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Abstract

Large language model (LLM) evaluations typi-
cally rely on aggregated metrics like accuracy
or human preference, averaging across users
and prompts. This averaging obscures user-
and prompt-specific variations in model perfor-
mance. To address this, we propose Prompt-
to-Leaderboard (P2L), a method that produces
leaderboards specific to a prompt or set of
prompts. The core idea is to train an LLM taking
natural language prompts as input to output a vec-
tor of Bradley-Terry coefficients which are then
used to predict the human preference vote. The
resulting prompt-dependent leaderboards allow
for unsupervised task-specific evaluation, opti-
mal routing of queries to models, personalization,
and automated evaluation of model strengths and
weaknesses. Data from Chatbot Arena suggest
that P2L better captures the nuanced landscape of
language model performance than the averaged
leaderboard. Furthermore, our findings suggest
that P2L’s ability to produce prompt-specific eval-
uations follows a power law scaling similar to that
observed in LLMs themselves. In January 2025,
the router we trained based on this methodology
achieved the #1 spot on the Chatbot Arena leader-
board. Our code is available at this GitHub link:
https://github.com/lmarena/p2l.

1. Introduction
Evaluating the real-world performance of large language
models is an unresolved challenge. A growing suite of
benchmarks, including MMLU (Hendrycks et al., 2020),
MMLU-Pro (Wang et al., 2024), and GPQA (Rein et al.,
2023), seek to address the challenge by reporting task-
specific performance metrics, such as multiple-choice
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question-answering ability. These highly-curated bench-
marks focus on domain-specific performance measures but
do not capture the general and subjective nature of or-
ganic human preferences. Live evaluations, such as Chatbot
Arena (Chiang et al., 2024), assess real-world performance
by collecting millions of organic human preferences from
users who visit the site and vote between pairs of model re-
sponses. These pairwise comparisons are aggregated using
Bradley-Terry (BT) regression (Bradley and Terry, 1952)
to form a leaderboard over LLMs. This leaderboard aver-
ages over many users and prompts, only providing a coarse
understanding of performance.

For example, if we want to identify the best model for SQL
queries, the overall Chatbot Arena leaderboard may not be
useful since SQL queries make up only 0.6% of organic
submissions and thus have little influence in the ranking.
A natural solution is to stratify the data and run a separate
BT regression for SQL queries. However, collecting the
3,000-5,000 SQL votes needed for a stable ranking would
require around a million total votes—taking months to col-
lect. Finer-grained categories, for example SQL table joins,
would demand even more data, making stratified regression
impractical and slow. And the finest-grained analyses—for
example, producing leaderboards for a specific prompt or
use-case—are rendered impossible.

This manuscript proposes a solution to this problem via a
method called Prompt-to-Leaderboard (P2L). P2L takes a
prompt as input and outputs a leaderboard quantifying LLM
performance on that specific prompt. Thus, P2L can be used
to assess which models are best for a specific use-case, as
opposed to on average. Per-prompt leaderboards can also
be aggregated over a group of prompts to form personalized
leaderboards, showing which model is best for an individual
or enterprise based on their prompt history.

The system works by training a P2L model, which is an
LLM trained on human preference feedback to output a
Bradley-Terry (BT) coefficient for every model in question;
see Section 2.1. Because P2L characterizes the prompt-
conditional win rate of any two models, it enables several
downstream applications. These include optimally routing
prompts to LLMs (Section 2.1.2), personalized evaluations
based on a user’s prompt history (Section 2.1.1), automated
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strength and weakness analysis of models (Section 3.4), and
more. Thus, we view P2L as a general-purpose tool for
highly granular evaluations extracted from large corpuses
of preference data. As a demonstration of P2L’s utility,
we tested our prompt routing strategy on Chatbot Arena
between the dates 01/19/2025—01/27/2025, and it achieved
the #1 spot with a score increase of 25 points over the
previous top model, Gemini-exp-1206 (see “P2L router
performance” in Figure 1).

More broadly, P2L is a subclass of a more general methodol-
ogy we call Prompt-to-Regression (P2R) for training LLMs
to output coefficients of parametric statistical regressions
(see Section 2.2). A canonical example that we will develop
throughout this paper is a model taking prompts as input and
outputting Bradley-Terry coefficients, as mentioned earlier.
However, the method also accommodates other feedback
models (ties, real values, etc.) via other parametric mod-
els. We describe this method and derive the optimal routing
strategy in Section 2. We show experiments and other appli-
cations in Section 3.

2. Methods
We describe the P2L method formally, beginning with no-
tation. Consider M different LLMs which are presented to
humans pairwise—model A on the left, and model B on
the right, where A and B are randomly sampled without
replacement from [M ] = {1, . . . ,M}. If the human votes
for model A, we set Y = 0, and if they vote for model B,
we set Y = 1. Furthermore, we let X represent a ‘two-hot’
encoding of the model pair, i.e., a vector of length M with
zeros everywhere except +1 in the index B and −1 in the
index A. We model our data-generating process as a tuple
(X,Y, Z) of two-hot encodings, votes, and prompts Z ∈ Z
sampled from a joint distribution P , where Z denotes the
space of natural-language prompts. Also, let Θ denote a
space of functions mapping prompts to leaderboards, i.e.,
θ ∈ Θ is a function from Z → RM , and θ(z)i represents
the leaderboard score of model i ∈ [M ] given prompt z.
Finally, let ℓ denote the binary cross-entropy loss and σ
denote the sigmoid function.

2.1. Core method

Conceptually, our method works as follows. We model
the vote conditionally on the prompt and model pair as
following a Bradley-Terry (BT) model (Bradley and Terry,
1952):

P(Y = 1 | X = x, Z = z) = σ(x⊤θ∗(z)),

for some (unknown) θ∗ : Z → RM . The goal is to approxi-
mate θ∗ from data.

For any prompt z ∈ Z , θ∗(z) represents a leaderboard.

Each model m ∈ [M ] has a coefficient θ∗(z)m, and the
higher this coefficient is, the more likely model m beats
any other model on the prompt z. For different prompts,
the leaderboard will be different, capturing the idea that
different models are better on different prompts. Our target,
θ∗, is precisely the function that takes prompts and out-
puts leaderboards—hence the name, prompt-to-leaderboard
(P2L).

P2L is a strict generalization of marginal BT regression. In
marginal BT regression, we simply omit the dependence of
the leaderboard on the prompt, and give the best leaderboard
on average (“marginally”). That is, choosing Θ to be the
class of constant functions θ(z) ≡ θ ∈ RM exactly recovers
marginal BT regression.

