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ABSTRACT

Large Language Models (LLMs) are typically trained on diverse, general-purpose
datasets, enabling broad generalization but incurring substantial computational
costs. However, real-world applications often require efficient models tailored to
narrow, domain-specific tasks. In such settings, large model capacity and general-
ity are unnecessary, and traditional fine-tuning pipelines struggle under resource
constraints. We introduce FineScope, a framework that addresses this challenge
by tightly coupling domain-aware data selection with model pruning and fine-
tuning. Starting from a small set of user-provided seed examples, FineScope
trains sparse autoencoders (SAEs) on intermediate model activations to automat-
ically extract semantically aligned examples from large unlabeled corpora. The
curated dataset then guides structured pruning to preserve domain-relevant sub-
structures and supports self-distillation fine-tuning to recover task-specific perfor-
mance. Experiments across STEM, humanities, social sciences, math, and coding
domains show that FineScope consistently outperforms baseline fine-tuning ap-
proaches while enabling up to 35% parameter pruning. On math reasoning tasks,
it achieves an average improvement of 11.50 points across pruned models. Code
will be available.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated strong generalization across a wide range of
tasks due to their training on broad and diverse datasets(RBC Borealis AI, 2024; Adler et al., 2024).
However, most real-world applications run in resource-constrained environments (Kim et al., 2023;
Dubey et al., 2024; Wang et al., 2024) and require models to perform well on a narrow set of domain-
specific tasks. In these cases, the broad capabilities of large models are often unnecessary, and
much of their computational cost is spent on supporting functions that are irrelevant to the target
domain. This creates a growing need for models that are both efficient and specialized for specific
applications. Despite significant progress in model compression techniques such as pruning and
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Figure 1: Overall accuracy (with different model pruning ratio) on the STEM, Social Sciences, and
Humanities domains after fine-tuning with Self-Instruct dataset (Wang et al., 2022) and FineScope
dataset. Despite its smaller size, FineScope sustains higher accuracy under aggressive pruning,
underscoring its data efficiency and quality.
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quantization, effective domain adaptation still depends heavily on the availability of high-quality,
domain-specific data. In an ideal setting, a well-constructed dataset tailored to the target domain
would be used for fine-tuning (Talmor et al., 2018; Clark et al., 2018; Gu et al., 2024). However,
such datasets are rarely available in practice. Most existing approaches rely on general-purpose
instruction datasets (Taori et al., 2023) or manually curated corpora, which can be noisy, expensive
to build, or misaligned with the intended application. As a result, models are often fine-tuned with
suboptimal data which hinders performance recovery after compression.

A key challenge in domain adaptation is the limited availability of high quality, domain aligned
data for fine tuning. While much of the existing work focuses on model compression and adap-
tation techniques, these approaches often assume access to suitable data or treat data selection as
a secondary concern. In practice, the effectiveness of compressed models depends heavily on the
quality and relevance of the fine tuning dataset (Zhou et al., 2024). Without data that closely reflects
the target domain, even the most advanced compression strategies are unlikely to maintain strong
performance.

To address this challenge, we propose that data selection should be treated as a central part of the
adaptation process. Inspired by findings that data quality can be more impactful than quantity (Zhou
et al., 2024), we argue that a small, carefully chosen subset of relevant data can support strong
performance, even in heavily compressed models. Rather than treating data curation and model
optimization as separate steps, we design an approach that connects them, allowing the data to guide
both pruning and fine-tuning within a unified framework.

We present FineScope, a framework that automates domain-specific data selection and integrates
it with model pruning and fine-tuning. FineScope begins with a small set of user-provided seed
examples and uses a Sparse Autoencoder (SAE), trained on intermediate activations of a pretrained
LLM, to identify semantically relevant samples (Templeton et al., 2024; Kissane et al., 2024; Yan
et al., 2024) from a large unlabeled corpus. These curated samples form a compact, high-quality
dataset that reflects the target domain and is used to guide structured pruning. A modified self-
distillation fine-tuning step then helps recover any task-relevant knowledge lost during compression.

FineScope enables the development of lightweight, domain-specialized models with minimal su-
pervision and computational cost. As illustrated in Figure 1 the framework combines automatic
data selection, structured pruning, and fine-tuning to produce compact models that retain domain-
specific performance. Across a range of domains and tasks, our experiments show that FineScope
outperforms standard fine-tuning pipelines and significantly improves the performance of pruned
models. These results demonstrate that integrating targeted data selection with model adaptation
is a powerful and practical strategy for domain-specific LLM deployment in resource-constrained
environments. Our contributions are as follows:

• We propose FineScope, a unified framework that connects domain-specific data selection
with model pruning and fine-tuning to support efficient adaptation of large language mod-
els.

