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ABSTRACT

Causal Dynamics Models (CDMs) have demonstrated significant potential in ad-
dressing various challenges in reinforcement learning. Recent studies have in-
corporated causal discovery to capture the causal dependencies among environ-
mental variables in the learning of CDMs. However, the learning of CDMs is
still confined to small-scale environments due to computational complexity and
sample efficiency constraints. This paper aims to extend CDMs to large-scale
object-oriented environments, which consist of a multitude of objects classified
into different categories. We introduce the Object-Oriented CDM (OOCDM) that
shares causalities and parameters among objects belonging to the same class. Fur-
thermore, we propose a learning method for OOCDM that enables it to adapt to
a varying number of objects. Experimental results from large-scale tasks indicate
that OOCDM outperforms existing CDMs in terms of causal discovery, prediction
accuracy, generalization, and computational efficiency.

1 INTRODUCTION

Reinforcement learning (RL) (Sutton & Barto, 2018) and causal inference (Pearl, 2000) have sepa-
rately made much progress over the past decades. Recently, the combination of both fields has led to
a series of successes (Zeng et al., 2023). In these studies, the use of causal dynamics models (CDMs)
proves a promising direction. CDMs capture the causal structures of environmental dynamics and
have been applied to address a wide range of challenges in RL, including learning efficiency, ex-
plainability, generalization, state representation, subtask decomposition, and transfer learning (see
the literature review in Section 2.1). For example, a major function of CDMs is to reduce spurious
correlations (Ding et al., 2022; Wang et al., 2022), which are particularly prevalent in the non-i.i.d.
data produced in sequential decision-making.

Early research of CDMs exploits given causal structures of environments (Boutilier et al., 2000;
Guestrin et al., 2003a; Madumal et al., 2020b), which may not be available in many applications.
Therefore, some recent studies have proposed to develop CDMs using causal discovery techniques to
learn such causal structures, i.e. causal graphs (CGs), from the data of history interactions (Volodin,
2021; Wang et al., 2021; 2022; Zhu et al., 2022). These approaches have been successful in rel-
atively small environments consisting of a few variables. Unfortunately, some RL tasks involve
many objects (e.g., multiple agents and environment entities in multi-agent domains (Malysheva
et al., 2019)), which together contribute to a large set of environment variables. The applicability of
CDMs in such large-scale environments remains questionable — the excessive number of potential
causal dependencies (i.e., edges in CGs) makes causal discovery extremely expensive, and more
samples and effort are required to correctly discriminate causal dependencies.

Interestingly, humans seem to effortlessly extract correct causal dependencies from vast amounts
of real-world information. One possible explanation for this is that we intuitively perceive tasks
through an object-oriented (OO) perspective (Hadar & Leron, 2008) — we decompose the world into
objects and categorize them into classes, allowing us to summarize and share rules for each class.
For example, “exercise causes good health of each person” is a shared rule of the class “Human”,
and “each person” represents any instance of that class. This OO intuition has been widely adopted
in modern programming languages, referred to as object-oriented programming (OOP), to organize
and manipulate data in a more methodical and readable fashion (Stroustrup, 1988).
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This work aims to extend CDMs to large-scale OO environments. Inspired by OOP, we investigate
how an OO description of the environment can be exploited to facilitate causal discovery and dy-
namics learning. We propose the Object-Oriented Causal Dynamics Model (OOCDM), a novel type
of CDM that allows the sharing of causalities and model parameters among objects based on sound
theories of causality. To implement causal discovery and learning for OOCDM, we present a modi-
fied version of Causal Dynamics Learning (CDL) (Wang et al., 2022) that can accommodate varying
numbers of objects. We apply OOCDM to several OO domains and demonstrate that it outperforms
state-of-the-art CDMs in terms of causal graph accuracy, prediction accuracy, generalization abil-
ity, and computational efficiency, especially for large-scale tasks. To the best of our knowledge,
OOCDM is the first dynamics model to combine causality with the object-oriented settings in RL.

2 RELATED WORKS

2.1 CAUSALITY AND REINFORCEMENT LEARNING

Causality (see basics in Appendix B) formulates dependencies among random variables and is used
across various disciplines (Pearl, 2000; Pearl et al., 2016; Pearl & Mackenzie, 2019). One way to
combine causality with RL is to formulate a known causal structure among macro elements (e.g., the
state, action, and reward) of the Markov Decision Process (MDP), thereby deriving algorithms with
improved robustness and efficiency (Buesing et al., 2018; Lu et al., 2018; Zhang et al., 2020; Liao
et al., 2021). This paper follows another direction focusing on the micro causality that exists among
specific components of the environment. Modular models prove capable of capturing such causality
using independent sub-modules, leading to better generalization and learning performance (Ke et al.,
2021; Mittal et al., 2020; 2022). A popular setting for the micro causality is Factored MDP (FMDP)
(Boutilier et al., 2000), where the transition dynamics is modeled by a CDM. Knowledge to this
CDM benefits RL in many ways, including 1) efficiently solving optimal policies (Guestrin et al.,
2003a; Osband & Van Roy, 2014; Xu & Tewari, 2020), 2) sub-task decomposition (Jonsson & Barto,
2006; Peng et al., 2022), 3) improving explainability (Madumal et al., 2020a;b; Volodin, 2021; Yu
et al., 2023), 4) improving generalization of policies (Nair et al., 2019) and dynamic models (Ding
et al., 2022; Wang et al., 2022; Zhu et al., 2022), 5) learning task-irrelevant state representations
(Wang et al., 2021; 2022), and 6) policy transfer to unseen domains (Huang et al., 2022).

2.2 OBJECT-ORIENTED REINFORCEMENT LEARNING

It is common in RL to describe environments using multiple objects. Researchers have largely ex-
plored object-centric representation (OCR), especially in visual domains, to facilitate policy learning
(Zambaldi et al., 2018; Zadaianchuk et al., 2020; Zhou et al., 2022; Yoon et al., 2023) or dynamic
modeling (Zhu et al., 2018; 2019; Kipf et al., 2020; Locatello et al., 2020). However, OCR typically
uses homogeneous representations of objects and struggles to capture the diverse nature of objects.
Goyal et al. (2020; 2022) overcome this problem by extracting a set of dynamics templates (called
schemata or rules) that are matched with objects to predict next states. Prior to our work, Guestrin
et al. (2003b) and Diuk et al. (2008) investigated OOP-style MDP representations using predefined
classes of objects. Relational Causal Discovery Maier et al. (2010); Marazopoulou et al. (2015)
operates categorized objects and reveals the shared causality within different inter-object relations,
which carries a similar idea of causality sharing. However, our work focuses on the FMDP settings
where relations are implicit and unknown, which may contribute to more general use.

3 PRELIMINARIES

A random variable (one scalar or a combination of multiple scalars) is denoted by a capital letter
(e.g., X1 and X2). Parentheses may combine variables or subgroups into a group (an ordered set)
denoted by a bold letter, e.g. X = (X1,X2) and Z = (X,Y1,Y2). We use p to denote a distribution.

3.1 CAUSAL DYNAMICS MODELS FOR FACTORED MARKOV DECISION PROCESS

We consider the FMDP setting where the state and action consist of multiple random variables,
denoted as S = (S1,⋯,Sns) and A = (A1,⋯,Ana), respectively. S′i (or S′) denotes the state vari-
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able(s) in the next step. The transition probability p(S′∣S,A) is modeled by a CDM (see Definition
1), which is also referred to as a Dynamics Bayesian Network (DBN) (Dean & Kanazawa, 1989)
adapted to the context of RL. For clarity, we illustrate a simple deterministic CDM in Appendix C.4.
Definition 1. A causal dynamics model is a tuple ⟨G, p⟩. G is the causal graph, i.e. a directed
acyclic graph (DAG) on (S,A,S′), defining the parent set Pa(S′j) for each S′j in S′. Then p is a
transition distribution on (S,A,S′) such that p(S′∣S,A) =∏ns

j=1 p(Sj ∣Pa(S′j)).

We assume that G is unknown and must be learned from the data. Some studies learn CGs using
sparsity constraints, which encourage models to predict the next state variable using fewer inputs
(Volodin, 2021; Wang et al., 2021). However, there exists no theoretical guarantee that sparsity can
lead to sound causality. Another way to discover CGs is to use conditional independence tests (CITs)
(Eberhardt, 2017), as suggested by several recent studies (Wang et al., 2022; Ding et al., 2022; Zhu
et al., 2022; Yu et al., 2023). Theorem 1 presents a prevalent approach that leads to sound CGs (see
proof in Appendix C.3).
Theorem 1 (Causal discovery for CDMs). Assuming that state variables transit independently, i.e.
p(S′∣S,A) =∏

ns

j=1 p(S
′
j ∣S,A), then the ground-truth causal graph G is bipartite. That is, all edges

start in (S,A) and end in S′; if p is a faithful probability function consistent with the dynamics,
then G is uniquely identified by

Xi ∈ Pa(S′j)⇔ ¬(Xi áp S′j ∣ (S,A) ∖ {Xi}), for Xi ∈ (S,A), S′j ∈ S
′, (1)

Here, “∖” means set-subtraction and “áp” denotes the conditional independence under p. The in-
dependence “áp” here can be determined by CITs, which utilize samples drawn from p to evaluate
whether the conditional independence holds. There are many tools for CITs, such as Fast CIT
(Chalupka et al., 2018), Kernel-based CIT (Zhang et al., 2012), and Conditional Mutual Information
(CMI) used in this work. Read Appendix B.4 for more information about CITs and CMI. Perform-
ing CITs according to Eq. 1 leads to sound CGs, yet is hardly scalable. On the one hand, the
computation is extremely expensive. Letting n ∶= na + ns denote the total number of environment
variables, the time complexity of mainstream approaches reaches up to O(n3), since O(n2) edges
must be tested, each costing O(n). On the other hand, a larger n impairs sampling efficiency, as
CITs require more samples to recover the joint distribution of condition variables.

3.2 OBJECT-ORIENTED MARKOV DECISION PROCESS

Following Guestrin et al. (2003b), we formulate the task as an Object-Oriented MDP (OOMDP)
containing a set O = {O1,⋯,ON} of objects. Each object Oi corresponds to a subset of variables
(called its attributes), written as Oi = (Oi.S,Oi.A), where Oi.S ⊆ S and Oi.A ⊆A respectively are
its state attributes and action attributes. The objects are divided into a set of classes C = {C1,⋯,CK}.
We call Oi an instance of Ck if Oi belongs to some class Ck, denoted as Oi ∈ Ck. Ck specifies a set
F[Ck] of fields, which determine the attributes of Oi as well as other instances of Ck. Each field in
F[Ck], typically written as Ck.U (where U can be replaced by any identifier), signifies an attribute
Oi.U ∈ Oi for each Oi ∈ Ck. Note that italic identifiers are used to represent fields (e.g., Ck.U ),
yet attributes use corresponding Roman letters (e.g., Oi.U) to highlight that attributes are random
variables. The dynamics of the OOMDP satisfy that the state variables of objects from the same
class transit according to the same (unknown) class-level transition function:

p(Oi.S
′∣S,A) = pCk

(Oi.S
′∣Oi;O1,⋯,Oi−1,Oi+1,⋯,ON), for ∀Oi ∈ Ck, (2)

which we refer to as the result symmetry. Diuk et al. (2008) further formulates the dynamics by a
set of logical rules, which is not necessarily required in our setting. All notations used in this paper
are listed in Appendix A, and a more rigorous definition of OOMDP is given in Appendix D.1. This
OOMDP representation is available in many simulation platforms (which are inherently built using
OOP) and can be intuitively specified from human experience. Therefore, we consider the OOMDP
representation as prior knowledge and leave its learning to future work. To illustrate our setting, we
present Example 1 as the OOMDP for a StarCraft environment.
Example 1. In a StarCraft scenario shown in Figure 1, the set of objects is O =
{M1,M2, Z1, Z2, Z3} and the set of classes is C = {CM ,CZ}. CM is the class for marines M1

and M2. Similarly, CZ is the class for zerglings Z1, Z2, and Z3. The fields for both C = CM ,CZ

are given by F[C] = {C.H, C.P, C.A}— the Health, Position, and Action (e.g., move or attack).
Therefore, for example, M1.H is the health of marine M1, and M1 = (M1.H,M1.P,M1.A).
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4 METHOD

The core of an OOCDM is the Object-Oriented Causal Graph (OOCG), which allows for class-
level causality sharing based on the dynamic similarity between objects of the same class (see Sec-
tion 4.1). Equation 2 has illustrated this similarity with respect to the result terms of the transition
probabilities. Furthermore, we introduce an assumption 1 concerning the condition terms, called
causation symmetry. It provides a natural notion that objects of the same class produce symmetrical
effects on other objects. Figure 1 illustrates this assumption using the StarCraft scenario described
above — swapping all attributes between two zerglings Z2 and Z3 makes no difference to the tran-
sition of other objects such as the marine M2. We also assume that all state variables (attributes)
transit independently in accordance with FMDPs (Guestrin et al., 2003a).

Assumption 1 (Causation Symmetry). Suppose Oi ∈ Ck. Then for any a, b ≠ i, Oa and Ob are
interchangeable to the transition of Oi, if they both belong to some class Cl:

p(Oi.S
′∣Oa = a,Ob = b,⋯) = p(Oi.S

′∣Oa = b,Ob = a,⋯), Oa,Ob ∈ Cl. (3)

The workflow for using an OOCDM is illustrated in Figure 2. First, we use domain knowledge
about the task to construct its OOMDP representation (Section 3.2). Subsequently, we initialize the
OOCDM inclusive of field predictors (Section 4.2) and an OOCG estimation Ĝ. This estimation is
updated by performing causal discovery on the transition data and the predictors (Section 4.3), and
these predictors are optimized using the current OOCG estimation and the stored data (Section 4.4).
The learned OOCDM can then be applied to problems that require a CDM or causal graph (some
basic applications are tested in Section 5). The soundness of the proposed approach relies on the dy-
namic symmetries (Eqs 2 and 3), which may sometimes be violated. However, it is usually feasible
to ensure the symmetries by adding auxiliary attributes. Appendix I provides a simple solution for
OOCDM to handle asymmetric environments, supported by theory and additional experiments.

4.1 OBJECT-ORIENTED CAUSAL GRAPH

According to Theorem 1, the ground-truth CG of an OOMDP follows a bipartite causal graph
(BCG) structure, where no lateral edge is present in S′. In order to simplify the process of causal
discovery, we impose a restriction on the structure of G and introduce a special form of CGs that
allows class-level causal sharing.

Definition 2. LetFs[Ck] ⊆ F[Ck] be the set of state fields of class Ck. An Object-Oriented Causal
Graph is a BCG where all causal edges are given by a series of class-level causalities:

1. A class-level local causality for class Ck from field Ck.U ∈ F[Ck] to state field Ck.V ∈ Fs[Ck],
denoted as Ck.U → V ′, means that O.U ∈ Pa(O.V′) for every instance O ∈ Ck.

2. A class-level global causality from field Cl.U ∈ F[Cl] to state field Ck.V ∈ Fs[Ck], denoted as
Cl.U → Ck.V

′, means that Oj .U ∈ Pa(Oi.V′) for every Oi ∈ Ck and every Oj ∈ Cl (j ≠ i).

Definition 2 enables causality sharing by two types of class-level causalities, which are invariant
with the number of instances of each class. Similar to relational causal discovery (Marazopoulou
et al., 2015), this causality sharing greatly simplifies causal discovery and improves the readability
of CGs. The local causality describes shared structures within individual objects of the same class,
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Figure 3: The class-level causalities in Example 1 and the implementation of a field predictor.

as illustrated in Figure 3(a). The global causality accounts for shared structures of object pairs, as
illustrated in Figure 3(b). Note that the global causality Ck.U → Ck.V

′ (i.e., when k = l) is different
from the local causality Ck.U → V ′ by definition. For clarity, the global and local causalities
here are different from those considered by Pitis et al. (2020), where “local” means that (S,A) is
confined in a small region in the entire space. Additionally, Theorem 2 shows the applicability of
OOCGs, with proof in Appendix D.2.
Theorem 2. The ground-truth CG of any OOMDP where Assumption 1 holds is exactly an OOCG.

