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Abstract

A fundamental challenge in probabilistic model-
ing is balancing expressivity and tractable infer-
ence. Probabilistic circuits (PCs) aim to directly
address this tradeoff by imposing structural con-
straints that guarantee efficient inference of certain
queries while maintaining expressivity. Since in-
ference complexity on PCs depends on circuit size,
understanding the size bounds across circuit fami-
lies is key to characterizing the tradeoff between
tractability and expressive efficiency. However, ex-
pressive efficiency is often studied through exact
representations, where exactly encoding distribu-
tions while enforcing various structural properties
often incurs exponential size blow-ups. Thus, we
pose the following question: can we avoid such
size blow-ups by allowing some small approxima-
tion error? We first show that approximating an
arbitrary distribution with bounded f -divergence is
NP-hard for any model that can tractably compute
marginals. We then prove an exponential size gap
for approximation between the class of decompos-
able PCs and additionally deterministic PCs.

1 INTRODUCTION

Generative models have shown remarkable success in cap-
turing complex distributions [21, 24, 29, 22, 39]; yet, despite
their expressivity, they often do not support efficient com-
putation of fundamental probabilistic queries, which are
critical for inference in domains such as healthcare [34],
neuro-symbolic AI [37], algorithmic fairness [7], and en-
vironmental science [3]. Probabilistic circuits address this
by balancing expressivity and tractable inference. Naturally,
there have been many works characterizing the expressive
efficiency of different circuit classes [16, 1, 6, 42, 43, 17].
However, how structural constraints affect the ability to
approximate distributions remains underexplored.

This paper studies the following fundamental question: does
allowing small approximation error alleviate the exponen-
tial separation between circuit classes observed in exact
modeling, or does hardness persist even in the approximate
setting? Our motivation is two-fold. (1) Showing that cer-
tain distributions cannot be approximated within a bounded
distance compactly by a family of PCs implies that any
learning algorithm whose hypothesis space is that family
of PCs would fail to learn the distribution with a bounded
approximation error. (2) Moreover, PCs can also be used
to perform inference on other probabilistic models (such as
Bayesian networks or probabilistic programs) by compil-
ing them into PCs then performing inference on the com-
piled circuits [2, 23, 14, 5, 20]. This suggests the following
approximate inference scheme: approximately compile a
probabilistic model into a PC then run efficient exact infer-
ence on the approximately compiled PC. Thus, if we can
bound the distance between the target distribution and ap-
proximate model, we can hope to provide guarantees on the
approximate inference results as well.

Our main contributions are as follows: (1) we prove that it
is NP-hard to approximate distributions within a bounded
f -divergence using any model that tractably computes
marginals, via a reduction from SAT (Theorem 3.3 and
3.4); (2) we derive an unconditional, exponential separation
between decomposable PCs and decomposable & determin-
istic PCs for approximate modeling (Theorem 4.1); (3) we
study the relationship between bounds on divergence mea-
sures for approximate modeling and approximation errors
for marginal and maximum-a-posteriori (MAP) inference,
characterizing when one is or is not sufficient to guarantee
the other (Section 3 and further discussion in Appendix B).

2 PRELIMINARIES

Notations We use uppercase letters (X) to denote random
variables and lowercase letters (x) to denote their assign-
ments. Sets of random variables and assignments are de-
noted using bold letters (X and x). The accepting models of
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a Boolean function f : {0, 1}n→{0, 1} over n variables is
denoted by f−1(1), and the number of accepting models by
MC(f). Moreover, a Boolean function f is the support of a
distribution P , if P is positive only over the models of f .

Probabilistic Circuits A probabilistic circuit (PC) recur-
sively encodes a joint probability distribution over random
variables through a parameterized directed acyclic graph
(DAG), composed of 3 types of nodes: leaf, product ⊗, and
sum nodes ⊕. PCs are closely related to logical circuits in
the knowledge compilation literature [16]. Logical circuits
encode Boolean functions as directed acyclic graphs (DAGs)
consisting of AND (∧) and OR (∨) gates—analogous to
⊗ and ⊕ nodes, respectively—with positive and negative
literals as leaf nodes. We can characterize different fami-
lies of both probabilistic and logical circuits based on their
structural properties, such as decomposability and deter-
minism. These circuit properties allow tractable (polytime)
computation of various queries); for instance, decomposable
PCs admit linear-time marginal inference while determin-
istic and decomposable PCs additionally allow linear-time
maximum-a-posteriori (MAP) inference. There is a rich lit-
erature studying different families of circuit representations
in terms of their tractability for inference and operations,
as well as their relative succinctness (expressive efficiency)
for both exact and approximate compilation, which we will
leverage for our hardness results and size lower bounds on
PCs. See Appendix A for further background on PCs.

