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Abstract

Over time, a growing wave of large language models from various series has been
introduced to the community. Researchers are striving to maximize the performance
of language models with constrained parameter sizes. However, from a microscopic
perspective, there has been limited research on how to better store knowledge in
model parameters, particularly within MLPs, to enable more effective utilization of
this knowledge by the model. In this work, we analyze twenty publicly available
open-source large language models to investigate the relationship between their
strong performance and the way knowledge is stored in their corresponding MLP
parameters. Our findings reveal that as language models become more advanced
and demonstrate stronger knowledge capabilities, their parameters exhibit increased
specialization. Specifically, parameters in the MLPs tend to be more focused
on encoding similar types of knowledge. We experimentally validate that this
specialized distribution of knowledge contributes to improving the efficiency of
knowledge utilization in these models. Furthermore, by conducting causal training
experiments, we confirm that this specialized knowledge distribution plays a critical
role in improving the model’s efficiency in leveraging stored knowledge.

1 Introduction

An increasing number of powerful large language models (LLMs) have emerged in recent years
(Touvron et al.,[2023a; |Achiam et al., 2023} |Groeneveld et al., 2024} [Bazi et al., (2023} Team, |2025)),
often demonstrating remarkable capabilities across various benchmarks and tests (Hendrycks et al.|
2021a; (Chen et al., 2021a; |Cobbe et al.,2021). Thanks to the large parameter space, they have shown
an exceptional ability to encode vast amounts of knowledge within their parameters, enabling superior
performance on knowledge-intensive tasks (Hendrycks et al.l 2021a;Zhang et al., 2023)).

To understand the internal mechanism of knowledge storage, many studies have been conducted. For
example, |Geva et al.|(2021b)) interprets the MLP layers of the transformer architecture (Vaswani et al.|
2017) as key-value memories, where the factual knowledge encoded in the weights is retrieved and
transmitted to the output layer during inference (Geva et al.| 2023} [Meng et al.} 2022; [Yu et al., [2024)).
Furthermore, researchers have observed that, in the final layer of the MLP, each vector in that value
matrix can act as a fundamental unit of knowledge storage (Geva et al.,2022alb). However, there
has been limited research on how to better store and compress knowledge within constrained model
parameters to enable more effective utilization of that knowledge by the model.
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In this work, we investigate the relationship between language models’ knowledge storage patterns
and their performance. To identify parameters associated with specific knowledge concepts, we
analyze consistently activated parameters in MLP layers when the model processes questions related
to the particular knowledge concept. Building on the key-value interpretation of the MLP by Geva
et al.| (2021b), which treats the up-projection matrix as the key and the down-projection matrix as
the value (i.e., stored knowledge), we extract the intermediate representations between these two
matrices and treat their absolute value as the activation of corresponding parameters. To support
empirical analysis, we construct a new encyclopedic knowledge benchmark based on Wikipedia,
covering knowledge concepts with varying frequencies. We then apply the knowledge parameter
identification method to 20 open-source LLMs across a wide range of model families, enabling us to
explore correlations between knowledge storage patterns and overall model performance.
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Motivated by this observation, we fur-

ther conduct four sets of controlled

experiments, each involving continued training on the Llama2-7B (Touvron et al.| [2023a) and
Qwen2-7B (Yang et al.,2024)) models with new knowledge respectively, to validate the strong causal
relationship between improved parameter specialization and enhanced performance of the models
on knowledge tasks. Overall, the experiments reveal that encoding similar knowledge into the same
parameter vectors better aligns with the model’s internal knowledge retrieval mechanism. This
approach helps the model utilize knowledge more efficiently, improves knowledge compression, and
reduces hallucination generation.

Our contributions can be summarized as follows:

* To the best of our knowledge, this is the first attempt to quantify and compare the degree of
parameter specialization for knowledge storage across different LLMs.

* We investigate the relationship between parameter specialization and model performance in LLMs,
constructing a dedicated probing dataset for an in-depth analysis on 20 open-source LLMs. Our
findings indicate that more capable LLMs exhibit greater parameter specialization.

» Through controlled training experiments, we provide empirical evidence of a causal link between
increased parameter specialization and improved performance on knowledge-intensive tasks.

2 Related Work

Knowledge Storage in LLMs Studying how knowledge is stored and utilized in LL.Ms has been
an important area in the research of LLM interpretability (Meng et al.l [2022} (Geva et al.,|2021b;
Sukhbaatar et al., 2015} |Geva et al.||2023)). Recent studies have shown that MLPs are the primary and
crucial components for storing factual knowledge and associations in transformer-based language
models (Geva et al., [2022b} |Dar et al.,[2023). They can be conceptualized as key-value memories
(Geva et al.l 2021b)), where the factual knowledge encoded in the MLP weights is recalled and
transmitted to the output layer during inference (Geva et al., [2023; Meng et al., [2022; [Yu et al., [2024).
Additionally, researchers have found that in the final layer of the MLP, each vector in the value matrix
can serve as a fundamental unit for storing knowledge (Geva et al.,2022alb). They have also verified



that by directly manipulating or disrupting these parameter vectors, specific knowledge can be edited
or unlearned (Hong et al.||2024alb; Meng et al., 2022), leading to changes in the model’s responses.

