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Abstract

Large Language Models (LLMs) have shown001
promise in automating high-labor data tasks,002
but the adoption of LLMs in high-stake scenar-003
ios faces two key challenges: their tendency to004
answer despite uncertainty and their difficulty005
handling long input contexts robustly. We in-006
vestigate commonly used off-the-shelf LLMs’007
ability to identify low-confidence outputs for008
human review through "check set selection"–009
a process where LLMs prioritize information010
needing human judgment. Using a case study011
on social media monitoring for disaster risk012
management, we define the “check set” as a013
list of tweets escalated to the disaster manager014
when the LLM has the least confidence, en-015
abling human oversight within budgeted effort.016
We test two strategies for LLM check set selec-017
tion: individual confidence elicitation – LLMs018
assesses confidence for each tweet classifica-019
tion individually, requiring more prompts with020
shorter contexts, and direct set confidence elici-021
tation – LLM evaluates confidence for a list of022
tweet classifications at once, using less prompts023
but longer contexts. Our results reveal that set024
selection via individual probabilities is more025
reliable but that direct set confidence merits026
further investigation. Direct set selection chal-027
lenges include inconsistent outputs, incorrect028
check set size, and low inter-annotator agree-029
ment. Despite these challenges, our approach030
improves collaborative disaster tweet classifi-031
cation by outperforming random-sample check032
set selection, demonstrating the potential of033
human-LLM collaboration.034

1 Introduction035

Large language models (LLMs) have significantly036

advanced the field of natural language processing037

(NLP) and made it possible to automate a wide038

range of NLP tasks such as classification, infor-039

mation retrieval, summarization, and many more040

(Raiaan et al., 2024; Lee et al., 2022; Cohen et al.,041

2022; Yang et al., 2024). LLMs can perform these042

tasks by following prompts, where the enduser pro- 043

vides task details and input data, and the model 044

generates a text response. However, studies show 045

that endusers tend to struggle to identify incorrect 046

LLM responses, a problem that can escalate as 047

larger and more complex LLMs are less likely to 048

refrain answering questions (Zhou et al., 2024). 049

The adoption of LLMs in high-stakes scenarios 050

continues to be a challenge, as assuming LLM- 051

generated responses to be always correct can have 052

severe consequences, i.e., if incorrect outputs in- 053

fluence decision-making processes. Previous stud- 054

ies evaluated LLMs’ ability to express uncertainty 055

which we refer to as confidence elicitation (Xiong 056

et al., 2024; Lin et al., 2022; Tian et al., 2023; Kada- 057

vath et al., 2022). Confidence elicitation methods 058

have shown that uncertainty estimates are closely 059

correlated with the accuracy of the prediction (Tian 060

et al., 2023; Kumar et al., 2023). While LLM’s 061

output is challenging to evaluate automatically in 062

high-stakes scenarios, we investigate if we can sur- 063

face LLM incorrectness using confidence elicita- 064

tion techniques. 065

We introduce the check set for the human-LLM 066

collaboration pipeline. The check set is a list of 067

potentially misclassified predictions by the LLM 068

needing review by the endusers. While prior re- 069

search has evaluated the quality of LLM-generated 070

output for escalation to human review, such ef- 071

forts have typically relied on separate verifier mod- 072

els (Wang et al., 2024), task-specific fine-tuning 073

(Xin et al., 2021; Chen et al., 2023), or probing 074

the model (Yoshikawa and Okazaki, 2023). In 075

contrast, this study introduces a novel approach 076

in which the check set is directly selected by the 077

off-the-shelf LLM itself. 078

In this paper, we investigate the LLMs’ check set 079

selection capability with a case study in the field 080

of disaster risk management. For this use case, the 081

check set is a list of tweets escalated to the disaster 082

manager when the LLM has the least confidence, 083
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Figure 1: Check Set Selection Framework. Two strategies for check set selection (1) Individual Confidence
Elicitation - LLM assesses confidence for each tweet classification individually, requiring more prompts with shorter
contexts (2) Direct Set Confidence Elicitation - LLM evaluates confidence for a list of tweet classifications at once,
using fewer prompts but longer contexts.

enabling human oversight within a budgeted time-084

frame. LLMs have the potential to assist disaster085

managers in sifting through massive amounts of086

online social media data for relevant, critical, and087

actionable information during disaster events. With088

the goal of helping disaster managers, we are fo-089

cused on commonly available LLMs that allow the090

disaster managers independence from a complex091

pipeline and the maintenance it implies.092

We present two methods for check set selection093

as seen in Figure 1: (1) individual confidence elic-094

itation: LLM assesses confidence of each tweet095

classification separately using individual probabili-096

ties, requiring more prompts with shorter contexts097

and (2) direct set confidence elicitation: LLM eval-098

uates confidence for a list of tweet classifications at099

once which allows for comparison within the list,100

using fewer prompts but longer contexts. These101

two approaches attempt to mitigate two underlying102

problems of LLMs in high-stakes use cases, LLMs103

refusing to refrain from answering questions they104

may not know the answers to (Zhou et al., 2024)105

and LLMs being unable to robustly make use of in-106

formation in long input contexts (Liu et al., 2024).107

Previous work on selection from long-context108

lists (Hsieh et al., 2022; Gupta et al., 2024; Levy109

et al., 2024; Laban et al., 2024), has not required the110

LLM to identify a subset of specific items within111

a longer list provided in the prompt and has not112

explored the influence of the referencing method113

used for the input. Intuitively, more input data and114

longer contexts provide LLMs more information 115

i.e., the more classifications, the more comparisons 116

LLMs can make to determine the potential incor- 117

rect classifications. However, recent studies show 118

that LLMs struggle with long-context tasks where 119

performance is influenced by the input order and 120

context size (Liu et al., 2024; Hsieh et al., 2022; 121

Gupta et al., 2024). 122

We ran our experiments using both closed and 123

open-sourced off-the-shelf LLMs: gpt-4o-mini 124

(OpenAI, 2024a), gpt-4o (OpenAI, 2024b), llama 125

3.1 8B-Instruct (Llama Team, 2024), mistral 7B- 126

Instruct v0.3 (Jiang et al., 2023) across check set se- 127

lection from predictions on two classification tasks: 128

(1) humanitarian aid vs. not humanitarian aid and 129

(2) humanitarian aid information type. 130

Our key contributions are as follows: 131

• We introduce direct set confidence-based 132

check set selection, leveraging fewer prompts 133

with longer context input, and compared it 134

to the individual confidence-based check set 135

selection. 136

• We analyze the long-context capabilities of 137

LLMs in direct set selection, examining the 138

impact of context length, input order, and ref- 139

erencing methods. 140

Our results show that LLMs have the ability 141

of check set selection using confidence elicitation 142

techniques by outperforming random check set se- 143

lection. Individual confidence elicitation is found 144
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to be more reliable compared to direct set confi-145