4.2 OBJECT-ORIENTED CAUSAL DYNAMICS MODEL

Definition 3. An object-oriented causal dynamics model is a CDM ⟨G, p̂⟩ (see Definition 1) such
that 1) G is an OOCG, and 2) p̂ satisfies Eqs. 2 and 3.

Based on OOCGs, we are able to define CDMs in an object-oriented manner (see Definition 3). In
conventional CDMs, there exists an independent predictor for each next-state attribute (variable) in
S′. However, Equation 2 offers an opportunity to reduce the number of predictors by class-level
sharing. That is, a shared field predictor fC.V is used for each state field C.V ∈ F[C] to predict the
corresponding attribute O.V′ for every instance O ∈ C.

We now briefly describe how an OOCDM is implemented in our work. Inspired by Wang et al.
(2022), we let an OOCG G be an argument of the predictor fC.V , making it adaptable to various
graph structures. Therefore, in our implementation, it follows that

p̂(O.V′∣PaG(O.V′)) = fC.V (O.V′∣S,A;G) for O ∈ C, (4)

where PaG(O.V′) is the parent set of O.V′ in G. We ensure that fC.V adheres to G by masking
off the non-parental variables. In addition, we adopt key-value attention (Vaswani et al., 2017) to
ensure causation symmetry (Eq. 3) and enable adaptation to varying numbers of objects. A simple
illustration of our implementation of fC.V is given as Figure 3(c), and detail is in Appendix E.

4.3 OBJECT-ORIENTED CAUSAL DISCOVERY

Theorem 2 indicates that causal discovery in an OOMDP with Assumption 1 becomes looking for
an OOCG. If the numbers of instances are fixed, checking each class-level causality in the OOCG
only requires one CIT (see Appendix D.3), where most CIT tools are applicable.

Further, to perform CITs in environments with changeable instance numbers, we introduce an adap-
tation of CDL using the class-level conditional mutual information. Assume that we have a dataset
D = {(st,at,st+1)}

T
t=1, where st, at and st+1 are the observed values of S, A and S′ at step t, re-

spectively. We use O.vt+1 to denote the observed O.V in st+1 for each state field Ck.V and instance
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O ∈ Ck. Some OOCGs are helpful to the estimation of CMI: I) G1 is the full bipartite CG contain-
ing all causalities, which is also an OOCG by definition; II) GC.U /→V ′ contains all causalities except
for C.U → V ′; and III) GCk.U /→C.V ′ contains all causalities except for Ck.U → C.V ′. Letting Ct

k
denotes the set of instances of class Ck at step t, with the predictors introduced in Section 4.2, we
respectively write the CMIs for class-level local and global causalities as

CMICk.U→V ′

D ∶=
1

∑
T
t=1 ∣C

t
k ∣

T

∑
t=1
∑

O∈Ct
k

log
fCk.V (O.vt+1∣st,at;G1)

fCk.V (O.vt+1∣st,at;GCk.U /→V ′)
, (5)

CMICl.U→Ck.V
′

D ∶=
1

∑
T
t=1 ∣C

t
k ∣

T

∑
t=1
∑

Oj∈Ct
k

log
fCk.V (O.vt+1∣st,at;G1)

fCk.V (O.vt+1∣st,at;GCl.U /→Ck.V ′)
. (6)

Then, each class-level causality (denoted as ς) is confirmed if CMIςD > ε, where ε is the threshold
parameter. In other words, CMIςD compare the predictions made with and without the concerned
parents within ς , and we confirm the causality if the difference is significant. Theoretically, if we
have an infinite number of samples and an oracle estimation of p, then ε can be set to 0. In practice,
we set ε > 0. In this way, no extra models are needed for causal discovery. Finally, the whole OOCG
is obtained by checking CMIs for all possible causalities (see Appendix E.2 for the pseudo-code).

Our approach greatly reduces the computational complexities of causal discovery, from a magnitude
(asymptotic boundary) of n3 to a magnitude of Nmn, where m denotes the overall number of fields
and n denotes the overall number of variables in (S,A). See proofs and more conclusions about
computational complexities in Appendix F.

4.4 MODEL LEARNING

Dynamics models are usually optimized through Maximum Likelihood Estimation. To better adapt
to the varying numbers of instances, we define the average instance log-likelihood (AILL) function
on a transition dataset D of T steps for any CDM ⟨G, p̂⟩ as

LG(D) =
K

∑
k=1

1

∑
T
t=1 ∣C

t
k ∣

T

∑
t=1

∑
Ck.V ∈Fs[Ck]

∑
O∈Ct

k

log p̂(O.V′∣PaG(O.V′))t, (7)

where p̂(⋅)t is the estimated probability when variables take the values observed at step t in D.

The learning target of an OOCDM mimics that of CDL. First, we optimize the AILL function under
a random OOCG denoted as Gλ (re-sampled when each time used) where the probability of each
class-level causality item is λ. This will make our model capable of handling incomplete information
and adaptable to different OOCGs including those like GC.U /→V ′ or GCk.U /→C.V ′ . Furthermore, we
also hope to strengthen our model in two particular OOCGs: 1) the estimation of ground-truth Ĝ
obtained by causal discovery, where CMIs are estimated by the current model, and 2) the full OOCG
G1 to better estimate CMIs in Eqs. 5 and 5. Therefore, two additional items, LG1

(D) and LĜ(D),
respectively weighted by α and β, are considered in the overall target function:

J(D) = LGλ
(D) + αLG1

(D) + βLĜ(D), (8)

which is optimized by gradient ascent. Pseudo-code of the learning algorithm is in Appendix E.3.
During the test phase, all predictions of our OOCDM are made using the discovered OOCG Ĝ.

5 EXPERIMENTS

OOCDM was compared with several state-of-the-art CDMs. CDL uses pooling-based predictors
and also adopts CMIs for causal discovery. CDL-A is the attention-based variant of CDL, used to
make a fair comparison with our model. GRADER (Ding et al., 2022) employs Fast CIT for causal
discovery and Gated Recurrent Units as predictors. TICSA (Wang et al., 2021) utilizes score-based
causal discovery. Meanwhile, OOCDM was compared to non-causal baselines, including a widely
used multi-layer perceptron (MLP) in model-based RL (MBRL) and an object-aware Graph Neural
Network (GNN) that uses the architecture of Kipf et al. (2020) to learn inter-object relationships.
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Table 1: The accuracy (in percentage) of discovered causal graphs. n indicates the number of
environmental variables.

Env n GRADER CDL CDL-A TICSA OOCDM
Block2 12 94.8±1.3 99.4±0.3 99.2±1.3 97.0±0.4 99.7±0.6
Block5 24 94.0±1.5 97.5±1.5 99.3±0.6 96.3±0.6 100.0±0.0
Block10 44 92.3±0.9 97.6±0.3 99.5±0.3 97.7±0.5 100.0±0.0
Mouse 28 90.5±0.8 90.4±3.2 94.7±0.2 94.1±0.2 100.0±0.0

Additionally, we assessed the performance of the dense version of our OOCDM, namely OOFULL,
which employs the full OOCG G1 and is trained by optimizing LG1 .

As mentioned in Section 2.1, CDMs are used for various purposes, and this work does not aim to
specify the use of OOCDMs. Therefore, we evaluate the performance of causal discovery and the
predicting accuracy, as most applications can benefit from such criteria. As a common application in
MBRL, we also evaluate the performance of planning using dynamics models. Our experiments aim
to 1) demonstrate that the OO framework greatly improves the effectiveness of CDMs in large-scale
environments, and 2) investigate in what occasions causality brings significant advantages. Results
are presented by the means and standard variances of 5 random seeds. Experimental details are
presented in Appendix H.

5.1 ENVIRONMENTS

We conducted experiments in 4 environments. The Block environment consists of several instances
of class Block and one instance of class Total. The attributes of each Block object transit via a
linear transform; and the attributes of the Total object transit based on the maximums of attributes
of the Block objects. The Mouse environment is an 8 × 8 grid world containing an instance of
class Mouse, and several instances of class Food, Monster, and Trap. The mouse can be killed
by hunger or monsters, and its goal is to survive as long as possible. The Collect-Mineral-Shards
(CMS) and Defeat-Zerglings-Baineling (DZB) environments are StarCraftII mini-games (Vinyals
et al., 2017). In CMS, the player controls two marines to collect 20 mineral shards scattered on the
map, and in DZB the player controls a group of marines to kill hostile zerglings and banelings. Read
Appendix G for detailed descriptions of these environments.

The Block and Mouse environments are ideal OOMDPs as they guarantee Eqs. 2 and 3. In addition,
we intentionally insert spurious correlations in them to verify the effectiveness of causal discovery.
In CMS and DZB environments, we intuitively formulate the objects and classes based on the units
and their types in StarCraftII. They account for more practical cases where tasks are not perfect
OOMDPs, as the StarCraftII engine may not guarantee Eqs. 2 and 3.

5.2 PERFORMANCE OF CAUSAL DISCOVERY

We measured the performance of causal discovery using offline data in Block and Mouse environ-
ments. Since non-OO baselines only accept a fixed number of variables, the number of instances of
each class is fixed in these environments. Especially, we use “Blockk” to denote the Block environ-
ment where the number of Block instances is fixed to k. We exclude CMS and DZB here as their
ground-truth CGs are unknown (see learned OOCGs in Appendix H.6).

The accuracy of discovered CGs (measured by Structural Hamming Distance within the edges from
U to S′) is presented in Table 1. OOCDM outperforms other CDMs in all 4 tested environments.
Meanwhile, it correctly recovers ground-truth CGs in 3 out of 4 environments. These results demon-
strate the great sample efficiency of OO causal discovery – which is even improved by the larger
number of instances. Furthermore, Table 2 shows the computation time used by causal discovery.
We note that such results may be influenced by implementation detail and hardware conditions, yet
the OOCDM excels baselines with a significant gap beyond these extraneous influences. In addition,
Appendix H.5 shows that OOCDM achieves better performance with a relatively smaller size (i.e.
fewer model parameters).
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Table 2: The time used in causal discovery, presented in the form “(seconds)/(number of samples
used)”. m denotes the number of all fields. TICSA is excluded from comparison as it does not
involve an explicit causal discovery phase.

n m GRADER CDL CDL-A OOCDM
Block-2 12 8 ( 114.0±1.5 )/10k ( 1.4±0.1 )/10k ( 2.1±0.4 )/10k ( 2.1±0.2 )/10k
Block-5 24 8 ( 927.0±69.3 )/10k ( 5.2±0.6 )/10k ( 8.5±2.8 )/10k ( 2.1±0.2 )/10k
Block-10 44 8 ( 7.0e3±217.7 )/10k ( 15.6±0.7 )/10k ( 22.8±5.3 )/10k ( 2.2±0.2 )/10k
Mouse 29 10 ( 1.7e4±138.4 )/50k ( 57.8±2.4 )/50k ( 45.3±2.6 )/50k ( 17.7±4.0 )/50k
CMS 44 4 ( 5.5e4±397.1 )/100k ( 209.8±18.9 )/100k ( 252.5±27.3 )/100k ( 7.4±0.5 )/100k
DZB 66 10 ( 2.7e4±387.1 )/20k ( 715.6±10.9 )/200k ( 1.1e3±274.7 )/200k ( 66.1±0.6 )/200k

Table 3: The average instance log-likelihoods of the dynamics models on various datasets. We do
not show the standard variances for obviously over-fitting results (less than −100.0, highlighted in
brown), as their variances are all extremely large.

Env data GRADER CDL CDL-A TICSA GNN MLP OOFULL OOCDM

Block2

train 21.1±0.3 20.9±1.5 19.3±1.9 17.4±2.2 18.8±0.6 16.5±1.2 21.5±0.9 22.4±0.7
i.d. 17.1±2.5 20.2±1.8 10.4±16.8 16.4±1.9 17.9±0.7 10.1±4.4 −568.2 22.2±0.7

o.o.d. −65.4 11.5±6.7 −6.0e5 −60.1 ±2.8 −5.0±23.4 −7.2e4 −4.6e4 21.3±1.9

Block5

train 19.1±3.4 16.5±2.1 18.9±0.7 12.0±0.7 14.9±14.4 12.6±0.5 20.4±1.7 19.6±1.7
i.d. 6.7±4.3 −45.3 ±113.2 −1.4e7 10.8±0.7 14.4±0.4 −2.2±6.3 19.8±1.7 19.5±1.7

o.o.d. −95.6 ±41.7 −5.3e6 −1.1e9 −5.5e3 −13.4 ±3.4 −1.5e7 −4.0e7 13.5±4.3

Block10

train 19.3±0.6 12.9±0.8 16.0±0.6 11.1±1.3 13.3±0.15 8.9±0.6 20.3±0.6 21.2±0.3
i.d. −26.7 ±8.4 6.9±6.4 −9.2±42.5 −10.4 ±39.8 12.9±0.2 −75.3±20.0 20.2±0.6 21.1±0.3

o.o.d. −119.1 −4.2e6 −1.9e8 −139.4 −17.3 ±17.3 −780.9 −5.4e3 15.6±5.4

Mouse
train 24.2±0.6 13.9±1.8 22.3±1.4 13.6±3.5 25.6±1.8 5.7±0.4 30.0±1.4 32.2±1.1
i.d. −3.2e3 −2.0e5 −3.6e4 −1.5e4 −2.7e4 −1.6e7 −65.0 ±153.3 26.8±6.7

o.o.d. −7.1e4 −1.1e10 −2.0e10 −2.5e7 −6.3e10 −8.0e10 −1.5e9 11.2±17.2

CMS train −1.2±0.1 3.6±0.8 4.1±1.5 2.8±1.6 6.4±6.2 −2.0±1.5 8.5±1.1 9.0±0.5
i.d. −1.3±0.1 −1.0e6 4.1±1.5 −16.3 ±7.4 6.3±0.1 −6.4e9 8.5±1.1 8.9±0.5

DZB train 11.0±1.0 4.2±2.5 12.1±0.1 13.2±1.2 18.0±10.0 −0.9±0.8 29.0±0.6 27.2±2.5
i.d. −14.9 ±21.8 −3.3±6.6 5.3±5.3 −2.4e5 13.0±12.8 −1.6e12 22.6±5.6 24.4±5.9

5.3 PREDICTING ACCURACY

We use the AILL functions (see Eq. 7) to measure the predicting accuracy of dynamics models.
The models are learned using offline training data. Then, the AILL functions of these models are
evaluated on the i.d. (in-distribution) test data sampled from the same distribution as the training
data. Especially, in Block and Mouse environments, we can modify the distribution of the starting
state of each episode (see Appendix H.3) and obtain the o.o.d. (out-of-distribution) test data, which
contains samples that are unlikely to appear during training. The i.d. and o.o.d. test data measure
two levels of generalization, respectively considering situations that are alike and unalike to those in
training. We do not collect the o.o.d. data for CMS and DZB, as modifying the initialization process
is difficult with limited access to the StarCraftII engine in PySC2 platform (Vinyals et al., 2017).

The results are shown in Table 3. In small-scale environments like Block-2, causal models show
better generalization ability than dense models on both i.d. and o.o.d. test data. However, in
larger-scale environments, the performance of non-OO models declines sharply, and OO models
(OOFULL and OOCDM) obtain the highest performance on the i.d. data. In addition, our OOCDM
exhibits the best generalization ability on the o.o.d. data; in contrast, the performance of OOFULL
is extremely low on such data. These results demonstrate that OO models are more effective in
large-scale environments, and that causality greatly improves the generalization of OO models.

5.4 COMBINING MODELS WITH PLANNING

In this experiment, we trained dynamics models using offline data (collected through random ac-
tions). Given a reward function, we used these models to guide decision-making using Model Pre-
dictive Control (Camacho & Bordons, 1999) combined with Cross-Entropy Method (Botev et al.,

8
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Table 4: The average return of episodes when models are used for planning. In the Mouse
environment, “o.o.d.” indicates the initial states are sampled from a new distribution.

