Han, 2020), and assignment
marginal prediction (Li & Si, 2022), or through reinforcement learning (Yolcu & Póczos, 2019; Kurin et al.,
2020) by modeling the entire search procedure as a Markov decision process. Despite the rich literature on
SAT solving with GNNs, there is no benchmark study to evaluate and compare the performance of these
GNN models. We hope the proposed G4SATBench would address this gap.
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SAT datasets. Several established SAT benchmarks, including the prestigious SATLIB (Hoos & Stützle,
2000) and the SAT Competitions over the years, have provided a variety of practical instances to assess the
performance of modern SAT solvers. Regrettably, these datasets are not particularly amenable for GNNs
to learn from, given their relatively modest scale (less than 100 instances for a specific domain) or overly
extensive instances (exceeding 10 million variables and clauses). To address this issue, researchers have
turned to synthetic SAT instance generators (Giráldez-Cru & Levy, 2015; 2017; Lauria et al., 2017; Selsam
et al., 2019), which allow for the creation of a flexible number of instances with customizable settings.
However, most of the existing datasets generated from these sources are limited to a few domains (less than
3 generators), small in size (less than 10k instances), or easy in difficulty (less than 40 variables within an
instance), and there is no standardized dataset for evaluation. In G4SATBench, we include a variety of
synthetic generators with carefully selected configurations, aiming to construct a broad collection of SAT
datasets that are highly conducive for training and evaluating GNNs.

3 Preliminaries

The SAT problem. In propositional logic, a Boolean formula is constructed from Boolean variables and
logical operators such as conjunctions (∧), disjunctions (∨), and negations (¬). It is typical to represent
Boolean formulas in conjunctive normal form (CNF), expressed as a conjunction of clauses, where each clause
is a disjunction of literals, which can be either a variable or its negation. Given a CNF formula, the SAT
problem is to determine if there exists an assignment of boolean values to its variables such that the formula
evaluates to true. If this is the case, the formula is called satisfiable; otherwise, it is unsatisfiable. For a
satisfiable instance, one is expected to construct a satisfying assignment to prove its satisfiability. On the
other hand, for an unsatisfiable formula, one can find a minimal subset of clauses whose conjunction is still
unsatisfiable. Such a set of clauses is termed the unsat core, and variables in the unsat core are referred to
as unsat-core variables.

Graph representations of CNF formulas. Traditionally, a CNF formula can be represented using 4
types of graphs (Biere et al., 2009): Literal-Clause Graph (LCG), Variable-Clause Graph (VCG), Literal-
Incidence Graph (LIG), and Variable-Incidence Graph (VIG). The LCG is a bipartite graph with literal and
clause nodes connected by edges indicating the presence of a literal in a clause. The VCG is formed by
merging the positive and negative literals of the same variables in LCG. The LIG, on the other hand, only
consists of literal nodes, with edges indicating co-occurrence in a clause. Lastly, the VIG is derived from
LIG using the same merging operation as VCG.

4 G4SATBench: A Benchmark Study on GNNs for SAT Solving

The goal of G4SATBench is to establish a general framework that enables comprehensive comparisons and
evaluations of various GNN-based SAT solvers. In this section, we will delve into the details of G4SATBench,
including its datasets, GNN models, prediction tasks, as well as training and testing methodologies. The
overview of the G4SATBench framework is shown in Figure 1.

4.1 Datasets

G4SATBench is built on a diverse set of synthetic CNF generators. It currently consists of 7 datasets
sourced from 3 distinct domain areas: random problems, pseudo-industrial problems, and combinatorial
problems. Specifically, we utilize the SR generator in NeuroSAT (Selsam et al., 2019) and the 3-SAT generator
in CNFGen (Lauria et al., 2017) to produce random CNF formulas. For pseudo-industrial problems, we
employ the Community Attachment (CA) model (Giráldez-Cru & Levy, 2015) and the Popularity-Similarity
(PS) model (Giráldez-Cru & Levy, 2017), which generate synthetic instances that exhibit similar statistical
features, such as the community and the locality, to those observed in real-world industrial SAT instances.
For combinatorics, we resort to 3 synthetic generators in CNFGen (Lauria et al., 2017) to create SAT
instances derived from the translation of k-Clique, k-Dominating Set, and k-Vertex Cover problems.
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Figure 1: Framework overview of G4SATBench.

In addition to the diversity of datasets, G4SATBench offers distinct difficulty levels for all datasets to
enable fine-grained analyses. These levels include easy, medium, and hard, with the latter representing more
complex problems with increased instance sizes. For example, the easy SR dataset contains instances with 10
to 40 variables, the medium SR dataset contains formulas with 40 to 200 variables, and the hard SR dataset
consists of formulas with variables ranging from 200 to 400. For each easy and medium dataset, we generate
80k pairs of satisfiable and unsatisfiable instances for training, 10k pairs for validation, and 10k pairs for
testing. For each hard dataset, we produce 10k testing pairs. It is also worth noting that the parameters for
our synthetic generators are meticulously selected to avoid generating trivial cases. For instance, we produce
random 3-SAT formulas at the phase-transition region where the relationship between the number of clauses
(m) and variables (n) is m = 4.258n+58.26n−2/3 (Crawford & Auton, 1996), and utilize the v vertex Erdős-
Rényi graph with an edge probability of p =

(
v
k

)−1/(v
2) to generate k-Clique problems, making the expected

number of k-Cliques in a graph equals 1 (Bollobás & Erdös, 1976). To provide a detailed characterization
of our generated datasets, we compute several statistics of the SAT instances across difficulty levels in
G4SATBench. Please refer to Appendix A for more information about the datasets.

4.2 GNN Baselines
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Figure 2: LCG* and VCG* of the CNF formula
(x1 ∨ ¬x2) ∧ (x1 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3).

Graph constructions. It is important to note that
traditional graph representations of a CNF formula of-
ten lack the requisite details for optimally constructing
GNNs. Specifically, the LIG and VIG exclude clause-
specific information, while the LCG and VCG fail to dif-
ferentiate between positive and negative literals of the
same variable. To address these limitations, existing ap-
proaches typically build GNN models on the refined ver-
sions of the LCG and VCG encodings. In the LCG, a new
type of edge is added between each literal and its nega-
tion, while the VCG is modified by using two types of edges to indicate the polarities of variables within a
clause. These modified encodings are termed the LCG* and VCG* respectively, and an example of them is
shown in Figure 2. It is also worth noting alternative graph encodings like the And-Inverter-Graph (AIG),
can be applied for SAT instances that are not in CNF. However, such representations are specialized to
specific applications (like CircuitSAT) and are not designed for general purposes. Given this specialization,
we choose to keep them outside the scope of the current G4SATBench.

Message-passing schemes. G4SATBench enables performing various hetergeneous message-passage al-
gorithms between neighboring nodes on the LCG* or VCG* encodings of a CNF formula. For the sake of
illustration, we will take GNN models on the LCG* as an example. We first define a d-dimensional embed-
ding for every literal node and clause node, denoted by hl and hc respectively. Initially, all these embeddings
are assigned to two learnable vectors h0

l and h0
c , depending on their node types. At the k-th iteration of
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message passing, these hidden representations are updated as:

h(k)
c = UPD

(
AGG
l∈N (c)

({
MLP

(
h

(k−1)
l

)})
, h(k−1)

c

)
,

h
(k)
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(
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c∈N (l)

({
MLP

(
h(k−1)

c

)})
, h

(k−1)
¬l , h

(k−1)
l

)
,

(1)

where N (·) denotes the set of neighbor nodes, MLP is the multi-layer perception, UPD(·) is the update func-
tion, and AGG(·) is the aggregation function. Most GNN models on LCG* use Equation 1 with different
choices of the update function and aggregation function. For instance, NeuroSAT employs LayerNormL-
STM (Ba et al., 2016) as the update function and summation as the aggregation function. In G4SATBench,
we provide a diverse range of GNN models, including NeuroSAT (Selsam et al., 2019), Graph Convolutional
Network (GCN) (Kipf & Welling, 2017), Gated Graph Neural Network (GGNN) (Li et al., 2016), and Graph
Isomorphism Network (GIN) (Xu et al., 2019), on the both LCG* and VCG*. More details of these GNN
models are included in Appendix B.

