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ABSTRACT

Learning representations that generalize to novel compositions of known con-
cepts is crucial for bridging the gap between human and machine perception. One
prominent effort is learning object-centric representations, which are widely con-
jectured to enable compositional generalization. Yet, it remains unclear when this
conjecture will be true, as a principled theoretical or empirical understanding of
compositional generalization is lacking. In this work, we investigate when com-
positional generalization is guaranteed for object-centric representations through
the lens of identifiability theory. We show that autoencoders that satisfy structural
assumptions on the decoder and enforce encoder-decoder consistency will learn
object-centric representations that provably generalize compositionally. We vali-
date our theoretical result and highlight the practical relevance of our assumptions
through experiments on synthetic image data.

1 INTRODUCTION

Despite tremendous advances in machine learning, a large gap still exists between humans and
machines in terms of learning efficiency and generalization (Tenenbaum et al., 2011; Behrens et al.,
2018; Schölkopf et al., 2021). A key reason for this is thought to be that machines lack the ability to
generalize compositionally, which humans heavily rely on (Fodor and Pylyshyn, 1988; Lake et al.,
2017; Battaglia et al., 2018; Goyal and Bengio, 2022; Greff et al., 2020). Namely, humans are able
to recompose previously learned knowledge to generalize to never-before-seen situations.

Significant work has thus gone into the problem of learning representations that can generalize
compositionally. One prominent effort is object-centric representation learning (Burgess et al.,
2019; Greff et al., 2019; Locatello et al., 2020a; Lin et al., 2020; Singh et al., 2022; Elsayed et al.,
2022; Seitzer et al., 2023), which aims to represent each object in an image via a distinct subset
of the image’s latent code. Due to this modular structure, object-centric representations are widely
conjectured to enable compositional generalization (Battaglia et al., 2018; Kipf et al., 2020; Greff
et al., 2020; Locatello et al., 2020a). Yet, it remains unclear when this conjecture is actually true
because a theoretical understanding of compositional generalization for unsupervised object-centric
representations is lacking, and empirical methods are frequently not scrutinized for their ability to
generalize compositionally. Consequently, it is uncertain to what extent advancements in object-
centric learning promote compositional generalization and what obstacles still need to be overcome.

In this work, we take a step towards addressing this point by investigating theoretically when compo-
sitional generalization is possible in object-centric representation learning. To do this, we formulate
compositional generalization as a problem of identifiability under a latent variable model in which
objects are described by subsets of latents called slots (see Fig. 1 left). Identifiability provides a rig-
orous framework to study representation learning, but previous results have only considered identi-
fiability of latents in-distribution (ID), i.e., latents that generate the training distribution (Hyvärinen

*Equal contribution, order decided by dice roll.
Code at github.com/brendel-group/objects-compositional-generalization
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Figure 1: Compositional generalization in object-centric learning. We assume a latent variable
model where objects in an image (here, a triangle and a circle) are described by latent slots. Our
notion of compositional generalization requires a model to identify the ground-truth latent slots (slot
identifiability, Def. 2) on the train distribution and to transfer this identifiability to out-of-distribution
(OOD) combinations of slots (Def. 3). An autoencoder achieves slot identifiability on the train distri-
bution if its decoder is compositional (Thm. 1). Further, we prove that decoders that are additive are
able to generalize OOD as visualized in (A) via the isolated decoder reconstruction error over a 2D
projection of the latent space (see App. B.3). However, this does not guarantee that the entire model
generalizes OOD, as the encoder will generally not invert the decoder on OOD slot combinations,
leading to a large overall reconstruction error (B). To address this, we introduce a compositional
consistency regularizer (Def. 6), which allows the full autoencoder to generalize OOD (C, Thm. 3).

et al., 2023). Compositional generalization, however, requires identifying the ground-truth latents
not just ID, but also out-of-distribution (OOD) for unseen combinations of latent slots.

We pinpoint the core challenges in achieving this form of identifiability in Sec. 2 and show how
they can be overcome theoretically by autoencoder models which satisfy two properties: additiv-
ity (Def. 5) and compositional consistency (Def. 6). Informally, additivity states that the latents are
decoded as the sum of individual slot-wise decodings, while compositional consistency states that
the encoder inverts the decoder ID as well as OOD. When coupled with previous identifiability re-
sults from Brady et al. (2023), we prove that autoencoders that satisfy these assumptions will learn
object-centric representations which provably generalize compositionally (Thm. 3).

We discuss implementing additivity in practice and propose a regularizer that enforces compositional
consistency by ensuring that the encoder inverts the decoder on novel combinations of ID latent slots
(Sec. 4). We use this to empirically verify our theoretical results in Sec. 6.1 and find that additive
autoencoders that minimize our proposed regularizer on a multi-object dataset are able to generalize
compositionally. In Sec. 6.2, we study the importance of our theoretical assumptions for the popular
object-centric model Slot Attention (Locatello et al., 2020a) on this dataset.

Notation Vectors or vector-valued functions are denoted by bold letters. For vectors with fac-
torized dimensionality (e.g., z usually from RKM ) or functions with factorized output (usually ĝ
mapping to RKM ), indexing with k denotes the k-th contiguous sub-vector (i.e., zk ∈ RM or
ĝk(x) ∈ RM ). Additionally, for a positive integer K we write the set {1, . . . ,K} as [K].

2 PROBLEM SETUP

Informally, we say that a model generalizes compositionally if it yields an object-centric represen-
tation for images containing unseen combinations of known objects, i.e., objects observed during
training (Zhao et al., 2022; Frady et al., 2023; Wiedemer et al., 2023). For example, a model trained
on images containing a red square and others containing a blue triangle should generalize to images
containing both objects simultaneously—even if this combination has not previously been observed.

To formalize this idea, we first define scenes of multiple objects through a latent variable model.
Specifically, we assume that observations x of multi-object scenes are generated from latent vectors
z by a diffeomorphic generator f : Z → X mapping from a latent space Z to a data space
X ⊆ RN , i.e., x = f(z) (see also App. A.1). Each object in x should be represented by a unique
sub-vector zk in the latent vector z, which we refer to as a slot. Thus, we assume that the latent
space Z factorizes into K slots Zk with M dimensions each:

Zk ⊆ RM and Z = Z1 × · · · × ZK ⊆ RKM . (1)
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A slot Zk contains all possible configurations for the k-th object, while Z encompasses all possible
combinations of objects. For our notion of compositional generalization, a model should observe all
possible configurations of each object but not necessarily all combinations of objects. This corre-
sponds to observing samples generated from a subset ZS of the latent space Z , where ZS contains
all possible values for each slot. We formalize this subset below.
Definition 1 (Slot-supported subset). For ZS ⊆ Z = Z1 × · · · × ZK , let ZS

k
··=

{
zk|z ∈ ZS

}
.

ZS is said to be a slot-supported subset of Z if ZS
k = Zk for any k ∈ [K].

One extreme example of a slot-supported subset ZS is the trivial case ZS = Z; another is a set
containing the values for each slot exactly once such that ZS resembles a 1D manifold in RKM .

We assume observations x from a training space XS are generated by a slot-supported subset ZS ,
i.e., XS ··= f(ZS). The following generative process describes this:

x = f(z), z ∼ pz, supp(pz) = ZS . (2)

Samples from such a generative process are visualized in Fig. 1 for a simple setting with two objects
described only by their y-coordinate. We can see that the training space contains each possible
configuration for the two objects but not all possible combinations of objects.

Now, assume we have an inference model which only observes data on XS generated according to
Eq. 2. In principle, this model could be any sufficiently expressive diffeomorphism; however, we will
assume it to be an autoencoder, as is common in object-centric learning (Yuan et al., 2023). Namely,
we assume the model consists of a pair of differentiable functions: an encoder ĝ : RN → RKM

and a decoder f̂ : RKM → RN , which induce the inferred latent space Ẑ ··= ĝ(X ) and the
reconstructed data space X̂ ··= f̂(Ẑ). The functions are optimized to invert each other on XS by
minimizing the reconstruction objective

Lrec(XS) = Lrec
(
ĝ, f̂ ,XS

) ··= Ex∼px

[∥∥f̂(ĝ(x))− x
∥∥2
2

]
, supp(px) = XS . (3)

We say that an autoencoder
(
ĝ, f̂

)
produces an object-centric representation via ẑ ··= ĝ(x) if each

inferred latent slot ẑj encodes all information from exactly one ground-truth latent slot zk, i.e., the
model separates objects in its latent representation. We refer to this notion as slot identifiability,
which we formalize below, building upon Brady et al. (2023):
Definition 2 (Slot identifiability). Let f : Z → X be a diffeomorphism. Let ZS be a slot-supported
subset of Z . An autoencoder

(
ĝ, f̂

)
is said to slot-identify z on ZS w.r.t. f via ẑ ··= ĝ

(
f(z)

)
if it minimizes Lrec(XS) and there exists a permutation π of [K] and a set of diffeomorphisms
hk : zπ(k) 7→ ẑk for any k ∈ [K].

Intuitively, by assuming
(
ĝ, f̂

)
minimizes Lrec(XS), we know that on the training space XS , ĝ is

a diffeomorphism with f̂ as its inverse. This ensures that ẑ preserves all information from ground-
truth latent z. Furthermore, requiring that the slots ẑk and zπ(k) are related by a diffeomorphism
ensures that this information factorizes in the sense that each inferred slot contains only and all
information from a corresponding ground-truth slot.* We can now formally define what it means for
an autoencoder to generalize compositionally.
Definition 3 (Compositional generalization). Let f : Z → X be a diffeomorphism and ZS be a
slot-supported subset of Z . An autoencoder

(
ĝ, f̂

)
that slot-identifies z on ZS w.r.t. f is said to

generalize compositionally w.r.t. ZS , if it also slot-identifies z on Z w.r.t. f .

This definition divides training an autoencoder that generalizes compositionally into two challenges.