Env GRADER CDL CDL-A TICSA GNN MLP OOFULL OOCDM
Mouse −1.2±1.9 3.9±3.0 −5.0±1.3 −0.8±0.7 6.6±3.2 0.6±2.0 77.9±18.1 80.1±16.9
o.o.d. −0.4±1.7 1.8±2.5 −0.9±1.1 −1.2±0.6 0.6±0.2 −1.3±0.7 62.2±8.7 75.1±17.5
CMS −9.5±1.1 −9.8±1.1 −8.8±0.4 −9.3±0.9 −9.8±0.7 −8.8±0.5 −4.1±3.3 3.4±6.3
DZB 202.9±12.3 217.3±12.4 171.7±18.2 188.9±8.5 233.8±19.8 205.4±6.7 269.8±21.5 266.2±11.4

Table 5: Results on various tasks in the Mouse environment. “seen” and “unseen” respectively
indicate the performances measured in seen and unseen tasks.

Model average instance log-likelihood episodic return
train seen unseen seen unseen

OOCDM 26.9±3.5 25.4±2.8 24.8±2.8 94.8±29.7 88.8±34.8
OOFULL 30.7±1.9 22.5±3.2 7.9±29.8 77.0±24.6 70.8±22.4

2013) (see Appendix E.4), which is widely used in MBRL. The Block environment is not included
here as it does not involve rewards. In the Mouse environment, the o.o.d. initialization mentioned in
Section 5.3 is also considered. The average returns of episodes are shown in Table 4, showing that
OOFULL and OOCDM are significantly better than non-OO approaches.

Between the OO models, OOCDM obtains higher returns than OOFULL in 3 of 4 environments,
which demonstrates that OOCDM better generalizes to the unseen state-action pairs produced by
planning. Taking CMS for example, the agent collects only a few mineral shards in the training data.
When the agent plans, it encounters unseen states where most mineral shards have been collected.
However, we note that OOFULL performs slightly better than OOCDM in DZB. One reason for
this is that DZB possesses a joint action space of 9 marines, which is too large to conduct effective
planning. Therefore, planning does not lead to states that are significantly different from those in
training, prohibiting the advantage of generalization from converting to the advantage of returns.
Additionally, the true CG of DZB is possibly less sparse than those in other environments, making
OOFULL contain less spurious edges. Therefore, CDMs would be more helpful, if the true CG is
sparse, and there exists a large divergence between the data distributions in training and testing.

5.5 HANDLING VARYING NUMBERS OF INSTANCES

In the Mouse environment, we tested whether OOCDM and OOFULL are adaptable to various tasks
with different numbers of Food, Moster, and Trap instances. We randomly divide tasks into the
seen and unseen tasks (see Appendix H.4). Dynamics models are first trained in seen tasks and then
transferred to the unseen without further training. We measured the log-likelihoods on the training
data, the i.d. test data on seen tasks, and the test data on unseen tasks. The average episodic returns
of planning were also evaluated, separately on seen and unseen tasks. As shown in Table 5, our
results demonstrate that 1) OO models can be learned using data from different tasks, 2) OO models
perform a zero-shot transfer to unseen tasks with a mild reduction of performance, and 3) the overall
performance is improved when combing the model with causality.

6 CONCLUSION

This paper proposes OOCDMs that capture the causal relationships within OOMDPs. Our main
innovations are the OOCGs that share class-level causalities and the use of attention-based field
predictors. Furthermore, we present a CMI-based method that discovers OOCGs in environments
with changing numbers of objects. Theoretical and empirical data indicate that OOCDM greatly en-
hances the computational efficiency and accuracy of causal discovery in large-scale environments,
surpassing state-of-the-art CDMs. Moreover, OOCDM well generalizes to unseen states and tasks,
yielding commendable planning outcomes. In conclusion, this study provides OOCDM as a promis-
ing solution to learn and apply CDMs in large object-oriented environments.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Zdravko I. Botev, Dirk P. Kroese, Reuven Y. Rubinstein, and Pierre L’Ecuyer. The Cross-
Entropy Method for Optimization. In Handbook of Statistics, volume 31, pp. 35–59. Elsevier,
2013. ISBN 978-0-444-53859-8. doi: 10.1016/B978-0-444-53859-8.00003-5. URL https:
//linkinghub.elsevier.com/retrieve/pii/B9780444538598000035.

Craig Boutilier, Richard Dearden, and Moisés Goldszmidt. Stochastic dynamic programming
with factored representations. Artificial Intelligence, 121(1):49–107, August 2000. ISSN 0004-
3702. doi: 10.1016/S0004-3702(00)00033-3. URL https://www.sciencedirect.com/
science/article/pii/S0004370200000333.

Lars Buesing, Theophane Weber, Yori Zwols, Sebastien Racaniere, Arthur Guez, Jean-Baptiste
Lespiau, and Nicolas Heess. Woulda, Coulda, Shoulda: Counterfactually-Guided Policy Search,
November 2018. URL http://arxiv.org/abs/1811.06272. arXiv:1811.06272 [cs,
stat].

E. F. Camacho and C. Bordons. Model predictive control. Advanced textbooks in control and signal
processing. Springer, Berlin ; New York, 1999. ISBN 978-3-540-76241-6.

Krzysztof Chalupka, Pietro Perona, and Frederick Eberhardt. Fast Conditional Independence Test
for Vector Variables with Large Sample Sizes, April 2018. URL http://arxiv.org/abs/
1804.02747. arXiv:1804.02747 [cs, stat].

Thomas Dean and Keiji Kanazawa. A model for reasoning about persistence and causation. Com-
putational Intelligence, 5(2):142–150, February 1989. ISSN 0824-7935, 1467-8640. doi: 10.
1111/j.1467-8640.1989.tb00324.x. URL https://onlinelibrary.wiley.com/doi/
10.1111/j.1467-8640.1989.tb00324.x.

Wenhao Ding, Haohong Lin, Bo Li, and Ding Zhao. Generalizing Goal-Conditioned Reinforcement
Learning with Variational Causal Reasoning, July 2022. URL http://arxiv.org/abs/
2207.09081. arXiv:2207.09081 [cs, stat].

Carlos Diuk, Andre Cohen, and Michael L. Littman. An object-oriented representation for efficient
reinforcement learning. In Proceedings of the 25th international conference on Machine learn-
ing - ICML ’08, pp. 240–247, Helsinki, Finland, 2008. ACM Press. ISBN 978-1-60558-205-
4. doi: 10.1145/1390156.1390187. URL http://portal.acm.org/citation.cfm?
doid=1390156.1390187.

Frederick Eberhardt. Introduction to the foundations of causal discovery. International Jour-
nal of Data Science and Analytics, 3(2):81–91, March 2017. ISSN 2364-415X, 2364-
4168. doi: 10.1007/s41060-016-0038-6. URL http://link.springer.com/10.1007/
s41060-016-0038-6.

Anirudh Goyal, Alex Lamb, Phanideep Gampa, Philippe Beaudoin, Sergey Levine, Charles Blun-
dell, Yoshua Bengio, and Michael Mozer. Object Files and Schemata: Factorizing Declarative
and Procedural Knowledge in Dynamical Systems, November 2020. URL http://arxiv.
org/abs/2006.16225. arXiv:2006.16225 [cs, stat].

Anirudh Goyal, Aniket Didolkar, Nan Rosemary Ke, Charles Blundell, Philippe Beaudoin, Nico-
las Heess, Michael Mozer, and Yoshua Bengio. Neural Production Systems: Learning Rule-
Governed Visual Dynamics, March 2022. URL http://arxiv.org/abs/2103.01937.
arXiv:2103.01937 [cs, stat].

C. Guestrin, D. Koller, R. Parr, and S. Venkataraman. Efficient Solution Algorithms for Factored
MDPs. Journal of Artificial Intelligence Research, 19:399–468, October 2003a. ISSN 1076-9757.
doi: 10.1613/jair.1000. URL http://arxiv.org/abs/1106.1822. arXiv:1106.1822
[cs].

Carlos Guestrin, Daphne Koller, Chris Gearhart, and Neal Kanodia. Generalizing plans to new
environments in relational MDPs. In Proceedings of the 18th International Joint Conference
on Artificial Intelligence, August 2003b. URL https://ai.stanford.edu/˜koller/
Papers/Guestrin+al:IJCAI03.pdf.

10

https://linkinghub.elsevier.com/retrieve/pii/B9780444538598000035
https://linkinghub.elsevier.com/retrieve/pii/B9780444538598000035
https://www.sciencedirect.com/science/article/pii/S0004370200000333
https://www.sciencedirect.com/science/article/pii/S0004370200000333
http://arxiv.org/abs/1811.06272
http://arxiv.org/abs/1804.02747
http://arxiv.org/abs/1804.02747
https://onlinelibrary.wiley.com/doi/10.1111/j.1467-8640.1989.tb00324.x
https://onlinelibrary.wiley.com/doi/10.1111/j.1467-8640.1989.tb00324.x
http://arxiv.org/abs/2207.09081
http://arxiv.org/abs/2207.09081
http://portal.acm.org/citation.cfm?doid=1390156.1390187
http://portal.acm.org/citation.cfm?doid=1390156.1390187
http://link.springer.com/10.1007/s41060-016-0038-6
http://link.springer.com/10.1007/s41060-016-0038-6
http://arxiv.org/abs/2006.16225
http://arxiv.org/abs/2006.16225
http://arxiv.org/abs/2103.01937
http://arxiv.org/abs/1106.1822
https://ai.stanford.edu/~koller/Papers/Guestrin+al:IJCAI03.pdf
https://ai.stanford.edu/~koller/Papers/Guestrin+al:IJCAI03.pdf


Under review as a conference paper at ICLR 2024

Irit Hadar and Uri Leron. How intuitive is object-oriented design? Communications of the ACM,
51(5):41–46, May 2008. ISSN 0001-0782, 1557-7317. doi: 10.1145/1342327.1342336. URL
https://dl.acm.org/doi/10.1145/1342327.1342336.

Biwei Huang, Fan Feng, Chaochao Lu, Sara Magliacane, and Kun Zhang. AdaRL: What, Where,
and How to Adapt in Transfer Reinforcement Learning, March 2022. URL http://arxiv.
org/abs/2107.02729. arXiv:2107.02729 [cs, stat].

Eric Jang, Shixiang Gu, and Ben Poole. Categorical Reparameterization with Gumbel-Softmax,
August 2017. URL http://arxiv.org/abs/1611.01144. arXiv:1611.01144 [cs, stat].

Anders Jonsson and Andrew Barto. Causal Graph Based Decomposition of Factored MDPs. The
Journal of Machine Learning Research, 7:2259–2301, December 2006.

Nan Rosemary Ke, Aniket Didolkar, Sarthak Mittal, Anirudh Goyal, Guillaume Lajoie, Stefan
Bauer, Danilo Rezende, Yoshua Bengio, Michael Mozer, and Christopher Pal. Systematic Eval-
uation of Causal Discovery in Visual Model Based Reinforcement Learning, July 2021. URL
http://arxiv.org/abs/2107.00848. arXiv:2107.00848 [cs, stat].

Thomas Kipf, Elise van der Pol, and Max Welling. Contrastive Learning of Structured World Mod-
els, January 2020. URL http://arxiv.org/abs/1911.12247. arXiv:1911.12247 [cs,
stat].

Luofeng Liao, Zuyue Fu, Zhuoran Yang, Yixin Wang, Mladen Kolar, and Zhaoran Wang. Instru-
mental Variable Value Iteration for Causal Offline Reinforcement Learning, July 2021. URL
http://arxiv.org/abs/2102.09907. arXiv:2102.09907 [cs, stat].

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-Centric Learning with Slot At-
tention, October 2020. URL http://arxiv.org/abs/2006.15055. arXiv:2006.15055
[cs, stat].
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Table 6: The meanings of acronyms that appear in the paper.

Acronym Explanation
AILL Average instance log-likelihood.
BCG Bipartite causal graph.
BN Bayesian Network.

CDM Causal dynamics model.
CDL A baseline proposed by Wang et al. (2022).
CG Causal graph.
CIT Conditional independence test.

CLCE Class-level causality expression.
CMS Collect-Mineral-Shards, a StarCraftII minigame.
CMI Conditional mutual information.
DAG Directed acyclic graph.
DBN Dynamics Bayesian Network.
DZB Defeat-Zerglings-Banelings, a StarCraftII minigame.
GNN A baseline based on a graph neural network (Kipf et al., 2020).
i.d. In-distribution.

MBRL Model-based reinforcement learning.
MDP Markov decision process.
MLP Multi-layer perceptron.
OO Object-oriented.

OOCDM Object-oriented causal dynamics model
OOCG Object-oriented causal graph.
o.o.d. Out-of-distribution.

OOFULL Object-oriented full model (a variant of OOCDM that uses full OOCGs).
OOMDP Object-oriented Markov decision process.

RL Reinforcement learning.
TICSA A baseline proposed by Wang et al. (2021).

A ACRONYMS AND SYMBOLS

The acronyms that appear in our paper are explained in Table 6. The meanings of symbols used in
the paper or will be used in the appendices are described in Table 7 unless otherwise specified.

Table 7: Symbols used in the paper and appendices

Symbol(s) Explanation
Si The i-th state variable in a FMDP.
S′i The i-th next-state variable in a FMDP.
S The group of state variables in a FMDP.
S′ The group of next-state variables in a FMDP.
Ai The i-th action variable in a FMDP.
A The group of action variables in a FMDP.
∆ The group of all variables in a transition, i.e. (S,A,S′).
ns The number of state variables in a FMDP.
na The number of action variables in a FMDP.
p The probability distribution of random variables.
p̂ The estimated distribution for p in a dynamics model.
G The DAG of a causal model (e.g., a Bayesian network, CDM, or OOCDM).

X→ Y Variable X is a parent of variable Y in some given DAG.
PaG(X) The parent set of variable X in DAG G.
Pa(X) The parent set of variable X in the ground-truth causal graph.
C (or Ci) A (or the i-th) class in an OOMDP.
C The set of classes in an OOMDP.
F[C] The set of fields of class C, i.e. Fs[C] ∪Fa[C].

continuing in the next page
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Symbol(s) Explanation
Fs[C] The set of state fields of class C.
Fa[C] The set of action fields of class C.
F The set of all fields in an OOMDP, i.e. ⋃C∈C F[C].
Fs The set of all state fields in an OOMDP, i.e. ⋃C∈C Fs[C].
C.U Some filed of C in F[C].
C.V Some state field of C in Fs[C].

DomC.U The domain of some field C.U .
O,Oi An object in an OOMDP.
N The number of objects in an OOMDP.
K The number of classes in an OOMDP.

O ∈ C Object O is an instance of class C.
O.U An attribute of O (derived from the field C.U ∈ F[C] where O ∈ C).
O.V A state attribute of O (derived from the field C.S ∈ Fs[C] where O ∈ C).
O.S The group of all state attributes of O.
O.A The group of all action attributes of O.
O All attributes of O, i.e. (O.S,O.A).

O.V′ The variable of state attribute O.V in the next-step.
O.S′ The group of state variables O.S in the next-step.

Oa ∼ Ob Oa and Ob are instances of the same class.
C.U → V ′ A local causality expression from C.U to C.V .

Cl.U → Ck.V
′ A global causality expression from Cl.U to Ck.V .

D A dataset of transition samples.
Ct

k The set of instances of class Ck at step t.
p̂(⋅)t The estimation of p when variables take the observed values at step t.

CMIςD The CMI for class-level causality ς on data D.
fC.V The predictor for the state field C.V in the OOCDM.
LG(D) The AILL function of data D under the CG G.
J(D) The overall target function for model learning.

Table 7 ends

B BASICS OF CAUSALITY

B.1 CAUSAL MODELS

In this section, we present some of the basic concepts and theorems of causality, which form the
foundation of our theory. We first introduce Markov Compatibility (Pearl, 2000), which defines
whether a graph can correctly reflect the relationships among variables given a probability function.
Definition* 1 (Markov Compatibility). Assume G is an acyclic directional graph (DAG) on a group
of random variables X = (X1, ...,Xn). Given any probability function p of these variables, if the
rule of production decomposition holds:

p(X1, ...,Xn) =
n

∏
j=1

p(Xj ∣PaG(Xj)), (9)

then we say that p is compatible with G, or that G represents p.

Causality (the DAG) is a universal concept. The following theorem shows, that no matter what
the probability function is, the dependencies between variables can always be represented by some
DAG. This leads to a general form of a causal model called the Bayesian Network (BN).
Theorem* 1 (Existence of causal graphs). For any probability function p of variables X =
(X1,⋯,Xn), there always exists a DAG G that p is compatible with.