However, P2L can be substantially more powerful than
marginal BT regression due to heterogeneity in the prompt-
conditional performance of different language models. That
is, we should leverage language models to extract infor-
mation on model performance from the prompt. In par-
ticular, our work takes Θ to be a space of reward mod-
els mapping prompts to vectors. Given a training dataset
Dtrain = {(Xi, Yi, Zi)}Ni=1, we find the empirical risk min-
imizer,

θ̂ = argmin
θ∈Θ

1

N

N∑
i=1

ℓ(σ(X⊤
i θ(Zi)), Yi). (1)

Then, as before, we can extract the estimated win rate be-
tween any two models as

P̂(Y = 1 | X = x, Z = z) = σ(x⊤θ̂(z)).

Lastly, we note that this strategy of training LLMs to output
coefficients of parametric statistical models will be general-
ized in Section 2.2. The resulting prompt-dependent models
have both high predictive power and a useful statistical in-
terpretation, which is critical to the aforementioned routing
and personalization techniques.

2.1.1. AGGREGATING LEADERBOARDS

Many practical scenarios require a leaderboard for a dis-
tribution over prompts, not just one. For example, a user
may want to know which model is best for them based on
their chat history, or an enterprise may want to know which
model is best for their use-case. In other words, given a
distribution over prompts Q, we want to ensemble all θ∗(z)
for z ∈ Z to form a leaderboard over Q. In the case of
a finite chat history, we can consider Q to be the discrete
uniform distribution over the observed historical prompts.

By the Tower property, we can decompose the win rate as
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Figure 1: Pipeline of P2L. P2L takes a prompt or a set of prompts and outputs an M -dimensional vector that we call a
leaderboard. Once we have a leaderboard, we can build better data products, like routers and automatic analyses (see right).

EZ∼Q,Y∼Bern(σ(X⊤θ∗(Z)))[Y | X = x]

=

∫
z∈Z

σ
(
x⊤θ∗(z)

)
dQ(z).

The win rate above no longer follows a simple logistic
model, but we can fit another logistic model to match it:

θ̃(Q) = argmin
θ∈Θ

E X∼PX ,Z∼Q,

Y∼Bern(σ(X⊤θ∗(Z)))

[
ℓ
(
σ(X⊤θ), Y

)]
.

(2)
The idea is that, because we know P(Y = 1 | X = x, Z =
z) = σ(x⊤θ∗(z)) for all x and z, we can simulate the data-
generating process. This allows us to construct a synthetic
dataset and fit a Bradley-Terry model to it. If θ∗ exists, this
technique is perfect, in that it recovers the exact same BT
coefficients that we would have obtained by observing an
infinite population of prompts from Q. In Appendix B.1,
we explore an alternative leaderboard aggregation strategy
by taking a weighted average of the leaderboards. Note also
that we use θ∗, with the understanding that in practice we
will use the plug-in estimate based on θ̂, and the resulting
rule will be approximate.

We can make this strategy more efficient by leveraging the
linearity of the binary cross-entropy loss. Namely,

EX∼PX ,Z∼Q,Y∼Bern(σ(X⊤θ∗(Z))

[
ℓ
(
σ(X⊤θ), Y

)]
= EX∼PX ,Z∼Q

[
EY∼Bern(σ(X⊤θ∗(Z))[

ℓ
(
σ(X⊤θ), Y

)
|X,Z

]]
= EX∼PX ,Z∼Q

[
ℓ
(
σ(X⊤θ),

EY∼Bern(σ(X⊤θ∗(Z)) [Y |X,Z]
)

= EX∼PX ,Z∼Q

[
ℓ
(
σ(X⊤θ), σ(X⊤θ∗(Z))

)]
.

Thus, we can bypass the need for sampling to simulate Y .
In other words, (2) is equivalent to

θ̃(Q) = argmin
θ∈Θ

EX∼PX ,Z∼Q

[
ℓ
(
σ(X⊤θ), σ(X⊤θ∗(Z))

)]
.

(3)
This last expression is simple to compute for discrete distri-
butions Q, leading to an efficient algorithm.

2.1.2. OPTIMAL ROUTING

Next, we will derive the optimal router based on P2L. We
will derive the exact optimal router based on θ∗ and approx-
imate it in practice by θ̂. Let us assume, for the sake of
simplicity, that for each model m ∈ {1, . . . ,M}, there is a
known and fixed cost of inference, c = (c1, . . . , cM ). We
seek to create a router that maximizes performance while
remaining below a constraint on the average cost, C. We
express the router as a policy, π : Z → ∆M , which takes
a prompt as input and outputs a distribution over models;
we seek to estimate the optimal policy, π∗. We will also
consider a distribution of opponent models, q ∈ ∆M , to act
as a baseline for comparison. For instance, we can pick q to
be a point-mass on the single best model, or to be uniform
over all [M ] models.

One possible interpretation of an “optimal” router is the one
that maximizes the win rate against q subject to the cost
constraint; that is, for almost every z, this interpretation of
π∗(z) solves the following optimization problem:

maximize
π̃∈∆M

PA∼q,B∼π̃,Y∼Bern(σ(θ∗(z)B−θ∗(z)A))

(Y = 1 | Z = z)

subject to EB∼π̃[cB ] ≤ C

, (4)

In other words, the optimal router should maximize the
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average win rate against the opponent distribution q.

An alternative definition of the optimal router is the one that
has the highest Bradley-Terry coefficient. This version of
the optimal policy has π∗(z) equal (almost surely) to the
solution to the following optimization problem:

maximize
π̃∈∆M

argmin
θ∈R

E B∼π̃,A∼q,
Y ′∼Bern(σ(θ∗(z)B−θ∗(z)A))[

ℓ(σ(θ − θ∗(z)A), Y
′) | Z = z

]
subject to EB∼π̃[cB ] ≤ C

. (5)

That is, considering the optimal router as a separate model,
it should achieve the highest possible spot in the leaderboard
subject to the cost constraint.

Surprisingly, although the optimization problems in (4)
and (5) look different, their optimal solution is the same
under the Bradley-Terry model. The solution is given in
Theorem 1. The resulting problem has a linear objective
and a linear constraint, and can be solved with any standard
solver. If the dominant model is below the cost of C, the
policy will deterministically select that model (i.e., it will
place probability 1 on sampling that model). Otherwise, it
will hedge its bets and randomize over multiple models.

