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ABSTRACT

Large-batch training is an important direction for distributed machine learning,
which can improve the utilization of large-scale clusters and therefore acceler-
ate the training process. However, recent work illustrates that large-batch train-
ing is prone to converge to sharp minima and cause a huge generalization gap.
Sharpness-Aware Minimization (SAM) tries to narrow the generalization gap by
seeking parameters that lie in a flat region. However, it requires two sequential
gradient calculations that doubles the computational overhead. In this paper, we
propose a novel algorithm LookSAM to significantly reduce its additional train-
ing cost. We further propose a layer-wise modification for adapting LookSAM to
the large-batch training setting (Look-LayerSAM). Equipped with our enhanced
training algorithm, we are the first to successfully scale up the batch size when
training Vision Transformers (ViTs). With a 64k batch size, we are able to train
ViTs from scratch within an hour while maintaining competitive performance.

1 INTRODUCTION

Data parallelism is one of the most commonly used techniques when training large-scale Deep Neu-
ral Network (DNN) models on distributed systems. As the number of processors increases, the
batch size of the stochastic optimizers (such as SGD or Adam) enlarges accordingly, leading to
large-batch training. Due to the reduced variance in each update, Keskar et al. (2016) reported that
large-batch training often converges to sharp local minima, which hurts the generalization perfor-
mance of the resulting DNN models. Methods have been proposed to tackle this problem in the past
few years, such as strong data augmentation used in (Kumar et al., 2021; Ying et al., 2018) and a set
of new layer-wise adaptive optimizers proposed in You et al. (2017; 2019). However, most of the
algorithmic improvements have been made on first order methods such as SGD and Adam.

Recently, Foret et al. (2020) proposed an algorithm named Sharpness Aware Minimization (SAM),
which explicitly penalizes the sharp minima and biases the convergence to a flat region. Further,
Chen et al. (2021) showed that SAM optimizer can improve the validation accuracy of Vision Trans-
former models on ImageNet-1k by a significant amount (+5.3% when training from scratch). De-
spite being able to escape from sharp regions, SAM has not been applied to large-batch training. The
main challenge is that the update rule of SAM involves two sequential (non-parallelizable) gradient
computations at each step, which will double the training time. Furthermore, although plenty of
works studying large-batch training on ResNet models (Goyal et al., 2017; Akiba et al., 2017; Jia
et al., 2018), to the best of our knowledge none of previous works conduct on ViTs.

In this paper, we aim to develop an efficient version of SAM optimizer that can be applied in the
large-batch training setting. In particular, our contributions can be summarized in three folds.

• We develop a novel algorithm, called LookSAM, to speed up the training of SAM. Instead of com-
puting the inner gradient ascent at every step, the proposed LookSAM computes it periodically
and reuses the direction that leads to flat regions. The empirical results illustrate that LookSAM
achieves similar accuracy gains to SAM while enjoying comparable computational complexity
with first-order optimizers such as SGD or Adam.
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• Inspired by the successes of layer-wise scaling proposed in large-batch training (You et al., 2017;
2019), we develop an algorithm to scale up the batch size of LookSAM by adopting layer-wise
scaling rule for weight perturbation (Look-LayerSAM). The proposed Look-LayerSAM can scale
up the batch size to 64k, which is a new record for ViT training and is 16× compared with previous
training settings.

• Our proposed Look-LayerSAM can achieve ∼ 8× speedup over the training settings in Dosovit-
skiy et al. (2020) with a 4k batch size, and we can finish the ViT-B-16 training in 0.7 hour. To the
best of our knowledge, this is a new speed record for ViT training.

2 BACKGROUND AND RELATED WORK

In this section, we will describe recent developments on large batch training, with a review of related
work on handling the sharp local minima problem.

2.1 LARGE-BATCH TRAINING

Large-batch training is an important direction for distributed machine learning, which can improve
the utilization of large-scale clusters and accelerate the training process. However, training with a
large batch size incurs additional challenges (Keskar et al., 2016; Hoffer et al., 2017). Keskar et al.
illustrates that large-batch training is prone to converge to sharp local minima and cause a huge
generalization gap. Traditional methods try to carefully tune the hyper-parameters to narrow the
generalization gap, such as learning rate, momentum, and label smoothing (Goyal et al., 2017; Li,
2017; You et al., 2018; Shallue et al., 2018). Goyal et al. propose warmup to better tune the learning
rate for training, which tries to increase the learning rate from a small value at the beginning stage
and then start to decrease after increased to the target value. Leveraging the warmup training strat-
egy, Goyal et al. can scale up the batch size to 8,192 for ResNet-50 (He et al., 2016) on ImageNet-1k
(Deng et al., 2009). However, these heuristic approaches cannot be regarded as a principle solution
for large-batch training (Shallue et al., 2018).

Recently, to avoid these hand-tuned methods, adaptive learning rate on large-batch training has
gained enormous attention from researchers (Reddi et al., 2018; 2019; Zhang et al., 2019). Many
recent works attempt to use adaptive learning rate to scale the batch size for ResNet-50 on ImageNet
(Martens & Grosse, 2015; Iandola et al., 2016; Akiba et al., 2017; Smith et al., 2017; Devarakonda
et al., 2017; Codreanu et al., 2017; You et al., 2018; Jia et al., 2018; Osawa et al., 2018; You et al.,
2019; Yamazaki et al., 2019). More specially, You et al. proposed layer-wise adaptive learning rate
algorithm LARS (You et al., 2017) to scale the batch size to 32k for ResNet-50. Based on LARS
optimizer, Ying et al. can finish the ResNet-50 training in 2.2 minutes through TPU v3 Pod (Ying
et al., 2018). Liu et al. use adversarial learning to further scale the batch size to 96k. In addition, You
et al. (2019) propose the LAMB optimizer to scale up the batch size when training BERT, resulting
in a 76 minutes training time.