• We introduce a novel use of Sparse Autoencoders trained on intermediate activations to
identify semantically relevant data samples from large unlabeled corpora, starting from
only a small seed set.

• We develop a modified self-distillation fine-tuning approach that helps pruned models re-
gain domain-relevant behaviors using the curated dataset.

• We demonstrate that FineScope consistently improves performance over standard fine-
tuning methods and enables effective domain adaptation, while significantly reducing
model size.

2 RELATED WORK

(1) Domain-Specific Language Models Recent efforts have adapted large language models to spe-
cialized domains by training or fine-tuning them on domain-specific datasets. Examples include
PharmaGPT (Chen et al., 2024) for biomedical applications, SaulLM (Colombo et al., 2024) for legal
tasks, Shai (Guo et al., 2023) for asset management, BloombergGPT (Wu et al., 2023) for financial
analysis, and MedPalm (Singhal et al., 2023) for medical question answering. Additional models
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such as ClimateBERT (Webersinke et al., 2021), ChatLaw (Cui et al., 2023), and FinGPT (Yang
et al., 2023) focus on areas such as climate science, legal reasoning, and financial modeling. While
effective, these models typically rely on access to large, high-quality domain datasets and require
full-scale retraining of billion-parameter models. Few methods address the challenges of adapting
models efficiently, particularly in settings with limited compute and annotated data. In contrast, our
work focuses on enabling domain adaptation by automatically selecting relevant data from large un-
labeled corpora and compressing models to reduce computational requirements without sacrificing
task performance.

(2) Pruning Pruning is a widely used technique for reducing the size and computational cost of
language models by removing parameters that have minimal impact on performance. Motivated
by the lottery ticket hypothesis (Frankle & Carbin, 2018), many methods aim to identify smaller
subnetworks within large models that can be trained or fine-tuned to match the original model’s ac-
curacy. Structured pruning, in particular, removes entire architectural components such as attention
heads or feedforward blocks, resulting in models that are both compact and efficient in hardware
implementation.

Existing pruning methods, both structured and unstructured (Wang et al., 2019; Xia et al., 2022;
Zafrir et al., 2021; Kurtic et al., 2022; Ashkboos et al., 2024; Xia et al., 2023), are typically de-
signed to maintain general-purpose capabilities and are applied independently of the data used for
downstream fine-tuning. As a result, they may not fully account for the specific needs of domain
adaptation. In our approach, pruning is informed by data that is automatically selected for its rel-
evance to a target domain. By integrating data selection into the pruning process, where we prune
the model with respect to the domain-specific dataset, we aim to retain subnetworks that are more
closely aligned with domain-specific behavior.

(3) Neural Representation Alignment While data-centric adaptation has gained increasing attention,
most methods treat the model as fixed and focus solely on selecting or generating training examples.
Instruction tuning and self-training approaches (Zhou et al., 2024; Taori et al., 2023; Wang et al.,
2022) improve performance by using curated prompts or synthetic data but do not adapt the under-
lying model structure. Retrieval-based methods (Bricken et al., 2023; Gadre et al., 2023) select data
based on surface-level similarity or metadata, which may not accurately reflect the model’s internal
understanding of domain relevance.

Recent studies suggest that intermediate model activations encode meaningful signals related to both
task characteristics and input semantics (Templeton et al., 2024). However, this insight has rarely
been applied to guide either data selection or model compression. Our work builds on this idea
by using a Sparse Autoencoder trained on the top-k intermediate activations of a pretrained model
to estimate domain relevance. This allows us to identify training data that aligns with the model’s
internal representations and use it to inform both pruning and fine-tuning.

To the best of our knowledge, FineScope is the first framework to jointly leverage latent model repre-
sentations for both dataset construction and structured pruning, enabling efficient domain adaptation
under resource constraints.

3 FINESCOPE

We present FineScope, a two-stage framework for efficient domain adaptation of large language
models. The first stage selects domain-relevant examples from a large unlabeled corpus using a
sparse autoencoder trained on the model’s internal activations. In the second stage, the selected data
is used to guide structured pruning and fine-tuning through a modified self-distillation process. This
approach enables the specialization of compact models that retain strong performance within the
target domain.