Measures of Difference between Probability Distribu-
tions To study the hardness of approximating probability
distributions, we must first measure how “good” an approxi-
mation is. We focus on the class of f -divergences.

Definition 2.1 (f -divergence [30]). Let f : (0,∞) → R
be a convex function with f(1) = 0, and P,Q be two
probability distributions over a set of Boolean variables
X. If Q > 0 wherever P > 0, the f -divergence between P

and Q is defined as Df (P ||Q) =
∑

x Q(x)f(P (x)
Q(x) ).

Commonly used f -divergences include the Kullback-
Leibler divergence, χ2-divergence, and the total variation
distance, which is especially relevant to our results.

Definition 2.2 (Total Variation Distance). The total varia-
tion distance (TVD) between two probability distributions
P and Q over a set of n Boolean variables X is defined
as DTV(P∥Q) = 1

2

∑
x∈X |P (x)−Q(x)|, or equivalently

DTV(P∥Q) = maxS⊆{0,1}n |P (S)−Q(S)|.

To more compactly describe PCs that approximate distribu-
tions under some bounded distance, we use the following.

Definition 2.3 (ϵ-D-Approximation). Let P,Q be some
probability measures and D be some distance we want
to minimize between P and Q. We say that Q is an ϵ-D-
Approximator of P if D(P ||Q) < ϵ for some ϵ > 0.

We refer to any circuit Q such that it approximates our
target distribution P within DTV(P∥Q) < ϵ a ϵ-DTV-
Approximator. The majority of our results are derived using
properties of the total variation distance, due to its properties
as a distance metric. To extend our results to f -divergences,
we utilize the class of k-convex f-divergences, which pro-
vides an upper bound on the total variation distance.

We can define a k-convex f-divergence [28] as a R ∪ {∞}-
valued function f on a convex set K ⊆ R is k-convex
when x, y ∈ K and t ∈ [0, 1] implies f((1 − t)x + ty) ≤
(1 − t)f(x) + tf(y) − kt(1 − t) (x−y)2

2 . When f is twice
differentiable, this is equivalent to f ′′(x) ≥ k for x ∈ K.
In the case that k = 0 this reduces to the normal notion of
convexity. An f -divergence Df is k-convex over an interval
K for k ≥ 0 when the function f is k-convex on K.

We provide a table in Appendix C summarizing which f -
divergence measures are k-convex and for which value of k.
Throughout this paper, we express approximation bounds
using k-convex f -divergences as they naturally encapsulate
bounds on many common distance measures. For instance,
for any k-convex f -divergence between P and Q, we have
that DTV(P∥Q)2 < Df (P ||Q)/k [28]. For KL-divergence,
which is the most commonly used objective for learning
probabilistic models, we can use a form of Pinsker’s in-

equality [38] to obtain DTV(P∥Q) <
√

1
2DKL(P∥Q).

3 APPROXIMATE MODELING WITH
TRACTABLE MARGINALS IS NP-HARD

Most works characterizing the expressive efficiency of dif-
ferent circuit classes have been concerned with exact rep-
resentations [16, 1, 6, 42, 43, 17]. While Chubarian and
Turán [10] and De Colnet and Mengel [18] have recently
studied the ability (and hardness) of logical circuit classes
to compactly approximate Boolean functions, to the best of
our knowledge, our results are the first to show hardness
of compactly approximating probability distributions for
different families of tractable PCs.

As noted earlier, the complexity of approximately modeling
distributions with PCs is valuable for understanding: (1)
potential limitations in the hypothesis space of PC learning
algorithms, and (2) the feasibility of approximate inference
with guarantees through approximate compilation. This sec-
tion aims to answer this, focusing on probabilistic models
that are tractable for marginal queries. We first show that a
form of approximate marginal inference using this scheme
requires a non-trivial bound on the total variation distance
between the target distribution and the approximate model,
and prove that finding such an approximator is NP-hard.

We consider relative (multiplicative) approximation of
marginal queries. Let P (X) be a probability distribution
over a set of variables X. Then we say another distribution
Q(X) is a relative approximator of marginals of P w.r.t.



0 ≤ ϵ ≤ 1 if: 1
1+ϵ ≤ P (y)

Q(y) ≤ 1 + ϵ for every assignment
y to a subset Y ⊆ X. Relative approximation of marginals
is known to be NP-hard for Bayesian networks [12], thus
it immediately follows that approximately representing ar-
bitrary distributions using polynomial-sized PCs tractable
for marginals such that the PC is a relative approximator of
all marginals is also NP-hard. However, approximating all
marginal queries is quite a strong condition, and we may
still want to closely approximate distributions as they could
be useful in approximating some marginal queries.

We show that relative approximation for all marginal queries
implies a non-trivially bounded total variation distance.