dence selection. This demonstrates that the current146

off-the-shelf LLMs are not sufficiently developed147

for the direct set selection method. This is evi-148

denced in section 4 demonstrating the issues in149

the direct set method such as providing incorrect150

list sizes, inconsistent outputs across different list-151

referencing methods, and low inter-annotator agree-152

ment. The direct set selection capabilities ought153

to be further explored as LLMs improve, as the is-154

sues pointed out should not occur especially when155

LLMs are to be applied in high stakes scenarios.156

2 Method157

The study investigates LLM’s ability to select a158

useful check set from long-context input using con-159

fidence elicitation. First, we present the motivation160

of our approach and how we use LLMs as our dis-161

aster tweet classifiers. Then, we demonstrate the162

two set selection methods. Lastly, we deep dive163

on the LLMs direct set selection ability from long164

context input.165

Problem Definition. LLMs have been very ef-166

fective in various natural language tasks. However,167

adoption of LLMs in high-stake scenarios contin-168

ues to be a challenge due to two main issues: the169

larger and more complex the LLMs the less likely170

they are to refrain from answering questions they171

do not know the answer to (Zhou et al., 2024) and172

LLMs struggle with long-context tasks (Liu et al.,173

2024; Hsieh et al., 2022). We aim to mitigate these174

problems using check set selection by allowing175

LLMs to utilize their confidence estimates of their176

initial predictions to prioritize information needing177

human review.178

LLM as Disaster Tweet Classifier We test the179

performance of LLMs as disaster tweet classifiers180

using two classification tasks: Task (1) humanitar-181

ian aid vs. not humanitarian aid – asking LLMs if182

the tweet is useful for humanitarian aid or not and183

Task (2) humanitarian aid information classifica-184

tion – asking LLMs to classify the tweet based on185

the type of humanitarian aid information it contains.186

We ran our experiments on sixteen (16) different187

disaster events, Task (1) with 6 disaster events with188

500 tweets per event and Task (2) with 10 disaster189

events with 300 tweets per event. More details are190

found in Section 3.1. The selected check sets are191

from the initially classified list by these classifiers.192

Set Selection using Individual Confidence193

Elicitation. We make use of an LLM to predict194

the probability of the initial tweet classification 195

from our disaster tweet classifier to be correct with 196

a value between 0.0 and 1.0, referring to one of 197

the methods by Tian et al. (2023) on confidence 198

elicitation. We select the check set by using the 199

tweet classifications with the lowest probabilities 200

of being correct at the lowest 20% of the tweet clas- 201

sifications. The chosen check set size of 20% corre- 202

sponds to the estimated effort the disaster managers 203

have budget for, i.e., time and people to review 204

check set. We chose a fixed check set size because 205

it standardizes the effort done by the endusers and 206

allows us to compare across different check set se- 207

lection strategies. For cut-off tweets with the same 208

probabilities, we use random selection. 209

Evaluating the Reliability of Direct Set Se- 210

lection To evaluate the reliability of off-the-shelf 211

LLMS in direct set selection, we conducted a com- 212

prehensive analysis of three factors: input context 213

length, list-referencing methods, and input list or- 214

der. For an LLM to be considered reliable, these 215

factors should not significantly affect its perfor- 216

mance. 217

Our experimental design involved prompting 218

the LLM to identify k tweets with potentially er- 219

roneous classification labels from a given list of 220

tweets and classifications provided by an AI assis- 221

tant. This task requires the LLM to comprehend 222

the initial classification task prompt, access the list 223

of k tweets and classifications, and subsequently 224

select the check set for end-user review. Figure 7 225

shows an example set selection prompt. 226

First, we investigate the influence of context 227

length of the input so we ran prompts with dif- 228

ferent list context sizes of 25, 50, and 100 tweets 229

and classifications. For the 25-tweet context, we 230

partitioned the 100 tweets into four disjoint groups, 231

each prompt selecting five from the list to create 232

the check set size of 20. 233

Second, we investigate the influence of list- 234

referencing methods used for the tweet and classi- 235

fication lists. We do these investigations following 236

Mizrahi et al. (2024)’s finding that instruction tem- 237

plates lead to very different performance. Further- 238

more, as our goal is to allow disaster managers inde- 239

pendence from a complex pipeline and optimize re- 240

source, the choice of list-referencing method does 241

influence the cost per token (both input and output) 242

and so merits further examination. The four list ref- 243

erencing methods and their rationale are as follows 244

(see Appendix A.4 for examples): 245
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• numerical ID – method commonly used for single re-246
trieval from a list.247

• full-text – ensures LLM selects the actual tweets and248
not hallucinating IDs.249

• keywords – similar to how humans recall relevant infor-250
mation from a list of sentences.251

• short-uuid (8 characters) – used as key for single re-252
trieval methods that is more robust than numerical IDs253
as hallucination can easily be detected.254

We used multiple prompts (n = 10) for the same255

disaster event where in every prompt, randomly256

shuffling the order of tweet classifications in each257

prompt to assess the influence of list order on se-258

lection choices. To select the final check set from259

the responses of the multiple prompts, we applied260

majority vote on valid responses.261

3 Experimental Setup262

3.1 Datasets263

Task 1: humanitarian aid vs. not humanitar-264

ian aid. We randomly sampled 500 tweets for265

six different disaster events, i.e., a total of 3000266

tweets from CrisisBench (Alam et al., 2021b) , a267

consolidated crisis-related social media dataset for268

humanitarian information processing. For the LLM269

prompt design, we renamed the class labels as hu-270

manitarian aid and not humanitarian aid from the271

original broad labels informative vs. not informa-272

tive to explicate the labeling task.273

Task 2: Humanitarian Aid Information Classi-274

fication. For the humanitarian information classi-275

fication task, we utilized human-annotated crisis-276

related tweets from (Alam et al., 2021a). The277

original dataset had 11 labels, however, we limited278

our labels to the 5 that were present in all of our279

selected crisis events, following (Zou et al., 2023)280

who also reduced their labels. Originally, we exper-281

imented with including the labels: other relevant282

information and not humanitarian, however, our283

initial experiments showed that such vague and284

negated labels are too challenging for the LLM.285

We sampled 300 tweets for each of ten different286

disaster events, i.e., a total of 3000 tweets.287

More information about the datasets used is288

found in appendix A.2289

3.2 Models290

We chose four of the latest commonly used off-the-291

shelf LLM’s in our experiments. We used gpt-4o-292

mini (OpenAI, 2024a), gpt-4o (OpenAI, 2024b),293

llama 3.1-8B-Instruct (Llama Team, 2024), and294

mistral 7B v0.3-Instruct (Jiang et al., 2023). These 295

models were chosen because they are commonly 296

used by both researchers and the public. We ran 297

our experiments at the temperature setting of 0.0 to 298

make all models deterministic in their prediction. 299

All the other parameters were kept default. The 300

exact model parameters and information are found 301

in Appendix A.3.1. 302

3.3 Evaluation Metrics 303

First, we need to evaluate the initial performance 304

of the LLM on classifying single tweets. We use 305

the following metrics for this: Accuracy and Ef- 306

fective Accuracy. We define effective accuracy 307

as the overall performance of the collaboration of 308

the LLM and enduser on the dataset D of length n, 309

when the enduser is provided with the set size of c 310

to review. For this scenario, we are working with 311

the assumption that the enduser’s performance on 312

the check set has 100% accuracy. This is computed 313

as follows: 314

%EffAccD =
(n− c)

