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Abstract

Deep learning models employed in face recogni-
tion (FR) systems have been shown to be vulnera-
ble to physical adversarial attacks through various
modalities, including patches, projections, and
infrared radiation. However, existing adversarial
examples targeting FR systems often suffer from
issues such as conspicuousness, limited effective-
ness, and insufficient robustness. To address these
challenges, we propose a novel approach for ad-
versarial face generation, UVHat, which utilizes
ultraviolet (UV) emitters mounted on a hat to
enable invisible and potent attacks in black-box
settings. Specifically, UVHat simulates UV light
sources via video interpolation and models the
positions of these light sources on a curved sur-
face, specifically the human head in our study. To
optimize attack performance, UVHat integrates a
reinforcement learning-based optimization strat-
egy, which explores a vast parameter search space,
encompassing factors such as shooting distance,
power, and wavelength. Extensive experimen-
tal evaluations validate that UVHat substantially
improves the attack success rate in black-box set-
tings, enabling adversarial attacks from multiple
angles with enhanced robustness.

1. Introduction
Recently, face recognition (FR) systems utilizing deep learn-
ing models have seen widespread adoption across various
domains, including financial transactions (Aru & Gozie,
2013; Bodepudi & Reddy, 2020), airport security (Rajamäki
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Figure 1: Physical adversarial attack on FR systems. (1)
Patches attached to glasses or hats. (2) Visible projections
cast onto the face. (3) Invisible infrared light on hats or
glasses. (4) Our invisible and powerful UVHat, which
remains effective across multiple angles.

et al., 2009; Zhu & Wang, 2020), access control (Ibrahim &
Zin, 2011; Lee et al., 2020), crime prevention (Purshouse
& Campbell, 2019; Archana et al., 2024), and law enforce-
ment (Sajjad et al., 2020; Lynch, 2020), primarily due to
their high accuracy in identifying individuals. These sys-
tems offer substantial benefits in enhancing security, effi-
ciency, and convenience. However, recent studies (Goswami
et al., 2018; Dong et al., 2019; Zhong & Deng, 2020) have
revealed that FR systems are vulnerable to adversarial exam-
ples, carefully crafted inputs designed to mislead the model
into making incorrect predictions. Such errors can lead
to severe consequences, such as unauthorized access to re-
stricted areas, wrongful identification, and even false arrests.
Additionally, adversarial manipulations could compromise
individual privacy, enable identity theft, or damage repu-
tations. These vulnerabilities raise critical concerns about
the reliability and security of FR systems, particularly in
high-stakes applications where attackers may exploit these
weaknesses to cause harm.

However, current adversarial attack methods exhibit sig-
nificant limitations. Early research predominantly focused
on adversarial examples in the digital domain (Garofalo
et al., 2018; Kwon et al., 2019; Goodman et al., 2020),
where attackers manipulated facial inputs at the pixel level.
These digital approaches, while conceptually promising,
are neither practical nor sufficiently effective for real-world

1



Omni-Angle Assault: An Invisible and Powerful Physical Adversarial Attack on Face Recognition

applications. In response to these issues, considerable ef-
forts have been directed toward the development of physi-
cal adversarial examples that are capable of withstanding
real-world environmental conditions. Physical adversarial
perturbations targeting FR systems can be broadly catego-
rized into patches, visible light, and invisible light-based
attacks. Specifically, patches refer to adversarial pertur-
bations that are printed by the attacker and subsequently
attached to objects such as eyeglass frames (Sharif et al.,
2016), hats (Komkov & Petiushko, 2021), masks (Zolfi et al.,
2022), or even directly onto the face (Yin et al., 2021; Wei
et al., 2022a). In contrast, visible light attacks typically
involve the projection of adversarial perturbations (Nguyen
et al., 2020) onto the attacker’s face. Despite their potential,
adversarial examples generated by these two attack types
are hindered by substantial limitations in stealth and often
appear visually conspicuous. To mitigate these shortcom-
ings, recent studies (Yamada et al., 2013; Wang et al., 2024)
have investigated the use of invisible infrared (IR) light
to create adversarial perturbations, thereby enhancing the
stealthiness of the attack. However, although this approach
offers improvements in terms of concealment, the relatively
weak energy associated with the IR light wavelength (Vaia,
2024) results in diminished effectiveness. Furthermore, as
demonstrated in Figure 1, the deployment of IR emitters on
eyeglasses (e.g., the Agile method) fails to support effective
attacks from multiple angles, leading to reduced robustness.
Moreover, directing IR light at the face (Zhou et al., 2018)
introduces significant safety concerns, as it may pose risks
to the attacker’s vision, thereby further limiting its practical
applicability.

To overcome the aforementioned limitations, we introduce
a novel physical adversarial attack, UVHat, which utilizes
invisible ultraviolet (UV) light emitted from a hat to disrupt
FR models. In contrast to prior approaches, the primary
challenges in developing UVHat lie in accurately simulat-
ing UV light sources on a curved surface and determining
the optimal attack parameters in a black-box setting. Our
method can be conceptualized as a three-step process. First,
we devise an interpolation-based UV simulation technique
that leverages a video interpolation model to generate UV
images under varying distances, powers, and wavelengths
within the digital domain. Second, we introduce a hemi-
spherical UV modeling strategy to update the relevant pa-
rameters based on the positions across the curved surface.
Finally, we employ a reinforcement learning optimization
approach, wherein the agent iteratively explores the parame-
ter space to identify the most effective attack parameters.