Theorem 1 (Optimal prompt-dependent routing). Assume
that for every prompt z, the Bradley-Terry model holds with
coefficients θ∗(z). Then, the optimization problems in (4)
and (5) are both equivalent to the following problem:

minimize
π̃∈RM

− π̃⊤W∗q

subject to π̃⊤c ≤ C,

0M ⪯ π̃ ⪯ 1M

π̃⊤1M = 1,

(6)

where W∗ represents the population win matrix, with en-
tries W∗

ba = σ(θ∗(z)b − θ∗(z)a).

The proof is given in Appendix A. It is important to note
that deviations from the Bradley-Terry model—for example,
any non-transitivity—will break this relationship.

Another benefit of this approach is that we are able to esti-
mate the value of the objective function of (5) via a standard
root finder (Brent, 1973), which means we can estimate the
router’s position on the leaderboard before deploying it. We
give this procedure in Algorithm 1. It is justified by (9) in
the proof of Theorem 1.

Algorithm 1 Optimal routing with BT estimate

Input: q; W∗; θ∗(z)j ; c; C
1: Solve the LP:

π̃∗ = argmax
π̃∈∆M , π̃⊤c≤C

π̃⊤W ∗q

2: Compute R∗ = π̃∗⊤W ∗q
3: Solve for θ′∗ by finding the root of the following im-

plicit equation:∑
a

qa σ
(
θ − θ∗(z)a

)
= R∗

Output: Optimal router π̃∗, estimate of router’s BT coeffi-
cient θ′∗

2.2. Prompt-to-Regression

Here, we give extensions of P2L beyond pairwise prefer-
ence feedback. This is useful because, in Chatbot Arena,
the voting options are not just “A is better” and “B is better”;
they also include “Tie” and “Tie (both bad)”. Thus, a P2L
model that takes into account all this additional data may
learn faster and also learn interesting signals about which
prompts are hard and cause models to exhibit different be-
haviors or failures. Fortunately, our toolkit generalizes to
the case where X is no longer a two-hot encoding and Y
is no longer binary. In fact, our strategy encompasses any
parametric statistical model relating X and Y conditionally
on Z, regardless of the space in which they live. We call this
more general class of models prompt-to-regression models.

More formally, let us model the distribution of Y by saying
that for all putative values y,

pY=y|Z=z,X=x(y) = gθ∗(z)(y;x), (7)

for some (unknown) vector of parameters θ∗(z). Then, we
fit θ̂(z) by running maximum-likelihood estimation, i.e.,

maximizing
n∏

i=1

gθ(Zi)(Yi;Xi)pX(Xi). As a familiar ex-

ample, we can set gθ∗(z) to a BT model relating X and
Y :

gθ(z)(y;x) =

{
σ(x⊤θ∗(z)) y = 1,

1− σ(x⊤θ∗(z)) y = 0.

Note that the formulation of (7), Y and X can be arbitrary,
so long as we model their conditional relationship via gθ(z).
Thus, the framework can admit real-valued feedback Y via
ordinary least squares, count feedback via Poisson regres-
sion, and so on.

As one example, we will consider incorporating ties via a
Rao-Kupper (Rao and Kupper, 1967) model. Let X be a
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two-hot encoding, Y ∈ {A,B, tie}, and

gθ∗(z)(y;x) =


σ((x,−1)⊤θ∗(z)) y = B,

σ((−x,−1)⊤θ∗(z)) y = A,

1− σ((−x,−1)⊤θ∗(z))

−σ((x,−1)⊤θ∗(z)) y = tie.

In this technique, θ∗(z) is an (M + 1)-dimensional vec-
tor, the last entry of which encodes a tie coefficient. The
larger this prompt-dependent tie coefficient, the more likely
the two models are to tie. Meanwhile, the first M entries,
θ̂(z)1:M , comprise the leaderboard.

Finally, we consider how to handle the “Tie (both bad)”
category. For this, we developed a non-standard statistical
model which we call the grounded Rao-Kupper model. In
this model, if both model coefficients are small, it increases
the probability of “Tie (both bad)”. Inspired by the Plackett-
Luce model (Plackett, 1975; Luce, 1959), we imagine the
existence of a fictitious “bad” model with a coefficient of
zero, and use this as a grounding point for the model coeffi-
cients.

Let Y ∈ {A,B, tie, bad}, and for the sake of notational
convenience, let θ∗(z) =

(
β∗(z), λ∗(z)

)
where β∗(z) ∈

RM and λ∗(z) ∈ R≥1}. For notational convenience, we
define φ∗(z)i := exp(β∗(z)i). The grounded Rao-Kupper
model is defined as:

gθ∗(z)(y;x) =



φ∗(z)A
φ∗(z)A+λ∗(z)φ∗(z)B+1 y = A

φ∗(z)B
φ∗(z)B+λ∗(z)φ∗(z)A+1 y = B

1
1+φ∗(z)A+φ∗(z)B

y = bad

1− φ∗(z)A
φ∗(z)A+λ∗(z)φ∗(z)B+1

− φ∗(z)B
φ∗(z)B+λ∗(z)φ∗(z)A+1

− 1
1+φ∗(z)A+φ∗(z)B

y = tie.

(8)
This model allows us to make efficient use of all data col-
lected on Chatbot Arena by incorporating all votes. It also
has the additional advantage that models with higher coeffi-
cients have a lower probability of being labeled “Tie (both
bad)”. Thus, the raw coefficient value of a model speaks to
its absolute quality, as opposed to its comparative quality
against other LLMs as in the BT model.

3. Experiments
This section contains a suite of experiments that validate
the P2L method and demonstrate its utility. In Section 3.2,
we show that P2L leads to gains in human preference pre-
diction that scale with model size and data. In Section 3.2,
we show direct predictive performance on pairwise human
preferences, as well as scaling behavior with data size and
parameter count. In Section 3.3, we show P2L allows for

optimal cost-efficient routing via the algorithm developed
previously in Section 2.1.2. In Section 3.4, we use P2L
to automatically identify strengths and weaknesses for dif-
ferent models. In Section 3.5, we explore our aggregation
technique against ground truth categories leaderboards, and
observe data scaling trends. Finally, in Section 3.6, we
show that the P2L has reasonable performance on out-of-
distribution data.

3.1. Training setup

To train a P2L model, we follow this three-step procedure:
(1) Begin with a pre-trained, instruction-tuned LLM. (2) Re-
move the existing language model head and replace it with a
randomly initialized coefficient head. In the BT case, the co-
efficient head is a linear layer producing M outputs, one per
model. (3) Train the model by running stochastic gradient
descent on all parameters to minimize the negative log-

likelihood: L(θ) = −
n∑

i=1

log
(
gθ(Zi)(Yi;Xi)

)
. The result

of this procedure is the trained model θ̂ = argminθ∈Θ L(θ),
which is a direct generalization of (1).