3.1 SPARSE-AUTOENCODER-GUIDED DOMAIN-SPECIFIC DATASET CURATION

3.1.1 TRAINING SAE

A Sparse Autoencoder (SAE) is a neural network designed to learn compressed representations of
input data while enforcing sparsity constraints on the hidden units (EleutherAI, 2024). In our frame-
work, SAEs serve as a mechanism for extracting domain-relevant features from pretrained LLM
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Figure 2: Overview of the FineScope : (1) Dataset Curation: (a) Sparse Autoencoder (SAE) is
trained on the top-K activations of a pretrained LLM and then used it to extract embedding from
datasets,(b)Domain-specific dataset is curated by computing cosine similarity between target do-
main and the samples in the larger dataset. (2) Pruning and Fine-Tuning: (c) Structured pruning is
done w.r.t. selected dataset; (d) Fine-tuned the pruned model using modified self distillation. Here,
U denotes the larger dataset, while Dt represents the target domain dataset. The corresponding em-
beddings are denoted by eu and et respectively.

activations to identify domain-relevant samples from a large corpus. Instead of operating directly on
the raw model outputs, we train SAEs on activations from intermediate layers of the LLM, allowing
us to capture a structured, low-dimensional representation of the underlying knowledge encoded in
the model, as shown in Figure 2a. Additionally, since processing all activations are computationally
infeasible for the large corpus, our SAEs are adapted to learn only the representative activations in
a way that highlights the most significant neurons, improving interpretability while discarding less
relevant signals.

In decoder-only transformer models such as GPT-2 and LLaMa, the activation flow can be formally
defined as follows (Braun et al., 2024):

act(l)(x) = f (l)
(
act(l−1)(x)

)
, for l = 1, . . . , L− 1 (1)

where act(l)(x) denotes the activations at layer l given input x, and f (l) represents the transformation
function at layer l, which typically includes multi-head self-attention, feed-forward operations, and
residual connections. The final model output is computed as:

y = softmax
(
f (L)

(
act(L−1)(x)

))
. (2)

To train the SAE, we extract activations act(l)(x) from a selected layer of the pretrained LLM and
feed them into the encoder network:

Enc
(
act(l)(x)

)
= ReLU

(
Weact

(l)(x) + be

)
. (3)

The corresponding reconstruction from the decoder is given by:

SAE
(
act(l)(x)

)
= Dec⊤Enc

(
act(l)(x)

)
+ bdec. (4)

Here, Enc represents the SAE’s encoder, We and be are the encoder’s weights and biases, and Dec⊤

and bdec correspond to the decoder parameters. The SAE is trained to minimize the reconstruction
loss:

LSAE =
∥∥∥SAE

(
act(l)(x)

)
− act(l)(x)

∥∥∥2
2
+ λ

∥∥∥Enc(act(l)(x))∥∥∥
1
. (5)

where the second term enforces sparsity by penalizing the activation magnitudes of the encoder

4
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3.1.2 TOP-K ACTIVATION SELECTION FOR EFFICIENT SAE TRAINING

Rather than training the SAE on full-layer activations, we apply a Top-K filtering mechanism to select
the most important activations before feeding them into the encoder. Given dataset D containing
m samples, D = {x1, x2, . . . , xm}, we compute the K most significant activations based on the
gradient magnitude:

TopK(act(l)(x),K) = {ai ∈ act(l)(x) | ai is one of the K largest

∣∣∣∣∣∂act(l)i (x)

∂x

∣∣∣∣∣}. (6)

Using only the TopK activations reduces the input dimensionality of the SAE, significantly lowering
computational overhead and enabling efficient training on large-scale corpora. Additionally, filtering
out noisy activations improves generalization by focusing the SAE on the most informative neurons,
enhancing interpretability of extracted features aligned with domain-relevant information.

The encoder then operates on these filtered activations as:

Enc
(

TopK(act(l)(x),K)
)
= ReLU

(
We · TopK(act(l)(x),K) + be

)
. (7)

For each layer l in the LLM, we train a separate SAE, resulting in a total of L SAEs. Once trained,
these SAEs serve as feature extractors for data curation.

3.1.3 DATASET CURATION

After training, each SAE functions as a feature extractor to identify domain-relevant samples from
a large unlabeled corpus. Starting with a small number of seed examples representative of the target
domain (e.g., around ten samples), we aim to construct a curated subset Ds ⊆ U from a broader,
mixed-domain dataset U by selecting examples that are most similar to the seed set in the learned
embedding space. This selection process, which aligns samples in U with the target domain using
SAE-derived representations, is shown in Figure 2b.

Using the trained SAE, we compute embeddings for all samples in both Dt and U . The embeddings
for the target domain are given by Et = {SAE(x) | x ∈ Dt}. Similarly, we compute embeddings
for all samples in the larger dataset U , EU = {SAE(x) | x ∈ U}.

To identify samples in U that are most similar to Dt, we compute the cosine similarity between
each embedding eu ∈ EU and every embedding et ∈ Et. Using this similarity measure, we select
samples xu ∈ U whose embeddings fall within the Top-K highest cosine similarity scores when
compared to the embeddings in Et. Specifically, we define the selected dataset Ds as:

Ds = {xu ∈ U | eu ∈ TopK({CosSim(SAE(xu), et) : et ∈ Et})}. (8)

where CosSim(eu, et) denotes the cosine similarity.