We conduct experiments in the physical world using two
datasets and four models, comparing our approach with
two baseline methods. Ablation studies analyze the impact
of factors such as wavelength and power on attack perfor-
mance. Additionally, we test the robustness of our method

under real-world conditions, including angle and lighting in-
tensity. Finally, we discuss potential defense strategies and
limitations, providing insights into protecting FR systems
from UVHat.

Our contributions are summarized as follows:

• We propose a novel physical adversarial attack using
UV light, i.e., UVHat, which generates invisible and
powerful adversarial perturbations to fool FR systems.

• We design an interpolation-based UV simulation and
a hemispherical UV modeling method to simulate UV
light sources on curved surfaces and utilize reinforce-
ment learning to search for optimal attack parameters.

• Extensive experiments validate the effectiveness of
UVHat against FR models in a black-box setting.

2. Background and Related Works
In this section, we provide an overview of FR systems and
the evolution of physical adversarial examples targeting
these systems.

2.1. Face Recognition Systems

Face recognition has always been one of the most popular
research topics in the field of computer vision. In recent
years, with the rapid development of deep learning tech-
nology, face recognition has achieved significant success
in various applications, such as DeepFace (Taigman et al.,
2014), FaceNet (Schroff et al., 2015) and ArcFace (Deng
et al., 2019).

In general, the deep learning-based face recognition system
can be mainly divided into four steps: face detection, face
alignment, feature extraction, and feature matching. Firstly,
the face detection step is to detect and locate facial regions
in input images or videos. Representative face detection
methods include MTCNN (Zhang et al., 2016), RetinaFace
(Deng et al., 2020) and YOLO-Face (Chen et al., 2021), etc;
Secondly, to improve the accuracy of subsequent feature
extraction, detected faces usually need to be aligned. A
common practice is to align the face to a standard template
by detecting key points of the face (e.g., eyes, tip of the nose,
corners of the mouth, etc.) and using geometric transforma-
tions. After that, the feature extraction step transforms raw
face images into discriminative feature vectors for the sub-
sequent identity verification or classification. State-of-the
art (SOTA) face feature extraction models includes Deep-
Face (Taigman et al., 2014), FaceNet (Schroff et al., 2015),
OpenFace (Baltrušaitis et al., 2016), ArcFace (Deng et al.,
2019), AdaFace (Kim et al., 2022), TransFace (Dan et al.,
2023), etc. Finally, the feature matching step compares the
extracted feature vectors with known face features in the
database to determine identity.
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2.2. Physical Adversarial Example against FR

Physical adversarial attacks against FR systems have gained
significant attention due to their practicality and real-world
implications. Unlike digital adversarial attacks that ma-
nipulate pixel values directly, physical attacks introduce
perturbations to physical objects, such as glasses, makeup,
or masks, that are then captured by cameras.

One of the most prominent methods in physical adversarial
attacks is the use of adversarial patches. For instance, Sharif
et al. proposed the use of adversarially crafted eyeglass
frames to bypass FR systems (Sharif et al., 2016); Komkov
et al. introduced adversarial hats (Komkov & Petiushko,
2021), demonstrating that such patches could mislead FR
systems under various lighting and environmental condi-
tions; Lin et al. developed a framework that uses adversarial
makeup to deceive FR systems, ensuring the patterns remain
imperceptible to humans (Lin et al., 2022).

On the other hand, many studies have utilized visible light
and invisible light to construct physical adversarial exam-
ples. For instance, Nguyen et al. used adversarial light
projections to conduct real-time physical attacks on FR sys-
tems (Nguyen et al., 2020). Similarly, Zhou et al. deployed
IR emitters mounted on hats to illuminate faces and by-
pass FR systems (Zhou et al., 2018). Additionally, Wang
et al. designed adversarial glasses equipped with IR lasers
to launch dodging and impersonation attacks against FR
systems (Wang et al., 2024). Compared to works using
patches and visible light, our UV light is invisible to the
naked eye, offering superior stealth. This is because UV’s
shorter wavelengths (below 400nm) fall outside the visible
spectrum (400nm-700nm). In contrast to methods employ-
ing IR light, our use of UV light provides higher energy,
enabling stronger adversarial perturbations and achieving a
higher attack success rate. Furthermore, unlike adversarial
glasses with IR lasers (Yamada et al., 2013) (Wang et al.,
2024), our method succeeds in attacks from multiple angles.
Notably, methods that project IR light directly onto the face
(Zhou et al., 2018) pose a risk of harming the attacker’s
eyes, a drawback that our approach completely eliminates.
A detailed comparison can be found in Appendix A.

3. Threat Model
Attacker’s capabilities. Similar to previous works (Dong
et al., 2019; Wei et al., 2022b; Wang et al., 2024), we assume
a black-box setting, where an attacker cannot directly access
the internal information of the model, including its architec-
ture, parameters, and gradients. Compared to the white-box
setting, the black-box setting more accurately reflects real-
world attack scenarios, such as financial monitoring and
airport security.

Attacker’s goals. We consider three types of attack goals:

(1) Dodging attacks: The attacker’s face is in the database,
but the FR system misidentifies the attacker as a different
individual:

f(UV Hat(xa)) ̸= ya, s.t.ya ∈ Didentity (1)

where f(·) represents FR model, xa denotes the attacker’s
face with identity ya (belongs to identity dataset Didentity).
A practical example is an attacker on a blacklist being
misclassified as someone off the list, thereby gaining
unauthorized access to restricted areas such as government
buildings.