We train on up to n = 1.5 million crowdsourced hu-
man preference pairs from Chatbot Arena, containing
M = 130 unique models. Note that we find mini-
mal left/right positional bias from voters. We always
train for 1 epoch. In order to study the scaling laws
of P2L as a function of model size, we used the fol-
lowing models as the initializations: SmolLM2-{135,
360}M-Instruct and Qwen2.5-{0.5, 1.5, 3,
7}B-Instruct (Allal et al., 2024; Team, 2024). We
refer to our post-trained versions of these models as
P2L-{135,360}M and P2L-{0.5,1.5,3,7}B, re-
spectively.

3.2. Feedback prediction

We begin by evaluating P2L on its ability to predict human
feedback on a prompt-by-prompt basis. In other words,
given two models and a prompt, we ask how effectively P2L
can predict which model will win on that prompt. These
experiments measure the ability of P2L to accurately assess
relative model quality on a prompt-by-prompt basis.

In this section, we evaluate the ability of P2L to predict hu-
man preferences on Chatbot Arena. We construct a holdout
validation set containing 41,507 annotated pairwise com-
parisons across 34 well-used models. We then measure the
negative log-likelihood (validation loss) on this dataset; a
lower validation loss indicates better preference prediction
performance.

Figure 2 shows the results of our procedure against two
baselines. First, we include the constant predictor that gives
an equal probability of all preference outcomes; this is an
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Figure 2: Loss metrics. The line plot shows the valida-
tion loss as a function of the number of data points seen
during training. The P2L models all substantially outper-
form the baselines, and performance scales with dataset and
model size. The bar plots show the validation loss and mean
squared error of the models trained on all 1.5M training
points. A table for accuracy can be found in Appendix E.2.

extremely weak baseline akin to flipping a coin to decide
the winner. Second, we include the average (“marginal”)
leaderboard. For P2L, we show a ladder of increasing model
and dataset sizes. The more data is used to train P2L, the
better the preference predictions become. Notably, the gap
between the best P2L leaderboard and the marginal model
is several times the gap between the marginal leaderboard
and the constant predictor. This indicates that by capturing
the prompt-dependent differences in model performance,
P2L is able to produce much better predictions of human
preference.

3.3. Optimal routing

Next, we evaluate the performance of the optimal router
based on P2L as derived in Section 2.1.2. Our evaluations
are based on prospective deployments of our router to Chat-
bot Arena. We treat the router as a separate model. For all
deployments of our routers, we collect blind pairwise com-
parisons against all active public models hosted on Chatbot
Arena in a process identical to how standard models are
added to the Chatbot Arena Leaderboard.

We deployed the grounded Rao-Kupper versions of
P2L-0.5B, P2L-1.5B, P2L-3B, and P2L-7B onto
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Figure 3: P2L router performance on Chatbot Arena. The
left barplot shows the overall score of the router after it
was deployed prospectively on Chatbot Arena. The right
barplot shows the worst-case category score on Chatbot
Arena. Overall, larger models lead to higher Arena scores,
i.e., better routers. The exception is P2L-1.5B, which
has a large bump in overall performance. However, the
confidence intervals indicate that this bump is explainable
by statistical variations in its BT coefficient estimate.

Chatbot Arena, crowdsourcing a total of 8,616 pairwise
comparisons between P2L models and public models hosted
on Chatbot Arena. The P2L models routed between 34 mod-
els, including top models such as Gemini-exp-1206,
o1-2024-12-17, and ChatGPT-4o-20241120 as
well as other models. (See Appendix E.4 for a full model
list.)

Because there is no cost-constraint, the P2L router al-
ways picks the highest-ranked model conditionally on the
prompt, i.e., the highest entry in θ̂(z). Marginally, the
strongest singular candidate model in the P2L router was
Gemini-exp-1206, with a score of 1364.

As shown in the top plot in Figure 3, all P2L
routers, regardless of parameter count, outperformed
Gemini-exp-1206. The best model, P2L-1.5B,
reached #1 on Chatbot Arena during our testing period with
a score of 1389. This shows the utility of P2L: differences
in model performance on a prompt-by-prompt basis allow
P2L to outperform all individual LLMs.

Next, we discuss scaling performance with respect to the
Arena score of the router. We see a general trend in Fig-
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ure 3 that bigger models do better overall. The exception is
P2L-1.5B, whose performance was unexplainably strong;
otherwise, the trend holds. We also tested other metrics,
such as worst-case performance (bottom of Figure 3). The
worst-case performance of P2L scales with parameter count
as expected, and is uniformly much better than that of the
marginal leaderboard.

We also observe that the gap between the P2L routers and
static models is large. The P2L routers are able to avoid
per-prompt model weaknesses and route elsewhere. In fact,
the gap between the best P2L router and the best non-routed
static model in the overall comparison was 25 points, while
this gap grew to 51 points in the minimum category perfor-
mance case. Appendix Figure 7 shows P2L-7B’s routing
distribution conditioned on each Chatbot Arena category.
Notably, we see relatively diverse routing patterns, even
within a single category. We also observe intuitive behavior
patterns, such that heavily routing to o1-2024-12-17
for math prompts and Gemini-exp-1206 for creative
prompts.

3.3.1. COST-OPTIMAL ROUTING

We show results of the optimal routing procedure
detailed in Theorem 1 with a P2L-7B model
on Chatbot Arena. Here, we use P2L to route
between o1-mini, gpt-4o-2025-05-13,
claude-3-5-sonnet-20240620,
gemini-1.5-pro-001, mistral-large-2407,
claude-3-5-haiku-20241022, and
gemini-1.5-flash-001 and with budgets of
{0.00218, 0.0044, 0.00675, 0.00945,
0.0123, ∞}. To get reasonable cost estimates, we
calculate the expected cost per query with ci = Oi ∗ E[Ti]
for all models i ∈ [M ], where Oi is the output cost per
token of model i, and Ti is a random variable representing
the number of tokens in a response from model i. We
estimate E[Ti] as the response token length mean overall
responses from model i in Chatbot Arena. Additionally,
we estimate q in Theorem 1 according to the Chatbot
Arena model sampling distribution. We find the P2L router
performs well, with Pareto frontier Arena score versus cost.
Furthermore, on the right plot in Figure 4 we find the P2L
router continues to show dominant performance in Chatbot
Arena’s creative category despite large shifts in individual
model performances.