n
%AccLLM+

c

n
%AccHUM 315

To evaluate the LLMs’ ability to select a set from 316

long context input, we introduce the following met- 317

rics: 318

No. of Valid Prompt Response. We test the ro- 319

bustness of all the LLMs on their ability to provide 320

valid prompt responses consistently. We consider 321

an LLM response is considered valid if (1) the set 322

provides the correct number of items requested and 323

(2) all the items in the set come from the long- 324

context input list, i.e., there were no hallucinations. 325

We report valid prompt responses by the 100-tweet 326

partitions of a disaster event (our set largest context- 327

size), i.e., one valid response is equivalent to four 328

valid responses of each disjoint group of context 329

size 25 and two valid responses of each disjoint 330

group of context size 50. 331

Inter-Annotator Agreement. We used Krippen- 332

dorff’s alpha (Krippendorff, 1970) to measure the 333

inter-annotator agreement between the multiple 334

prompts with the varying classification list order. 335

3.4 Prompts 336

Classifier Prompts. We formulated our classifier 337

prompts with reference to the annotation protocol 338

and the class description provided from the original 339

dataset paper sources. We observed that choice of 340

prompt strategies can influence the relative perfor- 341

mance of the model which is in line with multiple 342
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works (Mizrahi et al., 2024; Wei et al., 2024; Gupta343

et al., 2024). We used as our maximum perfor-344

mance metric Mizrahi et al. (2024), accuracy to se-345

lect the final prompt templates. The exact prompts346

can be found in the Appendix A.3347

Individual Confidence Set Selection Template348

Prompts. The set selection prompts consists of349

the following: (1) individual confidence elicitation350

task, (2) the classification task prompt and (3) indi-351

vidual tweet and classification. We evaluated dif-352

ferent prompt strategies for individual confidence353

elicitation from Xiong et al., 2024 and Tian et al.,354

2023 to find the best prompt strategy for our spe-355

cific tasks. We used as our maximum performance356

metric (Mizrahi et al., 2024), effective accuracy to357

select our final prompt. Figure 6 shows the example358

individual confidence set selection prompt.359

Direct Set Selection Template Prompts. The360

direct set selection prompts consists of the follow-361

ing: (1) the direct set selection task instruction, (2)362

the classification task prompt and (3) the list of k363

tweets and classifications. We manually craft the364

set selection prompt, where we make explicit the365

importance of the count of the items that need to366

be retrieved and that only items in the provided367

list are to be selected. From the evaluated prompt368

strategies, the choice of prompt strategy also influ-369

enced the response, so we used the metric, most370

number of valid prompt response to select our final371

prompts. Figure 7 shows the example direct set372

selection prompt.373

4 Results374

4.1 Disaster Tweet Classification Performance375

We ran our experiments on two classification tasks376

across eight disaster events. The LLMs’ perfor-377

mance for Tasks 1 and 2 are found in tables 3 and378

4 measured in accuracy scores at the column Acc.379

We observed that the closed-source model, gpt-4o-380

mini performs well in both tasks, achieving accu-381

racy scores of between 74% and 90% for Task 1382

and between 86% and 92% for Task 2. Based on383

these accuracy scores, we observed that the chosen384

20% check set size is the check size that would385

be needed for a good classifier, if the check set386

selection is perfect (see column Eff Acc (Max), the387

maximum effective accuracies of the LLMs given388

the check set size in tables 8 and 9 found in Ap-389

pendix A.5.3. At the chosen check set size, the Eff390

Acc (Max) of almost all LLMs reach to above 0.85391

across all tasks and all disaster events.392

4.2 LLM Individual Confidence Check Set 393

Selection Performance 394

Using the results from the initial classification 395

tasks, we select our individual confidence check set 396

based on the individual probabilities of each tweet 397

classification of being correct. The effective accu- 398

racies of the different models for Tasks 1 and 2 are 399

in tables 3 and 4 using the individual confidence 400

set selection strategy at column Eff Acc (I). All 401

Eff Acc (I) is higher than the original accuracies 402

of the models, hence improve overall classification 403

performance. 404

To check the effectiveness of the individual con- 405

fidence check set selection strategy, we compare 406

Eff Acc (I) with the effective accuracy achieved by 407

the models when selecting a random check set of 408

the same size. We highlighted the instance where 409

the individual confidence check set selection did 410

not outperform random in tables 3 and 3. We ob- 411

served that the models, gpt-4o, gpt-4o-mini, and 412

llama individual confidece check set selection out- 413

perform random for all the tasks and all the events. 414

Mistral, on the other hand, outperforms random for 415

all except Task (1), Vanuatu cyclone. 416

We wanted to know if there is an optimal 417

check set size, compared to the current 20%, from 418

our models by mapping the effective accuracies 419

achieved by the models across changing check set 420

sizes as seen in figure 8 in appendix A.5.2. These 421

were the average effective accuracies from the four 422

disaster events per task. We found that there is 423

no obvious optimal check set size, with almost 424

all models reaching 100% efffective accuracy only 425

when all the tweets are checked. 426

4.3 LLM Direct Set Selection Performance 427

LLMs ability to select from a set is influenced 428

by the input context size As a first step to test 429

LLMs’ check set selection ability using direct set 430

confidence elicitation, we count the number of 431

valid prompt responses LLMs generate. Figure 2 432

shows the number of valid prompt responses LLMs 433

can generate by context size. We observed that the 434

input context size influences LLMs’ ability to se- 435

lect a set from a list as seen in figure 2. We observe 436

that the smallest, 25-tweet context size consistently 437

provides more valid prompt responses accross all 438

models except for llama in Task (2) for the short 439

UUID referencign method. 440
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Figure 2: Valid prompt responses by context size using
the short UUID referencing method. The values are
raw counts. One valid prompt response corresponds to
one valid check set of size 20 selected from a 100-tweet
partition of each disaster event.