The final dataset Ds contains samples from U that are most semantically similar to the target domain
Dt based on the cosine similarity of their SAE embeddings. To ensure that Ds remains a high-
quality domain-specific dataset. In our evaluation, the value of K across all SAEs is set to 100 for
consistency in selection.

3.2 PRUNING AND FINE-TUNING WITH MODIFIED SDFT

3.2.1 PRUNING

To enhance model efficiency while retaining domain-specific knowledge, we apply structured prun-
ing using LLM-Pruner (Ma et al., 2023). Rather than relying on general-purpose criteria, we guide
the pruning process with a domain-specific dataset Ds (as shown in Figure 2c), so that only compo-
nents relevant and active to the target domain are preserved. Guided by the domain-specific dataset
Ds, the contribution of each model block is estimated using gradient-based attribution. Specifically,
we compute an importance score for each block based on the first-order gradient of the task-specific
loss with respect to Ds. This allows the pruning process to preserve components that are most
critical for performance in the target domain.

5
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We apply block-wise structured pruning using LLM-Pruner (Ma et al., 2023), which removes redun-
dant components of the model and significantly reduces inference cost. The original model, denoted
by M, is pruned with respect to the domain-specific dataset Ds and a pruning ratio r, resulting in a
compressed model Mr:

Mr = LLMPrune(M, Ds, r) (9)
Here, r serves as a hyperparameter that controls the trade-off between model compactness and
domain-specific performance.

3.2.2 FINE-TUNING

Self Distillation Finetuning (SDFT) (Yang et al., 2024) is a technique in which a distilled dataset
is generated to match the output distribution of the original model, leading to improved generaliza-
tion. While SDFT is commonly used for knowledge transfer, its role in FineScope extends beyond
dataset refinement. We adapt SDFT to address the loss of domain-specific representations caused by
pruning. High-confidence predictions from a state-of-the-art teacher model are used to generate a
distilled dataset, which is then used to fine-tune the pruned student. This teacher-guided distillation
helps restore lost knowledge and improves performance. A high level overview of the process is
illustrated in Figure 2d. This approach reduces overfitting to the small curated dataset and compen-
sates for information removed during pruning, even when the teacher and student differ in size or
architecture.

In our framework, we adapt SDFT to further refine the pruned model. We generate a distilled
dataset using either the original model or a pretrained state-of-the-art teacher, and use it to fine-
tune the pruned model. This process helps preserve domain-specific knowledge while improving
generalization.

In the original SDFT formulation (Yang et al., 2024), given an input x, context ct, and output yt
from the teacher model, the distilled output y′ is sampled as:

y′ ∼ f(y | ct, xt, yt). (10)

We adapt this procedure in FineScope by modifying the fine-tuning objective for the pruned model.
The resulting self-distillation loss is defined as:

Lmsdft = − log fp(y
′ | ct, yt), (11)

where fp denotes the pruned model and Lmsdft represents the self-distillation loss.

4 EVALUATION

(1) Models. We evaluate our method using three models: Vicuna-7B (Zheng et al., 2023), a fine-
tuned version of LLaMa 2 (Touvron et al., 2023); MathCoder-CL-7B (Wang et al., 2023), a CodeL-
lama (Roziere et al., 2023) variant; and LLaMa 3.1-8B (Dubey et al., 2024).

(2) Baselines. We compare FineScope against six baseline settings: (a) fine tuning the pruned
model using randomly selected data of the same size, (b) fine tuning with the full dataset containing
mixed domains, (c) fine tuning with Alpaca data using FineScope’s pruning strategy, (d) evalu-
ating pretrained models without any fine tuning, (e) evaluating pretrained models fine tuned with
FineScope-curated data, and (f) comparisons against GPT-3 (6.7B and 175B)(Brown et al., 2020)
and OLMO-7B(Groeneveld et al., 2024) (Table 1), along with GPT-3 (13B and 175B) (Table 2)

(3) Tuning Tasks. We assess FineScope on three main tasks:

(a) Domain Specific Tuning. We prune models using domain specific datasets curated with our
SAE-guided framework. The SAEs are trained on the RedPajama dataset (Computer, 2023), which
includes content from CommonCrawl, C4, GitHub, Wikipedia, Books3, ArXiv, and StackExchange,
providing broad domain coverage. Using these SAEs, we curate domain specific subsets from
OpenInstruct (hakurei, 2023), which aggregates instruction datasets such as Alpaca (Lan, 2019),
Self Instruct (Wang et al., 2022), GPT 4 Instruct, Roleplay (Teknium, 2023), Code Alpaca (Chaud-
hary, 2023), and Dolly (Ouyang et al., 2022). Based on user provided seed samples, we extract cu-
rated datasets for STEM (2,100 samples), Social Sciences (2,401 samples), and Humanities (2,374
samples), selecting the most frequently chosen samples across all trained SAEs.