4.3 Supported Tasks, Training and Testing Settings

Prediction tasks. In G4SATBench, we support three essential prediction tasks for SAT solving: satis-
fiability prediction, satisfying assignment prediction, and unsat-core variable prediction. These tasks are
widely used in both standalone neural solvers and neural-guided solvers. Technically, we model satisfiability
prediction as a binary graph classification task, where 1/0 denotes the given SAT instance ϕ is satisfi-
able/unsatisfiable. Here, we take GNN models on the LCG* as an example. After T message passing
iterations, we obtain the graph embedding by applying mean pooling on all literal embeddings, and then
predict the satisfiability using an MLP followed by the sigmoid function σ:

yϕ = σ
(

MLP
(

MEAN
(

{h
(T )
l , l ∈ ϕ}

)))
. (2)

For satisfying assignment prediction and unsat-core variable prediction, we formulate them as binary node
classification tasks, predicting the label for each variable in the given CNF formula ϕ. In the case of GNNs
on the LCG*, we concatenate the embeddings of each pair of literals hl and h¬l to construct the variable
embedding, and then readout using an MLP and the sigmoid function σ:

yv = σ
(

MLP
([

h
(T )
l , h

(T )
¬l

]))
. (3)

Training objectives. To train GNN models on the aforementioned tasks, one common approach is to
minimize the binary cross-entropy loss between the predictions and the ground truth labels. In addition to
supervised learning, G4SATBench supports two unsupervised training paradigms for satisfying assignment
prediction (Amizadeh et al., 2019a; Ozolins et al., 2022). The first approach aims to differentiate and
maximize the satisfiability value of a CNF formula (Amizadeh et al., 2019a). It replaces the ¬ operator with
the function N(xi) = 1 − xi and uses smooth max and min functions to replace the ∨ and ∧ operators. The
smooth max and min functions are defined as follows:

Smax(x1, x2, . . . , xd) =
∑d

i=1 xi · exi/τ∑d
i=1 exi/τ

, Smin(x1, x2, . . . , xd) =
∑d

i=1 xi · e−xi/τ∑d
i=1 e−xi/τ

, (4)

where τ ≥ 0 is the temperature parameter. Given a predicted assignment x, we apply the smoothing logical
operators and substitute variables in a formula ϕ with the corresponding values from x to calculate its
satisfiability value S(x). Then we can minimize the following loss function:

Lϕ(x) = (1 − S(x))κ

(1 − S(x))κ + S(x)κ
. (κ ≥ 1 is a predefined constant) (5)

The second unsupervised loss is defined as follows (Ozolins et al., 2022):

Vc(x) = 1 −
∏

i∈c+

(1 − xi)
∏

i∈c−

xi, Lϕ(x) = − log
(∏

c∈ϕ

Vc(x)
)

= −
∑
c∈ϕ

log (Vc(x)) , (6)
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where c+ and c− are the sets of variables that occur in the clause c in positive and negative form respectively.
Note that these two losses reach the minimum only when the prediction x is a satisfying assignment, thus
minimizing such losses could help to construct a possible satisfying assignment.

Inference algorithms. Beyond the standard readout process like training, G4SATBench offers two alter-
native inference algorithms for satisfying assignment prediction (Selsam et al., 2019; Amizadeh et al., 2019b).
The first method performs 2-clustering on the literal embeddings to obtain two centers ∆1 and ∆2 and then
partitions the positive and negative literals of each variable into distinct groups based on the predicate
||xi − ∆1||2 + ||¬xi − ∆2||2 < ||xi − ∆2||2 + ||¬xi − ∆1||2 (Selsam et al., 2019). This allows the construction
of two possible assignments by mapping one group of literals to true. The second approach is to employ
the readout function at each iteration of message passing, resulting in multiple assignment predictions for a
given instance (Amizadeh et al., 2019b).

Evaluation metrics. For satisfiability prediction and unsat-core variable prediction, we report the classi-
fication accuracy of each GNN model in G4SATBench. For satisfying assignment prediction, we report the
solving accuracy of the predicted assignments. If multiple assignments are predicted for a SAT instance, the
instance is considered solved if any of the predictions satisfy the formula.

5 Benchmarking Evaluation on G4SATBench

In this section, we present the benchmarking results of G4SATBench. To ensure a fair comparison, we conduct
a grid search to tune the hyperparameters of each GNN baseline. The best checkpoint for each GNN model
is selected based on its performance on the validation set. To mitigate the impact of randomness, we use 3
different random seeds to repeat the experiment in each setting and report the average performance. Each
experiment is performed on a single RTX8000 GPU and 16 AMD EPYC 7502 CPU cores, and the total time
cost is approximately 8,000 GPU hours. For detailed experimental setup and hyperparameters, please refer
to Appendix C.1.

5.1 Satisfiability Prediction

Evaluation on the same distribution. Table 1 shows the benchmarking results of each GNN baseline
when trained and evaluated on datasets possessing identical distributions. All GNN models exhibit strong
performance across most easy and medium datasets, except for the medium SR dataset. This difficulty can
be attributed to the inherent characteristic of this dataset, which includes satisfiable and unsatisfiable pairs
of medium-sized instances distinguished by just a single differing literal. Such a subtle difference presents a
substantial challenge for GNN models in satisfiability classification. Among all GNN models, the different
graph constructions do not seem to have a significant impact on the results, and NeuroSAT (on LCG*) and
GGNN (on VCG*) achieve the best overall performance.

Table 1: Classification accuracy of satisfiability on identical distribution.

Graph Method Easy Datasets Medium Datasets
SR 3-SAT CA PS k-Clique k-Domset k-Vercov SR 3-SAT CA PS k-Clique k-Domset k-Vercov

LCG*

NeuroSAT 96.00 96.33 98.83 96.59 97.92 99.77 99.99 78.02 84.90 99.57 96.81 89.39 99.67 99.80
GCN 94.43 94.47 98.79 97.53 98.24 99.59 99.98 69.39 82.67 99.53 96.16 85.72 99.16 99.74
GGNN 96.36 95.70 98.81 97.47 98.80 99.77 99.97 71.44 83.45 99.50 96.21 81.20 99.69 99.83
GIN 95.78 95.37 98.14 96.98 97.60 99.71 99.97 70.54 82.80 99.49 95.80 83.87 99.61 99.62

VCG*
GCN 93.19 94.92 97.82 95.79 98.72 99.54 99.99 66.35 83.75 99.49 95.48 82.99 99.42 99.89
GGNN 96.75 96.25 98.77 96.44 98.88 99.68 99.98 77.12 85.11 99.57 96.48 83.63 99.62 98.92
GIN 96.04 95.71 98.47 96.95 97.33 99.59 99.98 73.56 85.26 99.49 96.55 89.41 99.38 99.80

Evaluation across different distributions. To assess the generalization ability of GNN models, we
evaluate the performance of NeuroSAT (on LCG*) and GGNN (on VCG*) across different datasets and
difficulty levels. As shown in Figure 3 and Figure 4, NeuroSAT and GGNN struggle to generalize effectively
to datasets distinct from their training data in most cases. However, when trained on the SR dataset, they
exhibit better generalization performance across different datasets. Furthermore, while both GNN models

6



Published in Transactions on Machine Learning Research (05/2024)

demonstrate limited generalization to larger formulas beyond their training data, they perform relatively
better on smaller instances. These observations suggest that the generalization performance of GNN models
for satisfiability prediction is influenced by the distinct nature and complexity of its training data. Training
on more challenging instances could potentially enhance their generalization ability.
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Figure 3: Classification accuracy of satisfiability across different datasets. The x-axis denotes testing datasets
and the y-axis denotes training datasets.
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Figure 4: Classification accuracy of satisfiability across different difficulty levels. The x-axis denotes testing
datasets and the y-axis denotes training datasets.

Due to the limited space, Figure 4 exclusively displays the performance of NeuroSAT and GGNN on the SR
and 3-SAT datasets. Comprehensive results on the other five datasets, as well as the experimental results
on different massage passing iterations, are provided in Appendix C.2.