The list-referencing method used affects LLM’s441

direct set selection output Figure 3 shows the442

number of valid prompt responses that LLMs can443

generate when asked to select 10 tweets from a list444

of 50 tweets and classifications by list-referencing445

method used. We observed that the chosen refer-446

encing method affects the number of valid prompt447

responses generated. We observed that providing448

an index, i.e., either the ID or the short UUID in449

the list, helps LLMs retrieve a set from the input450

list. All LLMs struggled in retrieving the full tweet451

text and keywords, providing invalid responses as452

outputs.453

The input list order influences direct set selec-454

tion. We observed that the selected check sets455

vary significantly when we shuffle the order of the456

input list of tweets and classifications. We present457

the Krippendorf’s alpha inter-annotator agreement458

scores for our models in Tasks 1 and 2 in tables459

1 and 2 respectively using the short UUID refer-460

encing methods. We do not have agreement scores461

for some models with insufficient valid prompts.462

The alpha is computed on the agreement across463

100 tweets per disaster event i.e., whether they are464

included in the check set in each prompt iteration.465

Figure 3: Valid prompt responses by list-referencing
method at the 50-tweet context size. The values are
raw counts. One valid prompt response corresponds to
one valid check set of size 20 selected from a 100-tweet
partition of a disaster event.

We must take note that these agreement scores can- 466

not be directly compared across context sizes but 467

are to be evaluated individually. Table 1 shows that 468

only gpt-4o and gpt-4o-mini had agreement scores 469

above 0.60 for the for Task 1, while table 2 shows 470

only gpt-4o and llama achieve this. This shows that 471

input list order can influence the chosen check set 472

using direct set selection. 473

4.4 Individual Confidence is more reliable but 474

Direct Set Confidence merits further 475

investigation 476

The effective accuracies from the direct set confi- 477

dence selection are shown in the columns Eff Acc 478

(D - <context size>) in tables 3 and 4. Effective 479

accuracies for direct set selection across tasks and 480

context sizes are higher than the original accuracies. 481

We note that the effective accuracies for direct set 482

sizes D-50 and D-25 are disadvantaged beforehand 483

compared to the D-100, because they are depen- 484

dent on the luck of the misclassified tweets being 485

evenly distributed across subgroups. When com- 486

pared with the effective accuracies using random 487

check set (Eff Acc (Random)), only check set se- 488

lection using gpt-4o outperforms random across all 489

tasks and context sizes, while gpt-4o-mini, llama 490
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Task 1: Humanitarian Aid vs. Not Humanitarian Aid
Event Model D-100 D-50 D-25

gpt-4o-mini 0.32 0.55 0.45
California gpt-4o 0.30 0.33 0.35
Earthquake llama 0.25 0.25 0.20

mistral 0.23 0.17 0.25
gpt-4o-mini 0.25 0.19 0.18

Chile gpt-4o 0.55 0.60 0.64
Earthquake llama 0.00 0.00 0.42

mistral 0.09 0.11 0.16
gpt-4o-mini 0.46 0.67 0.72

India gpt-4o 0.69 0.72 0.71
Floods llama 0.25 0.00 0.00

mistral 0.08 0.28 0.33
gpt-4o-mini 0.32 0.43 0.44

Nepal gpt-4o 0.35 0.45 0.48
Earthquake llama 0.00 0.07 0.00

mistral 0.46 0.24 0.33
gpt-4o-mini 0.24 0.37 0.38

Pakistan gpt-4o 0.26 0.41 0.56
Earthquake llama 0.07 0.00 0.30

mistral 0.13 0.13 0.18
gpt-4o-mini 0.23 0.28 0.28

Vanuatu gpt-4o 0.43 0.64 0.66
Cyclone llama 0.07 0.00 0.33

mistral 0.15 0.26 0.21

Table 1: Inter-annotator agreement between the valid
prompts. Krippendorf’s alpha by context size. Bold
values indicate high inter-annotator agreement. Short
UUID referencing was used.

and mistral have some events and context sizes that491

do not outperform random.492

We compare the two check set selection strate-493

gies and observe that individual confidence check494

set selection is a more reliable method over direct495

set confidence selection for having issues across496

input context length, list-referencing method and497

input list order. Furthermore, as observed in tables498

3 and 4, only individual confidence outperform499

random consistently across tasks and events.500

5 Discussion501

We discovered from our experiments that although502

we set LLMs to their most deterministic setting,503

when we do direct check set selection, changing504

the order of the input context (list of tweets) lead to505

different check set selections and can even return506

invalid responses. This observation holds across507

different input context sizes. We recommend eval-508

uating LLMs with multiple prompts always as we509

have observed that this issue is under reported.510

6 Related Work511

Confidence Elicitation in LLMs The most com-512

mon ways to measure confidence in model pre-513

dictions rely on model’s internal logits. However,514

with the decoder-only LLMs, it has become less515

suitable to use these methods. There have been516

methods in prompting LLMs themselves to express517

uncertainty in natural language, so called verbal-518

ized confidence (Lin et al., 2022). Xiong et al.519

(2024) defines a systematic framework for LLM520

Task 2: Humanitarian Information Classification
Event Model D-100 D-50 D-25

gpt-4o-mini 0.37 0.37 0.47
Canada gpt-4o 0.50 0.47 0.67

Wildfires llama 0.00 0.06 0.43
mistral 0.07 0.13 0.40

gpt-4o-mini 0.36 0.36 0.43
Cyclone Idai gpt-4o 0.31 0.46 0.43

llama 0.00 0.00 0.23
mistral 0.07 0.15 0.32

gpt-4o-mini 0.18 0.18 0.29
Greece gpt-4o 0.35 0.44 0.48

Wildfires llama 0.38 0.18 0.12
mistral 0.29 0.09 0.19

gpt-4o-mini 0.41 0.41 0.45
Hurricane gpt-4o 0.30 0.49 0.55

Harvey llama 0.00 0.12 -
mistral 0.00 0.17 0.24

gpt-4o-mini 0.37 0.37 0.48
Hurricane gpt-4o 0.37 0.47 0.47

Maria llama 0.00 0.30 0.23
mistral 0.19 0.10 0.20

gpt-4o-mini 0.23 0.23 0.31
Hurricane gpt-4o 0.25 0.45 0.46
Matthew llama 0.46 0.19 0.26

mistral 0.22 0.10 0.30
gpt-4o-mini 0.28 0.28 0.33

Italy gpt-4o 0.29 0.44 0.46
Earthquake llama 0.00 0.50 0.24

mistral 0.07 0.09 0.21
gpt-4o-mini 0.32 0.32 0.47

Maryland gpt-4o 0.16 0.34 0.46
Floods llama 1.00 0.16 0.32

mistral 0.10 0.15 0.14
gpt-4o-mini 0.35 0.35 0.38

Mexico gpt-4o 0.47 0.53 0.48
Earthquake llama 0.00 0.50 0.22

mistral 0.34 0.12 0.26
gpt-4o-mini 0.55 0.55 0.58

Sri Lanka gpt-4o 0.67 0.55 0.59
Floods llama 0.07 0.18 0.33

mistral 0.05 0.20 0.26

Table 2: Inter-annotator agreement between the valid
prompts. Krippendorf’s alpha by context size. Bold
values indicate high inter-annotator agreement. Short
UUID referencing was used.