2.2 SHARP LOCAL MINIMA

Sharp local minima would largely influence the generalization performance of deep networks (Smith
& Le, 2017; Kwon et al., 2021; Dziugaite & Roy, 2017; Chaudhari et al., 2019; Izmailov et al., 2018;
Jin et al., 2018). Recently, many studies have attempted to explore the studies of sharp local minima,
thus to address the optimization problem (Yi et al., 2019; Tsuzuku et al., 2020; Dinh et al., 2017; Li
et al., 2017; Chaudhari et al., 2019; Kwon et al., 2021; He et al., 2019; Foret et al., 2020). For exam-
ple, Jastrzebski et al. state that three factors - learning rate, batch size and gradient covariance, can
influence the minima found by SGD. Besides, Chaudhari et al. propose a local-entropy-based objec-
tive function that favors flat regions during training, to avoid approaching the sharp valleys and bad
generalization. He et al. observe the loss surfaces and introduce the concept of asymmetric valleys
to derive a deeper understanding of flat and sharp minima. By the discovery of Fisher Information
Matrix (FIM) as an implicit regularizer of SGD, Jastrzebski et al. try to explicitly penalize the trace
of the FIM to solve the problem of sharp minima. Wen et al. introduce the SmoothOut framework
to smooth out sharp minima and thereby improve generalization. More recently, Sharpness-Aware
Minimization (SAM) (Foret et al., 2020) introduce a novel procedure that can simultaneously min-
imize loss value and loss sharpness to narrow the generalization gap. It presents rigorous empirical
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results over a variety of benchmark experiments and achieves state-of-the-art performance. The
main focus of this paper is on improving the efficiency and scalability of SAM.

3 PROPOSED METHOD

In this section, we will first give an overview of the SAM optimizer and discuss the computational
overhead introduced by SAM. The proposed algorithms, including LookSAM and Layer-wise Look-
SAM will then be introduced in full details.

3.1 OVERVIEW OF SAM

Let S = {(xi, yi)}ni=1 be the training dataset, where each sample (xi, yi) follows the distribution
D. Let f(x;w) be the neural network model with trainable parameter w ∈ Rp. The loss function
corresponding to an input xi is given by l(f(xi;w), yi) ∈ R+, shortened to l(xi) for convenience.
The empirical training loss can be defined as LS = 1

n

∑n
i=1 l(f(xi;w), yi). In the SAM algo-

rithm (Foret et al., 2020), we need to find the parameters whose neighbors within the `p ball have
low training loss LS(w) through the following modified objective function:

LSAMS (w) = max
‖ε‖p≤ρ

LS(w + ε(w)), (1)

where p ≥ 0 and ρ is the radius of lp ball. As calculating the optimal solution of inner maximization
is infeasible, SAM uses one-step gradient ascent to approximate it:

ε̂(w) = ρ∇wLS(w)/‖∇wLS(w)‖ ≈ argmax
‖ε‖p≤ρ

LS(w + ε). (2)

Finally, SAM computes the gradient with respect to perturbed model w + ε̂ for the update:

∇wLSAMS (w) ≈ ∇wLS(w)|w+ε̂. (3)

However, they need to calculate two sequential gradients at each step based on Equation 3, which
will double the computational cost for each update.

3.2 LOOKSAM

The main drawback of SAM lies in its computational overhead. The update rule (Eq 3)
demonstrates that each iteration of SAM needs two sequential gradient computations, one
for obtaining ε̂ and another for computing the gradient descent update (see Figure 3).
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Figure 1: Accuracy of SAM-5, SAM and
vanilla ViT on ImageNet-1k. SAM-5 in-
dicates the method that calculating SAM
gradients every 5 steps.

This will double the computational complexity com-
pared to SGD or Adam optimizers. Further, these two
gradient evaluations are not parallelizable, which will be
a bottleneck in large-batch training. This is also one of
the main reasons that SAM hasn’t been applied in large-
batch training.

However, recent work has demonstrated that SAM yields
significant accuracy gain when training vision trans-
former models (Chen et al., 2021) (e.g., more than 4%
accuracy improvement when training ImageNet from
scratch), and further, SAM’s ability to escape from sharp
minima is valuable in large-batch training. In particu-
lar, Keskar et al. (2016) showed that the main challenge
in large-batch training is the convergence to sharp local
minima due to insufficient noise in first-order stochastic
updates, and SAM is a natural remedy for this problem
if it can be conducted efficiently. These motivate our
work on improving SAM’s computational efficiency and
applying it to large-batch training.
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Figure 2: Difference of gradients between
every 5 steps for gs, gh, and gv . gv that
leads to a smoother region changes much
slower than gs and gh.

To reduce the computation of the two sequential gra-
dients in SAM, a naive method is to use SAM update
only at every k steps, resulting in 1

k× additional cal-
culation on average. We name this method SAM-k,
where k indicates the frequency of using SAM. Unfor-
tunately, this naive method does not work well. As
shown in Figure 1, we use ViT as the base model
and the experimental results illustrate that the accu-
racy degradation is huge when using SAM-5, although
the efficiency is significantly improved. For exam-
ple, SAM can improve the accuracy from 74.7% to
79.4% for ViT-B-16. However, the accuracy drops
to 75.7% when using SAM-5, which significantly de-
grades the performance of SAM. This motivates us to
explore how to effectively improve the efficiency of
SAM while maintain its high accuracy.