5.2 Satisfying Assignment Prediction

Evaluation with different training losses. Table 2 presents the results of NeuroSAT (on LCG*) and
GGNN (on VCG*) across three different training objectives. The results of other GNN models are listed
in Table 10 in Appendix C.3. Interestingly, the unsupervised training methods outperform the supervised
learning approach across the majority of datasets. We hypothesize that this is due to the presence of multiple
satisfying assignments in most satisfiable instances. Supervised training tends to bias GNN models towards
learning a specific satisfying solution, thereby neglecting the exploration of other feasible ones. This bias may
compromise the models’ ability to generalize effectively. Such limitations become increasingly apparent when
the space of satisfying solutions is much larger, as seen in the medium CA and PS datasets. Additionally,
it is noteworthy that employing UNS1 as the loss function can result in instability during the training of
some GNN models, leading to a failure to converge in some cases. Conversely, using UNS2 loss demonstrates
strong and stable performance across all datasets.

In addition to evaluating the performance of GNN models under various training loss functions, we extend our
analysis to explore how these models perform across different data distributions and under various inference
algorithms. Furthermore, we assess the robustness of these GNN models when trained on noisy datasets that
include unsatisfiable instances in an unsupervised fashion. For detailed results of these evaluations across
different GNN baselines, please refer to Appendix C.3.
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Table 2: Solving accuracy on identical distribution with different training losses. SUP denotes the super-
vised loss, UNS1 and UNS2 correspond to the unsupervised losses defined in Equation 5 and Equation 6,
respectively. The symbol “-” indicates that some seeds failed during training. Note that only satisfiable
instances are evaluated in this experiment.

Graph Method Loss Easy Datasets Medium Datasets
SR 3-SAT CA PS k-Clique k-Domset k-Vercov SR 3-SAT CA PS k-Clique k-Domset k-Vercov

LCG* NeuroSAT
SUP 88.47 78.39 0.27 39.18 66.30 69.61 85.15 34.97 20.07 0.00 3.64 56.61 52.09 74.77
UNS1 82.30 80.23 82.17 89.23 88.34 96.74 99.36 25.00 30.40 35.45 60.28 41.45 95.06 67.44
UNS2 79.79 80.59 89.34 88.79 63.43 98.85 99.73 37.25 41.61 70.83 71.03 - 96.18 95.99

VCG* GGNN
SUP 84.13 72.87 0.29 38.82 60.80 68.36 82.06 14.15 7.96 0.00 2.33 52.35 49.07 69.21
UNS1 76.39 76.55 78.13 84.44 84.60 97.49 - 16.55 22.84 28.12 44.89 54.29 - 66.37
UNS2 78.75 76.42 84.08 86.29 87.12 98.06 99.34 21.18 25.68 50.66 57.96 68.91 92.26 94.30

5.3 Unsat-core Variable Prediction

Evaluation on the same distribution. The benchmarking results presented in Table 3 exhibit the
superior performance of all GNN models on both easy and medium datasets, with NeuroSAT consistently
achieving the best results across most datasets. It is important to note that the primary objective of
predicting unsat-core variables is not to solve SAT problems directly but to provide valuable guidance for
enhancing the backtracking search process. As such, even imperfect predictions - for instance, those with a
classification accuracy of 90% - have been demonstrated to be sufficiently effective in improving the search
heuristics employed by modern CDCL-based SAT solvers, as indicated by previous studies (Selsam & Bjørner,
2019; Wang et al., 2021).

Table 3: Classification accuracy of unsat-core variables on identical distribution. Only unsatisfiable instances
are evaluated.

Graph Method Easy Datasets Medium Datasets
SR 3-SAT CA PS k-Clique k-Domset k-Vercov SR 3-SAT CA PS k-Clique k-Domset k-Vercov

LCG*

NeuroSAT 90.76 94.43 83.69 86.20 99.93 95.80 94.47 90.07 99.65 85.73 88.53 99.97 97.90 99.10
GCN 89.17 94.35 82.89 85.32 99.93 95.74 94.43 88.11 99.65 85.71 87.70 99.96 97.89 99.10
GGNN 90.02 94.38 83.59 86.03 99.93 95.79 94.46 89.05 99.65 85.69 87.95 99.96 97.89 99.09
GIN 89.29 94.33 83.71 85.97 99.93 95.81 94.47 88.85 99.65 85.71 87.92 99.96 97.89 99.09

VCG*
GCN 88.57 94.34 83.17 85.27 99.93 95.79 94.46 88.17 99.65 85.70 87.37 99.96 97.90 99.09
GGNN 89.57 94.37 83.50 85.84 99.93 95.81 94.49 88.84 99.65 85.68 88.03 99.98 97.90 99.10
GIN 89.50 94.35 83.23 85.69 99.93 95.79 94.47 89.51 99.65 85.72 88.13 99.96 97.89 99.10

We also conduct experiments to evaluate the generalization ability of GNN models on unsat-core variable
prediction. Please see appendix C.4 for details.

6 Advancing Evaluation on G4SATBench

To gain deeper insights into how GNNs tackle the SAT problem, we conduct comprehensive comparative
analyses between GNN-based SAT solvers and the CDCL and LS heuristics in this section. Since these
search heuristics aim to solve a SAT instance directly, our focus only lies on the tasks of (T1) satisfiability
prediction and (T2) satisfying assignment prediction (with UNS2 as the training loss). We employ NeuroSAT
(on LCG*) and GGNN (on VCG*) as our GNN models and experiment on the SR and 3-SAT datasets.
Detailed experimental settings are included in Appendix D.1.

6.1 Comparison with the CDCL Heuristic

Evaluation on the clause-learning augmented instances. CDCL-based SAT solvers enhance back-
tracking search with conflict analysis and clause learning, enabling efficient exploration of the search space
by iteratively adding “learned clauses” to avoid similar conflicts in future searches (Silva & Sakallah, 1999).
To assess whether GNN-based SAT solvers can learn and benefit from the backtracking search (with CDCL)
heuristic, we augment the original formulas in the datasets with learned clauses and evaluate GNN models
on these clause-augmented instances.
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Table 4 shows the testing results on augmented SAT datasets. Notably, training on the augmented instances
leads to significant improvements in both satisfiability prediction and satisfying assignment prediction. These
improvements can be attributed to the presence of “learned clauses” that effectively modify the structure of
the original formulas, thereby facilitating GNNs to solve with relative ease. However, despite the augmented
instances being easily solvable using the backtracking search within a few search steps, GNN models fail
to effectively handle these instances when trained on the original instances. These findings suggest that
GNNs may not implicitly learn the CDCL heuristic when trained for satisfiability prediction or satisfying
assignment prediction.

Table 4: Results on augmented datasets. Values in-
side/outside parentheses denote the results of models
trained on augmented/original instances.

Task Method Easy Datasets Medium Datasets
SR 3-SAT SR 3-SAT

T1 NeuroSAT 100.00 (96.78) 100.00 (96.06) 100.00 (84.57) 96.78 (84.85)
GGNN 100.00 (97.66) 100.00 (95.46) 100.00 (84.01) 96.29 (85.80)

T2 NeuroSAT 85.05 (83.28) 83.50 (81.04) 51.95 (45.51) 39.00 (16.52)
GGNN 85.35 (83.42) 81.56 (79.99) 44.18 (40.09) 34.67 (14.75)

Table 5: Results using contrastive pretraining. Val-
ues in parentheses denote the difference between the
results without pretraining.

Task Method Easy Datasets Medium Datasets
SR 3-SAT SR 3-SAT

T1 NeuroSAT 96.68 (+0.68) 96.23 (-0.10) 78.31 (+0.29) 85.02 (+0.12)
GGNN 96.46 (-0.29) 96.45 (+0.20) 76.34 (-0.78) 85.17 (+0.06)

T2 NeuroSAT 80.54 (+0.75) 79.71 (-0.88) 36.42 (-0.83) 41.23 (-0.38)
GGNN 80.66 (-0.34) 79.23 (-0.09) 33.44 (+0.07) 36.39 (+0.44)

Evaluation with contrastive pretraining. Observing that GNN models exhibit superior performance
on clause-learning augmented SAT instances, there is potential to improve the performance of GNNs by
learning a latent representation of the original formula similar to its augmented counterpart. Motivated
by this, we also experiment with a contrastive learning approach (i.e., SimCLR (Chen et al., 2020)) to
pretrain the representation of CNF formulas to be close to their augmented ones (Duan et al., 2022), trying
to explicitly embed the CDCL heuristic in the latent space through representation learning.