Proof. Using the chain rule of probability functions, we have

p(X1, ...,Xn) = p(X1)p(X2∣X1)p(X3∣X1,X2)⋯p(Xn∣X1, ...,Xn−1). (10)

Letting Pa(Xj) ⊆ {X1, ...,Xj−1} denote the minimal subset such that p(Xj ∣X1, ...,Xj−1) =
p(Xj ∣Pa(Xj)) (the Markovian parents (Pearl, 2000)) for j = 1, ..., n, we obtain Eq. 9.
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Definition* 2 (Bayesian Network). A Bayesian Netowrk is a tuple ⟨G, p⟩, where G is a directed
acyclic graph (DAG) on a set of random variables X = (X1, ...,Xn), and p is a probability function
of X such that p is compatible with G.

Especially, according to Laplacian’s conception, most stochastic phenomenons in nature are due to
deterministic functions combined with unobserved disturbances. This conception leads to a special
type of BN called the Structural Causal Model (SCM), which is the most popular model in causal
inference.
Definition* 3 (Structural Causal Model). A Structural Causal Model (SCM) is a tuple ⟨G, p,U,F⟩,
where ⟨G, p⟩ forms a Bayesian Network on variables X = (X1, ...,Xn). U = (U1, ...,Un) is a set
of disturbance variables that are independent of each other. F = {f1, f2,⋯, fn} is a set of structural
equations, such that

Xi = fi(Pa(Xi);Ui). (11)

B.2 D-SEPARATION

The concept of d-seperation plays an important role in causal inference. Given a CG G, the criterion
of d-separation provides an effective way to determine on what condition two groups of variables
are independent.
Definition* 4 (d-separation). Assume G is a DAG on a set of variables V. Assume X, Y, and Z are
three disjoint groups of variables in V. We say an un-directional path between X and Y is blocked
by Z if one of the following requirements is met: 1) The path contains a chain A→ B→ C or a fork
A ← B → C such that B ∈ Z; or 2) the path contains a collider A → B ← C such that Z contains
no descendent of B. We say X and Y are d-separated by Z, if Z blocks all un-directional paths
between X and Y in G, denoted as

X áG Y ∣ Z. (12)
Theorem* 2 (d-separation criterion). Assume G is a DAG on a set of variables V. Assume X, Y,
and Z are three disjoint groups of variables in V. We have:
1) if p is any probability function compatible with G, then

(X áG Y ∣ Z)⇒ (X áp Y ∣ Z), (13)

where áp means conditional independence under p, namely p(Y∣Z) = p(Y∣X,Z);
2) if (X áp Y ∣ Z) holds for all p that is compatible with G, then (X áG Y ∣ Z) also holds.

Using the d-separation criterion, the following rule is proven by Pearl (2000).
Theorem* 3 (Causal Markov Condition). Assume G is a DAG on a set of variables V. Let p
denote a probability function for these variables. Then p is compatible with G if and only if (X áp
Y∣PaG(X)) holds for any X,Y ∈V such that Y is not a descendant of X.

B.3 CAUSAL DISCOVERY

Consider that V is a set of variables, and that p is a probability function of these variables. The
goal of causal discovery is to recover a DAG G that is compatible with p from a set of observation
data (sampled from p) of these variables. However, a probability function p may be compatible with
more than one DAG. For example, consider two SCMs on variables {X,Y,Z} where X is the only
exogenous variable:

M1 ∶ X = UX, Y = X2 +UY, Z = X +X2 +UZ; (14)

M2 ∶ X = UX, Y = X2 +UY, Z = X +Y +UZ. (15)

If the distributions of disturbances are the same in both SCMs and UY ≡ 0, then the two SCMs
lead to identical probability functions. Therefore, this probability function is compatible with two
different DAGs: InM1, we have Pa(Z) = {X}; inM2, we have Pa(Z) = {X,Y}.

Since there exists more than one DAG that p may be compatible with, Definition* 6 suggests that
we may look for the minimal DAG that can represent the fewest probability functions, i.e. the DAG
that focuses most on p. It is worth mentioning that in the original definitions of Pearl (2000), the
observability of variables is considered, which is ignored here since all variables are observable in
our work.
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Definition* 5 (Structural preference and equivalence). Assume G1 and G2 are DAGs on the same
set of variables. If any probability function p compatible with G1 is also compatible with G2, we say
G is preferred to G2, denoted as G1 ⪯ G2. If we have G1 ⪯ G2 and G2 ⪯ G1, we say G1 and G2 are
equivalent, denoted as G1 ≡ G2.
Definition* 6 (Minimal structure). Assume G is a family of DAGs defined on the same set of
variables. We say G ∈G is the minimal DAG among G if every G′ ∈G satisfies that G ⪯ G′.

Faithfulness (also known as stability) is an important concept for causal discovery. We say p is
faithful to a DAG G if all the conditional independence relationships in p are “stored” in the structure
of G. In other words, the independent relationships in p stem purely from the causal structure G rather
than coincidence. In addition, faithfulness offers a stronger condition than minimality, as it implies
a unique minimal structure. Therefore, the faithfulness condition becomes a vital assumption for
causal discovery, which makes the structure of the DAG identifiable. If p is faithful to G, then
G precludes all spurious correlations. By assuming that the probability p of data follows a stable
distribution, we can use the Causal Faithfulness Property (Theorem* 4) to identify the CG G that p
is compatible with and faithful to.
Definition* 7 (Faithfulness and stable distribution). Assume G is a DAG and probability function p
is compatible with G. If we have

(X áp Y∣Z)⇒ (X áG Y∣Z) (16)
for any disjoint variable groups X, Y, and Z, we say p is faithful to the DAG G. Consider p a
probability function of a set of variables. If there exists a DAG G on these variables such that p is
compatible with and faithful to G, we say p follows a stable distribution.
Theorem* 4 (Causal faithfulness property). Assume G is a DAG. If a probability function p is
compatible with and faithful to G, we have

(X áG Y ∣ Z)⇔ (X áp Y ∣ Z) (17)
for any disjoint variable groups X, Y, and Z in G.

The above Theorem* 4 can be easily derived from Theorem* 2. The following theorem (Peters et al.,
2017) shows that faithfulness is a stronger requirement than minimality.
Theorem* 5 (Faithfulness implicates an unique minimal structure). Assume p is a probability func-
tion of a set of variables and G is the set of DAGs that p is compatible with. If p is faithful to G ∈G,
then G is the unique minimal DAG in G.

B.4 CONDITIONAL INDEPENDENCE TESTS

According to Theorem* 4, the discovery of the graph structure is converted into the determination of
the conditional independence relations under a faithful probability p. However, the exact formulation
of p is usually unknown, and we have to make the judgment using samples drawn from p.

The technique for testing whether variables are conditionally independent is called the Conditional
Independence Test (CIT). In other words, CIT uses a dataset {(xi, yi, zi)}

N
i=1 drawn from p to esti-

mate whether the hypothesis (X áp Y ∣ Z) holds. A simple way to implement a CIT is to learn two
linear regression models, ŷ = f(x, z) and ŷ = g(z), using the given data. We then define the square
errors of both models:

ϵf(xi, yi, zi) =
1

N
∑(yi − f(xi, zi))

2, (18)

ϵg(xi, yi, zi) =
1

N
∑(yi − g(zi))

2. (19)

If conditional independence holds, then X does not carry any information about Y, and thus the
argument x will not change the regression error. Therefore, a Student t-test can be used to check
whether ϵf /ϵg is expected to be 1, which confirms the independence. Additionally, there are many
more advanced tools to perform this test, such as Fast CIT Chalupka et al. (2018) and Kernel-based
CIT Zhang et al. (2012).

Another way to perform the CIT is to estimate the conditional mutual information (CMI). The CMI
between X and Y conditional on Z is defined as

CMI(X,Y ∣ Z) ∶= EX,Y,Z [log
p(X,Y∣Z)

p(X∣Z)p(Y∣Z)
] = EX,Y,Z [log

p(Y∣X,Z)
p(Y∣Z)

] . (20)
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Theorem* 6. CMI(X,Y ∣ Z) ≥ 0, where equality holds if and only if (X áp Y ∣ Z).

Using the theory above, we can determine whether conditional independence holds by checking
whether the CMI is 0. As suggested by Wang et al. (2022), we can estimate the CMI using the
neural approximates of p(Y∣X,Z) and p(Y∣Z).

C THE THEORY OF CAUSAL DYNAMICS MODELS

We assume the state in a Factored Markov Decision Process (FMDP) is composed of ns state vari-
ables written as S = (S1,⋯,Sns). Similarly, we have A = (A1,⋯,Ana). In this section, we show
1) that there always exists a causal dynamics model (a.k.a., dynamics Bayesian network) to for-
mulate the dynamics of an FMDP, 2) that this causal dynamics model has bipartite causal graph if
state variables transit independently, and 3) how the ground-truth causal graph of an FMDP can be
uniquely identified. The following discussion is based on the general form of FMDPs. However,
the definitions, analysis, and conclusion are also applicable in OOMDPs, where the attributes are
merely variables organized in an OO framework.

C.1 CAUSAL STRUCTURE OF FACTORED MARKOV DECISION PROCESS

The following theorem describes the general causal structure for in transition ∆ of an FMDP. We
first define the concept of consistency, which means that the probability function of ∆ follows
the transition function of the FMDP whereas the state distribution p(S) and policy p(A∣S) can be
arbitrary.
Definition* 8 (Consistent probability function). Assume ∆ = (S,A,S′) is the set of transition
variables of an FMDP. Suppose that p is a probability function of variables ∆. We say it is consistent
with the dynamics, if

p(S,A,S′) = p(S′∣S,A)p(A∣S)p(S), (21)
and p(S′∣S,A) is exactly the transition function of the concerned FMDP.
Theorem* 7. Assume p is any probability function of a variables ∆ = (S,A,S′). If it is consistent
with an FMDP, then there exists a DAG G on ∆ such that:

1. p is compatible with G;

2. Pa(Si) ⊆ S for every Si ∈ S;

3. Pa(Ai) ⊆ (S,A) for every Ai ∈A

4. Pa(S′j) ⊆ (S,A,S′) for every S′j ∈ S
′;

5. G contains no backward edge like S′j → Si or Aj → Si.

Proof. We have
p(∆) = p(S)p(A∣S)p(S′∣S,A). (22)

It is easy to see that Pa(Ai) ⊆ S for every Ai ∈ A and Pa(S′j) ∈ (S,A) for every S′j ∈ S
′ if we

decompose the probabilities using the chain rule. For p(S′∣S,A), we can write

p(S′∣S,A) =
ns

∏
j=1

p(Sj ∣S,A,S′1, ...,S
′
j−1), (23)

and define Pa(S′j) ⊆ (S,A,S1, ...,Sj−1) as the minimal subset such that p(S′j ∣S,A,S′1, ...,S
′
j−1) =

p(S′j ∣Pa(S′j)). For p(S) and p(A∣S), we can perform similar decomposition. Therefore, the above
conclusions are easy to draw.

The definition of CDMs has been provided in the paper’s Definition 1. From the above proof, we
can see that the parenthood of next-state variables S′ is not affected by the choice of policy p(A∣S)
and the prior distribution of state p(S). Therefore, Causal Dynamics Models (CDMs) only care
about the causality of S′. Like Definition* 1, we define whether the causal graph can represent the
dynamics of an FMDP using the product decomposition.

18



Under review as a conference paper at ICLR 2024

Definition* 9 (Represented dynamics). AssumeM = ⟨G, p⟩ is a CDM for an FMDP. If G satisfies
that

p∗(S′∣S,A) =
ns

∏
j=1

p∗(S′j ∣Pa(S′j)) (24)

for every probability function p∗ of (S,A,S′) that is consistent with the FMDP, then we say G
represents the FMDP’s dynamics. Further, if we also have that p(S′∣S,A) = p∗(S′∣S,A) for every
consistent probability function p∗, we say the CDMM matches the dynamics of the FMDP.

It is important to note that a CDM is not a causal model (Bayesian network). It does not specify the
causality of S and A but focuses on the causality of the next state S′. In other words, a CDM hopes
to capture the universal rule of transitions, no matter what policy the agent uses, how each episode
begins, and how each episode terminates. It is concretized to a real causal model when the policy
p(A∣S) and the state distribution p(S) are given.

Theorem* 8 (Concretization). Assume G is a causal graph that represents the dynamics of an
FMDP. Then for every probability function p consistent with the FMDP’s dynamics, there exists a
DAG Gp on (S,A,S′) such that 1) Gp satisfies all propositions in Theorem* 7, 2) G is a sub-graph
of Gp, and 3) Gp and G share the same parent set Pa(S′j) for each next-sate variable S′j ∈ S

′. We
call this DAG GP as a concretization of G under p.

Proof. Because G represents the dynamics of an FMDP, we have

p(S′∣S,A) =
ns

∏
j=1

p(S′j ∣Pa(S′j)).

Now, we use PaGp(X) to denote the parent set of variable X in Gp. Since p is consistent with the
FMDP, we have

p(S,A,S′) = p(S′∣S,A)p(A∣S)p(S).

Using the chain rule to decompose p(A∣S) and p(S), we have

p(S,A,S′) = p(S′∣S,A)
na

∏
j=1

p(Aj ∣S,A1, ...,Aj−1)
ns

∏
i=1

p(Si∣S1, ...,Si−1).

Then there exists Gp where PaGp(Aj) ⊆ (S,A1, ...,Aj−1), PaGp(Si) ⊆ {S1, ...,Si−1}, and
PaGp(S

′
k) = Pa(S′k), such that

p(S,A,S′) = p(S′∣S,A)
na

∏
j=1

p(Aj ∣PaGp(Aj))
ns

∏
i=1

p(Si∣PaGp(Si))

=
ns

∏
k=1

p(S′k ∣PaGp(S
′
k))

na

∏
j=1

p(Aj ∣PaGp(Aj))
ns

∏
i=1

p(Si∣PaGp(Si))

=
ns

∏
k=1

p(S′k ∣Pa(S′k))
na

∏
j=1

p(Aj ∣PaGp(Aj))
ns

∏
i=1

p(Si∣PaGp(Si)).

Then the theorem is proven with the above equations.

There may exist more than one causal graph that represents the dynamics of the dynamics. However,
not all these graphs are “good” as they may contain redundant edges. In order to remove spurious
correlations and improve the generalization of dynamics models, we want the CG to capture as many
independent relationships as possible. Most importantly, these independent relationships should be
universal. That is, they hold for every other probability function that is consistent with the dynamics
so that they will not be destroyed if the agent changes its policy or we change the distribution of
states. Therefore, the desired property of the causal graph is given in the following definition.

Definition* 10 (Dynamical faithfulness). Assume G is a causal graph of a CDM and p is a proba-
bility function of (S,A,S′). We say p is dynamically faithful to G, if there exists a DAG G∗ such
that 1) p is compatible with and faithful to G∗, and 2) G∗ is a concretization of G under p.
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Definition* 11 (Ground-truth causal graph). Assume G is a causal graph of a CDM for an FMDP.
We say G a ground-truth causal graph of the FMDP’s dynamics if it is the unique causal graph
inferred from all dynamically faithful probability functions. That is, for every consistent probability
function p of (S,A,S′) and any causal graph G′, we have

p is dynamically faithful to G′ Ô⇒ G′ = G.

Theorem* 9. A necessary and sufficient condition for a CG G to be the ground-truth causal graph
of the FMDP dynamics is that, for every consistent probability function p and any DAG G∗ on
(S,A,S′), we have

p is compatible with and faithful to G∗ Ô⇒ G∗ is a concretization of G under p.

Proof. (Necessity) Let G′ denotes a sub-graph of G∗ such that G∗ is a concretization of G′ under p.
We have that

p is compatible with and faithful to G∗
Ô⇒p is dynamically faithful to G′

Ô⇒G′ = G

Ô⇒G∗ is a concretization of G under p.

(Sufficiency) Let G′p be some concretization of G′ under p. We have that

p is dynamically faithful to G′

Ô⇒∃G′p which p is compatible with and faithful to

Ô⇒∃G′p is a concretization of G

Ô⇒G = G′.