3.4. Testing for regression and strength/weakness
analysis

An important question when developing models is to under-
stand their category-level performance, along with strengths
and weaknesses. Imagine, for example, a business seeking
to upgrade their workflow to a cheaper or newer (and pre-
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Figure 4: Arena score versus cost. Both plots show routing
performance as a function of average cost. The left plot
shows the averaged performance across all categories, and
the right plot shows the performance in the creative writing
category. The black open circles give the raw performance
and cost of the models used by the router. Each gold dot
represents the Arena score of the P2L-7B router as a func-
tion of the cost constraint in (6). The plots show that the
P2L router dominates and substantially improves the cost-
performance Pareto frontier. All confidence intervals are
95%.

sumably more advanced) model. In such a business, testing
for regression of the model to a worse performance may be
important. For example, they might ask the question: if I
switch from GPT-4o to GPT-4o-mini, can I do so safely,
and will my performance get worse on my customers?

This is a challenging question to answer because it requires
knowledge of the enterprise’s customer distribution which
may require lengthy instrumentation and data collection
procedures. However, P2L provides a partial solution to
this problem. Given a large unlabeled dataset of prompts
(e.g., customer use-cases), we seek to: (1) Categorize these
prompts automatically using an LLM. (2) Produce a pref-
erence leaderboard within each category, and (3) On a per-
model basis, analyze for which categories it is weak and
strong (relative to itself or its competition).

For this, we can use a standard hierarchical clustering ap-
proach. Assume access to a multilevel hierarchical catego-
rization of prompts (this can be obtained from an LLM).
That is, we have a function categorize that takes in a prompt
z and an integer level l and outputs a category in {1, . . . , kl},
for some integer kl. Given a set of prompts, Zcategory, we
can compute a per-category leaderboard using θ̃(unif(Z))
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Figure 5: Regression test. We show the strengths of dif-
ferent OpenAI models on various topic clusters based on
their win rate against GPT-4o-2024-05-13 as predicted
by P2L-7B. For each category, we show the probability a
given model wins against GPT-4o-2024-05-13 under
the BT model. The results show strong category-specific
variability in performance; for example, o1-mini is sub-
stantially better than GPT-4o-2024-05-13 in “Arith-
metic Operations and Calculations” but substantially worse
when asked to write a “Suspenseful Horror Story”.

as in (3). Note that the finest-grained categories may have
very little data, motivating the need for P2L.

Figure 5 shows an example analysis of five different OpenAI
models. The clustering method used is detailed in Appendix
Section E.1. Here, the percentages are calculated as the win
rate against GPT-4o-2024-05-13 under the BT model.
According to P2L-7B, OpenAI models’ performance varies
across different categories and topic clusters. While o1
might be a better model on average, it is essentially the same
compared to GPT-4o-mini on certain creativity tasks,
notably the former is 100x more expensive than the latter.
In math-flavored tasks, the gap widens significantly. These
intuitive results demonstrate the reliability and effectiveness
of P2L. See Figures 8 and 9 for similar and more detailed
plots on Llama 3 fine-tunes. We also include a variant of
our regression analysis under the grounded RK model from
(8); this provides guidance as to the absolute reliability of
the model, not just preference over alternative models; see
Figure 10.
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Figure 6: Aggregation scaling. The L1 distance between
the aggregated leaderboard and the marginal BT regression
as a function of the number of randomly sampled and aggre-
gated datapoints in two categories: Chinese (left) and Math
(right). The L1 distance plateaus at the optimal performance,
which is around 0.025. A nonzero optimal distance is ex-
pected as the empirical BT coefficients are derived from a
finite validation sample, and so these coefficients have their
own irreducible statistical error. Thus, the P2L estimate
converges to a near-optimal solution with increased data.

3.5. Aggregation scaling

Given a distribution of prompts, we aim to evaluate how
P2L behaves using the aggregation technique described in
2.1.1. Specifically, we analyze how P2L’s aggregated leader-
boards compare to ground truth category leaderboards as
well as how this relationship scales with data. First, we
calculate ground truth leaderboards over a large category
from the validation set with marginal regression. We then
aggregate P2L over increasing subsets of this category’s
prompts. Lastly, we plot the L1 function distance between
the aggregated leaderboard’s predicted probabilities and the
ground truth leaderboard’s predicted probabilities as subset
size increases. Since both the train and validation set are
drawn from the same distribution, we denote the optimal
value to be the L1 function distance between the ground
truth category leaderboard and the category leaderboard
derived from marginal regression on the train set.

In contrast to marginal regression, which requires thousands
of prompts for a stable leaderboard, P2L converges near
this optimal value within 100-250 prompts (Figure 6). Here,
we see P2L’s potential to create accurate aggregated leader-
boards efficiently, while also reinforcing the validity of its
per prompt outputs. Furthermore, as we scale the amount of
training data seen, P2L’s predictions over singular prompts
differ more drastically from category leaderboards while
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still converging with more prompts (Figure 6). A clear scal-
ing law ensues, as increased data allows P2L to make more
distinguished individual leaderboards while still maintain-
ing its aggregation ability at the category level.

3.6. Performance on out-of-distribution prompts

To assess how P2L generalizes to unseen prompts, we eval-
uate it on LiveBench (White et al., 2024), a verifiable,
contamination-free benchmark with 1,000 questions cover-
ing diverse categories (e.g., math, coding, reasoning). Un-
like Chatbot Arena, it utilizes objective success metrics. We
restrict our evaluation to a smaller pool of models. Among
these models, P2L selects its candidate models for each ques-
tion based on the predicted prompt-specific performance
and then uses the output of the chosen model as the final
answer. Table 1 shows that P2L-7B surpasses the static
oracle baseline among the model subset, achieving an over-
all LiveBench score of 59.275. Even far smaller versions
(e.g., 1.5B) match or exceed top static models. This means
P2L, having never seen ground truth labels or model re-
sponses, performs as well or better than running all models
on LiveBench, scoring them using the benchmark’s ground
truth labels, and selecting the best model after the fact. This
demonstrates that preference-trained routing generalizes
well to an out-of-distribution, ground-truth benchmark.