Knowledge Superposition in LLM Elhage et al.| (2022); |Olah| (2023) propose the concept of
Knowledge Superposition. It refers to an inevitable phenomenon in neural network models, especially
large language models, during training and data memorization: since the number of data features
greatly exceeds the number of parameters in the model, each parameter does not have a simple
one-to-one mapping with the data features or knowledge. Neurons are often involved with multiple
data features simultaneously. In our work, we treat each vector in the last layer of MLP as a basic
unit for storing knowledge and investigate the superposition of knowledge within these vectors.

3 Parameter Specialization Analysis for Knowledge Storage

3.1 Preliminary

In transformer-based language models, the MLP is a crucial component for storing the model’s
factual knowledge, and its sub-layers can be viewed as key-value memories (Geva et al.,2021b). To
be specific, the first layerf] of MLP sublayers can be viewed as a matrix W formed by key vectors

{ki,ka,...,k,}, used to capture a set of patterns in the input sequence, and ultimately outputting
the coefficient scores. The second layer can be viewed as a matrix Wy, formed by value vectors
{v1,va,...,v,}, with each value vector containing the corresponding factual knowledge.

Formally, the output of the MLP in the transformer’s /-th layer, given an input hidden state x¢, can be
defined as:

M = f(Wi - y(x" + AWy, = m Wy, (1)

where W[‘}, Wf, € R™*?. The function f and  represent a non-linearit and layer normalization,

respectively. In the transformer’s /-th layer, m* € R™ denotes the coefficient scores, and A*
represents the output of the attention component. The hidden state dimension is d, while the
intermediate MLP has a dimension of n. Then, by denoting v§ as the j-th column (which will be

called the value vector or parameter vector in the following sections) of W{’/ and mﬁ as the j-th

element in the coefficients produced by the first layer of the MLP, we can view MLP’s output MY as
a linear combination of the value vectors in W‘Z,, with their corresponding coefficients m*:

0 _ " 0l
M=) miv, @

Finally, the hidden states at the /-th layer of the language model can be defined as:
X = x4 M+ AL 3)

where X ¢, M¢ and A’ represent the hidden states, MLP’s output, and the attention component’s
output in the transformer’s /-th layer, respectively. In this work, we focus on studying the impact of
the MLP on the knowledge output of the hidden states.

3.2 Knowledge Vectors Masking Procedure

Referring to Eq. (@), if we aim to ablate the impact of the knowledge contained in the vectors for
a particular subset S of indices in /-th layer, we can directly set the corresponding m values for

j e S? to zero. Hence, we have:

Mmasked ZJ 1 mj ]+ZJ 1 0- V ZJ 1 mJVJ (4)
¢St

j¢st

“In most decoder-only models, such as GPT-2 (Radford et al., [ 2019) and GPT-J (Chen et al.,[2021b), the MLP
component consists of two layers, whereas in LLaMA (Touvron et al.|[2023b), it comprises three layers. However,
we can still regard LLaMA’s first two layers collectively as the key matrices, with their output representing the
coefficient scores.

For brevity, the bias term is omitted.



Therefore, given a concept, when we aim to identify which specific value vectors in the model’s
MLPs are most closely related to the knowledge contained in that concept—while avoiding the
masking of vectors associated with the model’s general capabilitiesﬂ (Meng et al.} 2022} |Geva et al.,
2023), i.e., determining the appropriate subset S* at each layer of the model for this concept—we
will run ¢ concept-related questions and ¢* irrelevant questions on the selected model. Then we will
compute the corresponding coefficients m* and m**, which are the averages of the coefficients for
the concept-related questions and irrelevant questions, respectively, at each layer of the model. For
details on the generation of concept-related and irrelevant questions, as well as the selection of ¢ and
t*, please refer to After obtaining m* and m** at each layer, we perform the computation using
the following formula:

St = {|m§ fm’;q | 1<j<n, mg em’, mje € m*é} 5)

Next, we will sort S in descending order and select the value vectors corresponding to the indices of
the top k elements, which will be used as the subset S¢ for the masking operation. This allows us to
observe and analyze the impact of masking these vectors on the model’s knowledge output for certain
concepts.