In the following, we propose a novel LookSAM algo-
rithm to address this challenge, where the main idea
is to study how to reuse information to prevent computing SAM’s gradient every time. As shown
in Figure 3, the SAM’s gradient gs = ∇wLS(w)|w+ε̂ targets to a flatter region (the blue arrow)
compared with the SGD gradient (the yellow arrow). The update of SAM can be divided into two
parts: the first part (denoted as gh) is to decrease the loss value, and the second part (denoted as gv)
is to bias the update to a flat region. More specifically, gh is on the direction of the vanilla SGD’s
gradient, which needs to be calculated at each step even without SAM. Therefore, the additional
computational cost of SAM is mainly induced by the second part gv . Given the SAM’s gradient (the
red arrow) and the direction of SGD’s gradient (gh), we can conduct a projection to obtain gv:

gv = ∇wLS(w)|w+ε̂ · sin(θ), (4)

where θ is the angle between the SGD’s gradient and SAM’s gradient. Empirically, we observe that
gv changes much slower than gh and gs. In Figure 2 we plot the change of these three components
between iteration t and iteration t+5 throughout the whole training process of SAM, and the results
indicate that the difference of gv (the green line) shows a much more stable pattern than that of
gh (the orange line) and gs (the blue line). Intuitively, this means the direction pointing to the flat
region won’t change significantly within few iterations.

Therefore, we propose to only calculate the exact SAM’s gradient every k steps and reuse the
projected gradient gv for the intermediate steps. The pseudocode is shown in Algorithm 1.

.

.

"

Figure 3: Visualization of LookSAM.

We calculate the original SGD gradient g = ∇wLB(w)
based on the sample minibatch B at every step. For ev-
ery k steps, we compute SAM’s gradient and meanwhile
getting the projected component gv (Equation 4) that
will be reused for the subsequent steps. At the follow-
ing k steps, we only calculate the SGD gradient, armed
with projected component to get the approximated SAM
gradient. In other words, we train the model and try
to mimic the SAM procedure, by sufficiently distilling
the information from SAM gradient every k steps. This
contributes to the considerable reduction of computation
cost, coincident with a smooth convergence that could
bias the learning towards a flat region.

To reuse gv in intermediate steps to mimic the SAM’s
update, we add gv to the current gradient g (computed on the clean loss). As the empirical analysis
in Figure 2 suggests that gs and gh are not very stable, we propose a adaptive ratio to combine them.
More specifically, we define ‖g‖

‖gv‖ as the adaptive ratio to scale α. In this way, we can ensure that
the norms of g and gv are at the same scale.
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Algorithm 1 LookSAM
Input: x ∈ Rd, learning rate ηt, update frequency k.
for t← 1 to T do

Sample Minibatch B = {(xi, yi), · · · , (x|B|, y|B|)} from X .
Compute gradient g = ∇wLB(w) on minibatch B.
if t%k = 0 then

Compute ε(w) = ρ · sign(g)
Compute SAM gradient: gs = ∇wLB(w)|w+ε(w)

gv = gs − ‖gs‖ cos(θ) · g
‖g‖ , where cos(θ) = g·gs

‖g||gs‖
else
gs = g + α · ‖g‖‖gv‖ · gv

end if
Update weights: wt+1 = wt − ηt · gs

end for

To demonstrate the reusing procedure, we theoretically derive the change of gv within k steps in the
following way (full derivation is shown in AppendixA.5),

‖gv,t − gv,t+k‖ ≈ ‖
1

2
ρ52

wt
LS(wt)

5wtLS(wt)
‖ 5wt LS(wt)‖

− 1

2
ρ52

wt+k
LS(wt+k)

5wt+k
LS(wt+k)

‖ 5wt+k
LS(wt+k)‖

‖,
(5)

where we ignore the third order terms in Taylor expansion in the derivation. As calculating SAM
gradients leads to a relatively flat part of the region, the second order derivative is very small, from
which we can infer the change of gv component is small compared to the gradient. This supports
our algorithm in reusing gv and re-caculating it only periodically.

3.3 LAYER-WISE LOOKSAM

When scaling up the batch size of SAM or LookSAM in large-batch training, we observe degraded
performance as shown in the experiments (see Table 2). You et al. (2017; 2019) showed that the
training stability with large batch training varies for each layer and applied a layer-wise adaptive
learning rate scaling method to improve AdamW (also known as LAMB) to resolve this issue. We
conjecture this also affects the SAM procedure, which motivates the following development of layer-
wise SAM (LayerSAM) optimizer. As we are trying to introduce the layer-wise scaling into the inner
maximization of SAM, it is different from You et al. (2019) which applied the scaling to the final
update direction of AdamW.

Let Λ denote a diagonal l × l matrix Λ = diag(ξ1, ξ2, ..., ξl), where ξj(j=1,2,...,l) is the layer-wise
adaptive rate and can be calculated by ‖wj‖

‖5wLS(w)j‖ for each layer. We then adopt this scaling into
the inner maximization of SAM as

L̃S(w) = max
‖Λε‖p≤ρ

LS(w + ε). (6)

Here the main idea is to scale each dimension of the perturbation vector according Λ. Similar to
SAM, the weight perturbation in LayerSAM is the solution of the first-order approximation of equa-
tion 6. With the added Λ, the approximate inner solution can be written as

ε̃ = ρ sign(5wLS(w))Λ
| 5w LS(w)|q−1

(‖ 5w LS(w)‖qq)
1
p

, (7)

where 1
p +

1
q = 1. Equation 7 gives us the layer-wise calculation of ε̃ to scale up the batch size when

using LookSAM. Algorithm 3 (in Appendix A.2) provides us the pseudo-code for the full Layer-
SAM. Moreover, in order to combine advantages of both LookSAM and LayerSAM in large batch
training, we further propose Look Layer-wise SAM (Look-LayerSAM) algorithm. The pseudo-
code is given in Algorithm 2. Empirically, we show that Layer-LookSAM significantly outperforms
LookSAM in large-batch training, as will be demonstrated in Section 4.