6
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(b) Subdomain Specific Tuning (Math). To assess FineScope’s effectiveness at a more granular
level, we evaluate fine tuning on mathematical subdomains. SAEs are trained on the MetaMath
dataset (Yu et al., 2023), and used to curate subsets from the Math dataset (Hendrycks et al., 2021).
In this setting, subdomains are merged into a unified pool for curation. From this pool, we extract
the Pre Algebra, Algebra, and Counting and Probability subsets. Models are fine tuned using Open-
Math2 (Toshniwal et al., 2024), and Notus 7B (Tunstall et al., 2023) serves as the Alpaca tuned
baseline. Evaluations are conducted separately on each subdomain test set (Table 2).

(c) Coding Specific Tuning. Following the same SAE guided curation approach, we construct a code
focused dataset from OpenInstruct, resulting in 1,200 examples. To evaluate model performance on
code generation, we fine tune on this curated dataset and assess results using the HumanEval (Chen
et al., 2021) and MBPP (Austin et al., 2021) benchmarks (Table 3).

(4) Implementation Details SAE training: We ran SAE training (EleutherAI, 2024) using the
AdamW optimizer with a learning rate of 1e-5, a batch size of 8, and a Top-K value of 128. We used
GPT-4 (Achiam et al., 2023) to generate the 10 user-defined seeds. Finetuning: We fine-tuned LMs
(LORA-fine tuning (Hu et al., 2021)) using the same AdamW optimizer at a 5e-5 learning rate, a
batch size of 128, lora rank of 32, and a 256 cut-off length.

4.1 EXPERIMENTAL RESULTS

Table 1: Performance comparison of FineScope-tuned models versus baselines across STEM, Social
Sciences (Social Sci.), and Humanities (Hum.) domains.

Model Pruned Tuned Dataset STEM Social Sci. Hum.

Vicuna (Zheng et al., 2023)
× × – 33.10 40.23 43.69
✓ × – 17.17 20.11 20.80
✓ × Random 18.52 21.29 20.21
✓ × Full-OI 29.09 35.43 36.19
✓ × Alpaca 30.61 35.44 36.11
× ✓ FineScope 33.32 40.21 42.43
✓ ✓ FineScope 31.12 36.23 36.55

MathCoder-CL Wang et al. (2023)
× × – 31.14 11.11 9.22
✓ × – 13.32 8.02 3.67
✓ × Random 12.94 7.53 4.59
✓ × Full-OI 23.91 12.81 12.67
✓ × Alpaca 25.14 13.11 12.33
× ✓ FineScope 34.96 32.91 31.66
✓ ✓ FineScope 25.89 13.81 13.68

LLaMa3.1 (Dubey et al., 2024)
× × – 48.01 49.61 49.32
✓ × – 30.59 31.33 33.62
✓ × Random 29.04 30.93 33.71
✓ × Full-OI 39.32 39.91 40.93
✓ × Alpaca 38.22 40.19 39.79
× ✓ FineScope 48.84 51.66 51.45
✓ ✓ FineScope 40.55 41.07 41.19

GPT-3 (6.7B) × × – 35.10 49.20 42.10
OLMO × × – 22.19 31.01 30.26
GPT-3 (175B) × × – 36.70 50.40 40.80

Table 1 presents evaluation results on the MMLU dataset across three domains. Models adapted
using FineScope, through pruning and fine tuning with SAE-curated domain specific data, achieve
average performance gains of 3.8% over Alpaca tuning and 4.45% over OpenInstruct (Full OI)
across all domains and model types. Among the three evaluated models, MathCoder CL shows the
most significant improvement, with gains of 8.28% in STEM, 7.8% in Social Sciences, and 7.9%
in Humanities. These results indicate that SAE-guided data selection not only improves domain
adaptation but also enables pruned models to recover performance that would otherwise be lost under
aggressive compression. Despite using fewer data points, our method outperforms OpenInstruct,
underscoring the importance of data quality and domain alignment over quantity alone.

Pruning without domain guidance results in substantial performance degradation, reaching up to
50.17% on average for Vicuna across all domains. LLaMa 3.1 shows the smallest drop, likely
due to its more balanced initial performance and the ability of domain focused pruning to retain
essential parameters. Compared to GPT-3 (6.7B and 175B) and OLMO 7B, our pruned models,

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

with approximately 30% fewer parameters, outperform in most settings. GPT-3 achieves stronger
results in Social Sciences, and the 175B variant exceeds our models in Humanities, but FineScope
tuned models consistently outperform OLMO 7B across all domains.