3.3 The Definition of Parameter Specialization

After obtaining the subset of value vectors S* that exhibit specificity to a given concept at each layer
of the model, as described in §3.2] we apply the masking operation to these value vectors, as shown
in Eq. (@). We then analyze its impact on the model’s final outputs for the ¢ concept-related questions
and t* irrelevant questions. By comparing the model’s responses after masking with the ground truth
answers, we compute the accuracy on concept-related questions, referred to as the Concept Specific
Score after surgery, and the accuracy on irrelevant questions, referred to as the General Score after
surgery. To quantify the degrees of specialization of the model’s value vectors with respect to the
concept-related knowledge, we define the Parameter Specialization Score (PSS):

PSS 2 |General Score after surgery — Concept Specific Score after surgery|

) (6)

General Score before surgery

which is obtained by taking the absolute difference between the General Score and the Concept
Specific Score after surgery, and then dividing by the model’s accuracy on the entire dataset before
surgery. A higher PSS indicates that the parameter vectors in the model’s MLP layers exhibit a higher
degree of specialization towards specific knowledge. Conversely, a lower PSS suggests more severe
knowledge superposition phenomena within the parameter vectors, resulting in a lower degree of
specialization.

3.4 Dataset Construction

To thoroughly investigate the parameter specialization of knowledge with different frequencies in the
parameter vectors of LLMs’ MLP, we introduce a dataset named SpecWiki. It includes 525 concepts
selected from Wikipediaﬂ a widely recognized high-quality corpus for LLM training. These concepts
are categorized based on their frequency levels to ensure a diverse distribution. We then design
two distinct question formats—multiple-choice questions and open-ended generation prompts—to
facilitate a thorough examination of the models’ knowledge storage.

Concept Selection We treat each Wikipedia item as a defining concept, typically represented by
an article focused on a specific subject, indicated by its title. We focus on specific entity concepts,
such as historical figures, events and locations. We began by randomly sampling 2,400 pages (a
0.01% rate) from the 2019 version of Wikipedia. Subsequently, we performed manual filtering to
remove overly commonsensical or abstract concepts (such as the letter ’S’ and the word "Freedom’),
ambiguous concepts (like *Apple’), and those associated with pages under 1,000 words. Ultimately,
this resulted in 525 high-quality concepts spanning specific topics like people, arts, and events.

*The term "general ability" refers to the model’s fundamental skills, such as processing text inputs correctly
and generating coherent outputs, rather than encoding knowledge specific to a particular concept.
Shttps://en.wikipedia.org/



Given that the frequency of knowledge in training datasets significantly influences a model’s ability
to retain and comprehend it (Allen-Zhu & Li,2023; | Meng et al., [2022; Mallen et al., [2023)), we utilize
Wikipedia page views as a proxy for knowledge frequency in the models’ pre-training datasetsﬁl To
this end, we calculated the page views for each concept on Wikipedia between January 1, 2010, and
December 31, ZOlqﬂ Based on these statistics, concepts are categorized by page view frequency into
three equal tiers: low-frequency (bottom 33% of the distribution), medium-frequency (middle 33%),
and high-frequency (top 33%). A more detailed distribution of the categories and the corresponding
example data of SpecWiki dataset are provided in Table [ and Table 3] respectively, in the Appendix.
This approximation helps estimate the likelihood of a concept’s presence in the models’ pre-training
datasets and allows us to explore how knowledge at different frequency levels is stored in models and
provides a more comprehensive evaluation.

Question Generation To more precisely assess the retention of knowledge within the model, we
design two sets of question formats.

* Multi-Choice Questions. Drawing inspiration from the widely used Massive Multitask Language
Understanding (MMLU) dataset (Hendrycks et al., 2021b), which evaluates general knowledge
across models, we similarly designed ten multiple-choice questions for each concept, ensuring the
knowledge and answers could be directly found in the relevant Wikipedia articles. Specifically, we
provided GPT-40 (OpenAl et al., 2024) with the appropriate Wikipedia article for each concept
and instructed it to extract ten questions without overlap, along with the correct answers derived
from the article’s text. Next, it was instructed to generate three additional incorrect answers, aside
from the golden answer, ensuring that none of them overlapped with the correct answer to avoid
confusion. The detailed prompt is available in §A.T] We also include sample multiple-choice
questions and results of manual verification of the generated data in Appendix

* Open-ended Generation. To more effectively assess the model’s ability to generate knowledge text
freely, and to overcome the randomness and lack of depth inherent in the Multi-Choice Question
evaluation method, we also set up a series of Open-ended Generation questions. For each question
related to a concept, we prompted the model to generate an answer of up to 150 tokens directly
and used GPT-40 as an evaluator to evaluate whether the generated response correctly matched the
golden answer.

4 Experiment

4.1 Experimental Setup

Evaluated Models To provide a more comprehensive evaluation of how the degree of parameter
specialization evolves across large language models, we assessed 20 open-source models from
various families and sizes in the community. Specifically, we evaluated LLaMA series (Touvron
et al., 2023alb; |Grattafiori et al.,2024), Qwen series (Bai et al., 2023} |Yang et al., |2024; Teaml, [2025)),
Gemma series (Team et al., 2024allb), OLMo series (Groeneveld et al., 2024; |OLMo et al.| [2025)), Yi
series (Al et al.,|2025)), Mistral series (Jiang et al., 2023), GPT-j-6b (Wang & Komatsuzaki, [2021)),
Pythia-6.9b (Biderman et al.| 2023)), Falcon-7b (Almazrouei et al.| 2023)) and Mpt-7b (Databricks|
2023)). Refer to Appendix §B.I|for the implementation details of these models.