5



Under review as a conference paper at ICLR 2022

Algorithm 2 Look-LayerSAM
Input: x ∈ Rd, learning rate ηt, update frequency k.
for t← 1 to T do

Sample Minibatch B = {(xi, yi), · · · , (x|B|, y|B|)} from X .
Compute gradient g = ∇wLB(w) on minibatch B.
if t%k = 0 then

Compute ε(w)(i) = ρ ‖w
(i)‖

‖g(i)‖ · sign(g)
Compute SAM gradient: gs = ∇wLB(w)|w+ε(w)

gv = gs − ‖gs‖ cos(θ) · g
‖g‖ , where cos(θ) = g·gs

‖g‖‖gs‖
else
gs = g + α · ‖g‖‖gv‖ · gv

end if
Update weights: w(i)

t+1 = w
(i)
t − η

(i)
t · g

(i)
s

end for

4 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our proposed LookSAM, LayerSAM and Look-
LayerSAM. First, we empirically illustrate that LookSAM can obtain similar accuracy to vanilla
SAM while accelerate the training process. Next, we show that LayerSAM has better generalization
for large-batch training on ImageNet-1k compared with vanilla SAM. In addition, we observe Look-
LayerSAM can not only scale up to larger batch size but also significantly speed up the training. As
Vision Transformer (ViT) training has become one of the most important application of SAM (Chen
et al., 2021), our experiments will mainly focus on training the ViT model, while we also include
some experiments of ResNet and WideResNet on CIFAR10 and CIFAR100 in Appendix A.3 to
further evaluate the generality of the proposed methods.

4.1 SETUP

Dataset. ImageNet training is the current benchmark for evaluating the performance of large-batch
training. In this paper, we use ImageNet-1k with 1.3M images (Deng et al., 2009) to train the ViT
models.

Models. To explore the scalability of SAM for ViT models (Dosovitskiy et al., 2020), we select the
ViT models with various size to scale up batch size, such as ViT-Base and ViT-Small.

Baselines. Our main baseline is SAM (Foret et al., 2020). To better assess the performance of
LookSAM, we propose the algorithm SAM-k as the baseline for comparison. More specially, SAM-
k can be seen as the method that directly use SAM every k steps.

Implementation Details. We implement our algorithm in JAX (Bradbury et al., 2018) and follow
the original setting from SAM (Foret et al., 2020). To compare the performance of LookSAM with
vanilla SAM, we conduct AdamW (Loshchilov & Hutter, 2017) as the optimizer. Note that the input
resolution is 224, which is the official setting for ViT. To scale up the batch size, we use LAMB (You
et al., 2019) as our base optimizer for large-batch training and compare our approaches with SAM.
We apply learning rate warmup scheme (Goyal et al., 2017) to avoid the divergence due to the large
learning rate, where training starts with a smaller learning rate η and gradually increases to the
large learning rate η for 300 epochs. In addition, to further improve the performance of large-batch
training, we use RandAug (Cubuk et al., 2020) and Mixup (Zhang et al., 2017) to scale the batch
size to 64k. The implementation details can be found in Appendix A.4.

4.2 IMAGENET TRAINING FROM SCRATCH ON VISION TRANSFORMER

Following the original setting of ViT, we firstly train ViT with LookSAM and compare it with
vanilla ViT and SAM-k. The experimental results are given in Table 1. It shows that LookSAM
achieves similar accuracy with vanilla SAM and obtains much better performance than SAM-k.
Specifically, compared with the minimal improvement of SAM-k over vanilla AdamW, LookSAM
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yields considerable improvements, such as the top-1 accuracy improvement from 74.7% to 79.8%
on LookSAM-5, while SAM-5 can only achieve 75.7%. In addition, our proposed LookSAM al-
gorithm can achieve faster training speed and maintain the similar accuracy compared with SAM.
Further, by computing SAM’s update only periodically, our method significantly improve the time
cost over SAM while keeping similar predictive performance. For instance, LookSAM-5 enables a
competitive reduction of training time by 2/3 for ViT-B-16 (from 103.1s to 68.6s) without any loss
in test accuracy (79.8%). Moreover, this advantage is widely reflected in different settings (shown
in Table 1) and thereby our proposed methods can be adopted in a variety of ViT models.

Table 1: Top-1 accuracy and training time in per epoch (accuracy/time) of ViTs trained from scratch
on ImageNet-1k. We use warmup scheme coupled with a cosine scaling rule for 300 epochs. Fol-
lowing the original setting of ViT, we set batch size as 4096.

Model AdamW SAM-5 LookSAM-5 SAM-10 LookSAM-10 SAM
ViT-B-16 74.7/59.7s 75.7/68.6s 79.8/70.5s 75.1/63.7s 78.7/67.1s 79.8/103.1s
ViT-B-32 68.7/21.8s 69.8/24.7s 72.6/26.3s 69.0/23.4s 71.5/24.4s 72.8/38.5s
ViT-S-16 74.9/24.1s 75.5/28.3s 77.6/30.1s 74.9/25.4s 77.1/27.6s 77.6/44.9s
ViT-S-32 68.1/18.2s 68.7/18.5s 68.8/19.8s 68.1/18.5s 68.7/19.5s 68.9/25.7s

4.3 LARGE-BATCH TRAINING FOR VISION TRANSFORMER

To further evaluate the performance of our proposed algorithms for large-batch training, we use
Look-LayerSAM to scale the batch size for ViT training on ImageNet-1k. As shown in Table 2,
based on Look-LayerSAM, we can scale the batch size from 4096 to 32768 while keep the accuracy
above 77%. Note that although vanilla SAM can improve the performance of ViT while scaling
up, the improvement is weakened as batch size increases. For instance, the improvements are 4%,
4%, 3.2%, 2.7% from batch size 4096 to 32768 over LAMB (which is a standard optimizer for
large batch training). In contrast, our proposed Look-LayerSAM can consistently achieve a higher
improvement even if scaling up the batch size to 32768. In particular, the increment on accuracy
are stable from 4096 to 32768: 5.6%, 5.8%, 4.4% and 5.5% over the LAMB optimizer. Moreover,
LookSAM is able to achieve the performance on par with the vanilla SAM, while enjoying similar
computational cost as LAMB. For example, top-1 accuracy of SAM and LookSAM are 78.6% and
78.9%, respectively, when batch size is 4096. We continue to observe that Look-LayerSAM offer
much more considerable benefits on large batch training, including 80.3% accuracy on 4096, as well
as 77.1% on batch size 32768, in which SAM and LookSAM achieve 75.1% and 75.3%.