Table 2: Performance comparison of FineScope-tuned models versus baselines across Pre-algebra
(Pre-alg.), Algebra (Alg.), and Counting and Probability (Count.&Prob.) domains.

Model Pruned Tuned Dataset Pre-alg. Alg. Count.&Prob.

Vicuna (Zheng et al., 2023)
× × – 14.31 10.17 8.11
✓ × – 0.11 0.00 0.00
✓ × Random 0.00 0.00 0.00
✓ × Full-Math 12.73 8.91 5.48
✓ ✓ Alpaca 5.56 0.30 0.21
× ✓ FineScope 15.46 13.33 10.43
✓ ✓ FineScope 12.91 10.12 7.01

MathCoder-CL (Wang et al., 2023)
× × – 11.60 16.77 13.38
✓ × – 0.59 2.33 0.29
✓ × Random 0.00 0.00 0.00
✓ × Full-Math 9.01 12.72 10.05
✓ ✓ Alpaca 1.29 6.94 3.33
× ✓ FineScope 14.73 17.75 15.43
✓ ✓ FineScope 10.54 15.51 11.64

LLaMa3.1 (Dubey et al., 2024)
× × – 32.77 29.87 20.35
✓ × – 11.41 7.99 5.01
✓ × Random 7.04 8.01 6.93
✓ × Full-Math 30.72 31.67 18.34
✓ ✓ Alpaca 9.23 5.56 9.10
× ✓ FineScope 34.46 31.85 23.18
✓ ✓ FineScope 30.83 32.21 19.34

GPT-3 (13B) (Brown et al., 2020) × × – 6.80 5.30 4.50
GPT-3 (175B) (Brown et al., 2020) × × – 7.70 6.00 4.70

Table 3: Performance comparison of
FineScope-tuned models versus baselines
across MBPP and HumanEval coding
datasets.

Model Pruned Tuned Dataset HumanEval MBPP

Vicuna

× × – 0.14 0.03
✓ × – 0.04 0.00
✓ × Random 0.03 0.00
✓ × Full-OI 0.09 0.05
✓ ✓ Alpaca 0.07 0.00
× ✓ FineScope 0.21 0.13
✓ ✓ FineScope 0.13 0.10

MathCoder-CL

× × – 0.03 0.01
✓ × – 0.00 0.00
✓ × Random 0.00 0.00
✓ × Full-OI 0.10 0.09
✓ ✓ Alpaca 0.08 0.05
× ✓ FineScope 0.20 0.14
✓ ✓ FineScope 0.11 0.10

LLaMa3.1

× × – 0.50 0.46
✓ × – 0.26 0.13
✓ × Random 0.20 0.09
✓ × Full-OI 0.30 0.29
✓ ✓ Alpaca 0.25 0.13
× ✓ FineScope 0.55 0.48
✓ ✓ FineScope 0.49 0.43

Table 2 highlights significant performance improve-
ments in math domains using our domain-specific
tuning: Vicuna (+7.01), MathCoder-CL (+7.71), and
LLaMa 3.1 (+18.45) versus Alpaca-tuned baselines.
A similar trend is observed when finetuned with
Math’s full corpus (e.g.,+1.97 average performance
gain for MathCoder-CL when compared with Full-
Math corpus). However, pruning severely degrades
Vicuna and MathCoder-CL’s performance and Al-
paca’s general-purpose instructions fail to restore
performance due to a lack of semantic focus. Com-
pared to GPT models, our tuned models achieve
competitive performance, with differences likely due
to GPT’s imbalanced training data limiting gener-
alization. Despite reducing model size to approxi-
mately 71% of the original, FineScope is able to re-
store performance by fine tuning on a semantically
focused dataset.

As shown in Table 3, our domain specific tuning
dataset, FineScope, substantially improves coding
performance on the HumanEval and MBPP bench-
marks, especially after model pruning. When ap-
plied to pruned models, FineScope yields coding gains of +0.08 for Vicuna, +0.04 for MathCoder
CL, and +0.27 for LLaMa 3.1 8B compared to tuning with the full Alpaca dataset. In all three
models, pruning alone leads to a significant decline in code generation performance, and tuning on
the Alpaca dataset fails to recover the loss.In comparison to OpenInstruct’s full corpus (Full OI),
FineScope delivers highly competitive and often superior results. For instance, the pruned LLaMa
3.1 model fine tuned with FineScope achieves scores of 0.49 on HumanEval and 0.43 on MBPP,
outperforming the same model tuned with Full OI, which reaches 0.30 and 0.29, respectively. These
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Table 4: Effect of Modified SDFT (MSDFT) and domain-specific pruning methods across domains.