Challenge 1: Identifiability Firstly, the model must slot-identify the ground-truth latents on the
slot-supported subset ZS . Identifiability is generally difficult and is known to be impossible without
further assumptions on the generative model (Hyvärinen and Pajunen, 1999; Locatello et al., 2019).
The majority of previous identifiability results have addressed this by placing some form of statistical
independence assumptions on the latent distribution pz (Hyvärinen et al., 2023). In our setting,
however, pz is only supported on ZS , which can lead to extreme dependencies between latents (e.g.,

*Note that when ZS = Z , we recover the definition of slot identifiability in Brady et al. (2023).
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Figure 2: Overview of our theoretical contribution. (1) We assume access to data from a train-
ing space XS ⊆ X , which is generated from a slot-supported subset ZS of the latent space Z
(Def. 1), via a compositional and irreducible generator f . (2) We show that an autoencoder with a
compositional decoder f̂ trained via the reconstruction objective Lrec on this data will slot-identify
ground-truth latents z on ZS (Thm. 1). Since the inferred latents ẑ slot-identify z ID on ZS , their
slot-wise recombinations Z ′ slot-identify z OOD on Z . However, the encoder ĝ is not guaranteed
to infer OOD latents such that ĝ(X ) = Ẑ = Z ′. (3) On the other hand, if the decoder f̂ is addi-
tive, its reconstructions are guaranteed to generalize such that f̂(Z ′) = X (Thm. 2). (4) Therefore,
regularizing the encoder ĝ to invert f̂ using our proposed compositional consistency objective Lcons

(Def. 6) enforces Ẑ = Z ′, thus enabling the model to generalize compositionally (Thm. 3).

see Fig. 2 where slots are related almost linearly on ZS). It is thus much more natural to instead
place assumptions on the generator f to sufficiently constrain the problem, in line with common
practices in object-centric learning that typically assume a structured decoder (Yuan et al., 2023).

Challenge 2: Generalization Even if we can train an autoencoder
(
ĝ, f̂

)
that slot-identifies z

in-distribution (ID) on the slot-supported subset ZS , we still require it to also slot-identify z out-of-
distribution (OOD) on all of Z . Empirically, multiple prior works have demonstrated in the context
of disentanglement that this form of OOD generalization does not simply emerge for models that
can identify the ground-truth latents ID (Montero et al., 2021; 2022; Schott et al., 2022). From a
theoretical perspective, OOD generalization of this form implies that the behavior of the generator f
on the full latent space Z is completely determined by its behavior on ZS , which could essentially
be a one-dimensional manifold. This will clearly not be the case if f is an arbitrary function,
necessitating constraints on its function class to make any generalization guarantees.

3 COMPOSITIONAL GENERALIZATION IN THEORY

In this section, we show theoretically how the ground-truth generator f and autoencoder
(
ĝ, f̂

)
can

be constrained to address both slot identifiability and generalization, thereby facilitating composi-
tional generalization (complete proofs and further details are provided in App. A).

To address the problem of slot identifiability, Brady et al. (2023) proposed to constrain the genera-
tor f via assumptions on its Jacobian, which they called compositionality and irreducibility. Infor-
mally, compositionality states that each image pixel is locally a function of at most one latent slot,
while irreducibility states that pixels belonging to the same object share information. We relegate a
formal definition of irreducibility to App. A.4 and only restate the definition for compositionality.
Definition 4 (Compositionality). A differentiable f : Z → RN is called compositional in z ∈ Z if

∂fn

∂zk
(z) ̸= 0 =⇒ ∂fn

∂zj
(z) = 0, for any k, j ∈ [K], k ̸= j and any n ∈ [N ]. (4)

For a generator f satisfying these assumptions on Z , Brady et al. (2023) showed that an autoen-
coder

(
ĝ, f̂

)
with a compositional decoder (Def. 4) will slot-identify z on Z w.r.t. f . This result

is appealing for addressing Challenge 1 since it does not rely on assumptions on pz; however, it
requires that the training space XS is generated from the entire latent space Z . We here show an
extension for cases when the training space XS arises from a convex, slot-supported subset ZS .
Theorem 1 (Slot identifiability on slot-supported subset). Let f : Z → X be a compositional and
irreducible diffeomorphism. Let ZS be a convex, slot-supported subset of Z . An autoencoder

(
ĝ, f̂

)
4



that minimizes Lrec(XS) for XS = f(ZS) and whose decoder f̂ is compositional on ĝ(XS), slot-
identifies z on ZS w.r.t. f in the sense of Def. 2.

Thm. 1 solves Challenge 1 of slot identifiability on the slot-supported subset ZS , but to generalize
compositionally, we still need to address Challenge 2 and extend this to all of Z . Because we have
slot identifiability on ZS , we know each ground-truth slot and corresponding inferred slot are related
by a diffeomorphism hk. Since hk is defined for all configurations of slot zπ(k), the representation
which slot-identifies z = (z1, . . . ,zK) for any combination of slots (ID or OOD) in Z is given by

z′ =
(
h1(zπ(1)), . . . ,hK(zπ(K))

)
, Z ′ = h1(Zπ(1))× · · · × hK(Zπ(K)). (5)

Therefore, for an autoencoder to generalize its slot identifiability from ZS to Z , it should match this
representation such that for any z ∈ Z ,

ĝ
(
f(z)

)
= z′ and f̂(z′) = f(z). (6)

We aim to satisfy these conditions by formulating properties of the decoder f̂ such that it fulfills the
second condition, which we then leverage to regularize the encoder ĝ to fulfill the first condition.

3.1 DECODER GENERALIZATION VIA ADDITIVITY

We know from Thm. 1 that f̂ renders each inferred slot hk(zπ(k)) correctly to a corresponding object
in x for all possible values of zπ(k). Furthermore, because the generator f satisfies compositionality
(Def. 4), we know that these slot-wise renders should not be affected by changes to the value of any
other slot zj . This implies that for f̂ to satisfy Eq. 6, we only need to ensure that its slot-wise renders
remain invariant when constructing z′ with an OOD combination of slots z. We show below that
additive decoders can achieve this invariance.

Definition 5 (Additive decoder). For an autoencoder
(
ĝ, f̂

)
the decoder f̂ is said to be additive if

f̂(z) =

K∑
k=1

φk(ẑk), where φk : RM → RN for any k ∈ [K] and ẑ ∈ RKM . (7)

We can think of an additive decoder f̂ as rendering each slot ẑk to an intermediate image via slot
functions φk, then summing these images to create the final output. These decoders are expressive
enough to represent compositional generators (see App. A.7). Intuitively, they globally remove inter-
actions between slots such that the correct renders learned on inferred latents of ZS are propagated
to inferred latents of the entire Z . This is formalized with the following result.

Theorem 2 (Decoder generalization). Let f : Z → X be a compositional diffeomorphism and ZS

be a slot-supported subset of Z . Let
(
ĝ, f̂

)
be an autoencoder that slot-identifies z on ZS w.r.t. f .

If the decoder f̂ is additive, then it generalizes in the following sense: f̂(z′) = f(z) for any z ∈ Z ,
where z′ is defined according to Eq. 5.

Consequently, f̂ is now injective on Z ′ and we get f̂(Z ′) = f(Z) = X .

3.2 ENCODER GENERALIZATION VIA COMPOSITIONAL CONSISTENCY

Because the decoder f̂ generalizes such that f̂(z′) = f(z) (Thm. 2) and f̂(Z ′) = X , the condition
on the encoder from Eq. 6 corresponds to enforcing that ĝ inverts f̂ on all of X . This is ensured ID
on the training space XS by minimizing the reconstruction objective Lrec (Eq. 3). However, there is
nothing enforcing that ĝ also inverts f̂ OOD outside of XS (see Fig. 1B for a visualization of this
problem). To address this, we propose the following regularizer.

Definition 6 (Compositional consistency). Let qz′ be a distribution with supp(qz′) = Z ′ (Eq. 5).
An autoencoder

(
ĝ, f̂

)
is said to be compositionally consistent if it minimizes the compositional

consistency loss

Lcons
(
ĝ, f̂ ,Z ′) = Ez′∼qz′

[∥∥ĝ(f̂(z′)
)
− z′∥∥2

2

]
. (8)
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The loss can be understood as first sampling an OOD combination of slots z′ by composing inferred
ID slots hk(zπ(k)). The decoder can then render z′ to create an OOD sample f̂(z′). Re-encoding
this sample such that ĝ(f̂(z′)) = z′ then regularizes the encoder to invert the decoder OOD. We
discuss how this regularization can be implemented in practice in Sec. 4.

3.3 PUTTING IT ALL TOGETHER

Thm. 1 showed how slot identifiability can be achieved ID on ZS if f̂ satisfies compositionality, and
Thm. 2, Def. 6 showed how this identifiability can be generalized to all of Z if the decoder is addi-
tive and compositional consistency is minimized. Putting these results together, we can now prove
conditions for which an autoencoder will generalize compositionally (see Fig. 2 for an overview).
Theorem 3 (Compositionally generalizing autoencoder). Let f : Z → X be a compositional and
irreducible diffeomorphism. Let ZS be a convex, slot-supported subset of Z . Let

(
ĝ, f̂

)
be an

autoencoder with additive decoder f̂ (Def. 5). If f̂ is compositional on ĝ(XS) and ĝ, f̂ solve

Lrec
(
ĝ, f̂ ,XS

)
+ λLcons

(
ĝ, f̂ ,Z ′) = 0, for some λ > 0, (9)

then the autoencoder
(
ĝ, f̂

)
generalizes compositionally w.r.t. ZS in the sense of Def. 3.

Moreover, ĝ : X → Ẑ inverts f̂ : Z ′ → X and also Ẑ = Z ′ = h1(Zπ(1))× · · · × hK(Zπ(K)).

4 COMPOSITIONAL GENERALIZATION IN PRACTICE

Compositionality Thm. 3 explicitly assumes that the decoder f̂ satisfies compositionality on
ĝ(XS) but does not give a recipe to enforce this in practice. Brady et al. (2023) proposed a reg-
ularizer that enforces compositionality if minimized (see App. B.4), but their objective is computa-
tionally infeasible to optimize for larger models, thus limiting its practical use. At the same time,
Brady et al. (2023) showed that explicitly optimizing this objective may not always be necessary, as
the object-centric models used in their experiments seemed to minimize it implicitly, likely through
the inductive biases in these models. We observe a similar phenomenon (see Fig. 4, right) and thus
rely on these inductive biases to satisfy compositionality in our experiments in Sec. 6.

Additivity It is trivial to implement an additive decoder by parameterizing the slot functions φk

from Eq. 7 as, e.g., deconvolution neural networks. This resembles the decoders typically used in
object-centric learning, with the key difference being the use of slot-wise masks mk. Specifically,
existing models commonly use a decoder of the form

f̂(z) =

K∑
k=1

m̃k ⊙ xk, m̃k = σ(m)k, (mk,xk) = φk(zk), (10)

where ⊙ is an element-wise multiplication and σ(·) denotes the softmax function. Using masks mk

in this way facilitates modeling occluding objects but violates additivity as the softmax normalizes
masks across slots, thus introducing interactions between slots during rendering. We empirically
investigate how this interaction affects compositional generalization in Sec. 6.2.