Theorem 3.1 (Relative Approximation implies Bounded
DTV(P∥Q)). Let ϵ > 0 and P,Q be two probability distri-
butions over X. If Q is a relative approximator of marginals
for P , then DTV(P∥Q) ≤ ϵ

2 .

As Q is a relative approximator of P , for all as-
signment x we have 1

1+ϵ ≤ P (x)
Q(x) ≤ 1 + ϵ

which implies |P (x)−Q(x)| ≤ ϵmin(P (x), Q(x)).
Therefore, DTV(P∥Q) = 1

2

∑
x |P (x)−Q(x)| ≤

1
2

∑
x ϵmin(P (x), Q(x)) ≤ ϵ

2 .

In other words, DTV(P∥Q) ≤ ϵ/2 is a necessary condition
for Q to be a relative approximator of marginals of P w.r.t. ϵ.
However, this is not a sufficient condition as shown below.

Proposition 3.2 (Bounded DTV(P∥Q) does not imply rela-
tive approximation). There exists a family of distributions
P that have ϵ-DTV-approximators, yet for any such approx-
imator Q, the relative approximation error of marginals
between P and Q can be arbitrarily large.

We prove the above proposition by explicitly constructing
a family of distributions Q such that every Q ∈ Q is an
ϵ-Df -approximator for any arbitrary ϵ > 0 and distribution
P yet P (x)/Q(x) can be arbitrarily large for some x. See
Appendix E.1 for the full construction.

Since approximating a distribution P with a bounded TV
distance is a necessary but insufficient condition for the NP-
hard problem of relative approximation of marginals, this
raises the question whether it is still possible to efficiently
approximate the distribution P with a compact PC Q that is
tractable for marginals. We next answer this in the negative.

Theorem 3.3 (Hardness of Df -approximation). Given a
probability distribution P and a k-convex f -divergence Df ,
for any 0 < ϵ < 1

4 , it is NP-hard to represent its kϵ2-Df -
approximation as a model that admits tractable marginals.

For the full proof, see Appendix E.2. We prove this using a
reduction to SAT. First, we construct a formula f over X,
and another formula f ′ over X and Y where f ′ = (Y ∧f)∨
(¬Y ∧X1∧· · ·∧Xn). Let P be uniform over the models of
f ′ and Q be a model such that Df (P∥Q) < kϵ2 with 0 ≤

ϵ < 1
4 . Then, using bounded difference between marginals,

we show that f is satisfiable if and only if Q(Y = 1) ≥ 1
4 .

Corollary 3.4. Given a probability distribution P , for 0 <
ϵ < 1

4 , it is NP-hard to represent its ϵ-DTV-approximation
as a model that can tractably compute marginals.

Thus, the class of polynomial-sized models which are
tractable for marginals [44, 26, 40, 6], cannot contain kϵ2-
Df -approximations for all distributions unless P = NP.

While Martens and Medabalimi [27] previously showed a
related result that there exists a function for which a se-
quence of decomposable PCs converging to approximate
the function arbitrarily well requires an exponential size,
our result applies more broadly to any class of models sup-
porting tractable marginals as well as allowing for bounded
but non-vanishing approximation error. Thus, representing
functions or distributions as decomposable PCs, even ap-
proximately, remains hard, challenging the feasibility of
approximate compilation for approximate inference with
small error.

4 LARGE DEC. & DET. PCS FOR
APPROXIMATE MODELING

Continuing our characterization of approximation power of
PCs, we now turn to the family of decomposable and deter-
ministic PCs. We take inspiration from related results for
logical circuits. In particular, Bova et al. [1] proved an ex-
ponential separation of DNNFs from d-DNNFs;1 De Colnet
and Mengel [18] showed that there exists functions which
require exponentially sized d-DNNF to approximate.

Nevertheless, this does not immediately imply the same
separation for probabilistic circuits for two main reasons: (1)
approximation for PCs is measured in terms of divergences
between distributions rather than some probabilistic error
between Boolean functions, and (2) our approximator can
represent arbitrary distributions instead of being limited
to a Boolean function (or a uniform distribution over it).
This section presents our proof of exponential separation
of decomposable PCs from decomposable & deterministic
ones, by constructing a family of distributions that can be
represented by compact decomposable PCs but any PC that
is also deterministic and approximates it within a bounded
TV distance requires exponential size.

We consider the Sauerhoff function [35] which was used to
show the separation between DNNFs and d-DNNFs for ex-
act compilation [1]. Let gn : {0, 1}n → {0, 1} be a function
evaluating to 1 if and only if the sum of its inputs is divisible
by 3. The Sauerhoff function is defined as Sn : {0, 1}n2 →
{0, 1} over the n×n matrix X = (xij)1≤i,j≤n by Sn(X) =

Rn(X) ∨ Cn(X) where Rn, Cn : {0, 1}n2 → {0, 1} are
1Decomposable negation normal forms (DNNFs) and deter-

ministic, decomposable negation normal forms (d-DNNFs).



defined by Rn(X) =
⊕n

i=1 gn(xi,1, xi,2, . . . , xi,n) and
Cn(X) = Rn(X

T ). Here, ⊕ represents addition modulo 2.