Task 1: Humanitarian Aid vs. Not Humanitarian Aid

Event Model Acc
Eff Eff Eff Eff
Acc Acc Acc Acc
(I) (D-100) (D-50) (D-25)

gpt-4o-mini 0.74 0.80 0.86 0.86 0.78
California gpt-4o 0.67 0.77 0.82 0.81 0.79

Earthquake llama 0.73 0.79 0.71 0.73 0.71
mistral 0.54 0.67 0.63 0.67 0.67

gpt-4o-mini 0.82 0.92 0.87 0.91 0.83
Chile gpt-4o 0.73 0.85 0.91 0.91 0.90

Earthquake llama 0.73 0.80 0.78 0.78 0.76
mistral 0.65 0.73 0.73 0.75 0.76

gpt-4o-mini 0.90 0.95 0.95 0.97 0.96
India gpt-4o 0.87 0.94 0.97 0.97 0.97

Floods llama 0.64 0.71 0.81 0.79 0.81
mistral 0.80 0.89 0.84 0.89 0.91

gpt-4o-mini 0.82 0.90 0.89 0.90 0.87
Nepal gpt-4o 0.74 0.86 0.86 0.88 0.88

Earthquake llama 0.75 0.85 0.81 0.79 0.79
mistral 0.65 0.74 0.73 0.78 0.78

gpt-4o-mini 0.81 0.89 0.86 0.86 0.85
Pakistan gpt-4o 0.66 0.87 0.87 0.87 0.87

Earthquake llama 0.74 0.79 0.78 0.79 0.78

mistral 0.67 0.75 0.73 0.78 0.78

gpt-4o-mini 0.87 0.94 0.91 0.91 0.88
Vanuatu gpt-4o 0.76 0.92 0.93 0.94 0.94

Cyclone llama 0.79 0.85 0.83 0.83 0.82

mistral 0.82 0.84 0.85 0.87 0.87

Table 3: Effective Accuracies of the Check Set Selection
Strategies. Eff Acc (I) is for the individual confidence
and Eff Acc (D) is for direct set confidence and the num-
ber indicates the context length size. The highlight
indicates when the Eff Acc does not outperform random.
short UUID-referencing was used.

uncertainty estimation using prompting, sampling 521

and aggregation strategies and benchmarks these 522
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Task 2: Humanitarian Aid Information Classification

Event Model Acc
Eff Eff Eff Eff
Acc Acc Acc Acc
(I) (D-100) (D-50) (D-25)

gpt-4o-mini 0.92 0.97 0.95 0.95 0.96
Canada gpt-4o 0.92 0.99 0.98 0.98 0.98

Wildfires llama 0.86 0.92 0.90 0.88 0.90
mistral 0.86 0.94 0.87 0.89 0.90

gpt-4o-mini 0.87 0.94 0.90 0.91 0.92
Cyclone gpt-4o 0.89 0.96 0.92 0.95 0.94

Idai llama 0.80 0.88 0.84 0.83 0.85
mistral 0.71 0.82 0.76 0.78 0.77

gpt-4o-mini 0.93 0.96 0.95 0.95 0.94
Greece gpt-4o 0.92 0.97 0.95 0.97 0.96

Wildfires llama 0.81 0.85 0.85 0.84 0.84

mistral 0.58 0.66 0.66 0.67 0.64

gpt-4o-mini 0.86 0.94 0.89 0.88 0.90
Hurricane gpt-4o 0.89 0.95 0.93 0.94 0.94

Harvey llama 0.75 0.85 0.80 0.79 0.80

mistral 0.64 0.79 0.70 0.70 0.71
gpt-4o-mini 0.88 0.95 0.93 0.93 0.94

Hurricane gpt-4o 0.90 0.97 0.96 0.96 0.95
Maria llama 0.79 0.84 0.82 0.82 0.83

mistral 0.76 0.88 0.83 0.83 0.80
gpt-4o-mini 0.88 0.95 0.91 0.93 0.92

Hurricane gpt-4o 0.91 0.97 0.96 0.96 0.96

Matthew llama 0.77 0.84 0.82 0.81 0.82

mistral 0.65 0.72 0.72 0.73 0.71
gpt-4o-mini 0.92 0.94 0.93 0.94 0.94

Italy gpt-4o 0.92 0.97 0.96 0.96 0.96
Earthquake llama 0.86 0.89 0.88 0.89 0.88

mistral 0.66 0.74 0.72 0.71 0.71
gpt-4o-mini 0.88 0.92 0.90 0.91 0.91

Maryland gpt-4o 0.89 0.93 0.93 0.93 0.94
Floods llama 0.77 0.86 0.80 0.82 0.82

mistral 0.62 0.75 0.68 0.70 0.69
gpt-4o-mini 0.92 0.95 0.94 0.95 0.96

Mexico gpt-4o 0.91 0.96 0.95 0.97 0.96
Earthquake llama 0.85 0.89 0.88 0.89 0.89

mistral 0.78 0.89 0.81 0.81 0.83
gpt-4o-mini 0.92 0.97 0.94 0.96 0.96

Sri Lanka gpt-4o 0.94 0.98 0.98 0.98 0.98

Floods llama 0.90 0.93 0.91 0.93 0.93

mistral 0.82 0.92 0.85 0.86 0.87

Table 4: Effective Accuracies of the Check Set Selection
Strategies. Eff Acc (I) is for the individual confidence
and Eff Acc (D) is for direct set confidence and the num-
ber indicates the context length size. The highlight
indicates when the Eff Acc does not outperform random.
short UUID-referencing was used.