Compositional Consistency The main challenge with implementing the proposed compositional
consistency loss Lcons (Def. 6) is sampling z′ from qz′ with support over Ẑ . First, note that we
defined Z ′ in Eq. 5 through use of the functions hk, but can equivalently write

hk(zπ(k)) = ĝk
(
f(z)

)
and Z ′ = ĝ1(XS)× · · · × ĝK(XS). (11)

The reformulation highlights that we can construct OOD samples in the consistency regulariza-
tion from ID observations by randomly shuffling the slots of two inferred ID latents ẑ(1), ẑ(2) via
ρk ∼ U{1, 2}. Because ZS is a slot-supported subset, constructing z′ as

z′ =
(
ẑ
(ρ1)
1 , . . . , ẑ

(ρK)
K

)
, where for i ∈ {1, 2} ẑ(i) = ĝ

(
x(i)

)
, x(i) ∼ px (12)

ensures that the samples z′ cover the entire Z ′. Practically, we sample ẑ(1), ẑ(2) uniformly from
the current batch. The compositional consistency objective with this sampling strategy is illustrated

6
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Figure 3: Compositional consistency regularization. In addition to the reconstruction objective,
Lcons is minimized on recombined latents z′. Recombining slots of the inferred latents ẑ of two ID
samples produces a latent z′, which can be rendered to an OOD sample x′ due to the decoder f̂
generalizing OOD. The encoder ĝ is optimized to re-encode this sample to match z′.

in Fig. 3. Note that the order of slots is generally not preserved between ĝ
(
f̂(z′)

)
and z′ so that

we pair slots using the Hungarian algorithm (Kuhn, 1955) before calculating the loss. Furthermore,
enforcing the consistency loss can be challenging in practice if the encoder contains stochastic op-
erations such as the random re-initialization of slots in the Slot Attention module (Locatello et al.,
2020a) during each forward pass. We explore the impact of this in Sec. 6.2.

5 RELATED WORK

Theoretical Analyses of Compositional Generalization Prior works have addressed identifiabil-
ity and generalization theoretically in isolation. For example, several results show how identifiability
can be achieved through assumptions on the latent distribution Hyvärinen and Morioka (2016; 2017);
Hyvärinen et al. (2019); Khemakhem et al. (2020a;b); Shu et al. (2020); Locatello et al. (2020b);
Gresele et al. (2019); Lachapelle et al. (2021); Klindt et al. (2021); Hälvä et al. (2021); von Kügelgen
et al. (2021); Liang et al. (2023) or via structural assumptions on the generator function (Gresele
et al., 2021; Horan et al., 2021; Moran et al., 2022; Buchholz et al., 2022; Zheng et al., 2022; Brady
et al., 2023). However, none of these deal with generalization. On the other hand, frameworks for
OOD generalization were proposed in the context of object-centric world models (Zhao et al., 2022)
and regression problems (e.g., Netanyahu et al., 2023), with latent variable formulations that closely
resemble our work. In this context, OOD generalization was proven for additive inference mod-
els (Dong and Ma, 2022) or slot-wise functions composed with a known nonlinearity (Wiedemer
et al., 2023). Yet, these results are formulated in a regression setting, which assumes the problem of
identifiability is solved a priori. Concurrent work from Lachapelle et al. (2023) also considers identi-
fiability and generalization. Similar to us, they leverage additivity to achieve decoder generalization
and show that additivity is sufficient for identifiability under additional assumptions on the decoder,
while allowing more general supports. However, they only focus on decoder generalization, while
we show theoretically and empirically how to enforce that the encoder also generalizes OOD.

Compositional Consistency Regularization Our compositional consistency loss (Def. 6), which
generates and trains on novel data by composing previously learned concepts, resembles ideas in
both natural and artificial intelligence. In natural intelligence, (Schwartenbeck et al., 2021; Kurth-
Nelson et al., 2022; Bakermans et al., 2023) propose that the hippocampal formation implements a
form of compositional replay in which new knowledge is derived by composing previously learned
abstractions. In machine learning, prior works Rezende and Viola (2018); Cemgil et al. (2020);
Sinha and Dieng (2021); Leeb et al. (2022) have shown that an encoder can fail to correctly encode
samples generated by a decoder, though not in the context of compositional generalization. For pro-
gram synthesis, Ellis et al. (2023) propose training a recognition model on compositions of learned
programs. In object-centric learning, Assouel et al. (2022) also train an encoder using on images
from recomposed slots; however, the model is tailored to a specific visual reasoning task.

6 EXPERIMENTS

This section first verifies our main theoretical result (Thm. 3) on synthetic multi-object data
(Sec. 6.1). We then ablate the impact of each of our theoretical assumptions on compositional gen-
eralization using the object-centric model Slot Attention (Locatello et al., 2020a) (Sec. 6.2).
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Figure 4: Experimental validation of Thm. 3. Left: Slot identifiability is measured through-
out training as a function of reconstruction loss (Lrec, Eq. 3) and compositional consistency (Lcons,
Def. 6). As predicted by Thm. 3, models which minimize Lrec and Lcons learn representations that
are slot identifiable OOD. Right: Compositional contrast (see App. B.4) decreases throughout train-
ing, indicating that the decoder is implicitly optimized to be compositional (Def. 4).

Data We generate multi-object data using the Spriteworld renderer (Watters et al., 2019). Images
contain two objects on a black background (Fig. 6), each specified by four continuous latents (x/y
position, size, color) and one discrete latent (shape). To ensure that the generator satisfies com-
positionality (Def. 4), we exclude images with occluding objects. Irreducibility is almost certainly
satisfied due to the high dimensionality of each image, as argued in (Brady et al., 2023). We sample
latents on a slot-supported subset by restricting support to a diagonal strip in Z (see App. B.1).

Metrics To measure a decoder’s compositionality (Def. 4), we rely on the compositional contrast
regularizer from Brady et al. (2023) (App. B.4), which was proven to be zero if a function is com-
positional. To measure slot identifiability, we follow Locatello et al. (2020a); Dittadi et al. (2021);
Brady et al. (2023) and fit nonlinear regressors to predict each ground-truth slot zi from an inferred
slot ẑj for every possible pair of slots. The regressor’s fit measured by R2 score quantifies how
much information ẑj encodes about ẑi. We subsequently determine the best assignment between
slots using the Hungarian algorithm (Kuhn, 1955) and report the R2 averaged over all matched slots.

6.1 VERIFYING THE THEORY

Experimental Setup We train an autoencoder with an additive decoder on the aforementioned
multi-object dataset. The model uses two latent slots with 6 dimensions each. We train the model
to minimize the reconstruction loss Lrec (Eq. 3) for 100 epochs, then introduce the compositional
consistency loss Lcons (Def. 6) and jointly optimize both objectives for an additional 200 epochs.

Results Fig. 4 (Right) shows that compositional contrast decreases over the course of training
without additional regularization, thus justifying our choice not to optimize it explicitly. Fig. 4 (Left)
visualizes slot identifiability of OOD latents as a function of Lrec and Lcons. OOD slot identifiability
is maximized exactly when Lrec and Lcons are minimized, as predicted by Thm. 3. This is corrobo-
rated by the heatmaps in Fig. 1A-C, which illustrate that additivity enables the decoder to generalize
as predicted by Thm. 2 but minimizing Lcons is required for the encoder to also generalize OOD.

6.2 ABLATING IMPACT OF THEORETICAL ASSUMPTIONS

Experimental Setup While Sec. 6.1 showed that our theoretical assumption can empirically en-
able compositional generalization, these assumptions differ from typical practices in object-centric
models. We, therefore, ablate the relevance of each assumption for compositional generalization in
the object-centric model Slot Attention. We investigate the effect of additivity by comparing a non-
additive decoder that normalizes masks across slots using a softmax with an additive decoder that
replaces the softmax with slot-wise sigmoid functions. We also train the model with and without op-
timizing compositional consistency. Finally, we explore the impact of using a deterministic encoder
by replacing Slot Attention’s random initialization of slots with a fixed initialization. All models use
two slots with 16 dimensions each and are trained on the multi-object dataset from Sec. 6.1.
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Figure 5: Compositional generalization for Slot Attention. Visualizing the decoder reconstruc-
tion error over a 2D projection of the latent space (see App. B.3 for details) reveals that the non-
additive masked decoder in Slot Attention does not generalize OOD on our dataset (A). Making the
decoder additive by replacing softmax mask normalization with slot-wise sigmoid functions makes
the decoder additive and enables OOD generalization (B, Thm. 2). The full model does not general-
ize compositionally, however, since the encoder fails to invert the decoder OOD (C). Regularizing
with the compositional consistency loss addresses this, enabling generalization (D, Thm. 3).

Table 1: Compositional generalization for Slot Attention in terms of slot identifiability and
reconstruction quality. Both metrics are close to optimal ID but degrade OOD with the standard
assumptions in Slot Attention. Incorporating decoder additivity (Add.), compositional consistency
(Lcons), and deterministic inference (Det.) improves OOD performance.

Identifiability R2↑ Reconstruction R2↑

Add. Lcons Det. ID OOD ID OOD
✗ ✗ ✗ 0.99±1.7e−3 0.81±9.0e−2 0.99±1.0e−4 0.71±1.9e−2
✓ ✗ ✗ 0.99±2.3e−3 0.83±5.4e−2 0.99±5.8e−4 0.72±2.1e−2
✓ ✓ ✗ 0.99±2.9e−2 0.92±3.4e−2 0.99±8.3e−4 0.79±7.2e−2
✓ ✓ ✓ 0.99±1.9e−3 0.94±2.2e−2 0.99±1.9e−4 0.92±2.1e−2

Results Fig. 5 illustrates that the non-additive decoder in Slot Attention does not generalize OOD
on our multi-object dataset. Moreover, regularization via the consistency loss is required to make
the encoder generalize. Tab. 1 ablates the effect of these assumptions for Slot Attention. We see that
satisfying additivity and compositional consistency and making inference deterministic (see Sec. 4)
improves OOD identifiability and reconstruction performance.

7 DISCUSSION

Extensions of Experiments Our experiments in Sec. 6.2 provide evidence that compositional gen-
eralization will not emerge naturally in object-centric models such as Slot Attention. However, to
gain a more principled understanding of the limits of compositional generalization in these models,
experiments with a broader set of architectures on more datasets are required. Additionally, Lcons,
as implemented in Sec. 6, samples novel slot combinations in a naive uniform manner, potentially
giving rise to implausible images in more complex settings, e.g., by sampling two background slots.
Thus, a more principled sampling scheme should be employed to scale this loss.

Extensions of Theory The assumptions of compositionality and additivity on the decoder make
progress towards a theoretical understanding of compositional generalization, yet are inherently
limiting. Namely, they do not allow slots to interact during rendering and thus cannot adequately
model general multi-object scenes or latent abstractions outside of objects. Thus, a key direction is to
understand how slot interactions can be introduced while maintaining compositional generalization.