Table 2: Large-batch training accuracy of ViT-B-16 on ImageNet-1k. We use warmup scheme cou-
pled with linear rule to scale the learning rate for 300 epochs. Look-LayerSAM achieves consistent
higher accuracy than SAM from 4k to 32k.

Algorithm 4k 8k 16k 32k
LAMB 74.6 74.3 74.4 72.4
LAMB + SAM 78.6 78.3 77.6 75.1
LAMB + Look-SAM 78.9 78.4 77.1 75.3
LAMB + Look-LayerSAM 80.3 79.5 78.4 77.1

In addition, related work has shown that data augmentation can improve the performance of large-
batch training. Therefore, we try to further scale the batch size to 64k based on RandAug and Mixup.
The experimental results are shown in Table 3, which illustrates that our proposed Layer-LookSAM
can work together with data augmentation and improve the performance of large-batch training.
For instance, Look-LayerSAM can also achieve 74.9% when applying RandAug and Mixup at 64k.
After using Mixup, the accuracy improves to 75.6%.
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Figure 4: Accuracy-Training Time of different models for LookSAM-k on ImageNet-1k. With the
growth of k value, the throughput is increasing but the accuracy starts to drop. There is a trade-off
between the accuracy and training speed.

Table 3: Accuracy of ViT-B-16 on ImageNet-1k when using RandAug and Mixup

Algorithm RandAug Mixup Optimizer 32k 64k
Vanilla ViT LAMB 72.4 68.1
Look-LayerSAM LAMB 77.1 72.0
Look-LayerSAM X LAMB 79.2 74.9
Look-LayerSAM X X LAMB 79.7 75.6

To further evaluate the performance of LookSAM about accelerating the training of SAM, we an-
alyze their training time when scaling batch size from 4096 to 32768. Note that we use TPU v3
128 chips, TPU v3 256 chips, TPU v3 512 chips and TPU v3 1024 chips to report the speed of
ViT-B-16 on batch size 4096, 8192, 16384 and 32768. Besides, we use warmup schedule coupled
with linear learning rate decay for 300 epochs. The experimental results are shown in Table 4, which
illustrates that LayerSAM will cause about 1.7× training time compared with vanilla ViT. However,
Look-LayerSAM can significantly reduce the training time and achieve 1.5× speed compared with
LayerSAM when k = 5. In particular, training time of ViT-B-16 on ImageNet-1k can be reduced to
0.7 hour.

To sum up, with Look-LayerSAM, we are able to train Vision Transformer in 0.7 hour and achieve
77.1% top-1 accuracy on ImageNet-1k with 32K batch size, outperforming existing optimizers such
as LAMB and SAM.

Table 4: Training Time of ViT-B-16 on ImageNet-1k

Algorithm 4k 8k 16k 32k
LAMB 4.8h 2.4h 1.2h /
LAMB + LayerSAM 8.4h 4.3h 2.2h 1.1h
LAMB + Look-LayerSAM 5.6h 2.8h 1.4h 0.7h

4.4 ACCURACY AND EFFICIENCY TRADEOFF

The reuse frequency k controls the trade-off between the accuracy and speed. In this section, we try
to conduct an analysis on the performance of LookSAM with different values of k. The experimental
results in Figure 4 indicates that LookSAM can achieve the similar accuracy as vanilla SAM when
k ≤ 5. With reuse frequency k getting larger, the accuracy begin to drop while the training speed
is accelerated. When k is larger than 15, we notice that the speed is converged (almost identical to
plain AdamW training). Therefore, in practice we can determine the k value based on the desired
trade-off, and we recommend k = 5 for general applications since it will significantly improve the
efficiency while still achieve almost identical test accuracy as SAM.
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4.5 SENSITIVITY ANALYSIS ABOUT HYPER-PARAMETERS

In this section, we will analyse the sensitivity of our proposed algorithms for hyper-parameters,
including the intensity of perturbation ρ and gradient reuse weight α.

4.5.1 SENSITIVITY ANALYSIS OF α

We study the effect of gradient reuse weight α has on the performance of training ImageNet-1k. As
for batch size, we select 16384 and 32768 to analyze. That is because larger batch size is always
more sensitive to the hyperparameters. The experiments are conducted on ViT-B-16 using Look-
LayerSAM, with LAMB as optimizer. In the experiment, we set ρ as 1.0. We report the validation
accuracy for different α (0.5,0.7,1.0) in Table 5. When α = 0.7, Look-LayerSAM achieves the best
accuracy 78.4% on batch size 16384 and 77.1% on batch size 32768. Further, even if α is not well
tuned, Look-LayerSAM is able to obtain a good performance, including above 77% accuracy on
16384 and approx. 76% on 32768.

Table 5: Sensitivity Analysis of α

Model Method Optimizer Batch Size α = 0.5 α = 0.7 α = 1.0
ViT-B-16 Look-LayerSAM LAMB 16384 77.7 78.4 78.2
ViT-B-16 Look-LayerSAM LAMB 32768 76.5 77.1 75.9

4.5.2 SENSITIVITY ANALYSIS OF ρ

Finally, we also have a sensitivity analysis for different value of ρ, the intensity of perturbation on
Look-LayerSAM algorithm. We evaluate the accuracy of ViT-B-16 on batch size 16384 and 32768.
We set α = 0.7, the best value in our analysis from Section 4.5.1. The experimental results regarding
ρ (0.5,0.8,1.0,1.2) are shown in Table 6. We report when ρ = 1.0, Look-LayerSAM achieves the
highest accuracy on both batch size 16384 (78.4%) and 32768 (77.1%). Additionally, we observe
the overall robustness from the analysis of ρ, which gives us 77% accuracy on 16384 and more than
75% accuracy on 32768 without finetuning.