methods in calibration and failure prediction. Tian523

et al. (2023) showed that large LLMs can express524

calibrated-confidence (as a probability) more accu-525

rately than their raw conditional probabilities sug-526

gest. For our individual-based check set selection,527

we used verbalized numerical confidence.528

LLM performance on long-context input text529

For the direct-set check set selection we propose530

we explored long-context prompts, which are pre-531

viously studied in, e.g., Hsieh et al. (2022); Sha-532

ham et al. (2023); Levy et al. (2024); Laban et al.533

(2024). “Long-context” is an umbrella term for534

use cases of LLMs defined by the total length of535

the model’s input that may include retrieval, sum-536

marization, and information aggregation (Goldman537

et al., 2024). The common task that papers evaluate538

on is the needle-in-a-haystack (NIAH) task, where539

the LLMs are tasked to retrieve single points (the540

“needle”) in a long input context (the “haystack”)541

and asking the LLM to retrieve it given a related 542

question (Kamradt, 2023) and not multiple nee- 543

dles. Hsieh et al. (2022) expands the NIAH task 544

with a comprehensive evaluation of long-context 545

LLMs by creating a new synthetic benchmark re- 546

vealing that almost all models exhibit large per- 547

formance drops as context increases (Hsieh et al., 548

2022). Most papers evaluate LLM performance on 549

synthetic datasets or existing benchmarks (Hsieh 550

et al., 2022; Shaham et al., 2023; Levy et al., 2024; 551

Laban et al., 2024). Gupta et al. (2024) differs by 552

evaluating LLMs in a real-world financial dataset, 553

however,evaluated only the gpt-4 suite of LLMs 554

in solving tasks, as a function of factors such as 555

context length, task difficulty, and position of nee- 556

dle. Our study, on the other hand, evaluates both 557

off-the-shelf closed and open-sourced LLMs and 558

consider list-referencing factors in addition to the 559

context length and input list order on real-world 560

crisis-related tweets. 561

7 Conclusion 562

In this paper, we investigate the ability of LLMs to 563

identify low-confidence outputs for human review 564

through check set creation, the process of utilizing 565

LLMs to prioritize information needing human re- 566

view. We run our experiments using a case study 567

for social media monitoring in disaster risk man- 568

agement. We tested two strategies for check set 569

selection: individual confidence elicitation by as- 570

sessing confidence for each tweet classification and 571

direct set confidence elicitation by evaluating con- 572

fidence for a list of tweet classifications at once. 573

Furthermore, we examined the impact of context 574

length, input order and referencing methods for 575

direct set selection. Our results show that LLMs 576

struggle in direct set selection as they cannot con- 577

sistently provide valid prompt responses, being in- 578

fluenced by all the three factors mentioned. Hence, 579

we say that individual confidence set selection is 580

more reliable than direct set selection for our par- 581

ticular setting. However, we observe that the direct 582

set method has potential and could be explored and 583

evaluated further as LLMs continue to improve. 584

Despite these challenges, our approach improves 585

collaborative disaster tweet classification, demon- 586

strating the potential of human-LLM collaboration. 587

Such collaboration is crucial for high stake scenar- 588

ios where we want the end-user in control of the 589

final decisions. 590
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8 Limitations591

We only evaluated four commonly used off-the-592

shelf LLMs: gpt-4o-mini, gpt-4o, llama and mis-593

tral. We only evaluated on the base models to test594

their check set selection capabilities. Instruction-595

tuning/fine-tuning these models to specifically do596

check set selection tasks may lead to more favor-597

able results. Our use case is focused on classifica-598

tion tasks for disaster risk management with text599

that are only in English language tweets. For the600

direct set confidence set selection, we only tested601

context sizes of 100, 50 and 25 tweets. A smaller602

context size may offer more stable responses from603

the LLMs. In addition, in selecting the check set604

from the smaller context sizes, D-50 and D-25, we605

did not try to optimize which tweets to compare606

with each other. Our experiments were not per-607

formed in a real world application where we had608

an actual disaster manager perform the manual ver-609

ification of the tweets in the selected check set. As610

we assume all wrongly labeled tweets would be611

corrected in such manual check, our estimations612

are likely to optimistic.613
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A Appendix815

A.1 Models816

Table 5 contains the information about the 4 LLMs817

we evaluated and analyzed.818

A.2 Datasets819

Task 1: humanitarian aid vs. not humanitarian820

aid821

We used data from CrisisBench (Alam et al.,822

2021b), a consolidated crisis-related social media823

dataset for humanitarian information processing.824

We renamed the classes to humanitarian and not825

humanitarian aid from the original informative vs.826

not informative classes because these words by827

themselves were too broad and general. Tweets828

were annotated as follows(Alam et al., 2021b,a):829

• humanitarian aid: tweet is useful for humani-830

tarian aid and831

• not humanitarian aid: tweet is not useful for832

humanitarian aid.833

We sampled from consolidated disaster events from834

CrisisMMD (Alam et al., 2018) dataset specifically835

from the following crisis events: Pakistan Earth-836

quake 2013, California Earthquake 2014, Chile837

Earthquake 2014, India Floods 2014, Nepal Earth-838

quake 2014, and Vanuatu Cyclone 2014. We ran-839

domly sampled 500 tweets for each disaster event.840

Task 2: Humanitarian Aid Information Clas-841

sification842

For the humanitarian information classification843

task, we utilized human-annotated crisis-related844

tweets from (Alam et al., 2021a). We sampled845

across four different disaster types: earthquake,846

hurricane, wildfire and flood. We chose the event847

with the highest inter-annotator agreement per dis-848

aster type based on (Alam et al., 2021a). The849

original dataset had 11 labels, however, we limited850

our labels to the 5 that were present in all of our851

selected crisis events, following (Zou et al., 2023)852

who also reduced their labels to 7. Originally, we853

experimented with including the labels: other rel-854

evant information and not humanitarian, however,855

this seemed to be too challenging for the LLM. The856

humanitarian aid information labels are as follows:857

• Caution and advice: Reports of warnings 858

issued or lifted, guidance and tips related to 859

the disaster; 860

• Infrastructure and Utility Damage: Reports 861

of any type of damage to infrastructure such 862

as buildings, houses, roads, bridges, power 863

lines, communication poles, or vehicles; 864

• Injured or dead people: Reports of injured 865

or dead people due to the disaster; 866

• Rescue, volunteering, or donation effort: 867

Reports of any type of rescue, volunteering, 868

or donation efforts such as people being trans- 869

ported to safe places, people being evacuated, 870

people receiving medical aid or food, people 871

in shelter facilities, donation of money, or ser- 872

vices, etc.; 873

• Sympathy and support: Tweets with prayers, 874

thoughts, and emotional support; 875

We sampled the test sets of the following cri- 876

sis events: Canada Wildfires 2016, Cyclone Idai 877

2019, Greece Wildfires 2018, Mexico Earthquake 878

2017, Hurricane Matthew 2016, Hurricane Har- 879

vey 2017, Hurricane Maria 2017, Italy Earthquake 880

2016, Maryland Floods 2018, and Sri Lanka Floods 881

2017. We randomly sampled 300 tweets for each 882

disaster event. 883

A.3 Prompts 884

A.3.1 Classification Prompts 885

The disaster tweet classification prompts are shown 886

in figures 4 and 5. 887

A.3.2 Check Set Selection Prompts 888

The prompts for the two strategies of check set 889

selection are in figures 6 and 7. 890

A.4 Output Examples by List-referencing 891

Method 892

Below are output examples of valid responses by 893

list-referencing method at 50-tweet context size. 894

Numerical ID: 895

[366, 191, 233, 356, 74, 149, 80, 242, 896

282, 301, 317, 290, 175, 349, 10, 1, 2, 897

55, 7, 14] 898

short UUID: 899

[’d8d26064’, ’88ef4c41’, ’9cb96943’, 900

’41bb8105’, ’785935c5’, ’ea8dfa5b’, 901

’4eeff954’, ’60df1292’, ’b6f5170d’, 902

’2b577377’] 903
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Table 5: Information of evaluated and analyzed LLMs