The results of contrastive pretraining are presented in Table 5. In contrast to the findings in Duan et al.
(2022), our results show limited performance improvement through contrastive pretraining, indicating that
GNN models still encounter difficulties in effectively learning the CDCL heuristic in the latent space. This
observation aligns with the conclusions drawn in Chen & Yang (2019), which highlight that static GNNs
may fail to exactly replicate the same search operations due to the dynamic changes in the graph structure
introduced by the clause learning technique.

6.2 Comparison with the LS Heuristic

Evaluation with random initialization. LS-based SAT solvers typically begin by randomly initializing
an assignment and then iteratively flip variables guided by specific heuristics until reaching a satisfying
assignment. To compare the behaviors of GNNs with this solving procedure, we first conduct an evaluation
of GNN models with randomized initial embeddings in both training and testing, emulating the initialization
of LS SAT solvers.

Table 6: Results using random initialization. Values
in parentheses denote the difference between the re-
sults with learned initialization.

Task Method Easy Datasets Medium Datasets
SR 3-SAT SR 3-SAT

T1 NeuroSAT 97.24 (+1.24) 96.44 (+0.11) 77.29 (-0.91) 84.85 (-0.05)
GGNN 96.78 (+0.03) 96.38 (+0.13) 76.97 (-0.15) 85.80 (+0.69)

T2 NeuroSAT 79.09 (-0.70) 80.79 (+0.20) 37.27 (+0.02) 40.75 (-0.86)
GGNN 80.10 (-0.90) 79.83 (+0.51) 32.85 (-0.52) 36.59 (+0.64)

The results presented in Table 6 demonstrate that us-
ing random initialization has a limited impact on the
overall performances of GNN-based SAT solvers. This
suggests that GNN models do not aim to learn a fixed
latent representation of each formula for satisfiability
prediction and satisfying assignment prediction. In-
stead, they have developed a solving strategy that ef-
fectively exploits the inherent graph structure of each
SAT instance.

Evaluation on the predicted assignments. Under random initialization, we further analyze the solving
strategies of GNNs by evaluating their predicted assignments decoded from the latent space. For the task of
satisfiability prediction, we employ the 2-clustering decoding algorithm to extract the predicted assignments
from the literal embeddings of NeuroSAT at each iteration of message passing. For satisfying assignment
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prediction, we evaluate both NeuroSAT and GGNN using multiple-prediction decoding. Our evaluation
focuses on three key aspects: (a) the number of distinct predicted assignments, (b) the number of flipped
variables between two consecutive iterations, and (c) the number of unsatisfiable clauses associated with the
predicted assignments.
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Figure 5: Results on the predicted assignments with the increased message passing iteration T . NeuroSAT*
refers to the model trained for satisfiability prediction.

As shown in Figure 5, all three GNN models initially generate a wide array of assignment predictions by
flipping a considerable number of variables, resulting in a notable reduction in the number of unsatisfiable
clauses. However, as the iterations progress, the number of flipped variables diminishes substantially, and
most GNN models eventually converge towards predicting a specific assignment or making minimal changes
to their predictions when there are no or very few unsatisfiable clauses remaining. This trend is reminiscent
of the greedy solving strategy adopted by the LS solver GSAT (Selman et al., 1992), where changes are made
to minimize the number of unsatisfied clauses in the new assignment. However, unlike GSAT’s approach
of flipping one variable at a time and incorporating random selection to break ties, GNN models simulta-
neously modify multiple variables and potentially converge to a particular unsatisfied assignment and find
it challenging to deviate from such a prediction. It is also noteworthy that despite being trained for satis-
fiability prediction, NeuroSAT* demonstrates similar behavior to the GNN models trained for assignment
prediction. This observation indicates that GNNs also learn to search for a satisfying assignment implicitly
in the latent space while performing satisfiability prediction. To provide more insights into the strengths and
limitations of GNN-based heuristics, we further conduct experiments to compare GNN-based SAT solvers
against state-of-the-art CDCL and LS-based SAT solvers in Appendix D.2.

7 Discussions

7.1 Limitations and Future Work

While G4SATBench represents a significant step in evaluating GNNs for SAT solving, there are still some
limitations and potential future directions to consider. Firstly, G4SATBench primarily focuses on evaluating
standalone neural SAT solvers, excluding the exploration of neural-guided SAT solvers that integrate GNNs
with search-based SAT solvers. It also should be emphasized that the instances included in G4SATBench
are considerably smaller compared to most practical instances found in real-world applications, where GNN
models alone are not sufficient for solving such large-scale instances. The efficacy of GNN models in unsat-
core prediction shows a promising avenue for combining GNNs with modern SAT solvers, and future research
could explore more techniques to effectively leverage these neural-guided SAT solvers to scale up to real-
world instances. Secondly, G4SATBench benchmarks general GNN models on the LCG* and VCG* graph
representations for SAT solving, but does not consider sophisticated GNN models designed for specific
graph constructions in certain domains, such as Circuit SAT problems. Investigating domain-specific GNN
models tailored to the characteristics of specific problems could lead to improved performance in specialized
instances. Lastly, all existing GNN-based SAT solvers in the literature are static GNNs, which have limited
learning ability to capture the CDCL heuristic. Exploring dynamic GNN models that can effectively learn
the CDCL heuristic is also a potential direction for future research.
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7.2 Conclusion

In this work, we present G4SATBench, a benchmark study that comprehensively evaluates GNN models in
SAT solving. G4SATBench offers curated synthetic SAT datasets sourced from various domains and difficulty
levels and benchmarks a wide range of GNN-based SAT solvers under diverse settings. Our empirical analysis
yields valuable insights into the performances of GNN-based SAT solvers and further provides a deeper
understanding of their capabilities and limitations. We hope the proposed G4SATBench will serve as a solid
foundation for GNN-based SAT solving and inspire future research in this exciting field.
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A Datasets

Generators. To generate high-quality SAT datasets that do not contain trivial instances, we have em-
ployed a rigorous process of selecting appropriate parameters for each CNF generator in G4SATBench.
Table 7 provides detailed information about the generators we have used.

Table 7: Details of the synthetic generators employed in G4SATBench.

Dataset Description Parameters Notes

SR

The SR dataset is composed of pairs of satisfiable and unsatisfiable
formulas, with the only difference between each pair being the polar-
ity of a single literal. Given the number of variables n, the synthetic
generator iteratively samples k = 1+Bernoulli(b)+Geometric(g) vari-
ables uniformly at random without replacement and negates each one
with independent probability 50% to build a clause. This procedure
continues until the generated formula is unsatisfiable. The satisfiable
instance is then constructed by negating the first literal in the last
clause of the unsatisfiable one.

General: b = 0.3, g = 0.4,
Easy dataset: n ∼ Uniform(10, 40),
Medium dataset: n ∼ Uniform(40, 200),
Hard dataset: n ∼ Uniform(200, 400)

The sampling parameters
are the same as the orig-
inal paper (Selsam et al.,
2019).

3-SAT

The 3-SAT dataset comprises CNF formulas at the phase transition,
where the proportion of generated satisfiable and unsatisfiable formu-
las is roughly equal. Given the number of variables n and clauses m,
the synthetic generator iteratively samples three variables (and their
polarities) uniformly at random until m clauses are obtained.

General: m = 4.258n + 58.26n−2/3,
Easy dataset: n ∼ Uniform(10, 40),
Medium dataset: n ∼ Uniform(40, 200),
Hard dataset: n ∼ Uniform(200, 300)

The parameter m is the
same as the paper (Craw-
ford & Auton, 1996)

CA

The CA dataset contains SAT instances that are designed to mimic
the community structures and modularity features found in real-world
industrial instances. Given variable number n, clause number m,
clause size k, community number c, and modularity Q, the synthetic
generator iteratively selects k literals in the same community uni-
formly at random with probability P = Q + 1/c and selects k literals
in the distinct community uniformly at random with probability 1 - P
to build a clause and repeat for m times to construct a CNF formula.