Table 6: Sensitivity Analysis of ρ

Model Method Optimizer Batch Size ρ = 0.5 ρ = 0.8 ρ = 1.0 ρ = 1.2
ViT-B-16 Look-LayerSAM LAMB 16384 77.0 77.8 78.4 77.9
ViT-B-16 Look-LayerSAM LAMB 32768 75.2 76.4 77.1 76.7

5 CONCLUSION

We propose a novel algorithm LookSAM to reduce the additional computation from SAM and speed
up the training process. To further evaluate the performance in large-batch training, we propose
Look-LayerSAM, which use a layer-wise schedule to scale the weight perturbation of LookSAM.
Finally, we evaluate our proposed algorithms on Vision Transformer. Experimental results illustrate
that we can scale the batch size to 64k and obtain the accuracy above 75%. Further, we can achieve
about 8× speedup over the training settings in Dosovitskiy et al. (2020) with a 4k batch size and
finish the ViT training in 0.7 hour. To the best of our knowledge, this is a new speed record for ViT
training.
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6 ETHICS STATEMENT

We are not aware of any potential ethical issues in our work.

7 REPRODUCIBILITY STATEMENT

We provide detailed experimental setting of all experiments in Section 4 and Appendix to ensure the
reproducibility of this paper. More specially, all the model architecture can be found in Appendix
A.4 (Table 9). As for the hyperparameters of ViTs, we also introduce them in Appendix A.4 (Table
10 and Table 11), which includes the learning rate, optimizer, weight decay, perturbation value ρ
and so on.
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A APPENDIX

A.1 THEORETICAL ANALYSIS OF PROJECTED GRADIENT

For SAM loss function LS(w + ε̂), based on Taylor Expansion, we can obtain:

LS(w + ε̂) ≈ LS(w) + ε̂∇wLS(w) (8)

Therefore, we can rewrite Equation 3 as follows:

∇wLS(w)|w+ε̂ = ∇w+ε̂LS(w + ε̂)

≈ ∇w+ε̂[LS(w) + ε̂∇wLS(w)]

= ∇wLS(w) + ε̂∇2
wLS(w)

(9)

In this section, we will analyse the distance of gv within several steps k, which is given by,

gv = ε̂∇2
wLS(w)− λ0 5w LS(w) (10)

Note that gv is vertical to the SGD gradient on original weight w, which gives us the following
constraint:

(ε̂∇2
wLS(w)− λ0 5w LS(w))5w LS(w) = 0 (11)

We can use Lagrange function to describe and solve this problem. Let’s introduce a new variable λ
and define the Lagrangian L with all the parameters w, λ0 and λ as variable as follows,

L(w, λ0, λ) =ε̂∇2
wLS(w)− λ0 5w LS(w)

+ λ(ε̂∇2
wLS(w)− λ0 5w LS(w))5w LS(w)

(12)

The partial derivative of L with respect to w, λ0 and λ are as follows,

Lw(w, λ0, λ) =
∂ε̂

∂w
52
w LS(w) + ε̂53

w LS(w)− λ0 52
w LS(w)

+ λ(
∂ε̂

∂w
52
w LS(w) + ε̂53

w LS(w)− λ0 52
w LS(w))5w LS(w)

+ λ(ε̂52
w LS(w)− λ0 5w LS(w))52

w LS(w)

(13)

Lλ0
(w, λ0, λ) = −5w LS(w) (14)

Lλ(w, λ0, λ) = (ε̂∇2
wLS(w)− λ0 5w LS(w))5w LS(w) (15)

we omit some high order terms that are close to 0 in the calculation and set all of the partial deriva-
tives equal to 0. This gives,

Lw(w, λ0, λ) ≈
∂ε̂

∂w
52
w LS(w)− λ0 52

w LS(w) = 0

Lλ0
(w, λ0, λ) = −5w LS(w) = 0

Lλ(w, λ0, λ) = (ε̂∇2
wLS(w)− λ0 5w LS(w))5w LS(w) = 0

(16)

Since ∂ε̂
∂w = ρ(

52
wLS(w)

||5wLS(w)|| −
5wLS(w)52

wLS(w)5wLS(w)
||5wLS(w)||3 ) and from Equation 16 we have

∂ε̂
∂w = λ0, then

λ0 = ρ(
52
wLS(w)

|| 5w LS(w)||
− 5wLS(w)52

w LS(w)5w LS(w)

|| 5w LS(w)||3
) (17)

In addition, from Equation 16, we have,

(ε̂∇2
wLS(w)− λ0 5w LS(w))5w LS(w) = 0 (18)
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Then λ0 can be written as:

λ0 = ρ
5wLS(w)52

w LS(w)5w LS(w)

|| 5w LS(w)||3
(19)

With Equation 14 and 19,

ρ(
52
wLS(w)

|| 5w LS(w)||
− 5wLS(w)52

w LS(w)5w LS(w)

|| 5w LS(w)||3
) = ρ

5wLS(w)52
w LS(w)5w LS(w)

|| 5w LS(w)||3

1

2
ρ
52
wLS(w)

|| 5w LS(w)||
= ρ
5wLS(w)52

w LS(w)5w LS(w)

|| 5w LS(w)||3
(20)

Using the relationship in Equation 20, we can write λ0 in this way:

λ0 =
1

2
ρ
52
wLS(w)

|| 5w LS(w)||
(21)

Substituting the value of λ0 back to Equation 12 gives us the maximum of the Lagrangian.