Conclusion Compositional generalization is crucial for robust machine perception; however, a
principled understanding of how it can be realized has been lacking. We show in object-centric
learning that compositional generalization is theoretically and empirically possible for autoencoders
that possess a structured decoder and regularize the encoder to invert the decoder OOD. While our
results do not provide an immediate recipe for compositional generalization in real-world object-
centric learning, they lay the foundation for future theoretical and empirical works.
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REPRODUCIBILITY STATEMENT

Detailed versions of all theorems and definitions, as well as the full proofs for all results are included
in App. A. We attach our codebase to facilitate the reproduction of our experiments. All hyperpa-
rameters, model architectures, training regimes, datasets, and evaluation metrics are provided in the
codebase. Explanations for design choices are given in Sec. 6 in the main text and App. B. The
implementation of the compositional consistency loss is detailed in Sec. 4, paragraph 3.
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Sébastien Lachapelle, Divyat Mahajan, Ioannis Mitliagkas, and Simon Lacoste-Julien. Additive
decoders for latent variables identification and cartesian-product extrapolation. arXiv preprint
arXiv:2307.02598, 2023.

Philipp Schwartenbeck, Alon Baram, Yunzhe Liu, Shirley Mark, Timothy Muller, Raymond Dolan,
Matthew Botvinick, Zeb Kurth-Nelson, and Timothy Behrens. Generative replay for com-
positional visual understanding in the prefrontal-hippocampal circuit. bioRxiv, 2021. doi:
10.1101/2021.06.06.447249.

Zeb Kurth-Nelson, Timothy Edward John Behrens, Greg Wayne, Kevin J. Miller, Lennart Luettgau,
Raymond Dolan, Yunzhe Liu, and Philipp Schwartenbeck. Replay and compositional computa-
tion. Neuron, 111:454–469, 2022.

Jacob J.W. Bakermans, Joseph Warren, James C.R. Whittington, and Timothy E.J. Behrens. Con-
structing future behaviour in the hippocampal formation through composition and replay. bioRxiv,
2023. doi: 10.1101/2023.04.07.536053.

Danilo Jimenez Rezende and Fabio Viola. Taming vaes. arXiv preprint arXiv:1810.00597, 2018.

Taylan Cemgil, Sumedh Ghaisas, Krishnamurthy Dvijotham, Sven Gowal, and Pushmeet Kohli. The
autoencoding variational autoencoder. Advances in Neural Information Processing Systems, 33:
15077–15087, 2020.

Samarth Sinha and Adji Bousso Dieng. Consistency regularization for variational auto-encoders.
Advances in Neural Information Processing Systems, 34:12943–12954, 2021.

13



Felix Leeb, Stefan Bauer, Michel Besserve, and Bernhard Schölkopf. Exploring the latent space of
autoencoders with interventional assays. In Advances in Neural Information Processing Systems,
2022.

Kevin Ellis, Lionel Wong, Maxwell Nye, Mathias Sable-Meyer, Luc Cary, Lore Anaya Pozo, Luke
Hewitt, Armando Solar-Lezama, and Joshua B Tenenbaum. Dreamcoder: growing generalizable,
interpretable knowledge with wake–sleep bayesian program learning. Philosophical Transactions
of the Royal Society A, 381(2251):20220050, 2023.

Rim Assouel, Pau Rodriguez, Perouz Taslakian, David Vazquez, and Yoshua Bengio. Object-centric
compositional imagination for visual abstract reasoning. In ICLR2022 Workshop on the Elements
of Reasoning: Objects, Structure and Causality, 2022.

Nicholas Watters, Loic Matthey, Sebastian Borgeaud, Rishabh Kabra, and Alexander
Lerchner. Spriteworld: A flexible, configurable reinforcement learning environment.
https://github.com/deepmind/spriteworld/, 2019.

Andrea Dittadi, Samuele Papa, Michele De Vita, Bernhard Schölkopf, Ole Winther, and Francesco
Locatello. Generalization and robustness implications in object-centric learning. In International
Conference on Machine Learning, 2021.

Christopher P. Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Desjardins,
and Alexander Lerchner. Understanding disentangling in β-vae, 2018.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
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Table 2: General notation and nomenclature.

K number of slots
M dimensionality of slots
N dimensionality of observations
[n] the set {1, 2, . . . , n}

f : A ↣ B function f is defined on a subset of A, i.e. dom(f) ⊆ A

f ∈ Ck(A,B) function f defined on A with values in B is k-times continuously differen-
tiable

f ∈ CkDiffeo(A,B) function f is a Ck-diffeomorphism around A with values in B (Def. 7)
Df(x) (total) derivative of function f in point x

Lin(V,W ) space of all linear operators between linear spaces V and W

Z̃ (and X̃ ) a generic subset of RKM (and RN ), whose role will usually be fulfilled by
either ZS or Z (and XS or X )

ZS
k projection of ZS onto the k-th slot space Zk

∂kfn(z)
∂fn

∂zk
(z)

Ifk (z)
{
n ∈ [N ]

∣∣ ∂kfn(z) ̸= 0
}

fS(z) subvector of f(z) corresponding to coordinates S ⊆ [N ]

A DEFINITIONS, THEOREMS, AND PROOFS

In this section, we detail the theoretical contributions of the paper, including all the proofs. Although
there is no change in their contents, the formulation of some definitions and theorems are slightly
altered here to be more precise and cover edge cases omitted in the main text. Hence, the numbering
of the restated elements is reminiscent of that used in the main text.

Throughout the following subsections, let the number of slots K, the slot dimensionality M , and the
observed dimensionality N be arbitrary but fixed positive integers such that N ≥ KM.

A.1 INTRODUCTION AND DIFFEOMORPHISMS

This subsection aims to provide an accesible and completely formal definition of what we would
call throughout Sec. 2 and 3 a diffeomorphism.

Definition 7 (Ck-Diffeomorphism). Let Z̃ be a closed subset of RKM . A function f : RKM ↣ RN

is said to be a Ck-diffeomorphism around Z̃ , denoted by f ∈ CkDiffeo(Z̃,RN ), if

i) f is defined in an open neighbourhood W ⊆ RKM of Z̃ ,
ii) f is k-times continuously differentiable on W , i.e. f ∈ Ck(W),

iii) f is injective on Z̃ , i.e. bijective between Z̃ and f(Z̃) and

iv) for any z ∈ Z̃ the derivative Df(z) ∈ Lin(RKM ,RN ) is injective (or equivalently, of full
column-rank).

Remark. In the special case when a function h is a diffeomorphism around Z̃ ⊆ RKM , but also
maps to RKM , for any z ∈ Z̃ the derivative Dh(z) is a bijective, hence invertible linear transforma-
tion of RKM . Besides that, because of iii), h is injective. Based on the inverse function theorem we
may conclude that h is injective in an open neighbourhood W ′ of Z̃ and h−1|h(W′) is also k-times
continuously differentiable (where, of course, h(Z̃) ⊆ h(W ′)).

Hence, we arrive to the more familiar definition of a diffeomorphism, i.e. h being bijective with both
h and h−1 being continuously differentiable. However, the latter definition cannot be applied in the
more general case when the dimensionality of the co-domain is larger than that of the domain, since
f−1|f(Z̃) cannot be differentiable on a lower dimensional submanifold f(Z̃).
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With some variations, the mathematical object with the properties listed in Def. 7 is often called an
embedding and serves as a generator or a parametrization of a lower dimensional submanifold of
RN . This is closer to the interpretation we employ here.
Remark. The literature on diffeomorphisms often defines them as smooth, i.e. infinitely many times
differentiable functions with smooth inverses. In our results and proofs, twice differentiability will
suffice.

A.2 DEFINITION OF GENERATIVE PROCESS, AUTOENCODER

Here we recall the definition of slot-supported subsets from Def. 1 and provide a definition of the
latent variable model that encapsulates all of our assumptions on the generative process outlined in
Sec. 2.
Definition 8 (Projection onto a slot space). For any ZS ⊆ Z = Z1 × · · · × ZK , let

ZS
k
··=

{
zk|z ∈ ZS

}
(13)

be the projection of ZS onto the k-th slot space Zk.

Definition 1b (Slot-supported subset). Let Z = Z1 × · · · × ZK . A set ZS ⊆ Z is said to be a
slot-supported subset of Z if

ZS
k

Def. 8
=

{
zk|z ∈ ZS

}
= Zk for any k ∈ [K]. (14)

Definition 9 (Partially observed generative process, POGP). A triplet (Z,ZS ,f) is called a par-
tially observed generative process (POGP), if

i) Z = Z1 × . . .×ZK for convex, closed sets Zk ⊆ RM ,
ii) ZS ⊆ Z is a closed, slot-supported subset of Z (Def. 1b) and

iii) f ∈ C1Diffeo(Z,RN ) is a diffeomorphism around Z (in the sense of Def. 7).

For a given POGP (Z,ZS ,f), we refer to Z as the latent space and ZS as the training latent
space. f is the generator, X ··= f(Z) and XS ··= f(ZS) are the data space and training space
respectively.

We also provide a definition for our object-centric model alongside the optimization objective.

Definition 10 (Autoencoder, AE). A pair
(
ĝ, f̂

)
is called an autoencoder (AE), if ĝ : RN → RKM

and f̂ : RKM → RN are continuously differentiable functions, i.e. ĝ, f̂ ∈ C1. We refer to the
function ĝ as the encoder and f̂ as the decoder.

In case a POGP (Z,ZS ,f) is given, we refer to Ẑ ··= ĝ(X ) = ĝ
(
f(Z)

)
as the inferred latent space

and X̂ ··= f̂(Ẑ) as the reconstructed data space.

If for a given set X̃ ⊆ RN it holds that ĝ : X̃ → ĝ(X̃ ) is bijective and its inverse is f̂ : ĝ(X̃ ) → X̃
(also invertible), then we say that the autoencoder

(
ĝ, f̂

)
is consistent on X̃ .