There exists a DNNF of size O(n2) that exactly represents
the Sauerhoff function Sn, constructed using two compact
ordered binary decision diagrams to represent Rn, Cn [1,
Proposition 7]. We then define our family of target distri-
butions Pn as follows: let Cn be a DNNF for Sn with size
O(n2); then Pn is a decomposable PC obtained by replacing
the literals of Cn with corresponding indicator functions, ∨
with ⊕, and ∧ with ⊗ nodes with uniform parameters, then
smoothing. Note that Pn(x) > 0 if and only if Sn(x) = 1.
We will show that a deterministic, decomposable PC approx-
imating Pn requires exponential size.

Theorem 4.1 (Exponential-Size Deterministic PC). A deter-
ministic, decomposable PC that is a ϵ-DTV-Approximator
of Pn, where ϵ = 1

16 − Ω(1/Poly(n2)), has size 2Ω(n).

We will prove the above by first showing that approximation
of Pn with a deterministic and decomposable PC implies a
form of weak approximation [18] of Sn with a d-DNNF of
the same size, and next proving that such d-DNNF must be
exponentially large.

Definition 4.2 (Weak Approximation [18]). We say that a
Boolean formula g is a weak ϵ-approximation of another
Boolean formula f if MC(f ∧ ¬g) +MC(¬f ∧ g) ≤ ϵ2n.

Proposition 4.3 (Bounded DTV implies weak approxima-
tion). Let 0 ≤ ϵ < 1

8 and P be a uniform distribution whose
support is given by a Boolean function f . Suppose that Q
is a decomposable and deterministic PC representing an
ϵ-DTV-Approximator of P . Then there exists a d-DNNF g
which has size polynomial in the size of Q that represents a
4ϵ-weak-approximator of f .

For full proof see Appendix E.4. Start with our circuit Q
with support g, and use Algorithm E.3 to prune Q(x) <

1
2n+1 . We call this unnormalized distribution Q′ and it’s
support g′. Using DTV(P∥Q) < ϵ, the fact that on g′ all
Q(x) ≥ 1

2n+1 , and that MC(f) ≤ 2n, we show that we can
then bound MC(f ∧ ¬g′) +MC(¬f ∧ g′) < 4ϵ2n, which
corresponds to a 4ϵ-weak-approximation.

Proposition 4.4 (d-DNNF approximating Sn has exponen-
tial size). A d-DNNF representing a ( 14 − Ω(1/Poly(n2)))-
weak-approximation of Sn has size 2Ω(n).

Proof. Let C be a d-DNNF that is a ( 14 − Ω(1/Poly(n2)))-
weak-approximation of Sn. Sauerhoff [35] showed that any
“two-sided” rectangle approximation2 (matching the notion
of weak approximation) of Sn within 1

4 − Ω(1/Poly(n2))

must have size 2Ω(n). Bova et al. [1] further showed that a
d-DNNF C computing a function f is a balanced rectangle
partition of f with size at most |C|. Thus, |C| = 2Ω(n).

2See Appendix D for details on rectangle partitions

Since by we can represent Sn by a DNNF of size O(n2),
there exists an exponential gap in approximation between
DNNF and d-DNNF. We next show this exponential gap in
approximation persists for PCs.

Proof Sketch of Theorem 4.1. See Appendix E.5 for the
full proof. Suppose we have a deterministic, decompos-
able PC Q that is an ϵ-DTV-Approximator of Pn for
ϵ=( 1

16−Ω(1/Poly(n2))). Consider the uniform distribu-
tion U over Sn. We use the triangle inequality to bound
DTV(U∥Q) ≤ DTV(U∥Pn) +DTV(Pn∥Q). Given that
DTV(Pn∥Q)< 1

16−Ω(1/Poly(n2))), it is only left to bound
DTV(U∥Pn). Taking the d-DNNF constructed by [1, Prop.
7] and the low 0-density property of the Sauerhoff func-
tion [35], we bound DTV(Pn∥U) < η for η= 1

(1−1/
√
2)2n2 ,

which implies DTV(U∥Q) < ϵ− Ω(1/Poly(n2)) + η. We
combine Ω(1/Poly(n2)) + η to simplify this expression.
By Proposition 4.3, we can construct a d-DNNF C′ from
Q—replacing ⊕ and ⊗ with ∨ and ∧ respectively—that is a
( 14−Ω(1/Poly(n2)))-weak-approximation of Sn. By Propo-
sition 4.4, |Q|= |C′|=2Ω(n).