L̃(w, λ0, λ) = ε̂∇2
wLS(w)− λ0 5w LS(w)

= ρ
5wLS(w)

|| 5w LS(w)||
52
w LS(w)− 1

2
ρ
52
wLS(w)

|| 5w LS(w)||
5w LS(w)

(22)

Using this relationship in Equation 22 gives us:

gv = L̃(w, λ0, λ) =
1

2
ρ52

w LS(w)
5wLS(w)

|| 5w LS(w)||
(23)

We can use Equation 23 to derive the distance of gv within k steps,

||gv,t − gv,t+k|| = ||L̃t(wt, λ0, λ)− L̃t+k(wt+k, λ0, λ)||

≈ ||1
2
ρ52

wt
LS(wt)

5wtLS(wt)
|| 5wt LS(wt)||

− 1

2
ρ52

wt+k
LS(wt+k)

5wt+k
LS(wt+k)

|| 5wt+k
LS(wt+k)||

||

(24)

A.2 LAYERSAM

Algorithm 3 Layer-wise SAM (LayerSAM)
Input: x ∈ Rd, learning rate ηt, update frequency k.
for t← 1 to T do

Sample Minibatch B = {(xi, yi), · · · , (x|B|, y|B|)} from X .
Compute gradient g = ∇wLB(w) on minibatch B.

Compute ε(i) = ρ ||w
(i)||

||g(i)|| · sign(g)
Compute gradient approximation for the SAM objective: gs = ∇wLB(w)|w+ε

Update weights: w(i)
t+1 = w

(i)
t − η

(i)
t · g

(i)
s

end for
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A.3 RESNET AND WIDERESNET

In this section, we try to conduct some experiments for training ResNet and WideResNet on CIFAR-
10 and CIFAR-100 to evaluate the performance of our proposed algorithms. The experimental
results are shown in Table 7 and 8. We can find that LookSAM can obtain a better accuracy than
SAM-5 and meanwhile achieve a similar accuracy compared with SAM.

Table 7: Accuracy of different Models on CIFAR10
Model AdamW SAM-5 SAM-10 SAM-20 LookSAM-5 LookSAM-10 LookSAM-20 SAM

WRN-28-10 96.5 97.2 97.0 96.8 97.3 97.1 97.0 97.3
ResNet-18 95.6 96.2 96.0 96.0 96.2 96.1 96.1 96.4
ResNet-50 95.7 96.6 96.5 96.2 96.8 96.6 96.4 96.9

Table 8: Accuracy of Different Models on CIFAR100
Model AdamW SAM-5 SAM-10 SAM-20 LookSAM-5 LookSAM-10 LookSAM-20 SAM

WRN-28-10 81.7 83.8 83.3 82.9 84.4 84.3 83.6 84.4
ResNet-18 78.9 80.4 80.0 79.7 80.7 80.4 80.0 80.7
ResNet-50 81.4 82.5 82.3 82.1 83.3 82.8 82.4 83.3

A.4 PARAMETER SETTINGS

In this section, we will introduce the architectures of ViTs in this paper (Table 9). Next, we provide
the hyperparameters in Table 10 for ViT training, including learning rate, warmup, optimizer, gradi-
ent clipping, epoch, etc. In addition, Table 11 gives us the parameter settings of ViT for large-batch
training in this paper.

Table 9: Architectures of ViTs

Model Params Patch Resolution Sequence Length Hidden Size Heads Layers

ViT-B-16 87M 16× 16 196 768 12 12
ViT-B-32 88M 32× 32 49 768 12 12
ViT-S-16 22M 16× 16 196 384 6 12
ViT-S-32 23M 32× 32 49 384 6 12

15



Under review as a conference paper at ICLR 2022

Table 10: Parameter Settings of ViT for Vanilla Training

Model Input
Resolution

Batch
Size Epoch Warmup

Steps
Peak
LR

LR
Decay Optimizer ρ

Weight
Decay

Gradient
Clipping

ViT-B-16 224 4096 200 10000 3e-3 cosine AdamW / 0.3 1.0
ViT-B-32 224 4096 200 10000 3e-3 cosine AdamW / 0.3 1.0
ViT-S-16 224 4096 200 10000 3e-3 cosine AdamW / 0.3 1.0
ViT-S-32 224 4096 200 10000 3e-3 cosine AdamW / 0.3 1.0

ViT-B-16 + SAM 224 4096 200 10000 3e-3 cosine AdamW 0.18 0.3 1.0
ViT-B-32 + SAM 224 4096 200 10000 3e-3 cosine AdamW 0.15 0.3 1.0
ViT-S-16 + SAM 224 4096 200 10000 3e-3 cosine AdamW 0.1 0.3 1.0
ViT-S-32 + SAM 224 4096 200 10000 3e-3 cosine AdamW 0.05 0.3 1.0

ViT-B-16 + LookSAM 224 4096 200 10000 3e-3 cosine AdamW 0.18 0.3 1.0
ViT-B-32 + LookSAM 224 4096 200 10000 3e-3 cosine AdamW 0.15 0.3 1.0
ViT-S-16 + LookSAM 224 4096 200 10000 3e-3 cosine AdamW 0.1 0.3 1.0
ViT-S-32 + LookSAM 224 4096 200 10000 3e-3 cosine AdamW 0.05 0.3 1.0

Table 11: Parameter Settings of ViT for Large-Batch Training

Model Batch
Size Epoch Warmup

Steps
Peak
LR

LR
Decay Optimizer ρ α

Weight
Decay

Gradient
Clipping

ViT-B-16 + SAM 4096 200 10000 1e-2 linear LAMB 0.18 / 0.1 1.0
ViT-B-16 + SAM 8192 200 10000 1.7e-2 linear LAMB 0.18 / 0.1 1.0
ViT-B-16 + SAM 16834 200 7000 1.8e-2 linear LAMB 0.18 / 0.1 1.0
ViT-B-16 + SAM 32768 200 6000 1.8e-2 linear LAMB 0.18 / 0.1 1.0