General: m ∼ Uniform(13n, 15n),
k ∼ Uniform(4, 5),
c ∼ Uniform(3, 10),
Q ∼ Uniform(0.7, 0.9)
Easy dataset: n ∼ Uniform(10, 40),
Medium dataset: n ∼ Uniform(40, 200),
Hard dataset: n ∼ Uniform(200, 400)

The parameters are se-
lected based on the exper-
iments in the original pa-
per (Giráldez-Cru & Levy,
2015) and our study to
ensure that the generated
SAT instances have a bal-
ance of satisfiability and
unsatisfiability.

PS

PS dataset encompasses SAT instances with a power-law distribution
in the number of variable occurrences (popularity), and good clus-
tering between them (similarity). Given variable number n, clause
number m, and average clause size k, the synthetic generator first as-
signs random angles θi, θj ∈ [0, 2π] to each variable i and each clause
j, and then randomly samples variable i in clause j with the proba-
bility P = 1/(1 + (iβjβ′

θij/R)T ). Here, θij = π − |π − |θi − θj || is the
angle between variable i and clause j. The exponent parameters β
and β′ control the power-law distribution of variable occurrences and
clause size respectively. The temperature parameter T controls the
sharpness of the probability distribution, while R is an approximate
normalization constant that ensures the average number of selected
edges is km.

General: m ∼ Uniform(6n, 8n),
k ∼ Uniform(4, 5),
β ∼ Uniform(0, 1),
β′ = 1,
c ∼ Uniform(3, 10),
T ∼ Uniform(0.75, 1.5)
Easy dataset: n ∼ Uniform(10, 40),
Medium dataset: n ∼ Uniform(40, 200),
Hard dataset: n ∼ Uniform(200, 300)

The parameters are se-
lected based on the exper-
iments in the original pa-
per (Giráldez-Cru & Levy,
2017) and our study to
ensure that the generated
SAT instances have a bal-
ance of satisfiability and
unsatisfiability.

k-Clique

The k-Clique dataset includes SAT instances that encode the k-Clique
problem, which involves determining whether there exists a clique
(i.e., a subset of vertices that are all adjacent to each other) with v
vertices in a given graph. Given the number of cliques k, the synthetic
generator produces an Erdős-Rényi graph with v vertices and a given
edge probability p and then transforms the corresponding k-Clique
problem into a SAT instance.

General: p =
(

v
k

)−1/(v
2),

Easy dataset: v ∼ Uniform(5, 15),
k ∼ Uniform(3, 4),
Medium dataset: v ∼ Uniform(15, 20),
k ∼ Uniform(3, 5),
Hard dataset: v ∼ Uniform(20, 25),
k ∼ Uniform(4, 6)

The parameter p is
selected based on the
paper (Bollobás &
Erdös, 1976), making
the expected number of
k-Cliques in the generated
graph equals 1.

k-Domset

The k-Domset dataset contains SAT instances that encode the k-
Dominating Set problem. This problem is to determine whether there
exists a dominating set (i.e., a subset of vertices such that every vertex
in the graph is either in the subset or adjacent to a vertex in the sub-
set) with at most k vertices in a given graph. Given the domination
number k, the synthetic generator produces an Erdős-Rényi graph
with v vertices and a given edge probability p and then transforms
the corresponding k-Dominating Set problem into a SAT instance.

General: p = 1 −
(

1 −
(

v
k

)−1/(v−k)
)1/k

,
Easy dataset: v ∼ Uniform(5, 15),
k ∼ Uniform(2, 3),
Medium dataset: v ∼ Uniform(15, 20),
k ∼ Uniform(3, 5),
Hard dataset: v ∼ Uniform(20, 25),
k ∼ Uniform(4, 6)

The parameter p is se-
lected based on the pa-
per (Wieland & Godbole,
2001), making the ex-
pected number of domina-
tion set with size k in the
generated graph equals 1.

k-Vercov

The k-Vercov dataset consists of SAT instances that encode the k-
Vertex Cover problem, i.e., check whether there exists a set of k ver-
tices in a graph such that every edge has at least one endpoint in this
set. Given the vertex cover number k, the synthetic generator pro-
duces a complement graph of an Erdős-Rényi graph with v vertices
and a given edge probability p and then converts the corresponding
k-Vertex Cover problem into a SAT instance.

General: p =
(

v
k

)−1/(v
2),

Easy dataset: v ∼ Uniform(5, 15),
k ∼ Uniform(3, 5),
Medium dataset: v ∼ Uniform(10, 20),
k ∼ Uniform(6, 8),
Hard dataset: v ∼ Uniform(15, 25),
k ∼ Uniform(9, 10)

The generation process
and the parameter are se-
lected based on the rela-
tionship between k-Vertex
Cover and k-Clique prob-
lems, making the size of
the minimum vertex cover
in the generated graph
around k.
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Statistics. To provide a comprehensive understanding of our generated datasets, we compute several
characteristics across three difficulty levels. These statistics include the average number of variables and
clauses, as well as graph measures such as average clustering coefficient (in VIG) and modularity (in VIG,
VCG, and LCG). The dataset statistics are summarized in Table 8.

Table 8: Dataset statistics across difficulty levels in G4SATBench.

Dataset Easy Difficulty Medium Difficulty Hard Difficulty

#Variables #Clauses C.C.(VIG) Mod.(VIG) Mod.(VCG) Mod.(LCG) #Variables #Clauses C.C.(VIG) Mod.(VIG) Mod.(VCG) Mod.(LCG) #Variables #Clauses C.C.(VIG) Mod.(VIG) Mod.(VCG) Mod.(LCG)

SR 25.00 148.35 0.98 0.00 0.25 0.33 118.36 646.54 0.62 0.06 0.31 0.37 299.64 1613.86 0.32 0.09 0.32 0.37

3-SAT 25.05 113.69 0.72 0.06 0.36 0.46 120.00 513.14 0.27 0.16 0.43 0.51 250.44 1067.34 0.14 0.17 0.45 0.52

CA 31.66 303.48 0.65 0.19 0.73 0.73 120.27 1661.07 0.54 0.38 0.80 0.80 299.68 4195.50 0.59 0.57 0.80 0.80

PS 25.41 176.68 0.98 0.00 0.27 0.32 118.75 822.78 0.86 0.05 0.35 0.37 249.61 1728.34 0.77 0.08 0.38 0.28

k-Clique 34.85 592.89 0.90 0.03 0.45 0.49 69.56 2220.05 0.91 0.03 0.48 0.49 112.87 5543.26 0.88 0.04 0.49 0.50

k-Domset 41.90 369.40 0.70 0.26 0.47 0.53 90.64 1736.22 0.70 0.21 0.49 0.51 137.31 4032.48 0.70 0.20 0.49 0.51

k-Vercov 45.41 484.28 0.66 0.16 0.48 0.53 107.40 2634.14 0.69 0.16 0.49 0.51 190.24 8190.94 0.69 0.16 0.50 0.51

B GNN Models

Message-passing schemes on VCG*. Recall that VCG* incorporates two distinct edge types,
G4SATBench employs different functions to execute heterogeneous message-passing in each direction of
each edge type. Formally, we define a d-dimensional embedding for each variable and clause node, denoted
by hl and hc, respectively. These embeddings are initialized to two learnable vectors h0

v and h0
c , depending

on the node type. At the k-th iteration of message passing, these hidden representations are updated as
follows:

h(k)
c = UPD

(
AGG
v∈c+

({
MLP+

v

(
h(k−1)

v

)})
, AGG

v∈c−

({
MLP−

v

(
h(k−1)

v

)})
, h(k−1)

c

)
,

h(k)
v = UPD

(
AGG
c∈v+

({
MLP+

c

(
h(k−1)

c

)})
, AGG

c∈v−

({
MLP−

c

(
h(k−1)

c

)})
, h(k−1)

v

)
,

(7)

where c+ and c− denote the sets of variable nodes that occur in the clause c with positive and negative
polarity, respectively. Similarly, v+ and v− denote the sets of clause nodes where variable v occurs in
positive and negative form. MLP+

v , MLP−
v , MLP+

c , and MLP−
c are four MLPs. UPD(·) is the update

function, and AGG(·) is the aggregation function.