Knowledge Vectors Masking Setup Based on the descriptions in in order to obtain m’ and
m** for each concept in SpecWiki at each layer of the model, we set the number of concept-related
questions ¢ to 10. Additionally, we randomly select 5 irrelevant concepts with no knowledge overlap
from the benchmark, and gather the corresponding questions associated with these irrelevant concepts,
resulting in ¢* = 50 irrelevant questions. These collected questions will also be directly utilized in
the computation of both the Concept-Specific Score and the General Score.

ITo better support this point, we include experiments in of Appendix that validate the strong correlation
between concept popularity and their frequency in the pretraining data.

'"The earliest release date of the evaluated models, such as GPT-J, is 2019. Therefore, their pretraining
datasets could not include knowledge or concepts that emerged after this period. To ensure a fair evaluation
across all models, any knowledge introduced post-2019, including the COVID-19 pandemic, was excluded from
the benchmark.
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Figure 2: Correlation between the performance on SpecWiki and parameter specialization score
(PSS) in 20 language models. We use a color gradient to distinguish the release times of the models,
with cooler colors indicating earlier release dates and warmer colors representing later releases.
Additionally, the size of each circle reflects the model’s performance on MMLU, with larger circles
indicating better performance. The blue trendline, obtained through linear regression fitting of the
data points, suggests a strong correlation between a model’s performance on SpecWiki and its degree
of Parameter Specialization.

Regarding the selection of model layers for masking, since the initial layers of a model typically
handle fundamental capabilities like basic text processing (Meng et al. [2022} (Geva et al., [2023)),
masking these layers could severely impair the model’s basic text generation abilities. Therefore, for
all models in our study, we preserve the first 5 layers without masking and only apply vector masking
operations to all subsequent layers.

For the PSS computation of each model, we selected five different fixed k£ values—10%, 20%, 30%,
40%, and 50%—which represent the proportion of value vectors in the model’s MLP layers that were
masked. For each k, we calculated the corresponding PSS following|[6] and then averaged the results
to obtain the final PSS score for each model. This criterion was applied consistently across both the
Multiple-Choice Questions (MCQ) and Open-ended Generation (OEG) tasks.

4.2 Main Results

The main results for the Multiple-Choice Questions setting can be seen in Figure[2] We observe a
strong correlation between the degree of Parameter Specialization (measured by PSS) and model
performance on SpecWiki across 20 models, with Pearson and Spearman coefficients of 0.92 and
0.93, respectively. Models achieving better performance on SpecWiki exhibit higher Parameter
Specialization Scores. Furthermore, models with higher PSS are often those released more recently
(warmer color) and exhibit stronger general abilities, as measured by their MMLU performance
(larger circle). The corresponding results for the Open-ended Generation setting can be found in
Figure[6]in §B.2] which exhibit similar patterns and trends.

To better analyze the variations in Parameter Specialization across models within the same family,
we selected eight models from four model families: LLaMA, Qwen, Mistral, and Gemma. We
examined how the difference between the General Score, which represents the model’s ability to
handle irrelevant knowledge, and the Concept Specific Score, which reflects the model’s ability to
handle task-specific knowledge, changes under different masking ratios of parameter vectors. The
results are shown in Figure

From the figure, we can observe a very similar pattern across models from the four families:
1. Among models within the same family, more advanced models tend to achieve higher peaks in the

General Score - Concept Specific Score difference. This indicates that more advanced models
generally exhibit higher levels of Parameter Specialization.
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Figure 3: Analysis of Parameter Specialization variations across models within the same family. We
selected eight models from four model families: LLaMA, Qwen, Mistral, and Gemma. The figure
shows how the difference between the General Score (representing the model’s ability to handle
irrelevant knowledge) and the Concept Specific Score (representing the model’s ability to handle
task-specific knowledge) changes under different masking ratios of parameter vectors.

2. As the masking ratio of parameter vectors increases, from approximately 5% to 20%, the difference
between the General Score and the Concept Specific Score gradually increases to a peak. This
indicates that we are removing parameter vectors that are highly specific to the target knowledge.
After reaching the peak, as the masking ratio continues to increase, the difference gradually
decreases to zero. This suggests that parameter vectors with lower activation are often those that
have a higher degree of knowledge superposition and are less specialized in the target knowledge.

Additionally, we unexpectedly found that when a small proportion of concept-related vectors (ranging
from 5% to 10%) were masked, the performance of the masked models on unrelated questions
even surpassed that of the original models. This observation is consistent across various models
and indicates the positive impact of reducing irrelevant information interference in the model’s
representation, leading to improved performance.

In §5] we will further validate the causal relationship between the degree of model parameter
specialization and its ability to better utilize target knowledge through the finetuning experiments on
additional data.