Definition 11 (Reconstruction Loss). Let
(
ĝ, f̂

)
be an autoencoder. Let X̃ ⊆ RN be an arbitrary

set and px be an arbitrary continuous distribution function with supp(px) = X̃ . The following
quantity is called the reconstruction loss of

(
ĝ, f̂

)
with respect to px:

Lrec
(
ĝ, f̂ , px

) ··= Ex∼px

[∥∥f̂(ĝ(x))− x
∥∥2
2

]
. (15)

The following simple lemma tells us that for Lrec
(
ĝ, f̂ , px

)
to vanish, the exact choice of px is

irrelevant, and that in this case the decoder (left) inverts the encoder on X̃ . In other words, the
autoencoder is consistent on X̃ .
Lemma 4 (Vanishing Lrec implies invertibility on X̃ ). Let

(
ĝ, f̂

)
be an autoencoder and let

X̃ ⊆ RN be an arbitrary set. The following statements are equivalent:
i) there exists a cont. distribution function px with supp(px) = X̃ such that Lrec

(
ĝ, f̂ , px

)
= 0;

ii) for any cont. distribution function px with supp(px) = X̃ we have Lrec
(
ĝ, f̂ , px

)
= 0;

iii) f̂ ◦ ĝ|X̃ = id or, in other words,
(
ĝ, f̂

)
is consistent on X̃ .
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Notation Since Lrec
(
ĝ, f̂ , px

)
vanishes either for all px or none at the same time, henceforth in

the context of vanishing reconstruction loss, we are going to denote the reconstruction loss of
(
ĝ, f̂

)
w.r.t. px as Lrec

(
ĝ, f̂ , X̃

)
or just Lrec(X̃ ).

Proof of Lem. 4. We prove the equivalence of these statements by proving ii) ⇒ i) ⇒ iii) ⇒ ii).

The implication ii) ⇒ i) is trivial.

For the implication i) ⇒ iii), let us suppose that there exists a px with supp(px) = X̃ such that
Lrec

(
ĝ, f̂ , px

)
= 0. Equivalently:

Ex∼px

[∥∥f̂(ĝ(x))− x
∥∥2
2

]
= 0. (16)

This shows that
∥∥f̂(ĝ(x)) − x

∥∥2
2
= 0 or f̂

(
ĝ(x)

)
= x holds almost surely w.r.t. x ∼ px. Since

both ĝ, f̂ are continuous functions, this implies that f̂ ◦ ĝ|X̃ = id, which is exactly what was to be
proven.

Now, for iii) ⇒ ii), let us suppose that f̂ ◦ ĝ|X̃ = id and let px be any continuous distribution
function with supp(px) = X̃ . Since, f̂

(
ĝ(x)

)
= x holds for any non-random x ∈ X̃ , then with

probability 1, f̂
(
ĝ(x)

)
= x also holds. From this, we conclude that:

Lrec
(
ĝ, f̂

)
= Ex∼px

[∥∥f̂(ĝ(x))− x
∥∥2
2

]
= 0. (17)

A.3 DEFINITION OF SLOT IDENTIFIABILITY AND COMPOSITIONAL GENERALIZATION

We are now ready to recall the definition of slot identifiability (Def. 2, originally in Brady et al.
(2023)) in its most abstract form, followed by the definition of compositional generalization (Def. 3).

Definition 2b (Slot identifiability). Let f ∈ C1Diffeo(Z,RN ), where Z = Z1 × . . . × ZK for
closed sets Zk ⊆ RM , and let Z̃ ⊆ Z be a closed, slot-supported subset of Z (e.g. Z or ZS from a
POGP).

An autoencoder
(
ĝ, f̂

)
is said to slot-identify z on Z̃ w.r.t. f via ĥ(z) ··= ĝ

(
f(z)

)
if it minimizes

Lrec(X̃ ) for X̃ = f(Z̃) and there exists a permutation π of [K] and a set of diffeomorphisms
hk ∈ C1Diffeo

(
Zπ(k), ĥk(Z̃)

)
such that ĥk(z) = hk(zπ(k)) for any k and z, where ĥk(Z̃) is the

projection of the set ĥ(Z̃) (c.f. Def. 8).

Definition 3b (Compositional generalization). Let (Z,ZS ,f) be a POGP. An autoencoder
(
ĝ, f̂

)
that slot-identifies z on ZS w.r.t. f is said to generalize compositionally w.r.t. ZS , if it also slot-
identifies z on Z w.r.t. f .

A.4 COMPOSITIONALITY AND IRREDUCIBILITY ASSUMPTIONS

In this subsection we present the formal definitions of compositionality and irreducibility, already
mentioned in Sec. 3 and originally introduced in Brady et al. (2023). These two properties represent
sufficient conditions for POGPs (Def. 9) to be slot-identifiable on the training latent space (Def. 2b).

Let f ∈ C1(Z,RN ), Z ⊆ RKM , k ∈ [K], z ∈ Z . For the sake of brevity let us denote ∂kfn(z) =
∂fn/∂zk(z). In this case, let us define

Ifk (z) =
{
n ∈ [N ]

∣∣ ∂kfn(z) ̸= 0
}

(18)

the set of coordinates locally influenced (i.e., in point z) by slot zk w.r.t. the generator f .

Definition 4b (Compositionality). We say that a function f ∈ C1(Z,RN ),Z ⊆ RKM , is compo-
sitional on Z̃ ⊆ Z if for any z ∈ Z̃ and k ̸= j, k, j ∈ [N ]:

Ifk (z) ∩ Ifj (z) = ∅. (19)
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Let fS(z) denote the subvector of f(z) corresponding to coordinates S ⊆ [N ] and let
DfS(z) ∈ Lin(RKM ,R|S|) be the corresponding derivative.

Definition 12 (Irreducibility). We say that a function f ∈ C1(Z,RN ),Z ⊆ RKM is irreducible
on Z̃ ⊆ Z if for any z ∈ Z̃ and k ∈ [N ] and any non-trivial partition Ifk (z) = S1 ∪ S2 (i.e.,
S1 ∩ S2 = ∅ and S1, S2 ̸= ∅) we have:

rank
(
DfS1

(z)
)
+ rank

(
DfS2

(z)
)
> rank

(
DfIf

k (z)(z)
)
. (20)

Remark. Given linear operators A ∈ Lin(U, V ), B ∈ Lin(U,W ), the following upper bound holds
for the rank of (A,B) ∈ Lin(U, V ×W ):

rank(A) + rank(B) ≥ rank
(
(A,B)

)
. (21)

Therefore, it holds in general that:

rank
(
DfS1

(z)
)
+ rank

(
DfS2

(z)
)
≥ rank

(
DfIf

i (z)(z)
)
, (22)

hence, irreducibility only prohibits equality.

A.5 IDENTIFIABILITY ON THE TRAINING LATENT SPACE

Here we recall Thm. 1, originally presented in a slightly less general form in Brady et al. (2023).

Theorem 1b (Slot identifiability on slot-supported subset). Let (Z,ZS ,f) be a POGP (Def. 9) such
that

i) ZS is convex and

ii) f is compositional and irreducible on ZS .

Let
(
ĝ, f̂

)
be an autoencoder (Def. 10) such that

iii)
(
ĝ, f̂

)
minimizes Lrec(XS) for XS = f(ZS) and

iv) f̂ is compositional on ẐS ··= ĝ(XS).

Then
(
ĝ, f̂

)
slot-identifies z on ZS w.r.t. f in the sense of Def. 2b.

Remark. Due to Lem. 4, assumption iii) is equivalent to
(
ĝ, f̂

)
being consistent on XS , i.e., ĝ|XS

is injective and its inverse is f̂ |ẐS .

In its original framework, Brady et al. (2023) assumed the training latent space to be the entirety of
RKM . In our case, however, ZS is a closed, convex, slot-supported subset of Z . Therefore, it is
required to reprove Thm. 1b.

A.6 PROOF OF SLOT IDENTIFIABILITY ON SLOT-SUPPORTED SUBSET

In this subsection we reprove Thm. 1b via 3 steps. First, we prove that the latent reconstruction
function ĥ = ĝ ◦ f is, under the consistency of the autoencoder, a diffeomorphism. Secondly, we
restate Prop. 3 of Brady et al. (2023) using our notation. It is a result that locally describes the
behaviour of ĥ, irrespective of the shape of the latent training space. Hence, no proof is required.
The third and final step is concluding Thm. 1b itself.

Lemma 5 (Latent reconstruction is diffeomorphism). Let f ∈ C1Diffeo(Z̃,RN ) for Z̃ ⊆ RKM

closed and
(
ĝ, f̂

)
an autoencoder consistent on X̃ ··= f(Z̃). Then ĥ ··= ĝ ◦ f is a C1-

diffeomorphism around Z̃ (Def. 7).

In particular, for any z ∈ Z̃ , Dĥ(z) is invertible linear transformation of RKM , continuously
depending on z.

Proof. Since f is C1 in an open neighbourhood of Z̃ and ĝ is C1 on RN , it follows that ĥ = ĝ ◦ f
is also C1 in an open neighbourhood of Z̃ .

18



The autoencoder
(
ĝ, f̂

)
is consistent on X̃ , hence ĝ|X̃ is injective and ĥ : Z̃ → ĝ(X̃ ) is bijective.

Moreover, the inverse of ĝ|X̃ is f̂ restricted to ĝ(X̃ ). Therefore, ĥ = ĝ ◦ f implies that for any
z ∈ Z̃ it holds that f̂

(
ĥ(z)

)
= f(z). After differentiation we receive that for any z ∈ Z̃:

Df̂
(
ĥ(z)

)
Dĥ(z) = Df(z). (23)

However, f is a C1-diffeomorphism, consequently Df(z) ∈ Lin(RKM ,RN ) is injective. On the
left-hand side, we then have an injective composition of linear functions. Therefore, Dĥ(z) ∈
Lin(RKM ,RKM ) is injective and, of course, bijective.

Consequently, ĥ is a C1-diffeomorphism.

Lemma 6 (Prop. 3 of Brady et al. (2023)). Let (Z,ZS ,f) POGP and
(
ĝ, f̂

)
autoencoder satisfy

the assumptions of Thm. 1b and let ĥ ··= ĝ ◦ f (now a C1-diffeomorphism around ZS because of
remark after Thm. 1b and Lem. 5).

Then for any z ∈ ZS and any j ∈ [K] there exists a unique k ∈ [K] such that ∂jĥk(z) ̸= 0. For
this particular k it holds that ∂jĥk(z) ∈ Lin(RM ,RM ) is invertible.

Remark. Since ĥ is a diffeomorphism, Dĥ(z) is invertible. Thus, the statement of Lem. 6 is equiv-
alent to saying that for any z ∈ ZS and any k ∈ [K] there exists a unique j ∈ [K] such that
∂jĥk(z) ̸= 0.

Proof of Thm. 1b. Let ĥ ··= ĝ ◦ f . Based on Lem. 6 and the latest remark, for any z and any k there
exists a unique j such that ∂jĥk(z) ̸= 0, and for this j, ∂jĥk(z) ∈ Lin(RKM ,RKM ) is invertible.