GNN baselines. Table 9 summarizes the message-passing algorithms of the GNN models used in
G4SATBench. We adopt heterogeneous versions of GCN (Kipf & Welling, 2017), GGNN (Li et al., 2016),
and GIN (Xu et al., 2019) on both LCG* and VCG*, while maintaining the original NeuroSAT (Selsam
et al., 2019) only on LCG*.

C Benchmarking Evaluation

C.1 Implementation Details

In G4SATBench, we provide the ground truth of satisfiability and satisfying assignments by calling the state-
of-the-art modern SAT solver CaDiCaL (Fleury & Heisinger, 2020) and generate the truth labels for unsat-
core variables by invoking the proof checker DRAT-trim (Wetzler et al., 2014). All neural networks in our
study are implemented using PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey & Lenssen, 2019).
For all GNN models, we set the feature dimension d to 128 and the number of message passing iterations T
to 32. The MLPs in the models consist of two hidden layers with the ReLU (Nair & Hinton, 2010) activation
function. To select the optimal hyperparameters for each GNN baseline, we conduct a grid search over
several settings. Specifically, we explore different learning rates from {10−3, 5 × 10−4, 10−4, 5 × 10−5, 10−5},
training epochs from {50, 100, 200}, weight decay values from {10−6, 10−7, 10−8, 10−9, 10−10}, and gradient
clipping norms from {0.1, 0.5, 1}. We employ Adam (Kingma & Ba, 2015) as the optimizer and set the batch
size to 128, 64, or 32 to fit within the maximum GPU memory (48G). For the parameters τ and κ of the
unsupervised loss in Equation 4 and Equation 5, we try the default settings (τ = t−0.4 and κ = 10, where
t is the global step during training) as the original paper (Amizadeh et al., 2019a) as well as other values
(τ ∈ {0.05, 0.1, 0.2, 0.5}, κ ∈ {1, 2, 5}) and empirically find τ = 0.1, κ = 1 yield the best results. Furthermore,
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Table 9: Supported GNN models in G4SATBench.

Graph Method Message-passing Algorithm Notes

LCG*

NeuroSAT
h

(k)
c , s

(k)
c = LayerNormLSTM1

( ∑
l∈N (c)

MLPl

(
h

(k−1)
l

)
,
(

h
(k−1)
c , s

(k−1)
c

))
,

h
(k)
l , s

(k)
l = LayerNormLSTM2

([ ∑
c∈N (l)

MLPc

(
h

(k−1)
c

)
, h

(k−1)
¬l

]
,
(

h
(k−1)
l , s

(k−1)
l

)) sc, sl are the hidden states which are initialized
to zero vectors.

GCN
h

(k)
c = Linear1

([ ∑
l∈N (c)

MLPl

(
h

(k−1)
l

)
√

dldc
, h

(k−1)
c

])
,

h
(k)
l = Linear2

([ ∑
c∈N (l)

MLPc(h(k−1)
c )√

dcdl
, h

(k−1)
¬l , h

(k−1)
l

]) dc, dl are the degrees of clause node c and
literal node l in LCG respectively.

GGNN
h

(k)
c = GRU1

( ∑
l∈N (c)

({
MLPl

(
h

(k−1)
l

)})
, h

(k−1)
c

)
,

h
(k)
l = GRU2

([ ∑
c∈N (l)

MLPc

(
h

(k−1)
c

)
, h

(k−1)
¬l

]
, h

(k−1)
l

)

GIN
h

(k)
c = MLP1

([ ∑
l∈N (c)

({
MLPl

(
h

(k−1)
l

)})
, h

(k−1)
c

])
,

h
(k)
l = MLP2

([ ∑
c∈N (l)

MLPc

(
h

(k−1)
c

)
, h

(k−1)
¬l , h

(k−1)
l

])

VCG*

GCN
h

(k)
c = Linear1

([ ∑
v∈c+

MLP+
v (h(k−1)

v )√
dvdc

,
∑

v∈c−

MLP−
v (h(k−1)

v )√
dvdc

, h
(k−1)
c

])
,

h
(k)
v = Linear2

([ ∑
c∈v+

MLP+
c (h(k−1)

c )√
dcdv

,
∑

c∈v−

MLP−
c (h(k−1)

c )√
dcdv

, h
(k−1)
v

]) dc, dv are the degrees of clause node c and
variable node v in VCG respectively.

GGNN
h

(k)
c = GRU1

([ ∑
v∈c+

MLP+
v

(
h

(k−1)
v

)
,
∑

v∈c−
MLP−

v

(
h

(k−1)
v

)]
, h

(k−1)
c

)
,

h
(k)
v = GRU2

([ ∑
c∈v+

MLP+
c

(
h

(k−1)
c

)
,
∑

c∈v−
MLP−

c

(
h

(k−1)
c

)]
, h

(k−1)
v

)

GIN
h

(k)
c = MLP1

([ ∑
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MLP+
v

(
h

(k−1)
v

)
,
∑

v∈c−
MLP−

v

(
h

(k−1)
v

)
, h

(k−1)
c

])
,

h
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MLP+
c

(
h

(k−1)
c

)
,
∑

c∈v−
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(
h
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c

)
, h

(k−1)
v

])

it is important to note that we use three different random seeds to benchmark the performance of different
GNN models and assess the generalization ability of NeuroSAT and GGNN using one seed for simplicity.

C.2 Satiafiability Prediction

Evaluation across different difficulty levels. The complete results of NeuroSAT and GGNN across
different difficulty levels are presented in Figure 6. Consistent with the findings on the SR and 3-SAT
datasets, both GNN models exhibit limited generalization ability to larger instances beyond their training
data, while displaying relatively better performance on smaller instances. This observation suggests that
training these models on more challenging instances could potentially enhance their generalization ability
and improve their performance on larger instances.

easy medium hard

easy

medium

94.19 65.56 54.82

95.39 78.40 62.11

NeuroSAT on the SR dataset
easy medium hard

easy

medium

96.16 74.98 66.08

93.27 84.67 83.30

NeuroSAT on the 3-SAT dataset
easy medium hard

easy

medium

98.80 99.67 100.00

96.17 99.50 100.00

NeuroSAT on the CA dataset
easy medium hard

easy

medium

96.33 95.94 96.67

95.27 96.89 98.00

NeuroSAT on the PS dataset
easy medium hard

easy

medium

98.66 93.50 82.94

77.64 89.39 77.98

NeuroSAT on the k-Clique dataset
easy medium hard

easy

medium

99.74 66.78 50.20

72.36 99.67 85.40

NeuroSAT on the k-Domset dataset
easy medium hard

easy

medium

99.99 50.95 50.00

89.87 99.91 96.99

NeuroSAT on the k-Vercov dataset

easy medium hard

easy

medium

96.62 65.23 53.90

95.48 77.70 61.69

GGNN on the SR dataset
easy medium hard

easy

medium

96.38 80.20 76.76

94.99 85.78 83.60

GGNN on the 3-SAT dataset
easy medium hard

easy

medium

98.69 99.63 100.00

96.17 99.50 100.00

GGNN on the CA dataset
easy medium hard

easy

medium

96.80 96.06 97.25

94.53 96.53 97.83

GGNN on the PS dataset
easy medium hard

easy

medium

98.88 91.64 58.82

60.38 73.63 62.14

GGNN on the k-Clique dataset
easy medium hard

easy

medium

99.72 84.08 68.31

94.70 99.52 99.01

GGNN on the k-Domset dataset
easy medium hard

easy

medium

99.98 52.85 50.00

80.33 99.61 88.92

GGNN on the k-Vercov dataset

Figure 6: Classification accuracy of satisfiability across different difficulty levels. The x-axis denotes testing
datasets and the y-axis denotes training datasets.
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Evaluation with different message passing iterations. To investigate the impact of message-passing
iterations on the performance of GNN models during training and testing, we conducted experiments with
varying iteration values. Figure 7 presents the results of NeuroSAT and GGNN trained and evaluated
with different message passing iterations. Remarkably, using a training iteration value of 32 consistently
yielded the best performance for both models. Conversely, employing too small or too large iteration values
during training resulted in decreased performance. Furthermore, the models trained with 32 iterations also
demonstrated good generalization ability to testing iterations 16 and 64. These findings emphasize the
critical importance of selecting an appropriate message-passing iteration to ensure optimal learning and
reasoning within GNN models.