As we have constructed a decomposable PC Pn that has size
O(n2) such that any deterministic, decomposable PC ap-
proximating it has size O(2Ω(n)), we have shown an uncon-
ditional exponential gap for approximation between decom-
posable PCs and deterministic, decomposable PCs. Thus,
approximate modeling does not grant the ability to over-
come exponential expressive efficiency gaps.

5 CONCLUSION

We established the hardness of approximating distributions
with probabilistic circuits such that the f -divergence is
small. First, we showed that this task is NP-hard for any
model that is tractable for marginal inference, including
decomposable PCs. Then, we used the Sauerhoff function
to demonstrate an exponential gap between decomposable
PCs and deterministic, decomposable PCs when allowing
for bounded approximation error. This proves that the suc-
cinctness gap in the case of exact compilation persists even
under relaxed approximation conditions.

These results highlight key challenges in learning compact
and expressive PCs while maintaining tractable inference.
In light of this, we ask: can a polynomial-time algorithm
enable learning an ϵ-approximator for a broad family of
distributions with a more relaxed ϵ? Furthermore, does there
exist modeling conditions that are sufficient for relative
approximation of various queries? Lastly, we see this work
as a first step to encourage further theoretical studies on
approximate modeling and inference with guarantees using
tractable models. In this paper, we focused on PCs that are
tractable for marginal and MAP queries, but there are large
classes of tractable models whose efficient approximation
power remain unknown.
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A BACKGROUND

A.1 PROBABILISTIC CIRCUITS

Probabilistic circuits (PCs) [6] provide a unifying framework for a wide class of tractable probabilistic models, including
arithmetic circuits [13], sum-product Networks [31], cutset networks [32], probabilistic sentential decision diagrams [25],
and bounded-treewidth graphical models [19, 9].

Definition A.1 (Probabilistic circuits). A probabilistic circuit (PC) C := (G, θ) represents a joint probability distribution
p(X) over random variables X through a directed acyclic graph (DAG) G parameterized by θ. The DAG is composed of
3 types of nodes: leaf, product ⊗, and sum nodes ⊕. Every leaf node in G is an input, Boolean indicator functions in this
paper, and every internal node receives inputs from its children in(n). The scope of a given node, ϕ(n), is the set of random
variables as inputs to n.

Each node n of a PC is recursively defined as:

pn(x) :=


l(x), if n is a leaf∏

c∈in(n) pc(x) if n is a ⊗∑
c∈in(n) θn,cpc(x) if n is a ⊕

(1)

where θn,c ∈ [0, 1] is the parameter associated with the edge connecting nodes n, c in G, and
∑

c∈in(n) θn,c = 1. The
distribution represented by the circuit is the output at its root node.

A key characteristic of PCs is that imposing certain structural properties on the circuit enables tractable (polytime)
computation of various queries. In this paper we focus on two families of PCs: those that are tractable for marginal inference
and for maximum-a-posteriori (MAP) inference. The class of marginal queries of a joint distribution p(X) over variables
X refers the set of functions that can compute p(y) for some assignment y for Y ⊆ X. Marginalization is a fundamental
statistical operation which enables reasoning about subsets of variables, essential for tasks like decision making, learning,
and predicting under uncertainty. While marginal inference is #P-hard in general [33, 11], the family of PCs satisfying
certain structural conditions, admit tractable marginal inference—specifically in linear time in the size of the circuit [15].

Definition A.2 (Smoothness and Decomposability). A sum unit is smooth if its children have identical scopes: ϕ(c) =
ϕ(n),∀c ∈ in(n). A product unit is decomposable if its children have disjoint scopes: ϕ(ci)∩ϕ(cj) = ∅,∀ci, cj ∈ in(n), i ̸=
j. A PC is smooth and decomposable iff every sum unit is smooth and every product unit is decomposable.

In addition, we are often interested in finding the most likely assignments given some observations. The class of maximum-

θ1θ2X3¬X3X2¬X2X2¬X2X1¬X1X1¬X1

Figure 1: A smooth, decomposable, and deterministic PC (weights shown only for the root for conciseness).
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a-posteriori (MAP)1 queries of a joint distribution p(X) is the set of queries that compute maxq∈val(Q) p(q, e) where
e ∈ val(E) is an assignment to some subset E ⊆ X and Q = X \E. Again, MAP inference is NP-hard in general [36] but
can be performed tractably for a certain class of PCs. In particular, smoothness and decomposability are no longer sufficient,
and we must enforce an additional condition.

Definition A.3 (Determinism). A sum node is deterministic if, for any fully-instantiated input, the output of at most one of
its children is nonzero. A PC is deterministic iff all of its sum nodes are deterministic.