4.3 TImpact of Model Scale on Parameter Specialization

In this section, to better explore the dif-

ferences in the degree of parameter spe-

cialization across models of different sizes, Model | Accuracyycq T PSST

we conducted Knowledge Vectors Mask-  Qwenl1.5-0.5B | 0.61 (+0.2) 0.019 (£0.01)
ing experiments on five Qwen1.5 models ~ Qwenl.5-1.8B | 0.61 (+0.3) 0.044 (£0.02)
of varying sizes (0.5B, 1.8B, 4B, 7B, and Qwenl.5-4B 0.73 (£0.2) 0.075 (£0.02)
14B) and on 2 Gemma2 models (2B and ~ Qwenl.5-7B 0.75 (+0.2) 0.121 (£0.04)
9B). The results are shown in Table[T] We Qwenl.5-14B | 0.82 (£0.2) 0.184 (+0.03)
observe that in both the Qwen and Gemma  Gemma2-2B 0.72 (+0.3) 0.057 (£0.02)
model families, as the model size increases, ~Gemma2-9B 0.86 (£0.1) 0.138 (£0.03)

the corresponding Parameter Specializa-
tion Score also increases. This trend is
accompanied by improved performance on
SpecWiki. This suggests that in larger-
scale models, the degree of superposition
for specific knowledge decreases and it
tends to be distinctly represented across
designated parameter vectors.

Table 1: Performance comparison of language models
with varying sizes on Multiple-Choice Question and
Parameter Specialization Score. Both the Qwen1.5 and
Gemma?2 series models show improved Parameter Spe-
cialization as the model scale increases, accompanied
by better performance on the MCQ testing in SpceWiki.

4.4 Evolution of Parameter Specialization During Pretraining

To better investigate the development of Parameter Specialization in the model from the perspective
of model training dynamics, we analyzed 10 checkpoints from the OLMo-2-1124-7B (OLMo et al.|
2025)) pretraining process by using our SpecWiki. The results are shown in Figure ] below.
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process. 7B models.

Model \ Accuracyyicg T Accuracyppg T PSS 1 Semantic Entropy | Local Intrinsic Dimension |
LLaMA2-7B 0.60 (0.2) 0.51 (£0.1) 0.67 (£0.1) 0.67 (£0.1) 11.23 (£2.1)
LLaMA2-7Bpr_py | 0.63 (+0.3) 0.54 (£0.2) 0.65 (£0.2) 0.62 (+0.1) 1112 (+1.4)
LLaMA2-7Brr_py || 0.67 (£0.3) 0.59 (£0.2) 0.72 (+0.1) 0.50 (£0.2) 7.89 (+2.1)
LLaMAZ-7Brr_cv | 0.62 (+0.1) 0.51 (+0.1) 0.63 (+0.2) 0.62 (+0.1) 11.12 (+1.4)
LLaMA2-7Bpr_py | 0.58 (0.2) 0.49 (40.2) 0.65 (+0.2) 0.65 (+0.2) 11.07(£2.7)
Qwen2-7B 0.72 (+£0.3) 0.63 (0.1) 0.124 (£0.03)  0.56 (0.1) 9.78 (+1.9)
Qwen2-7TBpr_py | 0.73 (£0.2) 0.67 (+0.2) 0.110 (£0.02)  0.59 (+0.2) 8.53 (&1.1)
0.77 (+0.1) 0.70 (£0.1) 0.133 (+0.03) 0.39 (£0.1) 6.92 (£1.3)
Qwen2-7Brr_cy | 0.73 (£0.2) 0.65 (£0.2) 0.114 (£0.03)  0.55 (+0.2) 8.78 (+1.6)
Qwen2-7Bpr_py | 0.71 (40.2) 0.63 (+0.1) 0.122 (+£0.02)  0.59 (+0.2) 9.65 (+1.4)

Table 2: The performance of both the original LLaMA2-7B-base and Qwen2-7B-base models,
along with their FT-FV, FT-PV, FT-CV and FT-RV variants, was assessed on a selection of 10 high-
frequency concepts from SpecWiki. Five metrics were used to evaluate their performance, including
their general effectiveness, Parameter Specialization, and the degree of hallucination present in their
output.

From the results, we observe that during the early training steps (step 10,000 to step 210,000), both
the PSS and the accuracy on SpeciWiki remain nearly unchanged and close to zero. In the subsequent
phase (step 310,000 to step 510,000), although the model begins to show noticeable gains in accuracy
on SpeciWiki, the PSS are still under 0.1. However, it is during the later training steps (step 610,000
to step 910,000) that parameter specialization begins to emerge, accompanied by a more substantial
improvement in accuracy. These findings suggest that parameter specialization does not occur in the
early stages of training, but rather emerges after a certain amount of data exposure. Furthermore, as
training continues and the model sees more data, the degree of parameter specialization increases
accordingly.