Moreover, we consider the cost-constrained routing case.
To examine this trade-off, we apply Prompt2Leaderboard to
LiveBench at various cost thresholds (e.g., $2, $5, $10, $15
per million tokens) using the cost-optimal routing method
discussed in Section 3.3.1. Figure 11 (in the appendix)
shows that, in all budgets tested, the P2L cost-aware router
consistently scores higher or comparable LiveBench scores
to the best-performing model within that specific cost thresh-
old. These gains are most pronounced when the budget
permits occasional routing to a more expensive (and often
stronger) model for prompts that particularly benefit from
it.

4. Discussion and Related Work
This work develops fundamental tools for granular and
query-specific evaluations in all evaluation tasks. Although
our experiments are largely based on Chatbot Arena, this
is not the only evaluation that could benefit from P2L. As
discussed in Section 2, any feedback signal can be accom-
modated. Thus, our techniques would equally work well
for other evaluations (Hendrycks et al., 2020; Zellers et al.,
2019; Cobbe et al., 2021; Srivastava et al., 2023; Zhong
et al., 2023; Chen et al., 2021; Lin et al., 2023; Liang et al.,
2022) as well as cost and latency prediction.

Modeling human preference. During Reinforcement
Learning from Human Feedback (RLHF), a reward model

is often trained as a proxy to human preference. Similar to
P2L, reward model training may use a contrastive pairwise
or K-wise loss, for example using the BT model (Chris-
tiano et al., 2023; Bai et al., 2022; Ouyang et al., 2022;
Zhu et al., 2023). However, reward models are agnostic to
model identity, requiring a prompt and response to return a
single score for the response. P2L, which is aware of model
identities, instead seeks to output expected model response
quality, conditioned on input prompt, instantly generating
a full leaderboard over all models without requiring model
responses to be generated. This yields efficient leaderboard
creation over arbitrary prompt sets.

Meta-learning. P2L is related to meta learning (Schmidhu-
ber, 1987; Santoro et al., 2016; Finn et al., 2017) insofar as
we are training a model to output models. For example, we
have discussed training an LLM (the meta-learner) to output
coefficients of a BT regression (the learner). However, the
meta-learning literature primarily focuses on learners that
are deep neural networks. Instead, we let the learner be an
extremely simple statistical model that is used for inference.

Routing. Prior work on routing LLM queries optimizes
trade-offs between cost and performance, typically through
classifiers or gating mechanisms. RouteLLM (Ong et al.,
2024) and AutoMix (Madaan et al., 2023), Hybrid LLM
(Ding et al., 2024), train classifiers to decide between a
strong and weak model, while LLM-Blender (Jiang et al.,
2023) ranks candidate responses and blends them. Rou-
terDC (Chen et al., 2024) uses contrastive losses to train a
query-based router. Unlike these approaches, which operate
over a small fixed set of models, P2L learns a parametric
function mapping prompts to full model leaderboards. Its
statistical structure supports efficient cost-aware routing,
outperforming static models in live crowdsourced settings
while scaling to personalized and task-specific selections.

Benchmark Compression. P2L can be related to bench-
mark compression (Polo et al., 2024). Rather than reducing
benchmark size via pruning data examples, P2L captures
and compresses benchmark information parametrically.

Parametric statistical models. Our work builds on clas-
sic log-linear models and GLMs, like those of Bradley and
Terry (1952); Rao and Kupper (1967); see (McCullagh,
2019) for a review, and (Ameli et al., 2024) for further ex-
tensions that enrich this model class for better LLM ranking.
The closest piece of work to ours is Hastie and Tibshirani
(1993), which proposes varying-coefficient models. P2L
can be seen as a subclass of varying-coefficient models. To
our knowledge, ours is the first work to parameterize such a
model via a foundation model and backpropagate it end-to-
end, while the techniques in Hastie and Tibshirani (1993)
use bespoke fitting procedures and simpler statistical models
than LLMs.
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Impact Statement
This paper presents work whose goal is to advance the field
of Large Language Model evaluation. There are many po-
tential societal consequences of our work, none which we
feel must be specifically highlighted here.
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A. Proofs
Proof of Theorem 1. The equivalence of (4) and (6) is immediate. Proving the equivalence of (5) and (6) is more challenging,
and we focus there.

We begin by simplifying the expressions in (5). The cost constraint can be succinctly written as π̃⊤c ≤ C. Regarding the
objective, because the binary cross-entropy loss is linear in the response,

EB∼π̃,A∼q,Y ′∼Bern(σ(θ∗(z)B−θ∗(z)A)) [ℓ(σ(θ − θ∗(z)A), Y
′) | Z = z]

= EB∼π̃,A∼q [ℓ(σ(θ − θ∗(z)A), σ(θ
∗(z)B − θ∗(z)A)) | Z = z]

= EA∼q

[
ℓ
(
σ(θ − θ∗(z)A),

(
π̃⊤W∗)

A

) ∣∣∣∣∣Z = z

]
,

where again W∗ represents the population win matrix, with entries W∗
ba = σ(θ∗(z)b − θ∗(z)a). Thus, the optimization

problem in (5) can be equivalently rewritten as

maximize
π̃∈∆M

θ′(π̃) subject to π̃⊤c ≤ C,

where
θ′(π̃) = argmin

θ∈R
EA∼q

[
ℓ
(
σ(θ − θ∗(z)A), (π̃

⊤W∗)A

)]
.

Examining the first-order conditions of the inner optimization problem for θ′(π̃) shows that the solution satisfies∑
A

qA σ
(
θ′(π̃)− θ∗(z)A

)
= π̃⊤W∗q. (9)

Define
R(π̃) = π̃⊤W∗q, G(θ) =

∑
A

qA σ(θ − θ∗(z)A).

Then θ′(π̃) = G−1(R(π̃)). Since G−1 is strictly increasing,

maximize
π̃

θ′(π̃) ⇐⇒ maximize
π̃

R(π̃).

Thus, the problem reduces to:
maximize

π̃∈∆M , π̃⊤c≤C
π̃⊤W∗q,

which is exactly the problem in (6).

B. Additional theory
B.1. Aggregating leaderboards via averaging

The BT model tells us that for all z ∈ Z,

log

(
P(Y = 1 | X = x, Z = z)

1− P(Y = 1 | X = x, Z = z)

)
= x⊤θ∗(z).

Thus,

EZ∼Q

[
log

(
P(Y = 1 | X = x, Z)

1− P(Y = 1 | X = x, Z)

)]
= x⊤


∫
z∈Z

θ∗(z)dQ(z)︸ ︷︷ ︸
θ̃(Q)

 .

That is, taking a (weighted) average of the values of θ∗(z) leads to a predictor of the expected log-odds.