Model Type Size Context Length Source (OpenAI/Huggingface)
gpt-4o-mini closed - 128K gpt-4o-2024-08-06

gpt-4o closed - 128K gpt-4o-mini-2024-07-18
llama3.1 open 8B 128K meta-llama/Meta-llama-3.1-8B-Instruct

mistral-base open 7B 32K mistralai/mistral-7B-Instruct-v0.3

Figure 4: Prompt for Task 1: Humanitarian Aid vs. Not
Humanitarian Aid

Figure 5: Prompt for Task 2: Humanitarian Information
Classsification

Key Word:904

["distributing commodities", "donate905

to help", "Hurricane Maria Disaster906

Recovery", "donate for hurricane relief",907

"devastated by Hurricane Maria", "damaged908

Puerto Rico", "death toll climbs",909

"damaged Arecibo radio telescope",910

"ruined homes and infrastructure", 911

"donations with what you can"] 912

Full Text: 913

[ "80 hours! ! GOD!! 914

https://t.co/sNetLbIskQ","RT @USER: 915

.@USER Lives may have been saved if 916

Nepal govt prepared people instead of 917

funding animal sacrific Gadhimai ht","RT 918

@USER: 38,000 Nepal youth in Indian Army 919

Gorka Rifles. Over 1.25 lakh veterans. 920

The family will come together in thi 921

hour of c", "Big day for nepal people", 922

"Pulitzer Prize winning Jim Morin’s 923

cartoon on NepalQuake NepalEarthquake 924

URL", "but our farmers issues are gone 925

unnoticed URL", "@USER You are amazing. 926

URL", "Economic Impact Of Nepal Quake 927

Likely To Be Massive: One estimate 928

puts the reconstruction at more than $5 929

bill.. URL", "@USER Huh. I guess all 930

those Christian missions to Nepal are 931

to protect 7-11’s Himlayan locations.", 932

"12 Things Indians Can Do To HelpåÊNepal 933

URL" ] * 934

* edited Full Text responses by anonymizing users 935

and URL’s. 936

A.5 Supplementary Results 937

A.5.1 Disaster Tweet Classifier Performance 938

The performance of the LLMs as disaster tweet 939

classifiers are in tables 6 and 7. 940

A.5.2 Individual Confidence Elicitation 941

Results 942

We wanted to know if there is an optimal check set 943

size, compared to the current 20%, from our models 944

by mapping the effective accuracies achieved by 945

the models across changing check set sizes as seen 946

in figure 8. 947

A.5.3 Effective Accuracies Full Tables 948

Tables 8 and 9 show the full tables effective accu- 949

racies of all the check set selection strategies. 950
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Figure 6: Prompt for Individual Confidence Elicitation

Figure 7: Prompt for Direct Set Selection
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Table 6: Performance of LLMs on Task 1: Humanitar-
ian Aid vs. Not Humanitarian Aid measured in Accu-
racy.

Event Model Accuracy

California Earthquake

majority class 0.84
gpt-4o-mini 0.74

gpt-4o 0.67
llama 0.73

mistral 0.54

Chile Earthquake

majority class 0.60
gpt-4o-mini 0.82

gpt-4o 0.73
llama 0.73

mistral 0.65

India Floods

majority class 0.86
gpt-4o-mini 0.90

gpt-4o 0.87
llama 0.64

mistral 0.80

Nepal Earthquake

majority class 0.72
gpt-4o-mini 0.82

gpt-4o 0.74
llama 0.75

mistral 0.65

Pakistan Earthquake

majority class 0.61
gpt-4o-mini 0.81

gpt-4o 0.66
llama 0.74

mistral 0.67

Vanuatu Cyclone

majority class 0.50
gpt-4o-mini 0.87

gpt-4o 0.76
llama 0.79

mistral 0.82

Figure 8: Effective Accuracy (Individual Confidence)
vs. Check Set Size. The broken lines represent the
Effective Accuracies for the random check set selection.

Table 7: Performance of LLMs on Task 2: the Humani-
tarian Aid Information Classification task measured in
Accuracy

Event Model Accuracy

Canada Wildfires

majority class 0.67
gpt-4o-mini 0.92

gpt-4o 0.92
llama 0.86

mistral 0.86

Cyclone Idai

majority class 0.52
gpt-4o-mini 0.87

gpt-4o 0.89
llama 0.80

mistral 0.71

Greece Wildfires

majority class 0.40
gpt-4o-mini 0.93

gpt-4o 0.92
llama 0.81

mistral 0.58

Hurricane Harvey

majority class 0.45
gpt-4o-mini 0.86

gpt-4o 0.89
llama 0.75

mistral 0.64

Hurricane Maria

majority class 0.43
gpt-4o-mini 0.88

gpt-4o 0.9
llama 0.79

mistral 0.76

Hurricane Matthew

majority class 0.33
gpt-4o-mini 0.88

gpt-4o 0.91
llama 0.77

mistral 0.65

Italy Earthquake

majority class 0.52
gpt-4o-mini 0.92

gpt-4o 0.92
llama 0.86

mistral 0.66

Maryland Floods

majority class 0.29
gpt-4o-mini 0.88

gpt-4o 0.89
llama 0.77

mistral 0.62

Mexico Earthquake

majority class 0.52
gpt-4o-mini 0.92

gpt-4o 0.91
llama 0.85

mistral 0.78

Sri Lanka Floods

majority class 0.70
gpt-4o-mini 0.92

gpt-4o 0.94
llama 0.9

mistral 0.82
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Task 1: Humanitarian Aid vs. Not Humanitarian Aid
Event Model Acc Eff Acc Eff Acc Eff Acc Eff Acc Eff Acc Eff Acc

(Random) (Max) (I) (D-100) (D-50) (D-25)
gpt-4o-mini 0.74 0.79 0.94 0.80 0.86 0.86 0.78