(2) Denial-of-Service (DoS) attacks: The attacker causes
the FR system to fail to detect any face, resulting in no
identification:

f(UV Hat(xa)) = None (2)

This type of attack prevents the FR system from recognizing
anyone, potentially disrupting operations such as fugitive
tracking.

(3) Impersonation attacks: The attacker’s face is not in the
database, but the FR system misidentifies the attacker as any
identity (i.e., untargeted)in the database:

f(UV Hat(xa)) ̸= ya, s.t.ya /∈ Didentity (3)

where the attacker’s identity ya is absent from the database,
and misclassification into any identity in Didentity is a suc-
cess. We also consider a specific identity (i.e., targeted):

f(UV Hat(xa)) = ytarget, s.t.ya /∈ Didentity (4)

Real-world examples include an outsider impersonating an
employee to gain entry to a company (untargeted), or an
attacker attempting to unlock a smartphone or access a se-
cured facility by mimicking a specific authorized individual
(targeted).

4. Methodology
In this section, we present the contributions of our method-
ology. We begin by proposing the interpolation-based UV
simulation method to simulate UV light sources under vary-
ing distances, powers, and wavelengths. Unlike previous
approaches that focus solely on flat surfaces, we design the
hemispherical UV modeling approach to analyze the UV
intensity at different positions on curved surfaces. Finally,
in a black-box setting, we leverage reinforcement learning
to identify the optimal attack parameter for FR systems,
enabling effective deployment in the physical world.

4.1. Interpolation-based UV Simulation

The intensity of UV light in the real world is affected by
various factors, such as distance, power, and wavelength.
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Figure 2: Simulating UV light with the VIDIM model.

Moreover, UV beams are diffuse, making it a significant
challenge to simulate UV light in digital environments.

According to (Diffey, 2002), the intensity I of UV light is
given by:

I(d, p, λ) =
p · λ2

4πnd2
(5)

where d is the distance from the light source to the receiving
point, p represents the power of the light source, λ is the
wavelength of UV light, and n is the refractive index of air,
typically taken as a constant value of 1.0003. For simplicity,
environmental factors such as temperature and humidity are
neglected in this model.

Inspired by (Reda et al., 2022), we do not simulate lu-
minous images of UV light directly. Instead, we capture
multiple images of UV light emission in the physical world,
recording three parameters for each image: the distance d,
the power p, and the wavelength λ. Since it is impractical
to record UV images under all possible combinations of
parameters, we employ a video interpolation model called
VIDIM (Jain et al., 2024). VIDIM generates short videos
given a start and end frame, utilizing cascaded diffusion
models to produce all intermediate frames through joint de-
noising and fast sampling. As illustrated in Figure 2, we first
group the UV light emissions by wavelength λi. For UV
light with the same wavelength, we record their images at
various distances and powers. Given any set of parameters,
we first identify the corresponding group based on wave-
length and then determine the start and end frames based on
distance and power. Finally, the VIDIM model is used to
generate the corresponding UV images.

4.2. Hemispherical UV Modeling

We have already established a method to determine the
corresponding UV images based on power, wavelength, and
distance. The next step is to place the simulated UV light
source on a hat. Unlike the flat surfaces used by (Wang
et al., 2024), our hat has a curved surface, and the placement
of the UV emitter at different positions further affects the
UV intensity. The UV light positioned at different locations
on the curved surface cannot be simply rotated as in the
case of a flat image. The shape of the UV light does not

change, but rather the intensity of the light is reduced due to
the varying emission angles. Therefore, it is a challenge to
simulate UV light sources at different locations on a curved
surface.

Human head shapes vary, but the region covered by a hat can
be approximated as a hemisphere. As shown in Figure 3, we
model the hat as a hemisphere and assume that the camera is
positioned in front of point A. Since the camera captures a
2D image, we can determine the radius of the hemisphere by
calculating the difference in the Y-axis coordinates between
points A and B, i.e., r = (yB − yA). Next, we analyze how
the UV light intensity changes at different positions on the
curved surface.

Firstly, we assume that the UV light source is placed at point
A, where the light emitter and the camera are aligned along
the Z-axis. In this case, the UV intensity is not affected by
the emission angle. Using the method described in Section
4.1, we can calculate the corresponding UV image based on
parameters such as distance d, power p, and wavelength λ.
Secondly, we observe point B, where the emission direction
is along the Y-axis, perpendicular to the Z-axis. As a result,
the light intensity captured by the camera is 0. Similarly, for
point C, where the emission direction is along the X-axis,
the light intensity is also 0. Thirdly, we analyze the UV
intensity at point D. Points A, B, and D all lie in the Y-O-Z
plane. As shown in Figure 3, from a side view, the emission
angle at point D relative to the Z-axis is θ. The angle θ can
be calculated based on the positions of points A, B, and D:

θD = arcsin(
yD − yA

r
) (6)

Thus, the light intensity at point D is given by:

ID = I(d, p, λ)cos(θD) =
p · λ2

4πnd2
cos(arcsin(

yD − yA
r

))