8 16 32 64

8

16

32

64

67.25 70.84 71.54 60.53

62.66 88.36 95.06 95.45

59.85 76.81 96.62 98.87

49.98 52.52 73.41 87.76

NeuroSAT on the easy SR dataset

8 16 32 64

8

16

32

64

77.68 68.18 64.07 63.94

76.55 90.06 94.17 95.03

62.91 82.88 96.38 98.86

56.95 60.47 81.03 91.14

NeuroSAT on the easy 3-sat dataset

8 16 32 64

8

16

32

64

56.66 51.73 51.62 52.11

50.64 63.68 70.16 77.90

50.55 58.94 77.70 85.19

50.00 50.00 49.99 57.20

NeuroSAT on the medium SR dataset

8 16 32 64

8

16

32

64

77.50 53.75 50.17 50.04

70.43 80.09 77.98 74.48

72.27 79.85 85.78 88.70

51.30 66.32 77.85 83.25

NeuroSAT on the medium 3-SAT dataset

8 16 32 64

8

16

32

64

71.95 53.52 50.36 50.39

68.79 86.59 90.73 93.21

62.16 82.80 94.19 98.08

50.00 51.20 71.59 85.41

GGNN on the easy SR dataset

8 16 32 64

8

16

32

64

79.16 77.52 51.21 49.23

53.61 91.39 86.48 76.33

68.49 82.80 96.16 98.41

50.00 50.00 77.34 90.44

GGNN on the easy 3-sat dataset
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8

16
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57.30 50.01 50.00 50.00

50.52 64.33 58.93 51.58
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50.00 52.37 52.15 54.22

GGNN on the medium SR dataset

8 16 32 64

8

16

32

64

77.94 50.00 50.00 50.00

72.27 80.51 50.00 50.00

54.21 78.52 84.67 81.42

50.00 50.28 69.25 80.00

GGNN on the medium 3-SAT dataset

Figure 7: Classification accuracy of satisfiability across different message passing iterations T . The x-axis
denotes testing iterations and the y-axis denotes training iterations.

C.3 Satisfying Assignment Prediction

Evaluation with different training losses. Table 10 presents the complete results of each GNN baseline
across three different training objectives. Like the results of NeuroSAT and GGNN, all other GNN models
with unsupervised training outperform their supervised training counterparts.

Table 10: Solving accuracy on identical distribution with different training losses. The top and bottom 7
rows represent the results for easy and medium datasets, respectively. SUP denotes the supervised loss,
UNS1 and UNS2 correspond to the unsupervised losses defined in Equation 5 and Equation 6, respectively.
The symbol “-” indicates that some seeds failed during training. Note that only satisfiable instances are
evaluated in this experiment.

Graph Method SR 3-SAT CA PS k-Clique k-Domset k-Vercov
SUP UNS1 UNS2 SUP UNS1 UNS2 SUP UNS1 UNS2 SUP UNS1 UNS2 SUP UNS1 UNS2 SUP UNS1 UNS2 SUP UNS1 UNS2

LCG*

NeuroSAT 88.47 82.30 79.79 78.39 80.23 80.59 0.27 82.17 89.34 39.18 89.23 88.79 66.30 88.34 63.43 69.61 96.74 98.85 85.15 99.36 99.73
GCN 83.74 73.09 77.02 70.34 74.79 75.31 0.17 75.30 82.41 39.66 82.75 84.89 63.85 82.60 86.17 59.29 97.50 97.55 76.83 99.16 99.28
GGNN 84.13 76.39 78.75 72.87 76.55 76.42 0.29 78.13 84.08 38.82 84.44 86.29 60.80 84.60 87.12 68.36 97.49 98.06 82.06 - 99.34
GIN 83.81 81.45 80.39 73.99 78.47 76.24 0.20 78.44 85.15 39.13 85.31 85.43 56.85 84.48 85.11 68.93 96.99 97.43 81.49 99.28 99.38

VCG*
GCN 83.38 84.19 78.00 76.60 84.42 79.23 14.98 76.64 83.79 51.48 85.88 83.06 56.27 85.28 86.91 66.32 97.62 96.74 78.67 - 93.51
GGNN 86.30 87.16 81.00 77.96 88.97 79.32 15.11 76.32 83.12 47.67 86.85 87.17 66.86 86.31 87.48 66.42 - 98.42 82.61 - 99.52
GIN 84.61 89.56 83.27 79.23 87.65 81.72 17.81 83.28 86.03 48.92 91.21 85.65 66.07 86.12 88.09 67.67 - - 81.01 99.38 99.41

LCG*

NeuroSAT 34.97 25.00 37.25 20.07 30.40 41.61 0.00 35.45 70.83 3.64 60.28 71.03 56.61 41.45 - 52.09 95.06 96.18 74.77 67.44 95.99
GCN 13.19 13.76 19.21 8.87 20.50 24.58 0.00 30.20 54.04 1.45 45.16 56.29 55.36 61.82 66.33 43.50 92.86 94.89 67.83 - 93.84
GGNN 14.15 16.55 21.18 7.96 22.84 25.68 0.00 28.12 50.66 2.33 44.89 57.96 52.35 54.29 68.91 49.07 - 92.26 69.21 66.37 94.30
GIN 15.36 18.60 22.17 9.66 21.38 24.93 0.00 35.76 57.81 2.02 43.43 57.62 53.07 44.60 66.32 44.39 93.3 93.82 70.59 55.59 95.69

VCG*
GCN 20.59 9.21 22.44 12.48 17.00 29.53 0.44 39.04 48.99 2.29 35.99 55.46 46.09 25.90 68.62 46.96 - 92.68 69.15 - 96.46
GGNN 28.04 27.72 33.37 16.46 29.65 35.95 0.56 48.13 49.93 3.12 51.73 65.11 44.26 48.92 56.43 51.01 - - 71.97 - 95.23
GIN 26.73 26.48 31.97 14.64 26.86 35.81 0.64 44.06 63.84 3.38 58.03 64.66 55.47 56.97 67.78 46.98 - 95.28 69.40 - 96.96

Evaluation across different difficulty levels. The performance of NeuroSAT across different difficulty
levels is shown in Figure 8. Notably, training on medium datasets yields superior generalization performance
compared to training on easy datasets. This suggests that training on more challenging SAT instances with
larger sizes can enhance the model’s ability to generalize to a wider range of problem complexities.
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96.65 96.18 91.77

NeuroSAT on the k-Domset dataset
easy medium hard

easy

medium

99.81 75.11 0.00

99.15 95.03 81.21

NeuroSAT on the k-Vercov dataset

Figure 8: Solving accuracy of NeuroSAT across different difficulty levels (with UNS2 as the training loss).
The x-axis denotes testing datasets and the y-axis denotes training datasets.
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Figure 9: Solving accuracy of NeuroSAT across dif-
ferent datasets (with UNS2 as the training loss).
The x-axis denotes testing datasets and the y-axis
denotes training datasets.

Evaluation with different datasets. Figure 9 il-
lustrates the performance of NeuroSAT across differ-
ent datasets. For easy datasets, we observe that Neu-
roSAT demonstrates a strong generalization ability to
other datasets when trained on the SR, 3-SAT, CA,
and PS datasets. However, when trained on the k-
Clique, k-Domset, and k-Vercov datasets, which in-
volve specific graph structures inherent to their com-
binatorial problems, NeuroSAT struggles to generalize
effectively. This observation indicates that the GNN
model may overfit to leverage specific graph features
associated with these combinatorial datasets, without
developing a generalized solving strategy that can be
applied to other problem domains for satisfying as-
signment prediction. For medium datasets, NeuroSAT
also faces challenges in generalization, as its performance is relatively limited. This can be attributed to the
difficulty of these datasets, where finding satisfying assignments is much harder than easy datasets.
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Figure 10: Solving accuracy of NeuroSAT with dif-
ferent inference algorithms.