C.2 BIPARTITE CAUSAL GRAPHS

Not all MDPs are suitable to be modeled by causality. For example, if the state variables are raw
pixels of an image, then transitions of variables are densely correlated, leading to a dense causal
graph. In this case, CDMs are deprecated, unless certain abstraction and representation techniques
are performed to simplify the causal structure (not included in our work). We will make decent
assumptions about the FMDP, which greatly simplifies the structure of the causal graph.
Assumption* 1 (Independent transition). The transition function of the FMDP follows that

p(S′∣S,A) =
ns

∏
j=1

p(S′j ∣S,A). (25)

Several studies have assumed that the causal graph of a CDM is bipartite (Volodin, 2021; Wang
et al., 2021; 2022; Ding et al., 2022). We formally define a bipartite causal graph (BCG) below. If
the transition is independent (Assumption* 1), we argue that: 1) we can use BCGs as they always
exist, and 2) we should use BCGs as they are necessary for faithfulness.
Definition* 12 (Bipartite causal graph). Consider that G is the CG of a CDM. If we have Pa(S′j) ⊆
(S,A) for every S′j ∈ S, we say G is a bipartite causal graph (BCG). In other words, no lateral edge
like S′i → S′j exists among S′.
Theorem* 10 (Existence of BCGs). If an FMDP follows Assumption* 1 then it is matched by some
CDM whose causal graph is a BCG. In addition, in this BCG we have

p(S′j ∣Pa(S′j)) = p(S
′
j ∣S,A), for S′j ∈ S

′. (26)

Proof. Assuming p gives the transition function of the SCM. We can define the CDM as ⟨G, p⟩. In
G, we let Pa(S′j) be any subset of (S,A) such that p(S′j ∣Pa(S′j)) = p(S′j ∣S,A). Such a subset
always exists since it may directly be (S,A). Using Assumption* 1, we have

p(S′∣S,A) =
ns

∏
j=1

p(S′j ∣S,A) =
ns

∏
j=1

p(S′j ∣Pa(S′j)).
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Then, we let p(S′j ∣Pa(S′j)) be equal to p(S′j ∣Pa(S′j)). As a result, the dynamics are matched by the
CDM and G is a BCG.

Theorem* 11 (Faithfulness for BCGs). Assume that the dynamics of an FMDP are represented by
G and p is a probability function consistent with the FMDP. If Assumption* 1 holds, then a necessary
condition of that p is dynamically faithful to G (see Definition* 10) is that G is a BCG.

Proof. Assume Gp is the concretization of G under p such that p is faithful to G. If G is not bipartite,
there exist j, k such that S′j → S′k in Gp. In this case, we have (S′j ̸G S′k ∣S). According to
Assumption 1, we have (S′j áp S′k ∣S). Therefore, we have that

(S′j áp S′k ∣S) /⇒ (S
′
j áGp S′k ∣S).

That is, p is not faithful to Gp. Using reduction to absurdity, we prove that G is a BCG.

Humans decompose the world into components based on independence. Therefore, it is rational to
assume that state variables transit independently (Assumption* 1), which brings many benefits: 1)
The ground-truth causal graph is a BCG so that the complexity of causal discovery is reduced; 2)
The ground-truth causal graph can be uniquely identified by conditional independent tests, and 3)
The computation of CDM can be implemented in parallel using GPUs.

Instead of BCGs, we note that there exists research that considers learning arbitrary CGs for CDMs
(Zhu et al., 2022), where the requirement of independent transition can be released. However, this
kind of CDM can not be computed in parallel, and the procedure of causal discovery is much more
complicated. Learning CGs is already very expensive even though we consider only BCGs. There-
fore, we suggest that Assumption 1 is vital to make causal discovery applicable in large-scale envi-
ronments.

C.3 CAUSAL DISCOVERY FOR CAUSAL DYNAMICS MODELS

The approach to identifying the CG representing the dynamics of the FMDP is already introduced
in the paper’s Theorem 1. However, the expression of the theorem is rather vague. Given the above
definitions, we now rewrite the theorem in a more rigorous way.
Theorem* 12 (Causal Discovery for FMDPs). Consider that probability function p is consistent
(see Definition* 8) with the dynamics of an FMDP, where Assumption* 1 holds. Then, there exists
a causal graph G that represents the dynamics of the FMDP (see Definition* 9). Assuming that p is
dynamically faithful to G (see Definition* 10), we have

1. G is a bipartite causal graph (see Definition* 12),

2. G is the ground-truth causal graph (see Definition* 11) of the dynamics, and

3. G is uniquely identified by the rule that

Xi ∈ Pa(S′j)⇔ (Xi ̸P S′j ∣ (S,A) ∖ {Xi}) (27)

for every Xi ∈ (S,A) and every S′j ∈ S
′.

Proof. Since p is consistent with the FMDP, then the transition function is p(S′∣S,A). Using the
chain rule, we have

p(S′∣S,A) =
ns

∏
j=1

p(S′j ∣S,A,S′1, ...,S
′
j−1).

By defining Pa(S′j) ⊆ (S,A,S′1, ...,S
′
j−1) as any subset such that

p(S′j ∣S,A,S′1, ...,S
′
j−1) = p(S

′
j ∣Pa(S′j)).

we have that G represents the transition dynamics of the FMDP.

We use Gp to denote the concretization of G under p. According to Theorem* 8, p is compatible
with Gp. Having assumed that p is dynamically faithful to G, we can further assume that p is also
faithful to Gp. According to Theorem* 4, we have

(X áp Y∣Z)⇔ (X áGp Y∣Z)
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for any disjoint variable groups X,Y,Z in (S,A,S′). In addition, we have that G is a BCG accord-
ing to Theorem* 11.

Assume that Xi is a variable in (S,A). According to the definition of d-separation, if Xi ∈ Pa(S′j),
Xi and S′j can not be d-separated by any group Z of variables such that Xi,S′j /∈ Z. Letting Z =
(S,A) ∖ {Xi}, we have

Xi ∈ Pa(S′j)⇒ (Xi ̸Gp S′j ∣Z).

Noticing that G is a BCG and G is a sub-graph of Gp (according to 8), every path from Xi to S′j in
Gp is blocked by Z unless Xi ∈ Pa(S′j). Therefore, we have

Xi /∈ Pa(S′j)⇒ (Xi áGp S′j ∣Z).

In other words, we have
(Xi ̸Gp S′j ∣Z)⇒ Xi ∈ Pa(S′j).

Combing the above conclusions, we prove that

Xi ∈ Pa(S′j)⇔ (Xi ̸Gp S′j ∣(S,A) ∖ {Xi})⇔ (Xi ̸P S′j ∣(S,A) ∖ {Xi}).

Therefore, we have that the causal graph G representing the dynamics of the FMDP is uniquely
identified using the above rule.

Now we consider replacing p with any other probability p∗ such that p∗ is faithful to some con-
cretization G∗p∗ . We use Pa∗(Si) to denote the parent set of S′j ∈ S

′ in G∗p∗ .

Consider that Xi is a variable in (S,A) and define Z ∶= (S,A) ∖ {Xi}. If Xi ∈ Pa(S′j) and
Xi /∈ Pa∗(S′j), using the above rule we have

(Xi ̸p S′j ∣Z) ∧ (Xi áp∗ S′j ∣Z).

In other words, we have

p(S′j ∣Z) ≠ p(S
′
j ∣Z,Xi),

p∗(S′j ∣Z) = p
∗(S′j ∣Z,Xi).

Noting that (Z,Xi) = (S,A), p∗(S′j ∣Z,Xi) is identical to p(Si∣Z,Xi) for every Si ∈ S
′ as they are

both given by the transition function of the FMDP. This leads to that

p(S′j ∣Z) ≠ p
∗(S′j ∣Z).

However, we can also write that

p(S′j ∣Z) = ∫
x
p(S′j ∣Z,Xi = x)p(Xi = x∣Z)

= ∫
x
p∗(S′j ∣Z,Xi = x)p(Xi = x∣Z)

= ∫
x
p∗(S′j ∣Z)p(Xi = x∣Z)

= p∗(S′j ∣Z)∫
x
p(Xi = x∣Z)

= p∗(S′j ∣Z).

From the above equations, we obtain the paradox that

p(S′j ∣Z) = p
∗(S′j ∣Z).

Using reduction to absurdity, Xi ∈ Pa(S′j) implies that Xi ∈ Pa∗(S′j). Similarly, we can prove the
opposite direction of this implication. As a result, we have

Xi ∈ Pa(S′j)⇔ Xi ∈ Pa∗(S′j),

which shows that G∗ = G. Therefore, we have proven that G is the ground-truth causal graph.
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Figure 4: The dense dynamics model and causal dynamics model for a simple kinetic system.

C.4 AN EXMPLE OF CAUSAL DYNAMICS MODEL

Consider a simple kinetic system where variables include T (time), X (position), V (velocity), and A
(acceleration), where A is the action determined by the agent. Their dynamics are given in Figure 4.
The dense dynamics model predicts the next-state variables using the entire input (T,X,V,A). How-
ever, the CDM predicts the next-state variables using only causal parents. In Figure 4, we present the
CDM with a ground-truth causal graph, and a dense dynamics model has a fully-connected structure.

Suppose that X, V, and T all start with 0. Assume that the agent approximately uses a deterministic
policy:

π(X,V,T) ≈
⎧⎪⎪
⎨
⎪⎪⎩

0, V = 1,
1, V < 1,
−1, V > 1.

Then V is likely to be around 1 except for the initial step. Then, a spurious correlation that X′ ≈ T
would emerge in the data. In a dense dynamics model, this spurious correlation will possibly be
learned, leading to serious generalization errors when the agent changes its policy. However, the
CDM does not have such a problem, as T is not a parent of X′.

D THE THEORY OF OBJECT-ORIENTED MDPS

In the paper’s Section 2.2 we have introduced the concept of OOMDP, where variables are com-
posed of the attributes of objects which are described by several classes. Now, we provide more
information about OOMDPs, including rigorous definitions and the proof of the paper’s Theorem 2.

D.1 RIGOROUS DEFINITIONS

Definition* 13 (Class). A class, usually denoted as C, is a tuple ⟨Fs[C],Fa[C],DomC⟩. Here,
Fs[C] and Fa[C] are disjoint sets of fields, where Fs[C] is for state fields and Fa[C] is for action
fields; the set of all fields C is defined as F[C] = Fa[C]∪Fs[C]; Each field in F[C] is a tuple like
⟨C,U⟩ (written as C.U for short), where C is exactly the class symbol C, and U is the identifier of
the field. DomC = {DomC.U}C.U∈F[C] gives the set of domains for each field.

Definition* 14 (Instance and attributes). Consider that O ⊆ (S,A) is a sub-group of variables at
the current step of an FMDP, and that C = ⟨Fs[C],Fa[C],DomC⟩ is a class. If there exist:

1. a bijection βs ∶ Fs[C] → O ∩ S such that the domain of βs(C.U) is exactly DomC.U for
every state field C.U ∈ Fs[C],

2. and a bijection βa ∶ Fa[C]→O∩A such that the domain of βa(C.U) is exactly DomC.U

for every action field C.U ∈= Fa[C],

then we say that the FMDP contains an instance O (we use the corresponding, non-bold letter) of
C, denoted as O ∈ C. Variables in O are called the attributes of O, denoted by attribute symbols:
O.U ∶= βs(C.U) for every C.U ∈ Fs[C], or O.U ∶= βa(C.U) for every C.U ∈ Fa[C].
Definition* 15 (Object-oriented decomposition for FMDP). Consider that C = {C1,⋯,CK} is a
set of classes. If (S,A) can be devided into N sub-groups (O1,⋯,ON) and each Oi forms the
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attributes of an instance Oi of some class in C, we say the FMDP is decomposed by C and call each
instance Oi as an object.

With the paper’s assumptions about the result symmetry and the causation symmetry, we finally give
the definition of an OOMDP below.

Definition* 16 (Object-oriented FMDP). We say that an FMDP is an object-oriented FMDP
(OOMDP) on a set of classes C = {C1,⋯,CK}, if

1. the state variables transit independently (see Assumption* 1),

2. the FMDP is decomposed by C, and

3. Eqs. 2 and 3 hold under this decomposition.

D.2 CAUSAL GRAPH FOR OOMDP

First, we prove that there always exists an OOCG to represent the dynamics of any OOMDP.

Theorem* 13. In an OOMDP, there always exists a causal graph G such that G represents the
dynamics of the OOMDP (see Definition* 9) and G is an OOCG.

Proof. The proof is direct. Because variables transit independently, we have

p(S′∣S,A) = ∏
C∈C
∏
O∈C

∏
C.V ∈Fs[C]

p(O.V′∣S,A).

Therefore, the full OOCG, where Pa(O.V′) = (S,A) for each next-state attribute O.V′, will always
represent the dynamics of the OOMDP.

Now we prove the paper’s Theorem 2 that the ground-truth causal graph (see Difinition* 11) of an
OOMDP is always an OOCG.

Proof of the paper’s Theorem 2. Assume that G is the ground-truth causal graph of the OOMDP.
Based on Assumption* 1 and Theorem* 12, we have that G exists, is a bipartite causal graph (BCG),
and can be uniquely identified. Consider any consistent probability function p and a DAG Gp that
p is compatible with and faithful to. We know that this DAG is a concretization of G since G is the
ground-truth causal graph.

Assume Oa and Ob are both instances of class C, and C.U ∈ F[C],C.V ∈ Fs[C] are fields of C.
According to Theorem* 4, we have that (Oa.U áP Oa.V′∣(S,A)∖{Oa.U}) if Oa.U /∈ Pa(Oa.V′).
In other words, if Oa.U /∈ Pa(Oa.V′) we have

p(Oa.V′∣O1,⋯,Oa,⋯,Ob,⋯,ON) = p(Oa.V′∣O1,⋯,O−Ua ,⋯,Ob,⋯,ON),

where O−Ua denotes Oa ∖ {Oa.U}. We define another consistent probability function q such that

q(O1,⋯,Oa = x,⋯,Ob = y,⋯,ON) ∶= p(O1,⋯,Oa = y,⋯,Ob = x,⋯,ON),

q(S′∣S,A) ∶= p(S′∣S,A),

where x and y are vectors of values assigned to the objects’ attributes (If p = q we enforce x = y).
We use y−U to denote the vector where the value for the field U ∈ F[C] is missing, so that y =
(y−U , yU) where yU is the value for U . Then, we have

q(Ob.V′∣O1,⋯,Oa = x,⋯,O−Ub = y−U ,⋯,ON)

=∫
yU

q(Ob.V′∣⋯,Oa = x,⋯,Ob = y,⋯)q(Ob.U = yU ∣⋯,Oa,⋯,O−Ub = y−U ,⋯)

=∫
yU

p(Ob.V′∣⋯,Oa = x,⋯,Ob = y,⋯)p(Oa.U = yU ∣⋯,O−Ua = y−U ,⋯,Ob = x,⋯).

24



Under review as a conference paper at ICLR 2024

Using the result symmetry (the paper’s Eq. 2), we have (continuing from the above equations)

=∫
yU

p(Oa.V′∣⋯,Oa = y,⋯,Ob = x,⋯)p(Oa.U = yU ∣⋯,O−Ua = y−U ,⋯,Ob = x,⋯)

=p(Oa.V′∣O1,⋯,Oa = y,⋯,Ob = x,⋯,ON)

=q(Oa.V′∣O1,⋯,Oa = y,⋯,Ob = x,⋯,ON).

Using the result symmetry again, we have

q(Oa.V′∣O1,⋯,Oa = y,⋯,Ob = x,⋯,ON) = q(Ob.V′∣O1,⋯,Oa = x,⋯,Ob = y,⋯,ON).

Combining the above formulae, we have

q(Ob.V′∣O1,⋯,Oa = x,⋯,O−Ub = y−U ,⋯,ON) = q(Ob.V′∣O1,⋯,Oa = x,⋯,Ob = y,⋯,ON),

which says (Ob.U áq Ob.V′ ∣ (S,A) ∖ {Ob.U}).