(7)
Assuming that the distance d and wavelength λ at point D
remain unchanged, the power pD becomes:

pD =
ID · 4πnd2

λ2
=

I(d, p, λ)cos(arcsin( yD−yA
r

)) · 4πnd2

λ2

(8)
Therefore, with the new power pD, distance d, and wave-
length λ, we can calculate the corresponding UV image and
place it at point D. Similarly, as shown in Figure 3, the angle
θE at point E can also be calculated:

θE = arcsin(
xE − xA

r
) (9)

Finally, we calculate the UV intensity at any arbitrary point
F. Using the spherical equation x2 + y2 + z2 = r2, we
can determine the 3D coordinates of point F, denoted as
(xF , yF , zF ). By projecting point F onto the Z-axis, we can
compute the angle θF between point F and the Z-axis:

cos(θF ) =
z

r
=

√
r2 − x2

F − y2F
r

(10)
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Figure 3: 3D hemisphere modeling with light intensity
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Therefore, the power pF at point F is:

pE =
I(d, p, λ)

√
r2 − x2

F − y2F · 4πnd2

rλ2
(11)

By calculating the angle θF , we can determine the UV
light intensity at any point E on the hat and compute the
corresponding power pE . Using pE , the distance d, and the
wavelength λ, we can obtain the UV image at point E with
the VIDIM model and add the image to point E.

4.3. Optimization

Although the aforementioned methods can simulate UV
light sources on curved surfaces, simply optimizing at-
tack parameters presents significant challenges. First, the
black-box setting and the discrete nature of certain parame-
ters make gradient-based optimization strategies unfeasible,
while exhaustive search methods are computationally expen-
sive. Second, placing the UV light source with maximum
power at the closest distance may easily lead to DoS at-
tacks, but it does not achieve other attack goals such as
impersonation or dodging.

Based on these observations, we design a reinforcement
learning approach to avoid the need for hand-crafted heuris-
tics. We first define the search space and action space based
on the methods outlined in Section 4.1 and 4.2, and design
reward functions for the agent tailored to different attack
goals. Our approach is inspired by the actor-critic frame-
work (Gruslys et al., 2018), where the actor selects the
optimal action through a policy network, while the critic
evaluates the value of the action. Finally, we obtain the
perturbation parameters, i.e., distance, power, wavelength,
and position, to deploy the attack in the physical world.

Specifically, our process works as follows. First, we
define the attack parameters ϕ = [d, p, λ, (x, y)] as the
state space, where d ∈ [dmin, dmax], p ∈ [pmin, pmax],
λ ∈ {365 nm,395 nm,415 nm}, x ∈ [0, Ximage], y ∈
[0, Yimage]. Next, we define the agent’s action space. At
time t, the actor select an action at = [dt, pt, λt, (xt, yt)]

based on the current state st, according to the policy network
π. The π(at|st) represents the probability of selecting ac-
tion at given the state st. Based on the method described in
Section 4.2, the corresponding attack parameters at position
(xt, yt) are determined as a′t = [dt, p

′
t, λt, (xt, yt)]. Finally,

using the VIDIM model, the corresponding UV image is
generated based on these parameters.

Next, the agent performs action a′t, which adds the UV light
to the normal sample to obtain a reward. Since the attack
goals are different, we define a combined reward function
as follows:

Rtotal = k1Rpos + k2Rim un + k3Rim tar

+k4Rdodg + k5RDoS ;

5∑
i=1

ki = 1
(12)

Different models compute euclidean distance or cosine sim-
ilarity for embedding features. To improve clarity, we ex-
press FR results as probability p and explain how the prob-
ability p is derived from euclidean distance or cosine sim-
ilarity in Appendix B. We introduce each reward function
separately. First, Rpos determines whether the position of
the UV light source is out of range of the hat:

Rpos = −ρ ·mask(xt, yt) (13)

where ρ is a penalty coefficient and mask is a function that
returns 0 when the position of the UV light source (xt, yt)
is within the region of the hat, and 1 otherwise. Second, for
untargeted impersonation attacks, the reward function is:

Rim un = max(p1, ..., pN ) (14)

where pi is the probability of the i-th category and N is the
number of categories. The goal of the attack is to maximize
the model’s classification probability, without focusing on
any specific identity. For targeted impersonation attacks, the
reward function is:

Rim tar = η · ptarget (15)

where η is a reward coefficient and ptarget represents the
probability that the model classifies the attacker into the tar-
get category. Third, for dodging attacks, the reward function
is:

Rdodg = −τ · poriginal (16)

where τ is a penalty coefficient. Note that, at this point,
the attacker belongs to the database, and the corresponding
probability is poriginal. Therefore, the attacker aims to
minimize the probability of the original identity as much as
possible. Finally, for DoS attacks, the reward function is:

RDoS =

N∑
i=1

pi · log(pi) (17)
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Algorithm 1 The actor-critic pseudocode

Initialize the parameters of actor network θ and critic
network ϕ, learning rate α and β, T=0.
repeat

Reset the gradients of actor and critic networks to 0.
tstart = 1, t = 1.
Get state st.
repeat

Perform a′t according to policy πθ(at|st).
Receive reward Rt and new state st+1.
Compute TD error to update critic network:
Vϕ(st)← Vϕ(st)+α(Rt+1+γVϕ(st+1)−Vϕ(st)).
Calculate the advantage function:
At = Q(st, a

′
t)− Vϕ(st).