Domain MSDFT Pruning

W/O W/ FineScope Bookcorpus

STEM 30.54 31.12 31.12 28.64
Social Sciences 34.25 36.23 36.23 33.24
Humanities 33.15 36.55 36.55 31.03

results demonstrate that FineScope is more effective at producing specialized, high performing mod-
els than simply relying on a large general purpose corpus for tuning and pruning guidance.

4.2 EFFECT OF MSDFT AND PRUNING DATASET

Modified SDFT Table 4 shows a consistent improvement in performance when modified SDFT is
applied, compared to standard fine tuning. Across all three domains, models fine tuned with SDFT
outperform their counterparts. For example, we observe performance gains of 1.9% in STEM, 5.8%
in Social Sciences, and 10.26% in Humanities. This consistent improvement across diverse domains
highlights the effectiveness of a distillation based approach for enhancing model performance in
domain specific adaptation. Pruning Dataset Table 4 highlights pruning with the FineScope domain
aligned dataset, followed by fine tuning on the same domain data, results in an average accuracy gain
of 11.8% compared to pruning with a general purpose corpus (Kobayashi, 2018). This demonstrates
that incorporating domain specific samples during the pruning stage helps retain critical representa-
tions that are often lost when using generic data, leading to consistently higher performance across
STEM, Social Science, and Humanities benchmarks.

4.3 EFFECT OF TOPK ON COMPUTATION
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Figure 3: Impact of varying TopK on
SAE’s average reconstruction loss, av-
erage accuracy and training time for all
transformer blocks.

The choice of the hyperparameter K for our Sparse Au-
toencoders (SAEs) reflects a trade-off between training
efficiency and performance across domains. As shown
in Figure 3, increasing K improves average accuracy
on STEM, Social Sciences, and Humanities tasks but
also leads to longer training times across all transformer
blocks of the Vicuna 7B model. We find that setting
K=128 provides a favorable balance, yielding strong av-
erage accuracy while keeping training time tractable. Fur-
ther increasing K to 256 offers only marginal accuracy
gains at the cost of significantly higher computational
overhead.

5 CONCLUSION

We presented FineScope, a unified framework that en-
ables efficient domain adaptation of LLMs by integrating
sparse autoencoder-guided data selection with structured
pruning and fine-tuning. By identifying semantically rel-
evant samples from large unlabeled corpora, FineScope constructs compact, high-quality datasets
that guide both compression and adaptation. Across diverse domains, FineScope consistently im-
proves performance while significantly reducing model size, demonstrating that targeted data selec-
tion is crucial for effective LLM deployment in resource-constrained settings.
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A APPENDIX FOR FINESCOPE

A.1 PRUNING RATIO BOUNDARY
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Model Pruning Ratio

Figure 4: Effect of model pruning ratio on
accuracy.

To examine the limits of model compression, we
compared performance under different pruning ra-
tios using our FineScope pipeline and the larger
SelfInstruct dataset on the LLaMA 3.1 8B model.
As shown in Figure 4, FineScope demonstrates
greater resilience to aggressive pruning. Although
both methods show a decline in accuracy as prun-
ing increases, FineScope consistently outperforms
SelfInstruct across all settings. Notably, SelfIn-
struct begins to degrade at just 25% pruning, while
FineScope maintains stable accuracy up to 35%.
This indicates that FineScope enables higher pruning
tolerance without compromising task performance.

A.2 COMPARISON WITH SYNTHETIC DATASET

In Figrue 5 we evaluate our curated FineScope
dataset (2.1K samples) against the publicly available
synthetic STEM-Saraswati dataset (Tiwari, 2024), generated using GPT-4 (Achiam et al., 2023),
as well as general-purpose finetuning datasets such as Alpaca and OpenInstruct. scope achieves
comparable accuracy to STEM-Saraswati on STEM-specific tasks, demonstrating the high quality
of our curated dataset. Moreover, when contrasted with general-purpose datasets, both STEM-
Saraswati and FineScope achieve substantially higher performance, highlighting the critical role
of high-quality, domain-specific data in enhancing model capabilities within specialized scientific
domains.
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Figure 5: Performance comparison with synthetic STEM dataset.