Since p is faithful to Gp, it is easy to prove that there exists a concretization Gq that q is faithful to.
According to Theorem* 4, we have (Ob.U áGq Ob.V′∣(S,A)∖{Ob.U}). This leads to the corollary
that Ob.U ∉ Pa(Ob.V′). Therefore, we have proven that Oa.U ∉ Pa(Oa.V′)⇒ Ob.U ∉ Pa(Ob.V′).
Similarly, we can prove that Oa.U ∉ Pa(Oa.V′) ⇐ Ob.U ∉ Pa(Ob.V′). As a result, it is obvious
that

Oa.U ∈ Pa(Oa.V′)⇔ Ob.U ∈ Pa(Ob.V′) (28)

So far, we have proven the shared local causality in the CG. Now, we follow a similar methodology
to prove the shared global causality (we will skip some of the similar details). Assume Oa and Ob

are both instances of Ck; Assume Oi and Oj are both instances of C, where {i, j} ∩ {p, q} = ∅.

According to Theorem* 4, we have that (Oa.U áP Oi.V′∣(S,A) ∖ {Oa.U}) if Oa.U /∈ Pa(Oi.V′)
In other words, if Oa.U /∈ Pa(Oi.V′) we have

p(Oi.V′∣Oa,Ob,Oi,Oj ,⋯) = p(Oi.V′∣O−Ua ,Ob,Oi,Oj ,⋯).

We re-define probability function q such that

q(Oa = x,Ob = y,⋯) ∶= p(Oa = y,Ob = x,⋯),

q(S′∣S,A) ∶= p(S′∣S,A).

where x, y are vectors of values assigned to the objects’ attributes. We have

q(Oi.V′∣Oa = x,O
−U
b = y−U ,⋯)

=∫
yU

q(Oi.V′∣Oa = x,Ob = y,⋯)q(Ob.U = yU ∣Oa = x,O
−U
b = y−U ,⋯)

=∫
yU

p(Oi.V′∣Oa = x,Ob = y,⋯)p(Ob.U = yU ∣Oa = y−U ,Ob = x,⋯).

Using the causation symmetry (the paper’s Eq. 3), we have (continuing the above equations)

=∫
yU

p(Oi.V′∣Oa = y,Ob = x,⋯)p(Ob.U = yU ∣Oa = y−U ,Ob = x,⋯)

=p(Oi.V′∣Oa = y,Ob = x,⋯)

=q(Oi.V′∣Oa = y,Ob = x,⋯).

Using the causation symmetry again, we obtain

q(Oi.V′∣Oa = x,O
−U
b = y−U ,⋯) = q(Oi.V′∣Oa = x,Ob = y,⋯),

which says (Ob.U áq Oi.V′∣(S,A) ∖ {Ob.U}). This leads to that Ob.U /∈ Pa(Oi.V′). Therefore,
we can prove that Oa.U /∈ Pa(Oi.V′) ⇒ Ob.U /∈ Pa(Oi.V′). Similarly, we can easily prove the
other direction, leading to that

Oa.U /∈ Pa(Oi.V′)⇔ Ob.U /∈ Pa(Oi.V′).
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Using the result symmetry (the paper’s Eq. 2), it is easy to get that

q(Oj .V′∣Oa = x,O
−U
b = y−U ,Oi = z,Oj =w,⋯)

=q(Oi.V′∣Oa = x,O
−U
b = y−U ,Oi =w,Oj = z,⋯)

=q(Oi.V′∣Oa = x,Ob = y,Oi =w,Oj = z,⋯)

=q(Oj .V′∣Oa = x,Ob = y,Oi = z,Oj =w,⋯).

which says (Ob.U áq Oj .V′∣(S,A) ∖ {Ob.U}). This leads to that Ob.U /∈ Pa(Oj .V′). Combining
with the conclusion that we have just drawn, we have Oa.U /∈ Pa(Oi.V′)⇒ Ob.U /∈ Pa(Oj .V′)⇒
Oa.U /∈ Pa(Oj .V′), and the other direction is proven similarly.

Finally, we obtain that

Oa.U /∈ Pa(Oi.V′)⇔ Ob.U /∈ Pa(Oi.V′)⇔ Oa.U /∈ Pa(Oj .V′)⇔ Ob.U /∈ Pa(Oj .V′). (29)

Eqs. 28 and 29 together indicate that the causal graph is an OOCG, according to Definition 2.

D.3 OBJECT-ORIENTED CAUSAL DISCOVERY

In the main paper, we suggest using CMI for CITs, as it allows for varying numbers of instances and
integrates causal discovery with model learning. The following Theorem* 14 describes how class-
level causalities can be identified using CITs, providing the theoretic basis of our causal discovery.
In Eqs. 30 and 31, the independence relationships in the right can be jointly tested through only one
CIT, by merging the data of all concerned objects. We also note that CIT tools other than CMI are
also applicable if the environment has a fixed number of instances for each class.

Theorem* 14 (Causal discovery for OOMDPs). The ground-truth CG G of an OOMDP is uniquely
identified under any faithful probability function p by the following rules:

C.U → V ′ ⇐⇒ ∀O ∈ C(O.U ̸P O.V′ ∣ (S,A) ∖ {O.U}), (30)

Ck.U → C.V ′ ⇐⇒ ∀Oj ∈ C(UCk.U ∣ j ̸P Oj .V′ ∣U−Ck.U ∣ j), (31)

where UCk.U ∣ j ∶= {Or.U ∣Or ∈ Ck, r ≠ j} and U−Ck.U ∣ j ∶= (S,A) ∖UCk.U ∣ j .

Proof. Using Theorem* 12 and the paper’s Definition 2, it is obvious that

C.U → V ′⇔ ∀O ∈ C(O.U ∈ Pa(O.V′))

⇔ ∀O ∈ C(O.U ̸P O.V′ ∣ (S,A) ∖ {O.U}).

From the paper’s Definition 2 we have

Ck.U → C.V ′⇔ ∀Or ∈ Ck∀Oj ∈ C(r = j ∨Or.U ∈ Pa(Oj .V′)).

From the paper’s Theorem 2, we know that G is an OOCG, which guarantees d-separations in G:

∀Or ∈ Ck∀Oj ∈ C(r = j ∨Or.U ∈ Pa(Oj .V′))⇐⇒ ∀Oj ∈ C(UCk.U ∣ j ̸G Oj .V′ ∣U−Ck.U ∣ j).

Using Theorem* 4 then we have

∀Oj ∈ C(UCk.U ∣ j ̸G Oj .V′ ∣U−Ck.U ∣ j)

⇐⇒ ∀Oj ∈ C(UCk.U ∣ j ̸p Oj .V′ ∣U−Ck.U ∣ j).

That is, we have

Ck.U → C.V ′⇔ ∀O ∈ C(UCk.U ∣ j ̸P O.V′ ∣U−Ck.U ∣ j).
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E DETAILS OF IMPLEMENTATION

E.1 STRUCTURE OF OBJECT-ORIENTED CAUSAL DYNAMICS MODELS

In an OOMDP, each attribute (variable) may contain one or several scalars. To handle the het-
erogeneous nature of different attributes, the OOCDM uses an attribute encoder AttrEncC.U ∶
DomC.U → R

de for each field C.U ∈ F = ⋃C∈C F[C]. It maps the attribute O.U of every in-
stance O ∈ C to a de dimensional attribute-encoding vector. All attribute encoders are implemented
by a multi-layer perceptron where we use ReLU as the activation function.

Consider that fC.V is the predictor for the state field C.V ∈ Fs in an OOCDM. To compute
fC.V (Oj .V′∣Oj ;U−Oj ;G) for any Oj ∈ C, we first use the above encoders to encode all observed
variables. Assume that the value of the attribute Oi.U of an object Oi ∈ O is observed to be Oi.u
(the corresponding lower-case letter is used) and the class of Oi is Ck, Then, this attribute is encoded
into the attribute-encoding vector denoted as:

Oi.u ∶= AttrEncCk.U(Oi.u) ∈R
de , U ∈ F[Ck].

We now mask off the encoding vector if the attribute is not a parent variable for Oj .V′ based on the
OOCG G. That is, we define the masked attribute-encoding vector of attribute Oi.U for Oj .V′ as:

[Oi.u]Oj .V′ ∶=

⎧⎪⎪
⎨
⎪⎪⎩

0, if j ≠ i and Ck.U → C.V ′

0, if j = i and C.U → V ′

Oi.u, otherwise.

We concatenate all masked attribute-encoding vectors of Oi, and then we obtain a (∣F[Ck]∣de)-
dimensional vector called the object-encoding vector of Oi, denoted as xi:

xi = Concat ([Oi.u]Oj .V′ for Ck.U ∈ F[Ck]) .

Then, we apply a query encoder, denoted as QEncC.V that maps xj to the query vector q:

q = QEncC.V (xj) ∈R
dk .

For every other object Oi such that j ≠ i (we denote the class of Oi as Ck), we apply a key encoder
KEncCk→C.V and a value encoder VEncCk→C.V that respectively map xi to a key-vector ki and a
value-vector vi:

ki = KEncCk→C.V (xi) ∈R
dk ,

vi = VEncCk→C.V (xi) ∈R
dv .

Then, we perform the key-value attention (Vaswani et al., 2017):

αi =
exp (qTki/

√
dk)

∑r≠i exp (q
Tkr/

√
dk)

,

h ∶= (q,∑
j≠i

αivi) ∈R
dk+dv ,

where h is called the distribution embedding of Oj .V′.

Finally, we use a distribution decoder DecC.V to map h into the distribution of
p̂(Oj .V′∣Pa(Oj .V′)). If DomC.V is continuous, it outputs the mean and standard variance of a
normal distribution:

(µ,σ) =DecC.V (h); p(Oj .V′∣Pa(Oj .V′)) ∼ N (µ,σ).

If DomC.V is discrete (we assume that DomC.V has m elements), then DecC.V outputs the proba-
bility of each choice:

(p1,⋯, pm) =DecC.V (h); p(Oj .V′∣Pa(Oj .V′)) ∼ Categorical(p1,⋯, pm).

The illustration of the structure of such a predictor is presented in Figure 3(c) of the main paper,
where i = 1. So far, we have described the structure of one single predictor fC.V , and other predictors
follow the same design as fC.V . In addition, it is possible to compute p̂(Oj .V′∣Pa(Oj .V′)) for all
Oj ∈ C in parallel. Therefore, the predictor fC.V actually outputs p̂(Oj .V′∣Pa(Oj .V′)) for all
Oj ∈ C once-for-all in our implementation (read our code for more detail).
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E.2 THE ALGORITHM OF OBJECT-ORIENTED CAUSAL DISCOVERY

We define the following notations:

1. st, at, and st+1 are the observed values of S, A, and S′ at step t.
2. Oj .vt+1 to denote the observed value of attribute Oj .V at step t + 1.
3. Ct denotes the set of instances of class C at step t.

Then, the pseudo-code of object-oriented causal discovery is provided in Algorithm 1.

Algorithm 1 Object-oriented causal discovery

Require: The dataset D = {(st,at,at+1)}
T
t=1, predictors {fC.V }C∈C,C.V ∈Fs[C], and ε ≥ 0.

1: Initialize G ←Ð empty OOCG.
2: for C.V in ⋃C∈C Fs[C] do
3: L← ∑

T
t=1∑Oj∈Ct log fC.V (Oj .vt+1∣st,at;G1).

4: for C.U in F[C] do
5: L̃← ∑

T
t=1∑Oj∈Ct log fC.V (Oj .vt+1∣st,at;GC.U /→V ′).

6: CMIC.U→V ′

D ← 1
∑T

t=1 ∣Ct∣(L − L̃).

7: Add C.U → V ′ into G if CMIC.U→V ′

D > ε.
8: for Ck.U in ⋃Ck∈C F[Ck] do
9: L̃← ∑

T
t=1∑Oj∈Ct log fC.V (Oj .vt+1∣st,at;GCk.U /→C.V ′).

10: CMICk.U→C.V ′

D ← 1
∑T

t=1 ∣Ct∣(L − L̃).

11: Add Ck.U → C.V ′ into G if CMICk.U→C.V ′

D > ε.
12: return G

E.3 THE ALGORITHM OF MODEL LEARNING

The model is learned by optimizing the target function defined in the paper’s Eq. 8 J(D), with a
given data-setD. However, it is impractical and expensive to compute J(D) ifD contains too many
samples. Therefore, we use stochastic gradient ascent, in which we repeatedly sample a batch B ⊂ D
and maximize J(B). The pseudo-code of learning our OOCDM is provided in Algorithm 2. In this
algorithm, we consider both online and offline settings, although in our experiments we only adopt
offline learning to best exploit the advantage of generalization.

Algorithm 2 Learning Object-oriented Causal Dynamics Model
Require: The datasetD, number niter of iterations, and number nbatch of batches in each iteration.

1: Initialize predictors fC.V for every C.V ∈ ⋃C∈C Fs[C].
2: for iiter = 1,⋯, niter do
3: Obtain Ĝ using causal discovery (Algorithm 1).
4: for ibatch = 1,⋯, nbatch do
5: Sample batch B ⊂ D.
6: Perform gradient ascent on J (B) defined in the paper’s Eq. 8.
7: Optionally, collect new data into D using the latest policy. ▷ for online learning only
8: return predictors {fC.V }C∈C,C.V ∈Fs[C] and Ĝ.

E.4 PLANNING WITH DYNAMICS MODELS

We combine dynamics models with Model Predictive Control (MPC) (Camacho & Bordons, 1999),
where the Cross-Entropy Method (CEM) (Botev et al., 2013) is used as the planning algorithm to
determine the agents’ actions. Given a planning horizon H , the following process is repeated several
times: 1) First, we sample k action sequences with lengths of H from a distribution pΘ(A1,⋯,AH)
parameterized by Θ; 2) then, we use the dynamics models to perform counterfactual reasoning
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with these action sequences, which generates k H-step trajectories; 3) among these trajectories, we
choose the top-k∗ (we have k∗ <K) trajectories with the highest returns to update the parameter Θ.
In the final iteration, we return the first action in the trajectory that produces the highest return.

Since our work only focuses on the dynamics, we assume that true reward function R(S,A,S′)
of the environment is given so that an extra reward model is not required. This makes sure that
no reward bias is introduced in our comparison between different kinds of dynamics models. We
present the pseudo-code of planning in Algorithm 3.

Algorithm 3 Planning with Cross Entropy Method
Require: The dynamics model p̂, the reward function R, the current state s, the planning horizon

H , the number nplan of iterations, the number k of samples, the number k∗ of elite samples,
and the discount factor λ.

1: Initialize the parameter Θ.
2: for i = 1,⋯, nplan do
3: for j = 1,⋯, k do
4: Sample the j-th H-step action sequences (a(j)1 ,⋯,a

(j)
H ) with pΘ(A1,⋯,AH).

5: s
(j)
1 ← s.

6: for t = 1,⋯,H do
7: Sample s

(j)
t+1 using p̂(S′∣S = s

(j)
t ,A = a

(j)
t ).

8: Compute the reward r
(j)
t ← R(st,at,st+1).

9: Compute the return ri ← ∑
H
t=1 γ

t−1r
(j)
t .

10: if i < nplan then
11: E ← the set of top-k∗ action sequences with the highest return ri (j ∈ {1,⋯, k}).
12: Θ←Maximum-Likelihood-Estimation(E).
13: else
14: j∗ ← argmax

j
ri.

15: return a
(j∗)
1 .

F COMPLEXITY ANALYSIS

In this section, we only consider one OOMDP so that the numbers of the instances of classes are
fixed. The following symbols are used in this section:

1. Ni denotes the number of instances of the i-th class Ci.

2. K denotes the number of classes.

3. N ∶= ∑
K
i=1Ni denotes the number of objects.

4. mi ∶= ∣F[Ci]∣ denotes the number of fields of the i-th class Ci.

5. m ∶= ∑
K
i=1mi denotes the overall number of fields in the OOMDP.

6. n ∶= ∑
K
i=1Nimi denotes the number of variables (attributes) at each step in the OOMDP.

7. k denotes the number of samples used in predicting, causal discovery, or planning.

8. k∗ denotes the number of elite samples used in the Cross-Entropy Method (CEM) for plan-
ning.

9. H denotes the planning horizon in Model Predictive Control (MPE) for planning.

10. l denotes the number of iterations in CEM.