Step 1. Firstly, we claim that, in this case, the mapping k 7→ j is bijective and independent of z.
More precisely, we show that there exists a permutation π of [K] such that

for any z, k and j: ∂jĥk(z) ̸= 0 ⇐⇒ j = π(k) (24)

and, in the latter case, ∂π(k)ĥk(z) is invertible.

To prove this, we conclude from the invertibility of Dĥ(z) that for any z there exists such a π. Now
suppose that there exist two distinct points z(1), z(2) ∈ ZS and indices k and j1 ̸= j2 from [K]

such that ∂j1ĥk(z
(1)) ̸= 0, ∂j2ĥk(z

(2)) ̸= 0. Then, since ZS is path-connected (as being convex),
it provides us with a continuous function ϕ : [0, 1] → ZS such that ϕ(0) = z(1) and ϕ(1) = z(2).
Let

t∗ = sup{t ∈ [0, 1] | ∂j1ĥk

(
ϕ(t)

)
̸= 0}. (25)

On one hand, ∂j2ĥk

(
ϕ(1)

)
= ∂j2ĥk(z

(2)) ̸= 0, hence ∂j1ĥk

(
ϕ(1)

)
= 0 and for any t > t∗:

∂j1ĥk

(
ϕ(t)

)
= 0. Therefore, because ∂j1ĥk ◦ ϕ is continuous, it follows that ∂j1ĥk

(
ϕ(t∗)

)
= 0.

On the other hand, ∂j1ĥk

(
ϕ(0)

)
= ∂j1ĥk(z

(1)) ̸= 0 implies that t∗ ̸= 0 and there exists a con-
vergent sequence (tn) ⊆ [0, t∗) with limn→∞ tn = t∗ such that ∂j1ĥk

(
ϕ(tn)

)
̸= 0. Therefore, for

any j ̸= j1, ∂jĥk

(
ϕ(tn)

)
= 0. From the continuity of ∂jĥk ◦ ϕ we conclude that for any j ̸= j1,

∂jĥk

(
ϕ(t∗)

)
= 0.

Subsequently, for any j ∈ [K] (either j ̸= j1 or j = j1) it holds that ∂jĥk

(
ϕ(t∗)

)
= 0. Thus, we

get Dĥk

(
ϕ(t∗)

)
= 0, which contradicts ĥ being a diffeomorphism. Hence, there exists π such that

for any z, k: ∂jĥk(z) ̸= 0 ⇔ j = π(k).

Step 2. Secondly, we now prove that ĥ acts slot-wise with permutation π, i.e. for any k there
exists hk C1-diffeomorphism around Zπ(k) such that for any z, ĥk(z) = hk(zπ(k)). By Def. 2b
this would imply that

(
ĝ, f̂

)
slot-identifies z on ZS w.r.t. f .
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To see this, let z(1), z(2) ∈ ZS with z
(1)
π(k) = z

(2)
π(k). To be proven: ĥk(z

(1)) = ĥk(z
(2)). Since ZS

is convex, the path t ∈ [0, 1] 7→ z(t) = z(1) + t · (z(2) − z(1)) is inside ZS . Then

ĥk(z
(2))− ĥk(z

(1)) = ĥk(z
(t))

∣∣1
0
=

∫ 1

0

d

dt
[ĥk(z

(t))]dt (26)

=

∫ 1

0

Dĥk(z
(t))(z(2) − z(1))dt =

∫ 1

0

K∑
j=1

∂jĥk(z
(t))(z

(2)
j − z

(1)
j )dt.

(27)

First using the fact that ∂jĥk(z
(t)) ̸= 0 ⇔ j = π(k) and then substituting z

(1)
π(k) = z

(2)
π(k), we

receive:

ĥk(z
(2))− ĥk(z

(1)) =

∫ 1

0

∂π(k)ĥk(z
(t))(z

(2)
π(i) − z

(1)
π(i))dt = 0. (28)

A.7 ADDITIVITY AND CONNECTION TO COMPOSITIONALITY

This subsection presents a special subset of decoders that will allow autoencoders to generalize
compositionally in the sense of Def. 3b.
Definition 5b (Additivity). A function f : Z = Z1 × . . . × ZK → RN is called additive on Z if
for any k there exists φk : Zk → RN such that

f(z) =

K∑
k=1

φk(zk) holds for any z ∈ Z. (29)

Lemma 7 (Compositionality implies additivity). Let Zk ⊆ RKM be convex sets and let f : Z =
Z1 × . . . × ZK → RN be C2 (i.e., twice continuously differentiable) and compositional on Z (in
the sense of Def. 4b). Then f is additive on Z .

Proof of Lem. 7. The proof is broken down into two steps. First, we prove that the coordinate func-
tions of compositional functions have a diagonal Hessian. Second, we prove that real-valued func-
tions defined on a convex set with diagonal Hessian are additive.

Step 1. Observe that f is additive if and only if for any p ∈ [N ], fp is additive. Let p ∈ [N ] be
arbitrary but fixed and let q ··= fp. To be proven: q is additive. Note that since f is C2, q is C2 as
well.

We first prove that q has a diagonal Hessian, i.e., for any i, j ∈ [K], i ̸= j we have ∂2
ijq(z) = 0 for

any z. Proving it indirectly, let us assume there exist i ̸= j and z̃ such that ∂2
ijq(z̃) ̸= 0.

The function q is C2, thus ∂2
ijq is continuous. Therefore, there exists a neighborhood V of z̃ such

that ∂2
ijq(z) ̸= 0 for any z ∈ V . Hence, ∂iq cannot be constant on V , for otherwise ∂j(∂iq) = ∂2

ijq
would be 0. Consequently, there exists z∗ ∈ V such that ∂iq(z∗) ̸= 0. Again, ∂iq is continuous,
hence there exists a neighborhood W ⊆ V of z∗ such that ∂iq(z) ̸= 0 for any z ∈ W .

However, f is compositional, hence either ∂iq(z) or ∂jq(z) is 0. Therefore ∂jq(z) = 0 for any
z ∈ W . After taking the partial derivative with respect to slot zi, we receive that ∂2

ijq(z) =

∂i(∂jq(z)) = 0 for any z ∈ W ⊆ V . This contradicts the fact that ∂2
ijq(z) ̸= 0 for any z ∈ W .

Step 2. Secondly, we prove that q defined on Z convex, having a diagonal Hessian, has to be
additive. Observe that by slightly reformulating the property of a diagonal Hessian, we receive:

for any z, i and j: ∂j [∂iq](z) ̸= 0 =⇒ j = i. (30)

Comparing Eq. 30 to Eq. 24 from the proof of Thm. 1b, we realize that the derivative of Dq(z) has
a blockdiagonal structure, similar to ĥ (except, the blocks may become 0). By repeating the same
argument from Step 2. of the proof of Thm. 1b, we get that Dq is a slot-wise ambiguity with the
identity permutation, i.e. for some C1-diffeomorphisms Qk we have ∂kq(z) = Qk(zk) for any
z, k.
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However, then let z, z(0) ∈ Z and let ϕ(t) : [0, 1] → Z be a smooth path with ϕ(0) = z(0),ϕ(1) =
z (Z being convex, such a path exists). Then:

q(z)− q(z(0)) =

∫ 1

0

d

dt

[
q
(
ϕ(t)

)]
dt =

∫ 1

0

Dq
(
ϕ(t)

)
ϕ′(t)dt (31)

=

∫ 1

0

K∑
k=1

∂kq
(
ϕ(t)

)
ϕ′

k(t)dt =

K∑
k=1

∫ 1

0

Qk

(
ϕk(t)

)
ϕ′

k(t)dt. (32)

Functions Qk are continuous; hence, they can give rise to an integral function φ̃k. Using the rule of
integration by substitution, we receive:

q(z)− q(z(0)) =

K∑
k=1

φ̃k

(
ϕ(t)

)∣∣∣1
0
=

K∑
k=1

(
φ̃k(zk)− φ̃k(z

(0)
k )

)
. (33)

Denoting φk(zk) = φ̃k(zk)− φ̃k(z
(0)
k ) + 1

K q(z(0)), we conclude that q is additive, as

q(z) =

K∑
k=1

φk(zk). (34)

A.8 DECODER GENERALIZATION

In this subsection we recall in a more precise format and prove Thm. 2. However, before that, we
also precisely introduce the slot-wise recombination space (Z ′) and -function (h′), where Z ′ is an
extension of Eq. 5. The latter was only defined for the case when our autoencoder slot-identified z
on the training latent space.

Definition 13 (Slot-wise recombination space and -function). Let (Z,ZS ,f) be a POGP and let(
ĝ, f̂

)
be an autoencoder. Let ẐS ··= ĝ

(
f(ZS)

)
. We call

Z ′ ··= ẐS
1 × . . .× ẐS

K (35)

the slot-wise recombination space, where ẐS
k is the projection of the set ẐS (c.f. Def. 8).

In the case when
(
ĝ, f̂

)
slot-identifies z on ZS w.r.t. generator f , let the slot-wise recombination

function be the concatenation of all slot-functions hk(zπ(k)):

h′(z) ··=
(
h1(zπ(1)), . . . ,hK(zπ(K))

)
. (36)

The space of all values taken by h′(z) is:

h′(Z) = h1(Zπ(1))× · · · × hK(Zπ(K)). (37)

Since in this case hk(Zπ(k)) = ẐS
k , we have that Z ′ = h′(Z).

Theorem 2b (Decoder generalization). Let (Z,ZS ,f) be a POGP such that
i) f is compositional on Z and

ii) f is C2-diffeomorphism around Z .

Let
(
ĝ, f̂

)
be an autoencoder such that

iii)
(
ĝ, f̂

)
slot-identifies z on ZS w.r.t. f and

iv) f̂ is additive (on RKM ).