A.3 EFFECT OF SAE-EMBEDDING

As shown in Table 5, the method of data curation has a significant impact on model performance
after fine-tuning. The results consistently demonstrate that curating the fine-tuning dataset using
our interpretable SAE-embeddings leads to substantially better outcomes than using standard raw
embeddings. To analyze the effect of the embedding type, we compare the performance of original
and pruned models fine-tuned on datasets curated by each method. Using SAE-embeddings yields
superior results across all models and domains. For example, with Vicuna the average performance
gain after finetuning the original model and pruned model is + 5.08 and + 2.06 respectively across
all domains. This indicates that the features captured by the SAEs are more relevant and lead to a
higher quality fine-tuning dataset.
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Table 5: Performance comparison of SAE-Embedding dataset selection versus BERT-Embedding
dataset selection. MC-CL: MathCoder-CL.

Model Type Dataset STEM Social Sci. Hum.

Vicuna

Full BERT-Embedding 31.17 35.04 34.49
Pruned BERT-Embedding 29.01 34.23 34.48
Full SAE-Embedding 33.32 40.21 42.43
Pruned SAE-Embedding 31.12 36.23 36.55

MC-CL

Full BERT-Embedding 30.45 29.14 29.01
Pruned BERT-Embedding 24.91 12.73 12.53
Full SAE-Embedding 34.96 32.91 31.66
Pruned SAE-Embedding 25.89 13.81 13.68

LLaMa3.1

Full BERT-Embedding 46.19 49.22 50.94
Pruned BERT-Embedding 37.02 39.32 39.00
Full SAE-Embedding 48.84 51.66 51.45
Pruned SAE-Embedding 39.91 41.07 41.19

B SEED SELECTION:

We visualize the seed selection process using cluster analysis, as shown in Figure 6. The interpreta-
tion of features varies across initial, middle, and final layers, reflecting how representations evolve
within the model. The results suggest that our curated dataset is alinged with the clustered virtual
domain target domains across different layer representations. Lower layers tend to capture broad,
generalized features, often encoding syntactic structures or common linguistic patterns. In contrast,
deeper layers focus on increasingly abstract and domain-specific attributes, leading to more compact
and semantically meaningful clusters.

This progressive refinement suggests that domain-relevant information emerges more distinctly in
later layers, where feature representations become more specialized. Our method leverages this hi-
erarchical structure, selecting seeds from layers that balance generalization and domain specificity.
By utilizing SAE-based representations instead of raw embeddings, we ensure that the seed selec-
tion process is more interpretable and aligned with high-level domain knowledge, rather than being
influenced by superficial token-level similarities. This reinforces the effectiveness of our approach
in identifying the most informative seed samples for dataset curation.

B.1 EXAMPLE SEEDS

Figures 7, 8, and 9 present the user-defined seed samples for STEM, Social sciences and Humanities
respectively. Based on these seeds, we extracted domain-specific data points from the larger dataset.
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Figure 6: Cluster visualization for seed selection for dataset curation (for STEM)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Which type of reinforcement learning strategy involves explicitly learning a model
of the environment?

Let L = Q(sqrt(3), sqrt(5)). What is the degree [L : Q]?

In a second-order linear control system, what does the damping ratio ζ determine?

The primary function of the mitochondria in eukaryotic cells is to:

Powerhouse of the Cell is :

In machine learning, what is the bias-variance tradeoff?

A NAND gate has two inputs. For how many input combinations does it output 1?

Let f(x) = x^4 - 4x^2 + 2. What is the degree of its splitting field over Q?

What does an increase in refractive index imply about the speed of light in a
medium?

A computer algorithm has time complexity O(n log n). What is the best
classification for this algorithm?

STEM

Figure 7: User defined seed sample of STEM target domain

In a linear regression model, what does multicollinearity among explanatory
variables cause?

Which of the following actions is most likely to reduce inflation in the short run?

What does Emile Durkheim mean by “anomie”?

What is the primary function of the legislative branch in the U.S. government?

Which geographic feature forms the natural border between France and Spain?

What does the law of diminishing marginal utility state?

The sexual response cycle as described by Masters and Johnson includes which of the
following stages?

Which doctrine stated that the U.S. would provide military aid to countries
resisting communism after World War II?

In cognitive-behavioral therapy, what is cognitive restructuring primarily used
for?

What part of the brain is primarily associated with emotion processing?

Social Sciences

Figure 8: User defined seed sample of Social sciences target domain
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Which of the following actions is most likely to reduce inflation in the short run?

What was the primary cause of the decline of the Roman Republic?

In Shakespeare's "Macbeth", what prophecy do the witches give Macbeth?

The Enlightenment emphasized which of the following ideals?

Which language family does Finnish belong to?

What is the primary function of the legislative branch in the U.S. government?

Who wrote "The Second Sex", a foundational text in feminist philosophy?

What is the main theme of George Orwell’s "1984"?

The Treaty of Versailles ended which major conflict?

Structuralism in literary theory is primarily concerned with:

Humanities

Figure 9: User defined seed sample of Humanities target domain
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