Update the actor network:
θt+1 = θt + β∇θlogπθ(a

′
t, st)A(st, a

′
t).

t← t+ 1.
until t− tstart > tmax

T ← T + 1
until T > Tmax

We encourage the model to output a uniform distribution
by maximizing entropy, which represents the level of uncer-
tainty in the distribution, thereby achieving DoS attacks.

After obtaining the reward, we first introduce the state-
valued function V and the action-valued function Q used by
the critic network:

V (st) = E

[ ∞∑
t=0

γtRt|s0 = st

]
(18)

Q(st, a
′
t) = E

[ ∞∑
t=0

γtRt|s0 = st, a0 = a′t

]
(19)

The function V represents the expected return when follow-
ing the current policy from state st, while the function Q
is the expected cumulative reward after taking action a′t in
state st. The critic updates the value functions through the
Temporal Difference (TD) error:

V (st)← V (st) + α(Rt+1 + γV (st+1)− V (st)) (20)

where α is the learning rate, and γ is the discount factor.
The core idea of TD error is to improve the prediction of
the current state value by using the current estimate and the
estimated value of the next state, rather than waiting until
the end of the entire episode to perform an update.

To measure how much additional reward the action a′t brings,
we compute the advantage function At:

A(st, a
′
t) = Q(st, a

′
t)− V (st) (21)

The advantage function helps in updating the parameter of
the actor:

θt+1 = θt + β∇θlogπθ(at, st)A(st, a
′
t) (22)
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Figure 4: Experimental hardware used in the real-world
environments.

where β is the learning rate. Thus, the critic assists the actor
in improving its policy, enabling it to select the optimal
actions. Ultimately, the agent identifies the best attack pa-
rameters for deployment in the physical world. The entire
process is summarized in Algorithm 1.

5. Physical Evaluation
Here, we present our physical experimental setup to evaluate
the performance of UVHat in attacking four models across
two datasets, comparing it with two baselines. Additionally,
we provide key results from ablation studies and assess the
robustness of the attack in real-world environments.

5.1. Experimental Setup

Hardware. Figure 4 illustrates the various devices used in
our experiments. The UV emitters have three wavelengths
of 365 nm, 395 nm, and 415 nm, while the IR emitters have
three wavelengths of 780 nm, 808 nm, and 850 nm. We
connect the emitters to the power supply using connecting
wires and PVC tape. The power supply is an adjustable
voltage unit designed specifically for lasers, with a volt-
age range of 1-5V. UVHat incorporates UV emitters into
a knitted hat, as shown in Figure 4. We use an iPhone 13
equipped with the Sony IMX772 CMOS to capture facial
images. To ensure experimental safety, we equip ourselves
with goggles that can filter light wavelengths ranging from
200 nm to 2000 nm. Additionally, we use a photometer to
assess the ambient light intensity.

Datasets. We utilize two public datasets in the following
experiments, i.e., LFW and CelebA. LFW (Huang et al.,
2008) contains 13,233 images of 5,749 people and 1,680
of the people pictured have two or more distinct photos.
CelebA (Liu et al., 2018) is a large-scale face attributes
dataset with more than 200K images.

Models. We select four widely used face recognition models
as target models, i.e., ArcFace (Deng et al., 2019), FaceNet
(Schroff et al., 2015), CosFace (Wang et al., 2018), and Mo-
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Table 1: The ASR of UVHat on various models in the physical world.

Goal Method LFW CelebA
ArcFace FaceNet CosFace MobileFace ArcFace FaceNet CosFace MobileFace

DoS
MaxUV 52% 66% 41% 61% 39% 55% 28% 46%
2DUV 4% 12% 9% 6% 5% 10% 2% 6%
UVHat 72% 89% 80% 78% 67% 88% 70% 73%

Dodging
MaxUV 25% 32% 19% 21% 19% 26% 17% 20%
2DUV 2% 11% 0% 4% 4% 7% 1% 2%
UVHat 81% 100% 78% 87% 75% 91% 64% 83%

Untargeted
Impersonation

MaxUV 33% 41% 36% 28% 26% 33% 23% 30%
2DUV 4% 13% 5% 9% 1% 2% 0% 2%
UVHat 77% 93% 84% 80% 75% 86% 81% 80%

Targeted
Impersonation

MaxUV 3% 2% 0% 4% 0% 0% 0% 2%
2DUV 1% 3% 0% 0% 0% 1% 0% 0%
UVHat 46% 69% 44% 55% 39% 57% 42% 47%

DoS attacks Dodging attacks Impersonation attacks
Attacker Lupe Fiasco Kim Ki Bum Ingrid Michaelson Lee Joon-gi

Figure 5: Adversarial attack examples for different
goals. The first row shows the model inputs, while the
second row displays images corresponding to the model’s
highest-confidence class.

bileFace (Chinaev et al., 2018), to comprehensively evaluate
the effectiveness of our UVHat.

Metric. The attack success rate (ASR) is used as the evalua-
tion metric, which is the percentage of successfully attacked
samples among all the attacked samples. We set the deci-
sion threshold as 0.01 false acceptance rate for each victim
model.

Baselines. We established two baselines for comparison.
The first approach, denoted as MaxUV, places the highest-
power UV emitter at the closest position to the camera. The
second approach, referred to as 2DUV, positions the UV
emitter randomly, without considering the curved surface.