Figure 1 depicts an example PC that is smooth, decomposable, and deterministic, which thus supports tractable marginal as
well as MAP inference.2

B RELATIONSHIP BETWEEN APPROXIMATE MODELING AND INFERENCE

We have shown that even if we allow some approximation error, it is hard to efficiently approximate distributions using
tractable probabilistic circuits. As approximating modeling is a hard task, one would hope that ensuring approximate
modeling would guarantee the approximation of hard inference queries with bounded error. Unfortunately, this is not the
case for all notions of approximation. Therefore, we study the relationship between approximate modeling and inference, in
particular focusing on absolute approximation of marginal, conditional, and maximum-a-posteriori (MAP) queries.

In Section 3, we showed that bounded total variation distance is a necessary but insufficient condition for relative approxi-
mation of marginals. We now consider a slightly weaker notion of approximation called absolute approximation. Let P (X)
be a probability distribution over a set of variables X. Then we say another distribution Q(X) is an absolute approximator
of marginals of P w.r.t. 0 ≤ ϵ ≤ 1 if: |P (y)−Q(y)| ≤ ϵ for every assignment y to a subset of variables Y ⊆ X. We show
that any model that is a kϵ2-Df (P∥Q)-approximator of P must also be an absolute approximator of marginals of P w.r.t. ϵ.

Theorem B.1 (Bounded Df implies absolute approx. of marginals). Given two distributions P (X) and Q(X) over a set of
variables X and 0 ≤ ϵ ≤ 1, if Df (P∥Q) < kϵ2 then for all assignments y to a subset Y ⊆ X, |P (y)−Q(y)| < ϵ.

Proof. Note that while the absolute error of marginals is symmetric between P and Q, f -divergence between P and Q, such
as the KL-divergence, is not symmetric. Therefore, we utilize the implications derived in [28], that Df (P∥Q) < kϵ2 then
DTV(P∥Q) < ϵ. Moreover, given that the total variation distance is an f -divergence, we know that by the monotonicity
property Df (P (Y), Q(Y)) ≤ Df (P (X), Q(X)) [30] as Y ⊆ X. By definition, maxS⊆{0,1}n |P (S)−Q(S)| < ϵ. Since
these are discrete probability distributions, the event S = y is valid. Therefore, ∀y : |P (y)−Q(y)| < ϵ.

From the above proof, we immediately derive the following corollary.

Corollary B.2 (Bounded DTV implies absolute approx. of marginals). Given two distributions P (X) and Q(X) over a set
of variables X and 0 ≤ ϵ ≤ 1, if DTV(P∥Q) < ϵ, then for all assignments y to Y ⊆ X, |P (y)−Q(y)| < ϵ.

Since marginals are tractable for decomposable PCs, approximating a target distribution with bounded f -divergence
using a decomposable PC implies that marginals can be approximated in polynomial-time with bounded absolute error.
Previously, Dagum and Luby [12] considered this query for Bayesian networks and showed that there exists a randomized
polynomial-time algorithm for the absolute approximation of marginals. Due to this, it is unsurprising that this form of
approximation is guaranteed by the more restrictive condition of bounded f-divergence.

Moving to more difficult queries, we next study approximate inference implications for MAP. Let P (X) be a prob-
ability distribution over a set of variables X. We say another distribution Q(X) is an absolute approximator of the
maximum-a-posteriori of P w.r.t. 0 ≤ ϵ ≤ 1 if: for every assignment e (called the evidence) to a subset E ⊆ X,
|maxy P (y, e)−maxy Q(y, e)| ≤ ϵ where Y = X \ E. We next show that kϵ2-Df -approximators are also absolute
approximators of MAP w.r.t. ϵ.

Theorem B.3 (Bounded Df implies absolute approx. of MAP). Given two distributions P (X) and Q(X) over a set of
variables X and 0 ≤ ϵ ≤ 1, if Df (P∥Q) < kϵ2 then for every assignment e to a subset E ⊆ X, |maxy∈Y P (y, e) −
maxy∈Y Q(y, e)| < ϵ where Y = X \E.

1Sometimes also called the most probable explanation (MPE).
2For PCs over Boolean variables, a weaker form of decomposability called consistency [31, 6] actually suffices instead of decompos-

ability for both tractable marginal and MAP inference. In this paper, we still focus on classes of PCs that are decomposable as they are the
most commonly considered, both as learning targets as well as for characterizing expressive efficiency.



Proof. Analogous to Theorem B.1, we utilize the fact that if we have Df (P∥Q) < kϵ2, we know DTV(P∥Q) < ϵ. Using
DTV(P∥Q) < ϵ, we have maxx |P (x)−Q(x)| < ϵ by definition. Then for all x, Q(x) − ϵ < P (x) < Q(x) + ϵ.
W.l.o.g., suppose maxP (x) > maxQ(x). Then |maxP (x)−maxQ(x)| < (maxQ(x) + ϵ) − maxQ(x) = ϵ. Thus,
as this was for all X, we can extend this to subsets of X. Finding that for every assignment e to a subset E ⊆ X,
|maxy∈Y P (y, e) − maxy∈Y Q(y, e)| < ϵ where Y = X \ E. Thus, approximating with bounded f -divergence by a
deterministic PC implies polynomial-time approximation of MAP with bounded absolute error.