4.5 Parameter Specialization in Relation to Concept Popularity

In this section, we analyze how the popularity of concepts themselves, which is roughly equivalent
to their frequency in the pretraining data, will affect the level of parameter specialization for the
corresponding knowledge. We follow the classification method for concepts as outlined in §3.4]
dividing them into high-frequency, mid-frequency, and low-frequency categories. The impact on their
PSS scores is measured on two example models, LLaMA2-7B, and Qwen2.5-7B, which are shown in
Figure[5]

From the figure, it is clear that in both the LLaMA2-7B and Qwen2-7B models, as the popularity of
a concept decreases, the model’s accuracy on that specific knowledge declines, accompanied by a
lower Parameter Specialization Score. This suggests that the degree of Parameter Specialization for a
particular knowledge in the model’s parameters is likely directly correlated with the frequency of that
knowledge in the model’s pretraining dataset. The higher the frequency, the greater the Parameter
Specialization for that knowledge in the model.

5 Validation of Parameter Specialization Benefits for Knowledge Tasks

In this section, we conducted four sets of controlled training experiments, each involving continued
fine-tuning on the Llama2-7B-base (Touvron et al.,[2023a) and Qwen2-7B-base (Yang et al.| 2024)



models with additional knowledge data. These experiments aim to validate the causal relationship
between improved parameter specialization and enhanced model performance on knowledge tasks.

5.1 Finetuning Setup

We randomly selected 10 high-frequency concepts from the SpecWiki benchmark. For each concept,
we gathered relevant textual material from the top 10 most popular Google search results, including
the corresponding Wikipedia article, and compiled this into an additional finetuning training dataset.

Next, we will validate whether the improvement in Parameter Specialization and the enhanced
efficiency in the model’s use of knowledge truly exhibit a causal relationship through four distinct
finetuning experiments. The experimental setups are detailed below:

FT-FV (Full Vectors) Perform full finetuning (FT) on all parameter vectors of the MLPs across all
layers in the model, while keeping the other parameters frozen.

FT-PV(Partial Vectors) Perform partial finetuning on a subset of the parameter vectors in the MLPs
while keeping the other parameters frozen. Specifically, for each model, we apply finetuning
(FT) to the top % most highly activated parameter vector For the selection of k, please
refer to the description in §4.1]

FT-CV(Complementary Vectors) Perform finetuning only on the complementary set of parameter
vectors, excluding the target vectors.

FT-RV(Random Vectors) Perform finetuning on a subset of parameter vectors randomly selected
from the MLP, ensuring the same quantity as in the FT-PV setting.

5.2 Finetuning Results

In addition to evaluating the model’s performance on SpecWiki’s Multi-choice Question and Open-
ended Generation tests, as well as the Parameter Specialization scores, we also report two other
metrics, Semantic Entropy (Kuhn et al.l 2022) and Local Intrinsic Dimension (LID) (Yin et al.|
2024)), for measuring the extent of hallucination in the model’s output. These metrics help evaluate
whether training strategies that enhance Parameter Specialization—by aligning better with the
model’s knowledge retrieval mechanisms through a data-encoded strategy—can effectively reduce
the unintended side effect of hallucination. For a detailed introduction to these two hallucination
measurements, please refer to §B.3]

The final results are presented in Table [2] From the results, we can see that the FT-PV method, which
finetunes only a small subset of the highly activated knowledge parameters, not only further enhances
the model’s Parameter Specialization compared to the three other finetuning setups, but also greatly
improves the model’s utilization of specific knowledge. As a result, it achieves the best performance
on the benchmark Multi-Choice questions and Open-ended generation tasks. Additionally, by
reducing the influence of irrelevant information in the model’s key parameter vectors, FT-PV helps to
significantly reduce the level of hallucination in the generated text.

Although FT-FV and FT-CV does improve the model’s performance on both the Multi-Choice
questions and Open-ended generation tasks to some extent, compared to FT-PV, it does not lead
to a better increase in Parameter Specialization. Additionally, the degree of hallucination in the
generated text is not effectively reduced. FT-RYV, serving as a counterpart to FT-PV, demonstrates
that fine-tuning the same number of arbitrary value vectors in the model’s MLP can not result in a
desirable knowledge enhancement.

6 Conclusion

This study reveals that enhanced parameter specialization—where related knowledge is encoded in
focused parameter vectors—correlates with superior performance in large language models. Analyz-
ing 20 open-source models, we observed stronger models increasingly consolidate similar knowledge
into fewer parameters, while weaker models distribute it diffusely. Controlled experiments confirmed

k k k

We experimented with 3, 7, 5 and 16°

sufficient to achieve excellent performance.

and found that finetuning only g of the parameter vectors was



that optimizing this specialization improves task performance and reduces hallucination. These
findings highlight the importance of aligning knowledge storage with models’ retrieval mechanisms
for efficiency and accuracy. Future work should explore dynamic knowledge updates and scalability,
advancing both interpretability and performance in LLM design.

7 Limitations and Future Work

In our work, we have only examined and validated knowledge parameter specialization within the
MLP, and this was done by treating vectors in the MLP as units of analysis. However, at least this
remains one of the knowledge storage methods that has been extensively validated so far (Geva et al.}
2021a; Meng et al., 2022; Geva et al., 2023). In fact, knowledge may also reside within the attention
module of transformer models (Geva et al., [2023)).