California gpt-4o 0.67 0.74 0.87 0.77 0.82 0.81 0.79
Earthquake llama 0.73 0.78 0.93 0.79 0.71 0.73 0.71

mistral 0.54 0.63 0.74 0.67 0.63 0.67 0.67

gpt-4o-mini 0.82 0.86 1.00 0.92 0.87 0.91 0.83
Chile gpt-4o 0.73 0.78 0.93 0.85 0.91 0.91 0.90

Earthquake llama 0.73 0.78 0.93 0.80 0.78 0.78 0.76
mistral 0.65 0.72 0.85 0.73 0.73 0.75 0.76

gpt-4o-mini 0.90 0.92 1.00 0.95 0.95 0.97 0.96
India gpt-4o 0.87 0.90 1.00 0.94 0.97 0.97 0.97

Floods llama 0.64 0.71 0.84 0.71 0.81 0.79 0.81
mistral 0.80 0.84 1.00 0.89 0.84 0.89 0.91

gpt-4o-mini 0.82 0.86 1.00 0.90 0.89 0.90 0.87
Nepal gpt-4o 0.74 0.79 0.94 0.86 0.86 0.88 0.88

Earthquake llama 0.75 0.80 0.95 0.85 0.81 0.79 0.79
mistral 0.65 0.72 0.85 0.74 0.73 0.78 0.78

gpt-4o-mini 0.81 0.85 1.00 0.89 0.86 0.86 0.85
Pakistan gpt-4o 0.66 0.73 0.86 0.87 0.87 0.87 0.87

Earthquake llama 0.74 0.79 0.94 0.79 0.78 0.79 0.78
mistral 0.67 0.74 0.87 0.75 0.73 0.78 0.78

gpt-4o-mini 0.87 0.90 1.00 0.94 0.91 0.91 0.88
Vanuatu gpt-4o 0.76 0.81 0.96 0.92 0.93 0.94 0.94
Cyclone llama 0.79 0.83 0.99 0.85 0.83 0.83 0.82

mistral 0.82 0.86 1.00 0.84 0.85 0.87 0.87

Table 8: Effective Accuracies of the Check Set Selection Strategies. Eff Acc (Random) is the effective accuracy for
the task given a random check set, Eff Acc (Max) is the maximum possible effective accuracy for the task, Eff Acc
(I) is for the individual confidence elicitation and Eff Acc (D) is for direct set confidence elicitation and the number
indicates the context length size. The referencing method for direct set used for this table short-uuid
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Task 2: Humanitarian Aid Information Classification
Event Model Acc Eff Acc Eff Acc Eff Acc Eff Acc Eff Acc Eff Acc

(Random) (Max) (I) (D-100) (D-50) (D-25)
gpt-4o-mini 0.92 0.94 1.00 0.97 0.95 0.95 0.96

Canada gpt-4o 0.92 0.94 1.00 0.99 0.98 0.98 0.98
Wildfires llama 0.86 0.89 1.00 0.92 0.90 0.88 0.90

mistral 0.86 0.89 1.00 0.94 0.87 0.89 0.90
gpt-4o-mini 0.87 0.90 1.00 0.94 0.90 0.91 0.92

Idai gpt-4o 0.89 0.91 1.00 0.96 0.92 0.95 0.94
llama 0.80 0.84 1.00 0.88 0.84 0.83 0.85

mistral 0.71 0.77 0.91 0.82 0.76 0.78 0.77
gpt-4o-mini 0.93 0.94 1.00 0.96 0.95 0.95 0.94

Greece gpt-4o 0.92 0.94 1.00 0.97 0.95 0.97 0.96
Wildfires llama 0.81 0.85 1.00 0.85 0.85 0.84 0.84

mistral 0.58 0.66 0.78 0.73 0.66 0.67 0.64

gpt-4o-mini 0.86 0.89 1.00 0.94 0.89 0.88 0.90
Hurricane gpt-4o 0.89 0.91 1.00 0.95 0.93 0.94 0.94

Harvey llama 0.75 0.80 0.95 0.85 0.80 0.79 0.80
mistral 0.64 0.71 0.84 0.79 0.70 0.70 0.71

gpt-4o-mini 0.88 0.90 1.00 0.95 0.93 0.93 0.94
Hurricane gpt-4o 0.90 0.92 1.00 0.97 0.96 0.96 0.95

Maria llama 0.79 0.83 0.99 0.84 0.82 0.82 0.83
mistral 0.76 0.81 0.96 0.88 0.83 0.83 0.80

gpt-4o-mini 0.88 0.90 1.00 0.95 0.91 0.93 0.92
Hurricane gpt-4o 0.91 0.93 1.00 0.97 0.96 0.96 0.96
Matthew llama 0.77 0.82 0.97 0.84 0.82 0.81 0.82

mistral 0.65 0.72 0.85 0.75 0.72 0.73 0.71
gpt-4o-mini 0.92 0.94 1.00 0.94 0.93 0.94 0.94

Italy gpt-4o 0.92 0.94 1.00 0.97 0.96 0.96 0.96
Earthquake llama 0.86 0.89 1.00 0.89 0.88 0.89 0.88

mistral 0.66 0.73 0.86 0.74 0.72 0.71 0.71
gpt-4o-mini 0.88 0.90 1.00 0.92 0.90 0.91 0.91

Italy gpt-4o 0.89 0.91 1.00 0.93 0.93 0.93 0.94
Earthquake llama 0.77 0.82 0.97 0.86 0.80 0.82 0.82

mistral 0.62 0.70 0.82 0.75 0.68 0.70 0.69
gpt-4o-mini 0.92 0.94 1.00 0.95 0.94 0.95 0.96

Maryland gpt-4o 0.91 0.93 1.00 0.96 0.95 0.97 0.96
Floods llama 0.85 0.88 1.00 0.89 0.88 0.89 0.89

mistral 0.78 0.82 0.98 0.89 0.81 0.81 0.83
gpt-4o-mini 0.92 0.94 1.00 0.97 0.94 0.96 0.96

Sri Lanka gpt-4o 0.94 0.95 1.00 0.98 0.98 0.98 0.98
Floods llama 0.90 0.92 1.00 0.93 0.91 0.93 0.93

mistral 0.82 0.86 1.00 0.92 0.85 0.86 0.87

Table 9: Effective Accuracies of the Check Set Selection Strategies. Eff Acc (Random) is the effective accuracy for
the task given a random check set, Eff Acc (Max) is the maximum possible effective accuracy for the task, Eff Acc
(I) is for the individual confidence elicitation and Eff Acc (D) is for direct set confidence elicitation and the number
indicates the context length size. The referencing method for direct set used for this table short-uuid
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