Again, we restrict this to the special case of total variation distance.

Corollary B.4 (Bounded DTV implies absolute approx. of MAP). Given two distributions P (X) and Q(X) over a set
of variables X and 0 ≤ ϵ ≤ 1, if DTV(P∥Q) < ϵ then for every assignment e to a subset E ⊆ X, |maxy∈Y P (y, e) −
maxy∈Y Q(y, e)| < ϵ where Y = X \E.

Thus, a deterministic PC that is an ϵ-DTV-approximator of a distribution P would imply that exact MAP inference w.r.t. this
PC grants us tractable approximate MAP inference w.r.t. the original model. However, the converse does not hold: a PC that
can be used for approximate MAP inference is not necessarily a good approximation of the full distribution. In particular,
we can obtain PCs with identical MAP solutions, but result in large total variation distance due to disjoint support, as seen in
Counterexample 1.

Lastly, not all tractable queries for PCs are guaranteed to admit absolute approximation even under the restrictive framework
of approximate modeling with bounded distance.

Theorem B.5 (Bounded DTV does not imply absolute approx. of conditionals/conditional MAP). There exists a family of
distributions P that have ϵ-DTV- approximators, yet the absolute approximation for conditional marginals and conditional
MAP can be arbitrarily large.

Proof sketch. Let P be a probability distribution over X, and let some assignment e to E ⊆ X be evidence. We construct
a distribution Q using the mass function Q(y∗, e) = P (e)P (y∗|e) + kϵP (e) where y∗ maximizes P (y|e). Then we
remove the mass we added to ensure Q is still a valid probability distribution. This allows us to construct a distribution
with DTV(P∥Q) < ϵ but conditional MAP equals kϵ where k can be arbitrarily large. We refer to Appendix E.6 for the full
distribution construction and detailed proof.

Moreover, because relative approximation of conditionals imply their absolute approximation [12], bounded DTV also does
not imply relative approximation of conditionals. However, it is well known that both absolute and relative approximation of
conditionals is NP-hard in Bayesian networks [12]. Even though approximate modeling with a bounded DTV is also an
NP-hard task, it still does not guarantee a polynomial-time algorithm for approximating conditional queries. This highlights
a key limitation: while tractability of queries is guaranteed by the structural properties of our learned PCs, some queries do
not yield “good” approximations for all assignments even after learning within bounded distance.



C k-CONVEX f -DIVERGENCES

We rewrite the table from [28] here.

Divergence f k Domain

relative entropy (KL) t log t 1
M (0,M ]

total variation |t−1|
2 0 (0,∞)

Pearson’s χ2 (t− 1)2 2 (0,∞)

squared Hellinger 2(1−
√
t) M− 3

2 /2 (0,M ]

reverse relative entropy − log t 1
M2 (0,M ]

Vincze-Le Cam (t−1)2

t+1
8

(M+1)3 (0,M ]

Jensen–Shannon (t+ 1) log 2
t+1 + t log t 1

M(M+1) (0,M ]

Neyman’s χ2 1
t − 1 2

M3 (0,M ]

Sason’s s log(s+ t)(s+t)2 − log(s+ 1)(s+1)2 2 log(s+M) + 3 [M,∞), s > e−3/2

α-divergence
4

(
1−t

1+α
2

)
1−α2 , α ̸= ±1 M

α−3
2

{
[M,∞), α > 3

(0,M ], α < 3

Table 1: Examples of Strongly Convex Divergences.

D RECTANGLE PARTITIONS

Rectangle partitions are a powerful tool used in communication complexity to analyze the size of communication protocols.
The main idea is to represent the communication protocol for a function f : {0, 1}n → {0, 1} into a 2n × 2n matrix Mf

where Mf [x,y] = f(x,y), then partition Mf into a set of monochromatic rectangles which cover the input space of all
possible pairs. Here, monochromatic means that a given rectangle covers only the outputs equal to 0 or 1, but not both.This
allows us to derive lower bounds on the communication complexity of a function f . Furthermore, Bova et al. [1] showed
the relation between rectangle covers and partitions to the size of DNNF and d-DNNF formulas. For all definitions below,
assume that X is a finite set of variables.

We begin by describing partitions of X, corresponding to our partition of Mf .

Definition D.1 (Partition [1]). A partition of X is a sequence of pairwise disjoint subsets Xi of X such that
⋃

i Xi = X. A
partition of two blocks (X1,X2) is balanced if |X| /3 ≤ min(|X1| , |X2|).