5.2. Overall Performance

We evaluate the performance of UVHat in the physical world
and compare it with two baseline methods.

Attack results of UVHat. To verify the feasibility of
UVHat, we train multiple models for different attack goals.
For DoS and dodging attacks, we augment the pre-trained
models with face images from five volunteers (specifically,
50 images per volunteer), and continue training until the
model achieves a classification accuracy of over 95% for
these individuals. For impersonation attacks, we directly
utilize the pre-trained models. The targeted impersonation
attack is considered successful if the attacker is classified
as one of 10 randomly selected identities. We implement
UVHat in real-world environments, and Figure 5 presents ex-

amples for various attack objectives. A camera can capture
UV light because its wavelength falls within the camera’s
range but outside the visible spectrum.

We test the ASR of UVHat in real-world environments
across multiple models, with the results presented in Ta-
ble 1. The dodging attacks consistently achieve the highest
ASR, with values reaching over 91% in the FaceNet model,
while other results fall within the range of 64∼87%. The
ASRs of DoS attacks are slightly lower than those of the
dodging attack, with a maximum ASR reaching 89%. It
is worth noting that increasing the UV emitter power can
potentially lead to a higher ASR, as it may result in image
overexposure. For impersonation attacks, the untargeted
version outperforms the targeted version, as an attacker has
a larger pool of identities to impersonate. The performance
of the targeted impersonation attack is limited by the dis-
tance between the embedded classes, which can prevent
successful attacks if the target’s embedding is far from the
adversarial example. Additionally, among the four models
tested, FaceNet is the most vulnerable to these attacks, con-
sistently exhibiting the highest ASR. In contrast, ArcFace
and CosFace, both based on the ResNet architecture, show
similar resistance to adversarial attacks.

Comparison with two baselines. We compare UVHat
with two baselines, and the experimental results are shown
in Table 1. The results indicate that MaxUV achieves the
highest ASR of 66% only for DoS attacks. In all other cases,
the attack success rate of MaxUV is below 41%. This aligns
with our observations in the UVHat experiments, where
the MaxUV favors DoS attacks by increasing the UV light
coverage, which could potentially even damage the camera.

The performance of 2DUV is even worse, with none of the
attack success rates exceeding 13%. This is because 2DUV
lacks any optimization algorithm and does not consider sur-
face curvature. As a result, the simulation results in the
digital domain do not translate effectively into the physical
world. For instance, a UV emitter using 4V in the simulation
may only produce an effect equivalent to 3V when deployed
in the physical world due to the impact of surface curva-
ture. This discrepancy between the simulated and physical

7



Omni-Angle Assault: An Invisible and Powerful Physical Adversarial Attack on Face Recognition

365

Wavelength (nm)

A
tta
ck
su
cc
es
s
ra
te

0

20

40

60

80

100

395 415 780 850808

CosFace
MobileFace

FaceNet
ArcFace

Figure 6: The ASR of UVHat at different wavelengths for
dodging attacks.

Table 2: The ASR of UVHat at different voltages on Arc-
Face trained in LFW.

Goal Voltage
1.0V 1.5V 2.0V 2.5V 3.0V 4.0V 5.0V

Dodging 31% 40% 56% 62% 79% 78% 82%
DoS 17% 33% 40% 45% 56% 61 73%

Imperun 23% 38% 52% 68% 75% 75% 76%
Impertar 10% 25% 36% 40% 44% 31% 23%

world results leads to attack failure. Therefore, compared
to both MaxUV and 2DUV, UVHat effectively simulates
the UV light source on the hat in the physical world and
optimizes the attack parameters. The real-world evaluation
demonstrates its success in bypassing the FR systems.

5.3. Ablation Studies

In this section, we examine several possible factors that
affect UVHat, including the wavelength, the UV power, and
the number of UV emitters.

Impact of the wavelength. In this experiment, we fix the
distance at 30 cm and set the voltage to 4V to evaluate the
ASR of the dodging attack on four models trained on the
LFW dataset. Note that, we add three IR emitters with vary-
ing wavelengths, i.e., 780 nm, 808 nm, 850 nm. As shown
in Figure 6, the ASR gradually decreases as the wavelength
increases. This occurs because longer wavelengths corre-
spond to weaker energy, resulting in a reduction in the ad-
versarial perturbations. However, an increase in wavelength
enhances the light’s penetration ability. As the distance in-
creases, UV light is more easily absorbed and dissipates in
the atmosphere, while IR light remains visible to the camera.
For FR systems, which typically occur at close distances,
stronger energy is required rather than enhanced penetration.
Therefore, UV light is well-suited for attacking FR systems
in such close-range scenarios.

Impact of the UV power. Here, we evaluate the perfor-
mance of UVHat at different voltage levels, with a UV
wavelength of 365 nm and a distance of 30 cm. Table 2
presents the ASR of UVHat for various attack goals on the

Table 3: The ASR of UVHat with varying numbers of UV
emitters. “Num” represents the number of UV emitters. The
result is presented as “A|B”, where A represents untargeted
impersonation attacks and B denotes DoS attacks.

Num ArcFace FaceNet CosFace MobileFace
1 75%|71% 90%|87% 80%|76% 80%|76%
2 80%|69% 91%|89% 82%|81% 79%|81%
3 82%|75% 93%|90% 85%|85% 81%|85%
4 80%|76% 87%|93% 80%|85% 82%|85%
5 81%|83% 86%|94% 77%|87% 78%|87%
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(b) DoS attacks

Figure 7: The ASR of UVHat on FaceNet at different angles.