Evaluation with different inference algorithms.
Figure 10 illustrates the results of NeuroSAT using
various decoding algorithms (with UNS2 as the train-
ing loss). Notably, all three decoding algorithms
demonstrate similar performances across all datasets.
This observation indicates that utilizing the standard
readout after message passing is sufficient for predict-
ing a satisfying assignment. Also, the GNN model
has successfully learned to identify potential satisfy-
ing assignments within the latent space, which can be
extracted by clustering the literal embeddings.

Evaluation with unsatisfiable training in-
stances. Following previous works (Amizadeh et al., 2019a;b; Ozolins et al., 2022), our evaluation of GNN
models focuses solely on satisfiable instances. However, in practical scenarios, the satisfiability of instances
may not be known before training. To address this gap, we explore the effectiveness of training NeuroSAT
using the unsupervised loss UNS2 on noisy datasets that contain unsatisfiable instances. Table 11 presents
the results of NeuroSAT when trained on such datasets, where 50% of the instances are unsatisfiable. In-
terestingly, incorporating unsatisfiable instances for training does not significantly affect the performance of
the GNN model. This finding highlights the potential utility of training GNN models using UNS2 loss on
new datasets, irrespective of any prior knowledge regarding their satisfiability.

Table 11: Solving accuracy of NeuroSAT when trained on noisy datasets. Values in parentheses indicate the
performance difference compared to the model trained without unsatisfiable instances. The k-Clique dataset
is excluded as NeuroSAT fails during training.

Easy Datasets Medium Datasets
SR 3-SAT CA PS k-Domset k-Vercov SR 3-SAT CA PS k-Domset k-Vercov

78.84 80.48 87.01 88.66 98.00 95.24 37.21 41.75 76.49 72.52 94.93 96.18
(-0.95) (-0.11) (-2.33) (-0.13) (-0.85) (-4.49) (-0.04) (+0.14) (+5.64) (+1.46) (-1.25) (+0.19)

C.4 Unsat-core Variable Prediction

Evaluation across different difficulty levels. The results across different difficulty levels are presented
in Figure 11. Remarkably, both NeuroSAT and GGNN exhibit a strong generalization ability when trained
on easy or medium datasets. This suggests that GNN models can effectively learn and generalize from the
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characteristics and patterns present in these datasets, enabling them to perform well on a wide range of
problem complexities.
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Figure 11: Classification accuracy of unsat-core variables across different difficulty levels. The x-axis denotes
testing datasets and the y-axis denotes training datasets.

Evaluation across different datasets. Figure 12 shows the generalization results across different
datasets. Both NeuroSAT and GGNN demonstrate good generalization performance to datasets that are
different from their training data, except for the CA dataset. This discrepancy can be attributed to the
specific characteristics of the CA dataset, where the number of unsat-core variables is significantly smaller
compared to the number of variables not in the unsat core. In contrast, other datasets have a different
distribution, where the number of unsat-core variables is much larger. This variation in distribution presents
a challenge for the models’ generalization ability on the CA dataset.
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Figure 12: Classification accuracy of unsat-core variables across different datasets. The x-axis denotes testing
datasets and the y-axis denotes training datasets.

D Advancing Evaluation

D.1 Implementation details

To create the augmented datasets, we leverage CaDiCaL (Fleury & Heisinger, 2020) to generate a DART
proof (Wetzler et al., 2014) for each SAT instance, which tracks the clause learning procedure and records all
the learned clauses during the solving process. These learned clauses are then added to each instance, with
a maximum limit of 1,000 clauses. For experiments on augmented datasets, we keep all training settings
identical to those used for the original datasets.

For contrastive pretraining experiments, we treat each original formula and its augmented counterpart as a
positive pair and all other instances in a mini-batch as negative pairs. We use an MLP projection to map
the graph embedding zi of each formula to mi and employ the SimCLR’s contrastive loss (Chen et al., 2020),
where the loss function for a positive pair of examples (i, j) in a mini-batch of size 2N is defined as:

Li,j = − log exp(sim(mi, mj)/τ)∑2N
k=1 1[k ̸=i] exp(sim(mi, mk)/τ)

. (8)
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Here, 1[k ̸=i] is an indicator function that evaluates to 1 if k ̸= i, τ is a temperature parameter, and sim(·, ·)
is the similarity function defined as sim(mi, mj) = m⊤

i mj/∥mi∥∥mj∥. The final loss is the average over all
positive pairs. In our experiments, we set the temperature parameter to 0.5 and utilize a learning rate of
10−4 with a weight decay of 10−8. The pretraining process is performed for a total of 100 epochs. Once the
pretraining is completed, we keep the GNN model and remove the projection head for downstream tasks.

For experiments involving random initialization, we utilize Kaiming Initialization (He et al., 2015) to initialize
all literal/variable and clause embeddings during both training and testing. For the predicted assignments,
we utilize 2-clustering decoding to construct two possible assignment predictions for NeuroSAT* at each
iteration. When calculating the number of flipped variables and unsatisfiable clauses for NeuroSAT*, we
only consider the better assignment prediction of the two at each iteration, which is the one that satisfies
more clauses. All other experimental settings remain the same as in the benchmarking evaluation.

D.2 Comparisons with State-of-the-art SAT Solvers

We compare NeuroSAT with two advanced CDCL and LS solvers, CaDiCaL Fleury & Heisinger (2020) and
Sparrow (Balint & Fröhlich, 2010). To enable a fair comparison, we first configure Sparrow to generate
the same number of assignments as NeuroSAT by setting its maximum flip number to 32, allowing for an
apples-to-apples comparison of both solvers’ accuracy and execution time. Subsequently, we allow Sparrow
and CaDiCaL to run without constraints to solve the satisfiable instances in G4SATBench. Considering
that NeuroSAT processes a batch of problems in parallel on GPUs, we calculate its per-instance runtime by
dividing the total execution time by the number of testing instances.

The results, summarized in Table 12, indicate that GNN-based heuristics could outperform modern local
search solvers like Sparrow, generating more satisfying assignments extremely fast when constrained to
output a limited number of solutions. However, once such a constraint is lifted, both Sparrow and CaDiCaL
can traverse the solution space efficiently and solve all satisfiable instances in G4SATBench, while GNN
models like NeuroSAT may find it challenging due to their limited exploration capacity as evidenced in
Figure 5a. Nevertheless, it’s crucial to recognize that while GNN models are hard to compete with CaDiCaL
and Sparrow, their assignment predictions could still serve as good initializations in these solvers, potentially
leading to better performance (Zhang et al., 2020; Li & Si, 2022).

Table 12: Results of NeuroSAT, Sparrow, and CaDiCaL. The top 2 rows represent the solving accuracy (%),
and the bottom 4 rows represent the running time (second) per instance. Sparrow∗ refers to Sparrow limited
to a maximum of 32 flips.

Method Easy Datasets Medium Datasets
SR 3-SAT CA PS k-Clique k-Domset k-Vercov SR 3-SAT CA PS k-Clique k-Domset k-Vercov

NeuroSAT 79.79 80.59 89.34 88.79 63.43 98.85 99.73 37.25 41.461 70.83 71.03 32.48 96.18 95.99
Sparrow∗ 56.03 52.09 85.48 77.25 53.68 37.15 31.61 1.64 1.85 12.68 10.72 12.99 1.27 0.53

NeuroSAT 0.002 0.002 0.002 0.002 0.003 0.002 0.003 0.008 0.006 0.009 0.010 0.009 0.006 0.007
Sparrow∗ 0.005 0.005 0.006 0.006 0.005 0.005 0.005 0.008 0.007 0.006 0.006 0.006 0.007 0.006
Sparrow 0.007 0.007 0.008 0.008 0.007 0.009 0.009 0.013 0.013 0.010 0.013 0.013 0.012 0.011
CaDiCaL 0.013 0.013 0.012 0.011 0.014 0.012 0.011 0.014 0.043 0.016 0.018 0.015 0.013 0.012
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