This method has two downsides: firstly, increasing the mth coordinate of θ̃(Q) does not mean that model m is more likely
to win against other models on average. Secondly, the function θ̃(Q) does not have a simple relationship with the win rate.
This motivates the need for the aggregation metric from Section 2.1.1.

13



Prompt-to-Leaderboard: Prompt-Adaptive LLM Evaluations

C. Additional Routing Figures
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Figure 7: Router model choice distribution in each prompt category. The rows are different models, and the columns are
different categories. Each cell represents the probability that the model was selected within that category (i.e., columns sum
to 1). Models with an average selection rate below 1% are not shown.

D. Additional regression tests

Creative Writing

Llama3-70b-Athene 60.3%

Llama3.1-70b 55.7%

Llama3.1-70b-Nemotron 65.6%

Llama3.1-70b-Tulu 57.9%

Llama3.3-70b 58.4%

Llama3.1-405b-fp8 59.3%

Llama3.1-405b-bf16 62.0%

Suspenseful Horror 
 Story

Llama3-70b-Athene 54.1%

Llama3.1-70b 49.9%

Llama3.1-70b-Nemotron 59.1%

Llama3.1-70b-Tulu 49.4%

Llama3.3-70b 52.3%

Llama3.1-405b-fp8 51.9%

Llama3.1-405b-bf16 54.4%

Roleplay Dynamics 
 and Scenarios

Llama3-70b-Athene 53.8%

Llama3.1-70b 53.0%

Llama3.1-70b-Nemotron 58.7%

Llama3.1-70b-Tulu 46.5%

Llama3.3-70b 52.6%

Llama3.1-405b-fp8 52.2%

Llama3.1-405b-bf16 53.4%

Math

Llama3-70b-Athene 58.8%

Llama3.1-70b 56.1%

Llama3.1-70b-Nemotron 65.5%

Llama3.1-70b-Tulu 56.5%

Llama3.3-70b 57.8%

Llama3.1-405b-fp8 59.7%

Llama3.1-405b-bf16 61.8%

Geometry Problems 
 with Circles

Llama3-70b-Athene 58.6%

Llama3.1-70b 56.2%

Llama3.1-70b-Nemotron 66.0%

Llama3.1-70b-Tulu 57.4%

Llama3.3-70b 58.1%

Llama3.1-405b-fp8 59.1%

Llama3.1-405b-bf16 62.3%

Arithmetic Operations 
 and Calculations

Llama3-70b-Athene 51.5%

Llama3.1-70b 56.3%

Llama3.1-70b-Nemotron 62.7%

Llama3.1-70b-Tulu 53.6%

Llama3.3-70b 51.0%

Llama3.1-405b-fp8 53.7%

Llama3.1-405b-bf16 57.4%

Figure 8: Regression test on Llama models with creative writing and math prompts. The percentages shown signify win
rates against Llama-3-70B under the BT coefficients predicted from P2L-7B.

14



Prompt-to-Leaderboard: Prompt-Adaptive LLM Evaluations

Instruction Following

Llama3-70b-Athene 60.9%

Llama3.1-70b 57.2%

Llama3.1-70b-Nemotron 66.4%

Llama3.1-70b-Tulu 58.0%

Llama3.3-70b 59.0%

Llama3.1-405b-fp8 60.7%

Llama3.1-405b-bf16 62.6%

Instruction Repetition 
 and Logging

Llama3-70b-Athene 56.5%

Llama3.1-70b 53.8%

Llama3.1-70b-Nemotron 61.1%

Llama3.1-70b-Tulu 52.6%

Llama3.3-70b 55.5%

Llama3.1-405b-fp8 56.4%

Llama3.1-405b-bf16 57.8%

Text Reversal 
 and Spelling

Llama3-70b-Athene 49.6%

Llama3.1-70b 49.8%

Llama3.1-70b-Nemotron 57.2%

Llama3.1-70b-Tulu 51.5%

Llama3.3-70b 50.7%

Llama3.1-405b-fp8 55.0%

Llama3.1-405b-bf16 60.8%

Coding

Llama3-70b-Athene 63.3%

Llama3.1-70b 59.0%

Llama3.1-70b-Nemotron 68.3%

Llama3.1-70b-Tulu 58.5%

Llama3.3-70b 59.6%

Llama3.1-405b-fp8 62.3%

Llama3.1-405b-bf16 63.9%

Python Programming 
 Concepts and Examples

Llama3-70b-Athene 62.3%

Llama3.1-70b 58.1%

Llama3.1-70b-Nemotron 67.3%

Llama3.1-70b-Tulu 55.9%

Llama3.3-70b 57.1%

Llama3.1-405b-fp8 60.1%

Llama3.1-405b-bf16 62.2%

DataFrame Operations 
 with Pandas

Llama3-70b-Athene 62.0%

Llama3.1-70b 59.2%

Llama3.1-70b-Nemotron 67.1%

Llama3.1-70b-Tulu 57.9%

Llama3.3-70b 59.3%

Llama3.1-405b-fp8 62.2%

Llama3.1-405b-bf16 64.0%

Figure 9: Regression test on Llama models with instruction following and coding prompts. The percentages shown signify
win rates against Llama-3-70B under the BT coefficients predicted from P2L-7B.