ArcFace model. As the voltage increases, the ASRs for
different attacks improve to varying degrees. Notably, the
DoS attack achieves the most significant increase, as higher
voltage amplifies the adversarial perturbations, making DoS
attacks more successful. It is important to note that the ASR
for targeted impersonation attacks starts to decrease once
the voltage exceeds 3V. This may be because the attacker
can successfully classify the input into the target class with
smaller perturbations, but larger perturbations prevent the
input from crossing into the target class region.

Impact of the number of UV emitters. We expand the
state space in Section 4.3 to ϕ = {[d, pi, λi, (xi, yi)]}Ci=1,
where C is the number of UV emitters, allowing for the
simultaneous optimization of multiple UV emitters. Note
that each emitter has the same distance, but the wavelength
and power can vary. Due to space limitations, we prioritize
testing untargeted impersonation attacks and DoS attacks.

As shown in Table 3, the number of UV emitters has varying
effects on different attack goals. For DoS attacks, increasing
the number of emitters introduces more adversarial pertur-
bations, thereby increasing the ASR. For untargeted imper-
sonation attacks, the ASR increases most significantly when
the number of emitters goes from 1 to 2. However, when the
number exceeds 3, the ASR improvement becomes limited.
In addition, adding more emitters may trigger a DoS attack,
causing the untargeted impersonation attack to fail.

5.4. Robustness

To verify the robustness of UVHat in the physical world, we
evaluate the ASR of UVHat under different environmental
conditions, including angle, distance, and ambient light.
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Table 4: The ASR of UVHat at varying distances for DoS
attacks.

Model 25cm 30cm 35cm 40cm 45cm 50cm
ArcFace 78% 73% 72% 70% 67% 54%
FaceNet 91% 92% 89% 80% 74% 65%
CosFace 83% 80% 78% 79% 69% 59%

MobileFace 79% 80% 79% 73% 66% 58%

Table 5: The ASR of UVHat under different ambient light
conditions for DoS attacks.

Light ArcFace FaceNet CosFace MobileFace
1000lux 82% 95% 85% 89%
2000lux 73% 89% 80% 80%
4000lux 66% 78% 72% 67%
6000lux 47% 53% 41% 38%

Robustness to angles. As shown in Figure 7, we test the
ASR of dodging and DoS attacks at different angles, with
different colored lines representing different angles. It is
evident that the frontal view (0◦ angle) typically achieves
the highest ASR. Angle deviation only slightly reduces the
ASR, with dodging attacks causing a maximum decrease of
14%, while DoS attacks experience a maximum decrease
of 6%. This result further demonstrates the robustness of
UVHat across multiple angles. Additionally, compared to
DoS attacks, the ASR of dodging attacks is more sensitive
to angle changes. This is likely because angular deviations
affect facial features, making recognition more challenging.

Robustness to distances. To evaluate the impact of the
distance between the person and the camera on UVHat’s
performance, we conduct DoS attacks while keeping other
attack parameters constant. The results shown in Table 4
indicate that as the distance increases, the ASR gradually
decreases. Specifically, when the distance exceeds 45 cm,
there is a sharp decline in ASR. This is due to the nature of
UV light, which disperses outward and is easily absorbed by
the atmosphere. As the distance increases, the adversarial
perturbation captured by the camera becomes weaker. We
would like to emphasize that the inability to successfully at-
tack at long distances is acceptable, as FR systems typically
operate within close-range distances.

Robustness to ambient light. We use a photometer to
measure ambient light intensity and evaluate the ASR of
the dodging attack under different lighting conditions. As
shown in Table 5, the ASR decreases gradually with the
increase in ambient light intensity. However, UVHat still
maintains a relatively high ASR for FaceNet. It is important
to note that all physical adversarial attack methods utilizing
light are influenced by ambient lighting. Typically, FR
systems operate indoors, where direct sunlight is avoided,
resulting in lower ambient light intensity, which in turn
benefits the effectiveness of UVHat attacks.

6. Discussion
6.1. Defenses.

We discuss three potential defense methods.

(1) UV filter: Installing a UV filter inside the camera can
prevent the capture of UV light. However, attackers could
bypass this defense by using wavelengths close to UV light.

(2) Image detection: This method involves detecting the
presence of UV features in an image, such as color and
shape. Since UV light naturally exists in daily life, and
human hair, clothing, and circular decorations may resemble
UV characteristics, such features could further interfere with
the detection process.

(3) Model robustness: The most representative approach in
this category is adversarial training, which is typically used
to defend against specific attacks. However, UVHat involves
numerous parameters, and adversarial training cannot en-
compass all variations of UV signals, leading to inadequate
defense. Additionally, the need to generate a large number
of adversarial images and retrain the FR model makes this
approach costly.

6.2. Limitations.

Our approach performs poorly in extreme lighting con-
ditions, which is a limitation common to all adversarial
attacks relying on light signals. Additionally, UVHat fails
at long distances because UV light is easily absorbed by
the atmosphere, limiting its range. However, FR systems
are typically performed at close distances, which mitigates
this drawback.

6.3. UV Safety.

All of our physical-world experiments are conducted in
controlled indoor environments. All participants are trained
and fully informed about the experimental procedures. To
mitigate potential risks, all volunteers are equipped with
protective goggles to prevent any exposure to UV light.