Then f̂ generalizes in the sense that f̂
(
h′(z)

)
= f(z) holds for any z ∈ Z . What is more, f̂ is

injective on Z ′ and we get f̂(Z ′) = f(Z) = X .
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Proof of Thm. 2b. Let XS = f(ZS) and ẐS = ĝ(XS). Condition iii) implies that
(
ĝ, f̂

)
mini-

mizes Lrec(XS), or equivalently, because of Lem. 4, ĝ : XS → ẐS and f̂ : ẐS → XS invert each
other. Also, the projection of ẐS to the k-th slot is ẐS

k = hk(Zπ(k)). Furthermore, from Def. 13
we know that ĝ

(
f(z)

)
= h′(z), for any z ∈ ZS . Hence, by applying f̂ on both sides, we receive:

f(z) = f̂
(
h′(z)

)
for any z ∈ ZS . (38)

Besides, f̂ is additive. Due to ii) and Lem. 7, f is also additive on Z . More precisely: for any
k ∈ [K] there exist functions φk : Zk → RN , φ̂k : hk(Zπ(k)) → RN such that:

f(z) =

K∑
k=1

φk(zk) for any z ∈ Z and (39)

f̂(ẑ) =

K∑
k=1

φ̂k(ẑk) for any ẑ ∈ Z ′. (40)

Substituting this into Eq. 38, we receive:
K∑

k=1

φk(zk) =

K∑
k=1

φ̂k

(
h′

k(z)
)
=

K∑
k=1

φ̂k

(
hk(zπ(k))

)
for any z ∈ ZS . (41)

It is easily seen that functions φk, φ̂k are C1. After differentiating Eq. 41 with respect to zk, we
receive:

Dφk(zk) = D
(
φ̂π−1(k) ◦ hπ−1(k)

)
(zk) for any z ∈ ZS . (42)

Since ZS is a slot-supported subset of Z , Eq. 42 holds for any zk ∈ Zk. Let us denote
γk = φ̂π−1(k) ◦ hπ−1(k) ∈ C1(Zk).

Since Zk is convex, let z(0)
k ∈ Zk fixed and define the path t ∈ [0, 1] 7→ u(t) = z

(0)
k +t(zk−z

(0)
k ) ∈

Zk. Then:

φk(zk)−φk(z
(0)
k ) = φk

(
u(t)

)∣∣∣1
0
=

∫ 1

0

Dφk(u(t))u
′(t)dt (43)

Due to Eq. 42, we may continue:

φk(zk)−φk(z
(0)
k ) =

∫ 1

0

Dγk(u(t))u
′(t)dt = γk

(
u(t)

)∣∣∣1
0
= γk(zk)− γk(z

(0)
k ). (44)

Consequently, there exist constants ck ∈ RN such that for any k:

φk(zk) = φ̂π−1(k)

(
hπ−1(k)(zk)

)
+ ck for any zk ∈ Zk. (45)

After adding them up for all k and using Eq. 39:

f(z) =

K∑
k=1

φk(zk) =

K∑
k=1

(
φ̂π−1(k)

(
hπ−1(k)(zk)

)
+ ck

)
(46)

=

K∑
k=1

φ̂k

(
hk(zπ(k))

)
+

K∑
k=1

ck. (47)

Now, based on Eq. 40, we receive:

f(z) = f̂
(
h1(zπ(1)), . . . ,hK(zπ(K))

)
+

K∑
k=1

ck = f̂
(
h′(z)

)
+

K∑
k=1

ck (48)

holds for any z ∈ Z . In particular, Eq. 48 holds for z ∈ ZS , which together with 38 implies that
K∑

k=1

ck = 0.
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Finally, we arrive at:
f(z) = f̂

(
h′(z)

)
for any z ∈ Z. (49)

Note that previously Eq. 38 only held for z ∈ ZS .

Moreover, since h′ : Z → Ẑ is a diffeomorphism, we see that

f(Z) = f̂
(
h′(Z)

)
= f̂(Z ′). (50)

Remark. In the process of the proof, we have also proven the identifiability of the slot-wise addi-
tive components up to constant translations: There exists a permutation π ∈ S(K) and for any k,
constants ck such that

φk(zk) = φ̂π−1(k)

(
hπ−1(k)(zk)

)
+ ck for any zk ∈ Zk. (51)

A.9 ENCODER GENERALIZATION

Definition 6b (Compositional consistency). Let
(
ĝ, f̂

)
be an autoencoder. Let Z ′ ⊆ RKM be an

arbitrary set and let qz′ be an arbitrary continuous distribution with supp(qz′) = Z ′. The following
quantity is called the compositional consistency loss of

(
ĝ, f̂

)
with respect to qz′ :

Lcons
(
ĝ, f̂ , qz′

)
= Ez′∼qz′

[∥∥ĝ(f̂(z′)
)
− z′∥∥2

2

]
. (52)

We say that
(
ĝ, f̂

)
is compositionally consistent if the compositional consistency loss w.r.t. qz′

vanishes.

We now state a lemma that, similarly to Lem. 4, states that for Lcons
(
ĝ, f̂ , qz′

)
to vanish, the exact

choice of qz′ is irrelevant and that in this case the decoder (right) inverts the encoder on Z ′, meaning
that the autoencoder is consistent on f̂(Z ′) to Z ′.

Lemma 8 (Vanishing Lcons implies invertibility on Z ′). For
(
ĝ, f̂

)
and Z ′ ⊆ RKM the following

statements are equivalent:

i) there exists qz′ with supp(qz′) = Z ′ such that Lcons
(
ĝ, f̂ , qz′

)
= 0;

ii) for any qz′ with supp(px) = Z ′ we have Lcons
(
ĝ, f̂ , qz′

)
= 0;

iii) ĝ ◦ f̂ |Z′ = id or, in other words,
(
ĝ, f̂

)
is consistent on f̂(Z ′) to Z ′.

Remark. The proof is analogous to the one of Lem. 4. Henceforth, in the context of vanishing con-
sistency loss, we are going to denote Lcons

(
ĝ, f̂ , qz′

)
simply either by Lcons

(
ĝ, f̂ ,Z ′) or Lcons(Z ′).

Theorem 3b (Compositionally generalizing autoencoder). Let (Z,ZS ,f) be a POGP (Def. 9) such
that

i) ZS is convex,

ii) f is compositional and irreducible on Z and

iii) f is C2-diffeomorphism around Z .

Let
(
ĝ, f̂

)
be an autoencoder with XS = f(ZS) (Def. 10) such that

iv)
(
ĝ, f̂

)
minimizes Lrec

(
ĝ, f̂ ,XS

)
+λLcons

(
ĝ, f̂ ,Z ′) for some λ > 0, where Z ′ is the slot-wise

recombination space (see definition of Z ′ in Def. 13),

v) f̂ is compositional on ẐS ··= ĝ(XS) and

vi) f̂ is additive (on RKM ).

Then the autoencoder
(
ĝ, f̂

)
generalizes compositionally w.r.t. ZS in the sense of Def. 3b. More-

over, ĝ : X → Ẑ = ĝ(X ) inverts f̂ : Z ′ → X and Ẑ = Z ′ = h1(Zπ(1))× · · · × hK(Zπ(K)).
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Proof of Thm. 3b. Observe that assumption iv) is equivalent to

Lrec
(
ĝ, f̂ ,XS

)
+ λLcons

(
ĝ, f̂ ,Z ′) = 0, (53)

which may happen if and only if Lrec
(
ĝ, f̂ ,XS

)
= Lcons

(
ĝ, f̂ ,Z ′) = 0, i.e.

(
ĝ, f̂

)
minimizes both

Lrec(XS) and Lcons(Z ′).

Firstly, as i) f is compositional on Z , and hence on ZS , ii) f̂ is compositional on ẐS ··= ĝ(XS)

and iii)
(
ĝ, f̂

)
minimizes Lrec(XS), we may conclude based on Thm. 1b that

(
ĝ, f̂

)
slot-identifies

z on ZS . Consequently, the slot-wise recombination function h′ is well-defined.

Secondly, i) f is compositional on Z; ii) f ∈ C2Diffeo(Z); iii) f̂ is additive and iv)
(
ĝ, f̂

)
slot-identifies z on ZS . Therefore, Thm. 2b implies that f̂ in injective on Z ′, f̂

(
h′(z)

)
= f(z)

holds for any z ∈ Z and f̂(Z ′) = f(Z) = X .

Finally, from Lem. 8 and the fact that
(
ĝ, f̂

)
minimizes Lcons(Z ′), we deduce that

(
ĝ, f̂

)
is consis-

tent on f̂(Z ′), meaning that ĝ is injective on f̂(Z ′) = X and its inverse is f̂ : Z ′ → X . However,
by definition, ĝ(X ) = Ẑ . Consequently, we proved that Ẑ = Z ′.

Furthermore, we recall that f̂
(
h′(z)

)
= f(z) holds for any z ∈ Z . As f̂ is invertible on Z ′ = Ẑ

with inverse ĝ, we may pre-apply ĝ on both sides and receive

ĝ
(
f(z)

)
= h′(z), for any z ∈ Z, (54)

which proves that
(
ĝ, f̂

)
also slot-identifies z on Z and concludes our proof.

B EXPERIMENT DETAILS

B.1 DATA GENERATION

The multi-object sprites dataset used in all experiments was generated using DeepMind’s Sprite-
world renderer (Watters et al., 2019). Each image consists of two sprites where the ground-truth
latents for each sprite were sampled uniformly in the following intervals: x-position in [0.1, 0.9],
y-position in [0.2, 0.8], shape in {0, 1} corresponding to {triangle, square}, scale in [0.09, 0.22], and
color (HSV) in [0.05, 0.95] where saturation and value are fixed and only hue is sampled.

All latents were scaled such that their sampling intervals become equivalent to a hypercube [0, 1]2×5

(2 slots with 5 latents each) and then scaled back to their original values before rendering. The
slot-supported subset ZS of the latent space was defined as a slot-wise band around the diagonal
through this hypercube with width δ = 0.25 along each latent slot, i.e.,

ZS =
{
(z1, z2)|∀i ∈ [5] : (z1 − z2)i ≤

√
2δ
}
. (55)

In this sampling region, sprites would almost entirely overlap for small δ. Therefore, we apply an
offset to the x-position latent of slot z2. Specifically, we set it to (x + 0.5) mod 1, where x is the
sampled x-position.

The training set and ID test set were then sampled uniformly from the resulting region, ZS , while
the OOD test set was sampled uniformly from Z \ ZS . Objects with Euclidean distance smaller
than 0.2 in their position latents were filtered to avoid overlaps. The resulting training set consists
of 100,000 samples, while the ID and OOD test set each consist of 5,000 samples. Each rendered
image is of size 64× 64× 3.

B.2 MODEL ARCHITECTURE AND TRAINING SETTINGS

The encoder and decoder for the additive autoencoder used in Sec. 6.1 closely resemble the archi-
tectures from Burgess et al. (2018). The encoder consists of four convolutional layers, followed by
four linear layers, and outputs a vector of dimensions 2 × h, where h represents the latent size of
a single slot and is set to 16. The decoder consists of three linear layers, followed by four trans-
posed convolutional layers, and is applied to each slot separately; the slot-wise reconstructions are
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Figure 6: Samples from dataset used in Sec. 6. Left: In-distribution samples with latents sampled
from the diagonal region. Objects are highly correlated in all latents and use an offset in their x-
position to avoid direct overlaps. Right: Out-of-distribution samples with latents sampled from the
off-diagonal region.

subsequently summed to produce the final output. The ReLU activations were replaced with ELU
in both the encoder and decoder. The Slot Attention model in Sec. 6.2 follows the implementation
from the original paper Locatello et al. (2020a), where hyperparameters were chosen in accordance
with the Object-Centric library (Dittadi et al., 2021) for the Multi-dSprites setting, but with the slot
dimension set to 16.