ViT-B-16 + LayerSAM 4096 200 10000 1e-2 linear LAMB 1.0 / 0.1 1.0
ViT-B-16 + LayerSAM 8192 200 10000 1.7e-2 linear LAMB 1.0 / 0.1 1.0
ViT-B-16 + LayerSAM 16384 200 7000 1.8e-2 linear LAMB 1.0 / 0.1 1.0
ViT-B-16 + LayerSAM 32768 200 6000 1.8e-2 linear LAMB 1.0 / 0.1 1.0
ViT-B-16 + LayerSAM 65536 200 3500 2e-2 linear LAMB 1.0 / 0.2 1.0

ViT-B-16 + Look-LayerSAM 4096 200 10000 1e-2 linear LAMB 1.0 0.7 0.1 1.0
ViT-B-16 + Look-LayerSAM 8192 200 10000 1.7e-2 linear LAMB 1.0 0.7 0.1 1.0
ViT-B-16 + Look-LayerSAM 16384 200 7000 1.8e-2 linear LAMB 1.0 0.7 0.1 1.0
ViT-B-16 + Look-LayerSAM 32768 200 6000 1.8e-2 linear LAMB 1.0 0.7 0.1 1.0
ViT-B-16 + Look-LayerSAM 65536 200 3500 2e-2 linear LAMB 1.0 0.7 0.2 1.0

A.5 GENERALIZATION BOUND

We firstly introduce Theorem 1 regarding generalization bound based on sharpness of LookSAM
and then give a proof for it. Note that a similar bound was also established in the original SAM
paper Foret et al. (2020).

Theorem 1. With probability 1 - δ over the choice the training set S ∼ D, we have

LD(w) ≤ max
||ε′||p≤ρ′

LS(w + ε′)

+

√√√√k log(1 +
||w||22
ρ′2 (1 +

√
log(n)
k )2) + 4 log n

δ + Õ(1)

n− 1

(25)

where n = |S| and ρ′2 = ρ2 + ρ20.

Proof. We start by illustrating the PAC-Bayesian Generation Bound theorem, which gives a bound
on the generalization error of any posterior distribution Q on parameters that can be achieved using
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a selected prior distribution P over parameters training with data set S. Let KL(Q||P) denote the
KL divergence between two Bernoulli distributions P and Q, we have:

Ew∼L[LD(w)] ≤ Ew∼L[LS(w)] +

√
KL(Q||P) + log n

δ

2(n− 1)
(26)

In order to accelerate the training process, LookSAM calculate the SAM gradient only at every k step
and try to reuse the projected components to imitate the weight perturbations introduced from SAM
procedure in the subsequent steps. We use ε0 to indicate the difference between our imitated weight
perturbation, ε′, from LookSAM and the real weight perturbation, ε, from SAM. As the optimiza-
tion is in fact regarding the distribution of ε′, we assume that LD(w) ≤ Eε′i∼N (0,ρ′)[LD(w + ε′)],
which indicates adding Gaussian perturbation should not decrease the test error(Foret et al., 2020).
Following Foret et al., the generalization bound can be written as follows:

Eε′i∼N (0,σ′)[LD(w + ε′)] ≤ Eε′i∼N (0,σ′)[LS(w + ε′)]

+

√
1
4k log(1 +

||w||22
kσ′2 ) + 1

4 + log nδ + 2log(6n+ 3k)

n− 1
,

(27)

where ε′i = εi + ε0i

In Equation (27), we assume that εi and ε0i are independent normal variables with mean 0,
and corresponding variance σ and σ0 respectively. Let {ε′i}, where ε′i = εi + ε0i , be the independent
normal variable with mean 0 and variance σ′2 = σ2+σ2

0 . In particular, at the time when LookSAM
can perfectly imitate the SAM procedure by reusing the projected gradient, σ2

0 becomes zero and
σ′2 equals to σ2. As ||ε′||22 has chi-square distribution in this case and based on concentration
inequality from Lemma 1 in (Laurent & Massart, 2000), we obtain the following for any positive x:

P (||ε+ ε0||22 − k(σ2 + σ2
0) ≥ 2(σ2 + σ2

0)
√
kx+ 2x(σ2 + σ2

0)) ≤ exp(−x) (28)

Let x = ln
√
n, then we have that

P (||ε+ ε0||22 ≥ (σ2 + σ2
0)(k + 2

√
k ln
√
n+ 2 ln

√
n)) ≤ 1√

n
(29)

With probability of (1− 1√
n
), we have,

||ε′||22 = ||ε+ε0||22 ≤ (σ2+σ2
0)(k+2

√
k ln
√
n+2 ln

√
n) ≤ (σ2+σ2

0)k(1+

√
lnn

k
)2 ≤ ρ2+ρ20,

(30)

where ρ20 = σ2
0k(1 +

√
lnn
k )2.

After substituting the value for σ′ back to Equation (27), we can generate the following
bounds:

LD(w) ≤ (1− 1√
n
) max
||ε′||p≤ρ′

LS(w + ε′) +
1√
n

+

√√√√ 1
4k log(1 +

||w||22
ρ2 (1 +

√
log(n)
k ))2 + log n

δ + 2 log(6n+ 3k))

n− 1

≤ max
||ε′||p≤ρ′

LS(w + ε′)

+

√√√√k log(1 +
||w||22
ρ′2 (1 +

√
log(n)
k )2) + 4 log n

δ + 8 log(6n+ 3k))

n− 1

(31)

where ρ′2 = ρ2 + ρ20.
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