7. Conclusion
We propose UVHat, a novel and invisible physical attack
vector capable of executing multiple adversarial attacks on
FR systems. Unlike previous methods, our approach ensures
greater stealth, generates stronger adversarial perturbations
to enhance attack effectiveness, and demonstrates robust
performance across various viewing angles. To maximize
UVHat’s efficacy, we simulate UV light sources on curved
surfaces and leverage reinforcement learning to optimize
attack parameters. Extensive experimental results validate
the effectiveness and robustness of our approach.
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Impact Statement
In this paper, we introduce UVHat, an invisible and pow-
erful physical adversarial attack against FR systems that
utilizes UV light to generate imperceptible perturbations.
This research reveals a novel attack pattern that utilizes in-
visible UV light and contributes to a broader understanding
of security vulnerabilities in FR systems. By highlighting
this overlooked threat, UVHat can motivate the development
of robust and spectrum-aware defense mechanisms, such as
multi-modal sensing and spectral filtering, thereby facilitat-
ing the advancement of secure and trustworthy biometric
authentication technologies.

However, this work also raises serious security and ethi-
cal concerns. The proposed attack may allow malicious
actors, including fugitives or other individuals seeking to
evade surveillance, to circumvent FR-based identity verifica-
tion and tracking systems. Such misuse could compromise
public safety and undermine trust in security-critical applica-
tions of FR technology. We encourage future research to ex-
plore effective countermeasures against invisible-spectrum
adversarial attacks, including real-time detection of abnor-
mal spectral patterns, the integration of UV/IR filtering in
camera hardware, and policy-level responses to regulate
the deployment of sensitive spectrum-emitting devices. A
comprehensive understanding of both the attack and defense
perspectives is essential to ensure the safe and responsible
evolution of FR systems.
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Table 6: Attack success rates at different angles across
methods.

Model / Angle -15° 0° 15°
(Komkov & Petiushko, 2021) 70% 74% 71%

(Wang et al., 2024) – 92% –
IRHat 56% 57% 54%
UVHat 97% 99% 96%

A. Comparison with Existing Methods
We provide a detailed comparison between UVHat and ex-
isting methods, along with experimental results.

Qualitative comparison. First, compared to sticker-based
methods, our UV light is invisible to the naked eye, pro-
viding stronger concealment. As shown in Figure 1, manu-
facturers deliberately incorporate a small amount of visible
light to signal that the UV lamp is active. This design
is primarily for safety reasons, as prolonged exposure to
UV radiation can cause significant harm to human skin,
potentially leading to burns or even an increased risk of
skin cancer. Additionally, attackers can freely choose the
timing of the attack, offering greater flexibility. Second,
compared to visible light-based methods, our invisible light
offers superior concealment. Finally, we provide a detailed
comparison with infrared-based methods. According to the
photon energy formula in physics:

E =
hc

λ
(23)

where E is the photon energy, h is Planck’s constant, c is the
speed of light, and λ is the wavelength of light. Since UV
(10nm-400nm) has a shorter wavelength than IR (700nm-
1000nm), it causes stronger adversarial perturbation. Fig-
ure 1 confirms that UVHat induces greater disruptions than
IR, leading to a higher ASR. Furthermore, existing IR-based
attack methods either pose risks to the attacker’s eyes or
only succeed from a single angle. In contrast, our approach
is harmless to the attacker and provides greater flexibility
by effectively attacking from multiple angles.

Quantitative comparison. To further demonstrate the effec-
tiveness and novelty of UVHat, we compare it with related
works. As shown in Table 6, we reproduce the patch-based
work (Komkov & Petiushko, 2021) and refer to results in
(Wang et al., 2024) (due to lack of devices). Additionally,
IRHat replaces UV emitters with IR emitters. As can be seen
from the table, UVHat outperforms all methods across mul-
tiple angles. Specifically, even though UVHat was placed
on a hat, it outperformed the scheme in (Wang et al., 2024)
because UV creates greater interference. IRHat’s ASR is
lower than (Wang et al., 2024)’s ASR, possibly because the
glass is positioned closer to the center of the face, making
the interference more effective. Note that the UVHat’s ASR

is much greater than IRHat’s ASR, which further confirms
that UV produces more interference than IR.

B. How the Probability p is Derived?
We define the reward function in Equation 12. Different
models compute euclidean distance or cosine similarity for
embedding features. To improve clarity, we express FR
results as probability p and explain how the probability
p is derived from euclidean distance or cosine similarity.
First, for euclidean distance d, we transform distances using
reciprocal and apply softmax:

pi =
e1/di∑N
j=1 e

1/dj

, i = 1, ..., N (24)

The smallest distance di corresponds to the highest proba-
bility pi. The probability threshold pτ is derived as:

pτ =
e1/di

e1/di + (N − 1)e1/davg
(25)

where the average distance davg for all non-matching pairs
is:

davg =
1

N − 1

∑
(xi,xj)∈non−match

d(xi, xj) (26)

where d(xi, xj) denotes the d between different embedding
features. For a face to be classified as the i-th person, its
probability must satisfy pi > pτ .

Second, for cosine similarity s, we apply softmax directly,
i.e., p = softmax(s). The highest similarity corresponds
to the highest probability, following a process similar to
euclidean distance.
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