11. Most importantly, O becomes the symbol for an asymptotic boundary rather than an object
(in this section only).

It is obvious that n ≥ N and n ≥ m hold in all OOMDPs. Especially, in large-scale environments,
we have n >> m. The theorems about the complexities of our OOCDM (implemented as described
in Appendix E) are presented and proven in the following.
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Theorem* 15. The time complexity of predicting the next states using our OOCDM is O(nNk).

Proof. Since attribute encoders are shared by encoders, then computing all attribute-encoding vec-
tors costs O(nk). Then, for every state field S ∈ F s

Ci
of every class Ci, the predictor spends:

1. O(nk) in applying masks to and concatenating attribute-encoding vectors into object-
encoding vectors;

2. O(Nk) in deriving key, value, and query vectors from object-encoding vectors;

3. O(Ni(N −Ni)k +Nik) = O(NiNk) in the attention operation;

4. O(Nik) in decoding the distribution embedding.

Therefore, each state field in FCi leads to a cost of O(nk) + O(Nk) + O(NiNk) + O(Nik) =
O(NiNk). By summing up the costs of all state fields, the cost of predicting the next states is

O(nk) +
K

∑
i=1

mc ⋅O(NiNk)

=O(nk) +O (N
K

∑
i=1

mCNik)

=O(nk) +O(nNk)

=O(nNk).

Theorem* 16. The time complexity of causal discovery using our OOCDM is O(nmNk).

Proof. In the process of proving Theorem* 15, we know that each predictor fCi.S costs O(NiNk)
to predict the attribute

First, we consider the local causality expressions. For each class Ci, we have m2
i local causalities.

For each local causality expression localcausCiUV , the predictor fCi.S is used twice for each
sample to estimate CMI localcausCiUV

D . Therefore, the complexity of discovering all local causality
expressions shared by Ci is O(m2

iNiNk)

Then, we consider the global causality expressions. For each class Ci, we have mim global causal-
ities. For each global causality expression like Cj .U → Ci.V

′, the predictor fCi.S is used twice

for each sample to estimate CMI
Cj .U→Ci.V

′

D . Therefore, the complexity of discovering all global
causality expressions shared by Ci is O(mimNiNk)

Combing the above results, all causality expressions (local and global) shared by Ci cost

O(m2
iNiNk) +O(mimNiNk) = O(mimNiNk).

Finally, the time complexity for causal discovery is
K

∑
i=1

O(mimNiNk)) = O (mNk
K

∑
i=1

O(miNi)) = O(nmNk).

Theorem* 17. The time complexity of planning for an action using our OOCDM is O(lk(HnN +
log k∗)).

Proof. In each iteration, we have k action sequences with lengths of H . Therefore, sampling the
action sequences costs O(kH). Then, using models simulating trajectories and computing returns
cost H ⋅O(nNk) = O(HnNk). Identifying the top-k∗ trajectories costs O(k log k∗). Re-estimating
parameters costs O(k ∗H). Therefore, the cost of each iteration is

O(kH) +O(HnNk) +O(k log k∗) +O(Hk∗) = O(k(HnN + log k∗)).

Finally, considering l iterations, the time complexity of planning for an action of our OOCDM is
O(lk(HnN + log k∗))
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OOCDM CDL FCIT+GRU
t.c. of predicting O(nNk) O(n2k) O(n2k)

t.c. of causal discovery O(nmNk) O(n3k) O(n3k log k)
t.c. of planning O(lk(HnN + log k∗)) O(lk(Hn2

+ log k∗)) O(lk(Hn2
+ log k∗))

s.c. of model weights O(m2) O(n2) O(n2)

Table 8: Comparison of computational complexity between our OOCDM and the state-of-the-art
CDMs. Here “t.c.” means “time complexity” and “s.c.” means “space complexity”.

Theorem* 18. The space complexity of model weights of our OOCDM is O(m2).

Proof. The space complexity of attribute encoders is O(m). In each predictor, there exists K key
encoders, K value encoders, one query encoder, and one distribution decoder. Here, the space
complexity of the key-encoder, value-encoder, or query-encoder for each class Ci is O(mi); and the
space complexity of the distribution decoder is O(1).

Finally, the space complexity of the entire OOCDM is

K

∑
i=1

mi

⎛

⎝
2

K

∑
j=1

O(mj) + 2 ⋅O(mi) +O(1)
⎞

⎠
+O(m)

=
K

∑
i=1

miO(m) +O(m)

=O(m2).

In Table 8, we further compare our OOCDM with the state-of-the-art CDMs in terms of the above-
mentioned aspects of computational complexity. These baselines include 1) CDL, which learns the
SCM underlying the environmental dynamics by estimating CMIs like us Wang et al. (2022), and 2)
the FCIT+GRU, which uses FCIT to discover causalities and uses GRUs to fit structural equations
(Ding et al., 2022). We can see that our OOCDM utilizes object-oriented information to share
sub-models (predictors) and causality among objects of each class, leading to a great reduction of
computational complexity, especially the scale of model weights and the time complexity of causal
discovery. It is worth noting that all predictors are implemented in parallel in practice, making our
OOCDM even more computationally efficient if GPUs are used.

G ENVIRONMENTS

G.1 BLOCK

The Block environment is a simple environment designed to validate the effectiveness of causal
discovery for different numbers of environmental variables. It contains two classes: C =
{Block, Total}. The fields of these classes are given by

• Fs[Block] = {Block.S1,Block.S2,Block.S3}

• Fa[Block] = {Block.A},

• Fs[Total] = {Total.S1, T otal.S2, T otal.S3, T otal.T},

• Fa[Total] = ∅.

The transition of each O ∈ Block follows a linear transform:

⎛
⎜
⎝

O.S′1
O.S′2
O.S′3

⎞
⎟
⎠
=

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 −0.3
0.5 1.0 0 0
0 0.25 0.75 1.0

⎤
⎥
⎥
⎥
⎥
⎦

⎛
⎜
⎜
⎝

O.S1

O.S2

O.S3

tanhO.A

⎞
⎟
⎟
⎠

+N (0,0.012I). (32)
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Monster

Mouse

Food

Trap

(a) Mouse

(b) CMS (c) DZB

Figure 5: Illustrations of the (a) Mouse, (b) Collect-Mineral-Shards, and (c) Defeat-Zerglings-
Banelings environments.

The transition of the instance of Total follows that

O.S′j =
1

2
O.Sj +

1

2
max

Oi∈Block
Oi.Sj , j = 1,2,3, (33)

O.T′ = O.T + 1 +N (0,0.012). (34)

The Block environment contains no rewards. That is, R(S,A,S′) ≡ 0.

At the beginning of each episode, We initialize the attributes of each Block object by

(O.S1, O.S2, O.S3)
T ∼ N ((1,0,0)T ,diag (0.25,1,1)) , (35)

and initialize the Total instance by

(O.S1, O.S2, O.S3, O.T)T ∼ N (0,diag (0.012,0.012,0.012,0)) . (36)

We use a random policy (which produces Gaussian actions) to obtain the training data. Therefore,
O.S1 for every O ∈ Block is likely to stay close to 1. Further, this leads to spurious correlations
such as Total.T → Block.S′2.

The ground-truth causal graph of the Block environment is an OOCG, which we visualize in Fig-
ure 6.

G.2 MOUSE

The Mouse Environment aims to validate the performance of dynamics models in a more compli-
cated OOMDP. It contains four classes: C = {Mouse,Food,Monster, Trap}, whose fields are

• Fs[Mouse] = {Mouse.Health,Mouse.Hunger,Mouse.Position},

• Fa[Mouse] = {Mouse.Move},

• Fs[Food] = {Food.Amount,Food.Position},

• Fs[Monster] = {Monster.Noise,Monster.Position},
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Global Causality

Local Causality

Figure 6: The visualization of the ground-truth OOCG (the adjacency matrix of class-level causali-
ties) of the Block environment.

• Fs[Trap] = {Trap.Duration, Trap.Position},

• Fa[Food] = Fa[Monster] = Fa[Trap] = ∅

All objects are located in an 8×8 grid world. That is, the domain of the field Position of every class
is in {0,1,⋯,7}2. Typically, the environment contains only one instance of Mouse and arbitrary
numbers of instances of other classes. We illustrate the Mouse environment in Figure 5(a).

The instance Omouse of Mouse has an attribute Omouse.Health ≤ 10 and Omouse.Hunger ∈ [0,100].
The hunger point Omouse.Hunger is reduced by 1 for each step unless the mouse reaches any
instance of food. For each Ofood ∈ Food that is reached by the mouse (i.e., Ofood.Position =
Omouse.Position), the mouse consumes all amount of the food (Ofood.Amount′ ← 0) and restores
the equal amount of O.Hunger. If the mouse is starving (Omouse.Hunger < 25), it loses one point
of O.Health for each step. However, if the mouse is full (Omouse.Hunger > 75), it restores one
point of O.Health for each step. If the health Omouse.Health drops below 0, the episode terminates
because the mouse is dead.

The mouse has an action attribute Omouse.Move, which can be chosen from 5 choices: North,
South, East, West, and Staying. Except for Staying, the mouse’s position Omouse.Position changes
to the nearby grid based on the chosen direction (unless it reaches the boundary of the world).
However, if the mouse is trapped by a trap Otrap ∈ Trap (i.e., Otrap.Position = Omouse.Position and
Otrap.Duration > 0), then the mouse’s position will not be changed no matter what Omouse.Move
is chosen, and Otrap.Duration is reduced by 1.

The positions of Food instances are fixed after being randomly initialized. The amount
Ofood.Amount of an instance Ofood slowly accrues with time. That is Ofood.Amount′ ←
Ofood.Amount +N (1,0.01) unless it is consumed by the mouse. We note that Ofood.Amount in-
creases slower than that Omouse.Hunger decreases. Therefore, the mouse must constantly navigate
from one food to another to prevent from starving.

An instance Omonster of Monster randomly wanders in the world. That is, its position ran-
domly changes into a nearby grid at each step. If the mouse is reached by a monster (i.e.,
Omonster.Position = Omouse.Position), the mouse directly loses 5 points of Omouse.Health. Each
monster also contains an attribute Omonster.Noise of noise, which is used to create spurious cor-
relations and confuse non-causal dynamics models. The transition of Omonster.Noise is given by
Omonster.Noise′ = Omonster.Noise +N (0,0.01).

The goal of the agent is to make the mouse live as long as possible and stay away from starving.
Therefore, the reward function is given by:

R(S,A,S′) =0.01 ⋅Omouse.Hunger + (Omouse.Health′ −Omouse.Health

+ 0.05 ⋅ (Omouse.Hunger′ −Omouse.Hunger).
(37)

The ground-truth causal graph of the Mouse environment is an OOCG, which we visualize in Fig-
ure 7.
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Figure 7: The visualization of the ground-truth OOCG (the adjacency matrix of class-level causali-
ties) of the Mouse environment.

G.3 STARCRAFT MINI-GAMES

Our experiments consider two StarCraft mini-games as environments. We formulate these environ-
ments as OOMDPs merely based on our intuition. That is, the objects correspond to units in the
StarCraftII game and classes correspond to the type of the unit. The values of the attributes are
observed through the PySC2 (Vinyals et al., 2017) interface.

The true dynamics of these environments are implemented in the StarCraftII engine. Being non-
developers of the game, we do not know the precise dynamics of these environments. For example,
we observe that if a marine chooses NOOP as its action, it automatically attacks a hostile unit (if
any) in its attacking range. However, we have no clue based on what rule it chooses the unit that
it attacks. Therefore, we do not know whether the Definition* 16 of OOMDP is strictly satisfied
(possibly not), not to mention the ground-truth causal graph of these environments.

We believe that 1) humans factorize the world into components (variables) based on independent
relationships, and 2) We discriminate and categorize objects based on structural and dynamical
similarity. Therefore, we believe that the Definition* 16 is roughly satisfied, even though the object-
oriented description is provided by non-experts. Through these StarCraft mini-games, we hope to
show that our OOCDM is applicable to a wide range of RL problems.

G.3.1 COLLECT-MINERAL-SHARDS

The Collect-Mineral-Shards (CMS) environment is a StarCraftII mini-game. The game contains 2
marines and 20 mineral shards. The player (agent) needs to control the movement of the marines to
collect all mineral shards as fast as possible. We illustrate the CMS environment in Figure 5(b).

We decompose the environment by 2 classes C = {Marine,Mineral} such that

• Fa[Marine] = {Marine.Position}, F a
Marine = {Marine.Move},

• Fs[Mineral] = {Mineral.Position,Mineral.Collected}, F a
Mineral = ∅,

where we set

• DomMarine.Position =DomMineral.Position = [−99,99]
2,

• DomMarine.Move = {North,East,South,West,Staying},

• and DomMineral.Collected = {True,False}.

34



Under review as a conference paper at ICLR 2024

We define the reward function as the number of collected mineral shards in each step:

R(S,A,S′) = ∑
O∈Mineral

{
1, O.Collected′ ∧ ¬O.Collected,
0, otherwise. (38)

G.3.2 DEFEAT-ZERGLINGS-BANELINGS

The Defeat-Zerglings-Banelings (CMS) environment is also a StarCraftII mini-game. The game
contains 9 marines (controlled by the player), 6 zerglings (hostile), and 4 banelings (hostile). The
player needs to control the marines to deal as much damage as possible to the hostile zerglings and
banelings. We illustrate the DZB environment in Figure 5(c).

We decompose the environment by 3 classes C = {Marine,Zergling,Baneling} such that

• Fs[C] = {C.Position,C.Health,C.Alive} for every C ∈ C,

• Fa[Marine] = {Marine.Move}.

where we set

• DomC.Position = [−99,99]
2 for every C ∈ C.

• DomC.Health = [−1,999] for every C ∈ C.

• DomC.Alive = {True,False} for every C ∈ C.

• DomMarine.Move = {North,East,South,West,NOOP}.

We define the reward function as the total damage dealt to the hostile zerglings and banelings in
each step:

R(S,A,S′) = ∑
O∈Zergling

(O.Health −O.Health′) + ∑
O∈Zergling

(O.Health −O.Health′). (39)

H ADDITIONAL INFORMATION OF EXPERIMENTS

H.1 EXPERIMENT SETTINGS

In all experiments, the dynamics models are trained using offline data that is collected by a random
policy that produces uniform actions. However, it should be noted that data generated during the
application of the OOCDM can also contribute to further training in practice (Ding et al., 2022).

All models are trained and evaluated using one GPU (NVIDIA TITAN XP). The only exception is
the causal discovery for GRADER, which is implemented by an open-source toolkit called Fast CIT
and computed on 4 CPUs in parallel in our experiments. All experiments were repeated 5 times
using different random seeds; the means and standard variances of the performances are reported.

H.2 IMPLEMENTATION OF BASELINES

CDL We perform causal discovery based on Theorem* 12 and the conditional independence tests
are implemented using Conditional Mutual Information (CMI), which is estimated by the model.
First, each variable in (S,A) is encoded into an encoding vector. Then, in the predictor of each
state variable (attribute), the encoding vectors of parental variables are aggregated by an element-
wise maximum operation. Finally, the aggregated encoding is mapped to the distribution of the
next-state variable by an MLP.

CDL-A Most of the parts are identical to the original CDL. However, the encoding vectors of
parental variables are aggregated by attention operation instead of max-pooling. Each input vari-
able’s encoding vector is transformed into a value and a key vector, and we learn a query vector
for each output variable. Key-value attention is performed to obtain the aggregated encoding of the
output variable (the attention weights of non-parental variables masked to 0).
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GRADER We perform causal discovery based on Theorem* 12 and the conditional independent
tests are implemented using Fast CIT (Chalupka et al., 2018). The model contains an individual
predictor for each state variable (attribute), which aggregates all parents by a 2-directional Gated
Recurrent Unit and then produces the distribution of the next-state variable.

TICSA This algorithm learns a probability matrix M that stores the probability of each causal
edge in the BCG. To infer the next state, the model first samples the causal graph from M . Then,
it masks off non-parental input features and predicts next-state variables using an MLP architecture.
To learn M , the loss function includes a sparsity penalty ∥M∥1, and the causal graphs are sampled
using Gumbel softmax (Jang et al., 2017) during the training phase.

MLP In the MLP model, all input variables are concatenated into a vector. Then, we pass this
vector into a 3-layer multi-layer perceptron and obtain an embedding vector x. Finally, each vari-
able (attribute) is decoded into the posterior distribution of p̂(O.S′∣S,A) by applying an individual
transform on x.