Additionally, due to GPU limitations, all the models we tested are smaller than or equal to 14B
parameters, so we were unable to validate our conclusions on larger models, such as those with 35B
parameters or more.

In future work, we will progressively narrow the focus of our research to individual neurons in
language models, aiming to measure and validate more precise Parameter Specialization and Pa-
rameter Superposition. In addition, we will extend this concept to the study of other related model
architectures, including Mixture of Experts (Fedus et al., 2022)), which similarly enhances model
performance by specializing expert parameters, as well as Sparse Auto-Encoders (Huben et al., 2024),
which help clarify the model’s representations by leveraging a larger parameter space and mitigating
the superposition of these features.
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A Details of Dataset

A.1 Dataset Construction Prompts

Below is our prompt for querying GPT-40 to generate the options for Multi-Choice questions of each
concept:

Please provide four answer options (A, B, C, D) for the following
question, and indicate the correct answer. Example: Question: ’When
was Costa Coffee founded?’ Options: A) 1971 B) 1985 C) 1992 D) 2000
Correct Answer: A) 1971

Now, please answer the following question: Question: Question
Options:

Below is our prompt for querying the model to generate the answers for Multi-choice questions in
three-shot setting:

**Question:** What is the capital city of France? **(Options:** A.
Berlin B. Madrid C. Paris D. Rome **Answer:** C

**Question:** What is the largest planet in our solar system?
**0Options:** A. Earth B. Jupiter C. Mars D. Venus **Answer:*x B
**Question:** Which element has the chemical symbol "0"? **xOptions:**
A. Oxygen B. Gold C. Silver D. Iron **Answer:*x A

**Question:** question **0Options:** A. option a B. option b C. option
¢ D. option d

Below is our prompt for collecting the coefficients in model when querying about concept-reated
knowledge:

Question: question Answer: answer:

A.2 Manual Verification

Here, we describe the manual verification process used in constructing SpecWiki, including the
validation of model-generated data:

Specifically, we analyze a subset of 524 (10%) questions from SpecWiki, by sampling 50% of the
concepts and randomly selecting 2 questions per concept. Then, we manually verify that the questions
are about the given concept and that they are simple and reasonable. In addition, we review all the
generated questions for 200 sampled concepts and verify they are not repetitive. We find that all
analyzed questions were about the given concept and that 522 (99%) of them are reasonable simple
questions. Moreover, we observe that questions are generally diverse, with only 1 out of 20 concepts
having 2 (out of 10) similar questions. This shows that our data generation process produces valid
and diverse instances for evaluation.

A.3 Dataset Categories and Examples

Here, we provided a more detailed distribution of the categories and the corresponding example data
of SpecWiki dataset in Table ] and Table [5] respectively.

A.4 Validation of Popularity-Frequency Correlation

We included a simple experiment to validate the strong correlation between the popularity of concepts
and their frequency in the pretraining data. To be specific, we used The Pile(Gao et al.| [2020),
which currently serves as a significant portion of the pretraining dataset for most large language
models(Touvron et al., [2023aj |Groeneveld et al.| [2024} Team et al.| 2024a), as an example of a
pretraining corpus. We then counted the frequency with which each of the 525 concepts from
SpecWiki appeared in all text segments of The Pile dataset via the Elasticsearch API(Elazar et al.|
2024])). Subsequently, we compared these frequencies with the popularity metrics for each concept and
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Figure 6: Performance across 20 models on Parameter Specialization Scores on Open-ended Genera-
tion Setting.

computed the corresponding Spearman’s rank correlation coefficient. The result is 0.814, indicating a
strong correlation.

Additionally, Table 3| presents the top 3 most popular and the bottom 3 least popular concept examples
in SpecWiki, along with their occurrence counts in The Pile dataset and their corresponding popularity
scores.

Top 3 High Popularity Example Concept \ Frequency Popularity
Wikipedia 911708 1414686
Barack Obama 984586 1128538
India 3839241 1024513
Bottom 3 Low Popularity Example Concept | Frequency Popularity
Dark Souls (video game) 49 27

Culture of Latin America 251 90

Array (data structure) 1164 94

Table 3: Top and bottom 3 concepts ranked by popularity and their corresponding frequencies.

B Details of Experiments

B.1 The implementation of the models

For all models, the inference is performed in a text completion/generation mode, without the addition
of any instruction tokens, to better assess the knowledge present in the model. For the Multi-Choice
Questions task, we use a three-shot setup for each model and search for the answer within the next
30 tokens generated by the model. For the open-ended generation task, we prompt the model in a
zero-shot setting to produce an answer no longer than 150 tokens.

All the experiments in this work were conducted on four 80GB NVIDIA A800 GPUs.