Creative Writing

GPT-4o-mini 77.9%

GPT-4o 78.2%

ChatGPT-4o 83.9%

o1-mini 73.0%

o1 80.1%

Suspenseful Horror 
 Story

GPT-4o-mini 81.0%

GPT-4o 80.5%

ChatGPT-4o 86.0%

o1-mini 77.1%

o1 81.7%

Roleplay Dynamics 
 and Scenarios

GPT-4o-mini 75.2%

GPT-4o 71.1%

ChatGPT-4o 75.6%

o1-mini 69.6%

o1 70.5%

Math

GPT-4o-mini 60.7%

GPT-4o 62.9%

ChatGPT-4o 62.8%

o1-mini 73.8%

o1 76.9%

Geometry Problems 
 with Circles

GPT-4o-mini 42.3%

GPT-4o 44.2%

ChatGPT-4o 42.2%

o1-mini 71.8%

o1 75.1%

Arithmetic Operations 
 and Calculations

GPT-4o-mini 23.5%

GPT-4o 24.9%

ChatGPT-4o 25.6%

o1-mini 90.4%

o1 81.4%

Figure 10: Regression test using grounded Rao-Kupper. We show the strengths of different OpenAI models on various
topic clusters based on P2L-7B with a grounded RK regression head (see Section 2.2) and a dataset of unlabeled prompts.
The percentage represents the sigmoid of the model coefficient. Because the RK model is grounded, this corresponds
roughly to a signal of the model’s reliability, i.e., its tendency to produce an answer that exceeds the voter’s minimum bar of
quality. The results show strong category-specific variability in performance; for example, GPT-4o-mini and o1 have
roughly the same reliability in the category “Suspenseful Horror Story”, but not “Arithmetic Operations and Calculations”.
We can also see that some categories are more difficult in general for LLMs to answer reliably, and thus we see larger
performance improvements from test-time compute models like o1 and o1-mini.
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Figure 11: LiveBench cost routing. Comparison of the P2L cost-aware router and static models on LiveBench under
various inference-cost constraints. The left plots show each model’s overall LiveBench performance at different maximum
cost thresholds, while the right plots display models’ relative rankings across multiple categories at the specific cost limit.
By adaptively allocating prompts to cheaper or more expensive models when advantageous, the P2L router consistently
matches or surpasses the best single model within each budget.
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Model LiveBench Math Coding Reasoning Language Instruction Data
Score Following Analysis

P2L-7B 59.3 51.9 65.2 50.0 56.5 75.8 56.3
claude-3-5-sonnet-20240620 59.2 51.3 63.5 54.7 56.8 72.3 56.7
claude-3-5-sonnet-20241022 59.0 51.3 66.8 50.0 57.0 74.1 54.9
P2L-1.5B 58.4 55.3 67.5 48.0 51.4 71.9 56.7
P2L-3B 57.8 49.6 66.8 50.7 53.3 70.4 56.2
P2L-0.5B 57.0 51.9 59.6 50.7 51.7 73.4 54.8
P2L-135M 56.2 48.9 63.5 50.0 47.1 74.1 54.0
P2L-360M 54.9 52.4 58.1 44.0 44.1 74.4 56.7
athene-v2-chat 53.4 53.4 56.9 48.0 37.5 74.6 50.2
gpt-4o-2024-05-13 52.8 42.7 50.4 47.3 49.3 72.4 54.4
qwen2.5-72b-instruct 52.6 52.3 55.6 47.3 36.0 73.3 51.1
gpt-4-turbo-2024-04-09 51.2 40.3 45.8 52.7 45.3 68.4 54.5
mistral-large-2407 50.4 48.4 45.8 44.0 40.5 73.1 50.4
chatgpt-4o-latest-20241120 49.4 37.7 44.4 44.7 43.7 74.1 51.7
gemini-1.5-pro-001 44.2 36.2 33.7 34.0 37.6 68.9 54.8
llama-3.1-70b-instruct 42.4 34.4 32.9 34.7 36.4 68.9 47.3
llama-3-70b-instruct 41.7 26.3 28.7 40.0 36.3 68.5 50.7
mixtral-8x22b-instruct-v0.1 37.5 28.0 32.3 36.0 27.9 65.5 35.5
llama-3.1-8b-instruct 26.3 19.5 14.5 18.7 17.8 53.9 33.3
mixtral-8x7b-instruct-v0.1 22.1 12.4 10.6 23.3 12.8 46.1 27.4

Table 1: LiveBench performance comparison. Comprehensive evaluation of language models across seven capability categories:
overall LiveBench score, mathematics, coding, reasoning, language understanding, instruction following, and data analysis. Results show
performance comparison between p2l models at different parameter scales (135M to 7B), Claude-3.5 Sonnet versions, and other leading
language models including GPT-4, Gemini, and LLaMA variants. All models were evaluated using identical inference settings as those
employed in Chatbot Arena to ensure fair comparison. Scores are presented as percentages, with the highest score in each category shown
in bold and second-highest underlined. P2L-7B achieves top performance in LiveBench Score (59.3) and Instruction Following (75.8),
while maintaining competitive performance across other categories.

E. Additional information
E.1. Clustering Method

We leverage a topic modeling approach using BERTopic. We first encode each prompt using OpenAI’s embedding model,
text-embedding-3-small, reduce dimensions with UMAP, and apply a hierarchical-based clustering algorithm
(HDBSCAN) with min size cluster 8. This process generates distinct topic clusters. Each topic is then summarized and
named using an LLM (GPT-4o-mini). This process is replicated from ArenaHard’s clustering pipeline (Li et al., 2024).

E.2. Accuracy

Model Accuracy (%)

Random 25.00
Marginal 37.40
0.135B 40.42
0.36B 42.23
0.5B 46.06
1.5B 47.06
3B 47.41
7B 47.88

Table 2: Grounded Rao-Kupper model accuracy by parameter size. Accuracy is calculated according to correctly predicting
the classes: {win, loss, tie, tie (both bad)}.
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E.3. Training Costs

P2L models are fairly inexpensive to train: P2L-7B on 1.5 million data points costs less than $250 to train end-to-end using
a relatively unoptimized Deepspeed and Huggingface Trainer infrastructure ($23.92 per hour for 8xH100 on Runpod). The
well-performing 3B and 1.5B variants train with negligible cost.

E.4. Model list

The full list of models is: athene-v2-chat (Frick et al., 2024), chatgpt-4o-latest-20241120,
claude-3-5-haiku-20241022, claude-3-5-sonnet-20240620, claude-3-5-sonnet-20241022
(Anthropic, 2024), deepseek-v3 (Liu et al., 2024), gemini-1.5-flash-001, gemini-1.5-flash-002,
gemini-1.5-pro-001, gemini-1.5-pro-002 (Team et al., 2024a), gemini-2.0-flash-exp,
gemini-2.0-flash-thinking-exp-1219, gemini-exp-1206, gemma-2-27b-it, gemma-2-9b-it
(Team et al., 2024b), glm-4-plus, gpt-4-1106-preview, gpt-4-turbo-2024-04-09 (Ope-
nAI, 2023), gpt-4o-2024-05-13, gpt-4o-2024-08-06, gpt-4o-mini-2024-07-18 (OpenAI,
2024), llama-3-70b-instruct, llama-3.1-405b-instruct-fp8, llama-3.1-70b-instruct,
llama-3.1-8b-instruct, llama-3.3-70b-instruct (AI@Meta, 2024), mistral-large-2407,
mixtral-8x22b-instruct-v0.1, mixtral-8x7b-instruct-v0.1 (Jiang et al., 2024), o1-2024-12-17,
o1-mini, o1-preview (Jaech et al., 2024), qwen2.5-72b-instruct (Team, 2024), and yi-lightning (Young
et al., 2024).
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