GNN The model architecture follows the design of Structural World Model (Kipf et al., 2020). We
encode objects into object state encodings and object action encodings using individual encoders.
Then, we transform these object encodings via a GNN based on a complete graph, where objects
correspond to the nodes: 1) We compute the edge embeddings with the state encodings of each pair
of objects; 2) we compute the node embedding for each object Oi, using its state encoding, its object
action encoding, and all edge embeddings of in-degrees; 3) we decode the0 node embeddings of Oi

to the distributions of its next-state attributes.

OOFULL The model follows identical structure as described in Appendix E. However, the train-
ing loss only contains LG1 (See the paper’s Eq. 7) and always uses the full OOCG G1 in evaluation.

To make our comparison fair, we do not want these baselines to perform badly in large-scale envi-
ronments simply due to insufficient model capacity. Therefore, the number of hidden units in the
non-object-oriented models (MLP, GRADER, and CDL) are adjusted according to the scale of the
environment, making sure that the capacity of these models is pertinent to the complexity of the
environments. However, our object-orient models (OOFULL and OOC) have a fixed number of
parameters as long as the classes are fixed, no matter how many instances are in the environment.

H.3 OUT-OF-DISTRIBUTION DATA

We construct o.o.d. data by changing the distribution of initial states of episodes, which is easy to
implement in the Block and Mouse environments. However, the CMS and DZB environments are
StarCraftII mini-games provided by the PySC2 platform (Vinyals et al., 2017). The platform offers
limited access to the StarcraftII engine, and thus modifying the initialization process of episodes is
very difficult. Therefore, we did not construct o.o.d. data for CMS and DZB.

Block To obtain the o.o.d. data, we initialize the attributes of each Block object from a new
distribution at the beginning of each episode:

(O.S1, O.S2, O.S3)
T ∼ N ((0.5,0,0)T ,diag (0.25,4,4)) . (40)

Mouse In the i.d. data, the attributes from the field Monster.Noise are initialized from a normal
distribution N (0,1) at the beginning of each episode. To construct the o.o.d. data, we increase
the standard variance to 3. To confuse non-causal models, the initialization of Ofood.Amount is
correlated to Ofood.Position. During training, Ofood.Amount will be assigned with a larger value
if Ofood.Position is in the east of the world; in the o.o.d. data, however, Ofood.Amount will be
assigned with a larger value if Ofood.Position is in the north.

H.4 UNSEEN TASKS

In the Mouse environment, we sample the numbers of food, monsters, and traps respectively from
[3,6], [1,5], and [1,5]. Thereby, we obtain a task pool containing 4 × 5 × 5 = 100 tasks. We
randomly split these tasks into 47 seen tasks and 53 unseen tasks. The dynamics models are trained
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Table 9: The total sizes of model parameters. n denotes the number of variables in the environment,
and m denotes the number of all fields. The model sizes of OOFULL are the same as those of
OOCDM.

n m GRADER CDL CDL-A TICSA GNN MLP OOCDM
Block-2 12 8 2.3MB 319.7KB 348.6KB 184.8KB 66.4KB 99.4KB 401.6KB
Block-5 24 8 6.0MB 1.0MB 1.1MB 582.3KB 100.0KB 224.4KB 401.6KB
Block-10 44 8 15.7MB 3.1MB 3.2MB 2.0MB 147.9KB 538.0KB 401.6KB

Mouse 28 10 15.1 MB 2.7MB 3.0MB 720.4KB 432.3KB 701.4KB 546.6KB
CMS 44 4 23.5MB 4.3MB 4.6MB 1.4MB 250.7KB 1.1MB 140.3KB
DZB 66 10 38.8MB 7.7MB 8.2MB 2.6MB 616.3KB 1.7MB 549.8KB

Values for environments
Symbol Meaning Block Mouse CMS DZB

de The dimension of attribution-encoding vectors 16 16 16 16
dk The dimension of key vectors 32 32 32 32
dv The dimension of value vectors 32 32 32 32
ε The threshold of CMIs in causal discovery 0.3 0.1 0.2 0.03

nplan The number of planning iteration in CEM - 5 5 5
H The planning horizon in MPC - 20 20 20
α The weight of LG1 in the target function 1 1 1 1
β The weight of LĜ in the target function 1 1 1 1
γ The discount of rewards in MPC - 0.95 0.95 0.95
λ The probability of each OOC-expression when sampling Gλ

The number of samples in CEM - 500 500 500
The number of elite samples in CEM - 100 100 100

niter The number of iteration in training 50 200 80 200
nbatch The number of batches in each iteration 1000 1000 1000 1000

Table 10: The main hyper-parameters used in our experiments.

using offline data collected in seen tasks and then transferred into unseen tasks without further
training.

H.5 COMPUTATIONAL COSTS

We provide additional results about the model size (see Table 9), and the computation time of causal
discovery is shown in Table 2. These results show that our OOCDM greatly reduces the model
complexity in large-scale environments. We stress that these results are for reference only, as they
are affected by many factors, including the implementation details, software (we use Python and
PyTorch here), and computation devices. We are also aware that some of the comparison made here
is not perfectly fair, as these CDMs perform causal discovery using different devices. However, Our
approach shows the advantages of several orders of magnitude compared to GRADER, reducing
the computation time from multiple hours to several seconds. Such a huge gap in these results
cannot be caused solely by the differences in devices. Combining the results in the paper’s Table 1,
we conclude that our OOCDM uses relatively fewer parameters and the least computation time to
discover the most accurate causal graphs.

H.6 LEARNED OOCGS OF STARCRAFTII MINI-GAMES

Since the ground-truth OOCG of the CMS and DZB environments are not known, we here present
the OOCGs learned by our causal discovery algorithm in Figure 8. The learned OOCGs for CMS
are identical for all seeds. However, The learned OOCGs for DZB are slightly different between
seeds, and thus the OOCG of the seed that produces the highest likelihood is presented.

H.7 HYPER-PARAMETERS

Main hyper-parameters are listed in Table 10, and more details are contained in our code.
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Figure 8: The visualization of the discovered OOCGs (the adjacency matrix of class-level causali-
ties) of the CMS and DZB environments.

I HANDLING ASYMMETRIC ENVIRONMENTS WITH OOCDMS

I.1 ENSURING THE RESULT AND CAUSATION SYMMETRY OF OOMDPS

Result symmetry (Eq. 2) and causation symmetry (Eq. 3) may be too strong to hold true in some
cases. In an asymmetric environment (where one of the symmetries does not hold), the ground-truth
causal graph may not be an OOCG, and some objects might possess their unique causal connections
and dynamics, which may greatly compromise the performance of OOCDMs that strictly comply
with these symmetries.

However, the dynamics cannot be modeled symmetrically typically because the attributes of objects
provide insufficient information to do so. The following theorem indicates that both result symmetry
and causation symmetry can be guaranteed by adding additional state attributes for the objects.
Theorem* 19. Assume M is an OOMDP where the classes are {C1,⋯,CK}, where the result
symmetry (Eq. 2) and causation symmetry (Eq. 2) may be violated. There always exist an extended
OOMDP M̃ such that the following statements hold (∗̃ denotes the corresponding item in M̃):

1. Fs[Ck] ⊆ Fs[C̃k] and Fa[Ck] = Fa[C̃k] for k = 1,⋯,K.
2. There exist Φ that maps (S̃, Ã) into (S,A) and Ψ that maps S̃′ into S′.
3. M̃ mirrors the dynamics ofM. In other words, p̃(S̃′∣S̃, Ã) = p(Ψ(S̃′)∣Φ(S̃, Ã)).
4. Result symmetry and causation symmetry both hold in M̃.

Proof. Let Nk denote the number of instances of Ck. Then, we defineFs[C̃k] = Fs[Ck]∪{Ck.Id},
where DomCk.Id = {1,2,⋯,Nk}. The distribution of the start state in M̃ ensures that each instance
Õ has a unique Õ.Id among all instances of C̃k.

We define ϕ(k, c) as the function that finds the index i ∈ {1,2,⋯,N} such that Õϕ(k,c) is an instance
of C̃k and Õϕ(k,c).Id = c. In other words, ϕ(k, c) outputs the overall index of the c-th instance of C̃k

in M̃. Meanwhile, we use RemoveId(⋅) to remove all variables like Õ.Id in the given variables.

InM, we assume Oi is the ci-th instance of class Cki . Then we may define Φ and Ψ as:

(S,A) = Φ(S̃, Ã) ∶= (RemoveId(Õϕ(k1,c1)),⋯,RemoveId(Õϕ(kN ,cN )))

S′ = Ψ(S̃′) ∶= (RemoveId(Õϕ(k1,c1).S
′),⋯,RemoveId(Õϕ(kN ,cN ).S

′))
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Then we directly define the dynamics of M̃ by

Õi.Id′ ≡ Õi.Id, i = 1,⋯,N.

p̃ (RemoveId(S̃′)∣S̃, Ã) ∶= p(Ψ(S̃′)∣Φ(S̃, Ã)) ,

Then we will have p̃(S̃′∣S̃, Ã) ∶= p(Ψ(S̃′)∣Φ(S̃, Ã)).

Therefore, assuming Õi ∈ C̃k, we have

p̃(Õi.S
′∣S̃, Ã) = p̃C̃k

(Õi.S
′∣S̃, Ã) ∶= p (Oϕ(k,Õ.Id).S

′∣Φ(S̃, Ã)) .

Therefore, M̃ satisfies the result symmetry.

Moreover, it is easy to prove that M̃ satisfies the causation symmetry. Assuming Õx, Õy ∈ C̃l, swap-
ping their attributes (which include Õx.Id and Õx.Id) does not affect ϕ(l, c) for any c ∈ {1,⋯,Nl}.
Therefore, it does not affect the result of Φ(S̃, Ã) and Ψ(S̃). Eventually, swapping the attributes of
Õx and Õy ∈ Cl has no influence on p̃(Õi.S

′∣S̃, Ã).

The proof provides an easy way to ensure the result and causation symmetries – the OOMDP can
simply include an identity attribute O.Id which gives the unique index of the object among all
instances of its class. This is always plausible since no additional feature must be observed. Mean-
while, these identity attributes are fixed throughout an episode, and thus we do not need to learn
their predictors in the implementation of OOCDM.

I.2 OOCDM FOR ASYMMETRIC ENVIRONMENTS

Appendix I.1 introduces a way to ensure the result and causation symmetries by adding additional
attributes about the identity of objects. To extend OOCDM to asymmetric environments, we imple-
ment built-in identity attributes by slightly augmenting predictors in Appendix E.1. The augmented
predictors are able to handle the asymmetric dynamics without explicitly modifying the representa-
tion of the OOMDP. The new architecture is illustrated in Figure 9. Each class contains an identity
encoder IdEncCk

that maps the indices of instances to identity-encoding vectors, which are inte-
grated into the object-encoding vectors. Assuming Oi is the c-th instance of Ck, then

xi = Concat ([Oi.u]Oj .V′ for Ck.U ∈ F[Ck]; IdEncCk
(c)) .

The other parts are the same as the architecture in Appendix I.1. Since the identity attributes are used
implicitly, we do not consider them into causal discovery. Therefore, in asymmetric environments,
object-oriented causal discovery will identify the minimal OOCG that represents the transition dy-
namics, instead of the ground-truth causal graph.

However, by masking the identity-encoding vectors and by computing CMIs, we may also identify
the causal descendants of the identity attributes. Theoretically, the ground-truth causal graph of the
original OOMDP can be obtained by the following procedure:
1. Identify the class-level causal descendants of identity attributes using class-level CMIs.
2. For every state field Ck.V , if there is Cl such that Cl.Id → Ck.V

′, examine the parents of
Oj .V′ within class Cl using non-object-oriented CMIs, i.e. the CDL method. Otherwise, if
Cl.Id /→ Ck.V

′, examine the parents of Oj .V′ within class Cl using object-oriented CMIs.

I.3 THE EXPERIMENT ON THE ASYMMETRIC BLOCK ENVIRONMENT

We performed an additional experiment to test the performance of OOCDM using the modified
predictors in Appendix I.2. We designed the AsymBlock Environment with similar dynamics to the
Block environment, yet result and causation symmetry are violated in AsymBlock. In AsymBlockk,
there will be k instances of Block and also k instances of Total. For the c-th instance of Total, we
have

Oc.S′j =
1

2
Oc.Sj +

1

2
max

Oi∈Block,i≤c
Oi.Sj , j = 1,2,3; c = 1,⋯, k.

The results of prediction accuracy and the computation time of causal discovery are shown in Ta-
ble 11. In particular, we use the “-asym” suffix for OOFULL and OOCDM to signify that the
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Figure 9: The illustration of fC1.V (O1.V′∣S,A;G) with built-in identity attributes. Ni denotes the
number of instance in Ci for i = 1,⋯,K.

Table 11: The average instance log-likelihoods and causal discovery times (in seconds) on the
AsymBlock environment, where the numbers of Block and Total are both 5. The “-asym” suffix
for OOFULL and OOCDM means that the predictors are modified according to Appendix I.2 to
handle the asymmetric dynamics. We do not show the standard variances for obviously over-fitting
results (log-likelihoods less than −100.0, highlighted in brown).

GRADER CDL CDL-A TICSA GNN
AILL train 22.6±1.3 16.4±1.4 22.0±0.7 20.8±0.7 16.1±0.41
AILL i.d. 14.7±1.7 −7.9±12.2 −586.8 16.7±2.8 15.3±0.42

AILL o.o.d. −25.6±12.4 −130.1 −4.2e4 −25.1±34.5 −165.5
causal discovery time 4789.6±177.4 19.1±5.7 19.1±2.8 - -

MLP OOFULL OOCDM OOFULL-asym OOCDM-asym
AILL train 10.8±1.5 18.7±0.3 16.4±2.5 21.8±1.0 22.0±1.8
AILL i.d. 2.6±5.8 15.7±0.5 15.2±2.4 2.2±1.0 21.9±1.7

AILL o.o.d. −170.1 −14.2±23.9 −34.0±18.0 −700.6 8.3±8.5
causal discovery time - - 2.1±0.1 - 2.3±0.0

predictors are modified according to Appendix I.2 to handle the asymmetric dynamics. According
to these results, the built-in identity attributes allow OOCDM-asym and OOFULL-asym to infer
the unique dynamics of each object, leading to significant improvement against the symmetric ver-
sion. Since AsymBlock does not satisfy the result and causation symmetry, the ground-truth causal
graph is not an OOCG. Therefore, we do not compare the accuracy of causal graphs. However,
we observe that the OOCDM with modified predictors successfully identified the minimal OOCG
that represents the dynamics. As a result, OOCDM-asym shows better generalization ability than
OOFULL-asym. These results demonstrate that through simple modification OOCDM-asym may
handle environments where result and causation symmetries do not strictly hold. We also notice that
the modification does not lead to a significant increase in the computation costs of causal discovery.

J WEAKNESSES AND FUTURE WORKS

A weakness of this work is the requirement of domain knowledge to formulate environments as
OOMDPs. Although using objects and classes to describe the world is natural, intuitive formulation
may violate result symmetry and causation symmetry. As mentioned in Section 2.2, many studies
have investigated the learning of object-centric representation. However, extracting OOP-style rep-
resentation (i.e. involving multiple classes) remains an open problem, especially when Eq. 3 needs
to be satisfied. Therefore, future work will investigate how to extract properly-categorized objects
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from raw observations. Meanwhile, more effective methods to release result and causation symme-
tries should be further explored, where modeling relational interactions from raw factorization may
be a potential direction.

Another weakness of this work is that FMDP imposes strong constraints that may not hold in more
complicated tasks involving confounders, partial observability, or non-Markovian dynamics. Ad-
dressing these challenges in an object-oriented framework is important to extend the applicability
of our approach. Therefore, we propose to explore these directions using more rigorous tools of
causality in the future.

In addition, we expect to explore more sophisticated object-oriented representations in the future.
Class inheritance may be a promising direction. For example, fields, models, and causality of some
classes (e.g., “Dog” and “Cat”) can be derived from those of a base class (e.g., “Animal”). Such
class inheritance could provide considerable generalization opportunities for object-oriented envi-
ronments, leading to class inheritance and model inheritance.
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