B.2 Parameter Specialization Scores on OEG Setting

In Figure 6] we provided the performance across 20 models on Parameter Specialization Scores on
Open-ended Generation Setting.
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High Frequency Medium Frequency Low Frequency

(Number of Concepts: 181) (Number of Concepts: 191) (Number of Concepts: 153)
Country  13.3%  Technology 7.6% | Technology 19.9% Mathematics 4.4% | Person 21.9%  Brand/Product 6.3%
Culture 9.5% Brand/Product 7.6% | Artand Entertainment 11.1%  Politics 4.4% | History 10.6% Medical 5.5%
Location 8.6%  Person 6.7% | Natural Sciences 10.5% Location 4.4% | Entertainment 8.6%  Culture 2.9%
History 8.6% Medical 6.7% | Medical/Biology 7.7%  Country 3.9% | Company/Organization  7.3%  Others 2.3%
Sports 7.6% Entertainment  6.7% | Culture 7.2%  Company/Organization 3.3% | Others 6.3% Natural Sciences  2.1%

Table 4: Ten most frequent concept categories of SpecWiki in high frequency, medium frequency,
and low frequency levels.

Example Concept Frequency Level Category Example Multi-Choice QA Example Open-ended Generation
The Lord of the Rings High Art and Enter- Question: "Who is the main protagonist of "The Lord of the Rings’?",  Question: "Who is the author of "The Lord of
Monthly Views: 177540 tainment Options: A: "Frodo Baggins", B: "Gandalf the Grey", C: "Aragorn”, D: the Rings’ trilogy?"
"Legolas". Answer: "J.R.R. Tolkien."
Answer: A
Detritivore Medium Biology Question: "What do detritivores consume to obtain nutrients?", Question: "What term is used for the consump-
Monthly Views: 11810 Options: A: "Fresh, living plants and animals”, B: "Detritus, including tion of dead wood by detritivores?"

decomposing plant and animal parts and feces", C: "Sunlight and water", Answer: "Sapro-xylophagy."
D: "Inorganic minerals and metals".

Answer: B
Maluma Low Person Question: "In which city was Maluma born and raised?" Question: "What is the name of Maluma’s 2023
Monthly Views: 2252 Options: A: "Bogotd", B: "Cali", C: "Medellin", D: "Cartagena”. album?"
Answer: C Answer: "Don Juan"

Table 5: Example data from the SpecWiki dataset.

B.3 Hallucination Metric Descriptions

In this experiment, we additionally incorporate two metrics, Semantic Entropy (Kuhn et al.| 2022)
and Local Intrinsic Dimension (LID) (Yin et al., 2024)), to assess hallucination. This helps evaluate
whether the finetuning methods that enhance Parameter Specialization also effectively mitigate the
unintended side effect of hallucination in the model’s output.

Semantic Entropy Semantic entropy is defined as a measure of uncertainty based on the distri-
bution of semantically equivalent outputs. In this method, the outputs are grouped into clusters of
semantically similar responses, and the entropy is calculated among these groups. Formally, it is
expressed as:

IC|
1
Semantic Entropy = Il Z log p(C;|z)
i=1

where C; represents the summed likelihood of outputs in the i-th group, and |C/| is the total number
of such groups. The measure captures the uncertainty not in individual responses but within clusters
of semantically similar outputs. This approach accounts for semantic equivalence among different
responses, providing a more robust evaluation of entropy in generative tasks.

Local Intrinsic Dimension The Local Intrinsic Dimension (LID) method detects hallucinations
in Large Language Models by measuring the discrepancy in the local intrinsic dimension of model
activations. This approach is grounded in the principle that LID represents the minimal number of
activations required to characterize a data point, with truthful outputs exhibiting lower LID values
due to their closer alignment with natural language structure, while hallucinated outputs tend to
show higher LID values due to mixing human prompt and model distributions. Technically, the
method employs Maximum Likelihood Estimation (MLE) using a Poisson process to approximate
the count of neighbors surrounding sample points, computed through the formula m(X;) = (1/(T —
1) % > (log(Q7/Q;)))~*, where T represents the number of nearest neighbors and @); denotes the
Euclidean distance to the j-th nearest neighbor. For more details about the Local Intrinsic Dimension
metric, please refer to the work (Yin et al., [2024).

19



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and the introduction in the paper clearly state the claims, contri-
butions and scope of our work.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Our work does not include any theoretical analysis or formal results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide sufficient details in §3.4]and §4]to ensure that our datasets and
experiments are fully reproducible.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We release the code and datasets in the supplementary materials submitted
alongside the main paper.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed specifications of all training and evaluation settings in
$.Tand §B.1]

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We include error analysis to support the main experiments in our paper,
specifically in §4.3]and §5]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide sufficient details on the replication of the experiments in §B.T]in
Appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We affirm that our research fully complies with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our research focuses on the interpretability of internal model parameters and
does not have direct societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: For the usage of other assets, we clearly cite their original sources and indicate
the corresponding versions and licenses.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We include the complete dataset in the supplementary materials, and provide
detailed information about its construction in §3.4}

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We only used GPT-40 to assist in generating evaluation questions for the
dataset, and included manually verified results in §A.2]of Appendix.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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