The additive autoencoder is trained for 300 epochs, while Slot Attention is trained for 400
epochs. Both models are trained using a batch size of 64. We optimize both models with
AdamW (Loshchilov and Hutter, 2019) with a warmup of eleven epochs. The initial learning rate
is set as 1 × 10−7 and doubles every epoch until it reaches the value of 0.0004. Subsequently, the
learning rate is halved every 50 epochs until it reaches 1 × 10−7. Both models were trained using
PyTorch (Paszke et al., 2019).

For the experiments verifying our theoretical results in Sec. 6.1, we only included models in our
results which were able to adequately minimize their training objective. More specifically, we only
selected models that achieved reconstruction loss on the ID test set less than 2.0. For the experiments
with Slot Attention in Sec. 6.2, we only reported results for models that were able to separate objects
ID where seeds were selected by visual inspection. This was done since the primary purpose of these
experiments was not to see the effect of our assumptions on slot identifiability ID but instead OOD.
Thus, we aimed to ensure that the effect of our theoretical assumptions on our OOD metrics were
not influenced by the confounder of poor slot identifiability ID. Using these selection criteria gave
us between 5 and 10 seeds for both models, which were used to compute our results.

If used, the composition consistency loss is introduced with λ = 1 from epoch 100 onwards for the
additive autoencoder model and epoch 150 onwards for Slot Attention. The number of recombined
samples z′ in each forward pass of the consistency loss is equal to the batch size for all experiments.
In our compositional consistency implementation, normalization of both the latents z′ and the re-
encoded latents ĝ(f̂(z′)) proved to be essential before matching them with the Hungarian algorithm
and calculating the loss value. Without this normalization, we encountered numerical instabilities,
which resulted in exploding gradients.

B.3 MEASURING RECONSTRUCTION ERROR

For the heatmaps in Figs. 1 and 5, we first calculate the normalized reconstruction MSE on both the
ID and OOD test sets. We then project the ground-truth latents of each test point onto a 2D plane
with the x and y-axes corresponding to the color latent of each object. We report the average MSE
in each bin. In this projection, some OOD points would end up in the ID region. Since we do not
observe a difference in MSE for OOD points that are projected to the ID or OOD region, we simply
filter those OOD points to allow for a clear visual separation of the regions.

When reporting the isolated decoder reconstruction error in Fig. 1 A and Fig. 5 A and B, we aim
to visualize how much of the overall MSE can attributed to only the decoder. Since the models
approximately slot-identify the ground-truth latents ID on the training distribution, the MSE of the
full autoencoder serves as a tight upper bound for the isolated decoder reconstruction error. Thus,
in the ID region, we use this MSE when reporting the isolated decoder error. For the OOD region,

25



however, the reconstruction error could be attributed to a failure of the encoder to infer the correct
latent representations or to a failure of the decoder in rendering the inferred latents. To remove
the effect of the encoder’s OOD generalization error, we do the following: For a given OOD test
image, we find two ID test images that each contain one of the objects in the OOD image in the
same configuration. Because the encoder is approximately slot identifiable ID, we know that the
correct representation OOD for each object in the image is given by the encoder’s ID representation
for the individual objects in both ID images. To get these ID representations, we must solve a
matching problem to find which ID latent slot corresponds to a given object in each image. We do
this by matching slot-wise renders of the decoder with the ground-truth slot-wise renders for each
object based on MSE using the Hungarian algorithm (Kuhn, 1955). Using this representation then
allows us to obtain the correct representation for an OOD image without relying on the encoder to
generalize OOD. The entire reconstruction error on this image can thus be attributed to a failure of
the decoder to generalize OOD.

B.4 COMPOSITIONAL CONTRAST

The compositional contrast given by Brady et al. (2023) is defined as follows:

Definition 14 (Compositional Contrast). Let f : Z → X be differentiable. The compositional
contrast of f at z is

Ccomp(f , z) =

N∑
n=1

K∑
k=1

K∑
j=k+1

∥∥∥∥∂fn∂zk
(z)

∥∥∥∥∥∥∥∥∂fn∂zj
(z)

∥∥∥∥ . (56)

This contrast function was proven to be zero if and only if f is compositional according to Def. 4.
The function can be understood as computing each pairwise product of the (L2) norms for each
pixel’s gradients w.r.t. any two distinct slots k ̸= j and taking the sum. This quantity is non-negative
and will only be zero if each pixel is affected by at most one slot such that f satisfies Def. 4. We
use this contrast function to measure compositionality of a decoder in our experiments in Sec. 6.1.
More empirical and theoretical details on the function may be found in Brady et al. (2023).

B.5 COMPUTATIONAL COST OF THE PROPOSED CONSISTENCY LOSS

Computing the consistency loss as illustrated in Fig. 3 poses some additional computational over-
head. Namely, it requires additional passes through the encoder and decoder as well as computation
of the encoder’s gradients w.r.t. the loss. As outlined in Sec. 4, we computed the consistency loss
on samples z′ obtained by randomly shuffling the slots in the current batch, effectively doubling the
batch size. We found this to increase training time by a maximum of 28% across runs.

For two slots, it would be possible to sample up to b(b − 1) novel combinations of the slots within
the given batch, where b is the batch size. This number increases combinatorially to b!

(b−n)! for n
slots, which could pose a severe computational overhead. While our experiments demonstrate that
the loss works well with just b samples, App. C.3 also shows that it does not scale well to more than
two slots, and drawing more samples might be a way to remedy this.

On the other hand, there might be ways to draw samples more effectively. One approach could
be to sample slot combinations in proportion to their value w.r.t. the consistency loss or to sample
combinations according to their likelihood under a prior over latents. Using a likelihood could
avoid sampling implausible combinations; however, such a scheme is challenging as it relies on
the likelihood being valid for OOD combinations of slots. Another possibility would be to include
heuristics to directly filter combinations based on a priori knowledge of the data-generation process,
e.g., to filter objects with similar coordinates which would intersect.

B.6 USING MORE REALISTIC DATASETS

Extending our experiments from the sprites dataset to more realistic data poses two main challenges.
Firstly, in real-world datasets one generally does not have access to the ground-truth latents making
our evaluation schemes inapplicable. Secondly, even if access to ground-truth latent information is
available, our experiments require being able to sample latents densely from a slot-supported subset.
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Figure 7: OOD Reconstruction quality and slot identifiability as a function of training region
size. The width δ ∈ (0, 1) of the slot-wise band around the diagonal (see Eq. 55) is 0 if ZS is a
line and 1 if ZS = Z; experiments in Sec. 6 used δ = 0.25. In the absence of the consistency
loss (Def. 6), a large δ is required for models to achieve high OOD performance for reconstruction
and slot identifiability. In contrast, models trained with the consistency loss yield consistently high
performance across all δ. Results are averaged over at least four random seeds.

Specifically, our experiments rely on sampling from a diagonal strip in the latent space with small
width. If such a region were sub-sampled from an existing dataset, this would leave only a very small
number of data points which are insufficient to train a model. To this end, our experiments require
access to the ground-truth renderer for a dataset such that latents can be sampled densely. This is not
available in most cases, however. An interesting avenue to address this would be to leverage recent
rendering pipelines such as Kubric (Greff et al., 2022) to create more complex synthetic datasets.
We leave this as an interesting direction for future work.

C ADDITIONAL EXPERIMENTS AND FIGURES

This section provides additional experimental results to the main experiments from Sec. 6.

C.1 IMPACT OF TRAINING REGION SIZE

We ablate the impact of the size of slot-supported subset on OOD metrics in Fig. 7 by varying the
width δ of the slot-wise band around the diagonal (see Eq. 55). All models use an additive decoder
and differ in whether they optimize the consistency loss (Def. 6). We see that models which do not
optimize the loss require an increasingly large δ in order to achieve high OOD reconstruction and
identifiability scores, while models which do optimize the loss, achieve consistently high scores on
OOD metrics across all values of δ.

C.2 VIOLATING SLOT-SUPPORTEDNESS

We illustrate the effect of violating the assumption that ZS is a slot-supported subset of Z (recall
Def. 1) in Fig. 8 on reconstruction loss for an additive autoencoder trained with consistency loss.
To do this, we create a gap in the slot-supported subset ZS by removing all occurrences of objects
with a hue-latent in the interval (0.5, 0.8). We can see in Fig. 8 that this leads to poor reconstruction
performance in the region containing the gap which propagates to the OOD regions as well.

C.3 IMPACT OF MORE THAN 2 OBJECTS ON CONSISTENCY LOSS

We also examine how the consistency loss scales as the number of objects in the training data is
increased from two to three and four. We find that as the number of objects grows, optimization of
the consistency loss becomes more challenging (Fig. 9, bottom left) which makes sense considering
that the number of possible slot combinations grows combinatorially with the number of slots. This,
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Figure 8: Violating slot-supportedness prevents OOD generalization. We retrain the additive
autoencoder from Sec. 6.1 on data arising from a latent subset ZS in which all occurrences of objects
with a hue-latent in the interval (0.5, 0.8) have been removed. This leads to a cross-shaped gap in
the latent subset ZS which can be visualized via a 2D projection of the latent space (see App. B.3
for details) where the x- and y-axes correspond to the hue-latent of each object (right). Compared to
a model trained without this gap (left), we can see that the model is unable to reconstruct ID samples
in this gap (i.e., samples where either object has this hue), and this error propagates outward to OOD
samples.
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Figure 9: Impact of number of objects on consistency loss. We measure how the consistency loss
scale as the number of objects in the training data is increased from two to three and four. We mea-
sure this for additive autoencoders which explicitly optimize the consistency loss (red) and models
which do not optimize it (blue). Top and Bottom left: We can see that the ID reconstruction remains
high as the number of objects grow, but the consistency loss increases steeply across models. Top
right: Consequently, the OOD reconstruction quality decreases as the number of objects increases.
Bottom right: This then prevents the encoder from slot-identifying the ground-truth latents OOD.
However, training with the consistency loss still yields generally better results than training without
it. All results are averaged over at least four random seeds. The consistency loss is normalized by
the number of slots, and R2 scores are clipped to zero.

in turn, leads to poor OOD reconstruction quality (Fig. 9, top right) which prevents the encoder from
slot-identifying the ground-truth latents (Fig. 9, bottom right). As hypothesized in App. B.5, more
principled schemes for sampling slot combinations could mitigate these scaling issues.
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