We can now define rectangles:

Definition D.2 (Combinatorial Rectangle [1]). A rectangle over X is a function r : {0, 1}|X| → {0, 1} such that there
exists and underlying partition of X, called (X1,X2) and functions ri : {0, 1}|X| → {0, 1} for i = 1, 2 such that
r−1(1) = r1

−1(1)× r2
−1(1). A rectangle is balanced if the underlying partition is balanced.

Combining many of these rectangles together allows us to cover Mf , effectively covering the function f . The size of these
covers provides lower bounds on the communication complexity of f .

Definition D.3 (Rectangular Cover [1]). Let f : {0, 1}|X| → {0, 1} be a function. A finite set of rectangles {ri} over X is
called a rectangle cover if

f−1(1) =
⋃
i

ri
−1(1).

The rectangle cover is referred to as a rectangle partition if the above union is disjoint. A rectangle cover is balanced if each
rectangle in the cover is balanced.



To understand how these rectangle partitions relate to d-DNNFs and DNNFs, we utilize the following notions of certificates
and elimination.

Definition D.4 (Certificate [1]). Let C be a DNNF on X. A certificate of C is a DNNF T on X such that: T contains the
output gate of C; if T contains an ∧-gate, v, of C then T also contains every gate of C having an output wire to v; if T
contains an ∨-gate of C, then T also contains exactly one gate of C having an output wire to v. The output gate of T coincides
with the output gate of C, and the gates of T inherit their labels and wires from C. We let cert(C) denote the certificates of C.

See from the above definition that

C−1(1) =
⋃

T∈cert(C)

T−1(1).

This is useful tool in relation to rectangle partitions due to the fact that given a DNNF C, T ∈ cert(C) and gate g, then
Cg−1(1) =

⋃
T∈cert(Cg)

T−1(1) where Cg represents the sub-circuit C rooted at gate g. Then we can represent Cg−1(1) as
a rectangle which separates the variables in the sub-circuit C rooted at g. Using this in conjunction with the elimination
operation gives us the ability to compute the size of our circuit using rectangles.

Definition D.5 (Elimination [1]). Let C be a DNNF and g be a non-input gate. Then,

C¬g
−1(1) =

⋃
T∈cert(C)\cert(Cg)

T−1(1)

In the case of a d-DNNF, by determinism we can write C¬g
−1(1) = C−1(1) \ Cg−1(1).

Here we provide a short description on the relationship between the size of rectangle covers and Boolean circuits; for the full
detailed proofs see [1]. Effectively, start with a d-DNNF C over variables X which computes a function f . Then, construct
Ci+1 = Ci

¬gi by eliminating gi ∈ Ci until we hit l ≤ |C| such that Cl ≡ 0. It can be shown that Ri = (Ci
gi)

−1
(1) is a

balanced rectangle over X. The set {Ri|i = 0, . . . , l− 1} is then a balanced rectangle partition of C since (Ci+1
¬gi )

−1
(1) = ∅.

Therefore, we can represent the size of d-DNNFs representing functions as the size of a balanced rectangle partition over
said function. This implies that an exponential size rectangle partition implies exponentially large d-DNNF.

E COMPLETE PROOFS

E.1 DISTRIBUTION CONSTRUCTION FOR PROPOSITION 3.2

Proof. Let A be an event such that P (A) = δ and for some K > 0,

Q(x) =
P (x)

K
, ∀x ∈ A.

Then, let Q(x) = λP (x), ∀x ∈ Ac for some constant λ. To ensure that Q is normalized, see that we must have∑
x Q(x) =

∑
x∈A Q(x) +

∑
x∈Ac Q(x) = 1. Therefore, we must have:

1 =
∑
x∈A

Q(x) +
∑
x∈Ac

Q(x) =
∑
x∈A

P (x)

K
+

∑
x∈Ac

λP (x) =
δ

K
+ λ(1−

∑
x∈A

P (x))

=
δ

K
+ λ(1− δ)

Hence λ = 1−δ/K
1−δ and thus we can define

Q(x) =

{
P (x)
K , x ∈ A

1−δ/K
1−δ P (x), x ∈ Ac



Therefore, we just need to check then that the f -divergence between P and Q must be bounded.∑
x

Q(x)f

(
P (x)

Q(x)

)
=

∑
A

Q(x)f

(
P (x)

Q(x)

)
+
∑
Ac

Q(x)f

(
P (x)

Q(x)

)
=

∑
A

P (x)

K
f

(
P (x)

P (x)/K

)
+
∑
Ac

1− δ/K

1− δ
P (x)f

(
1− δ

1− δ/K

)
=

f(K)

K

∑
A

P (x) +
1− δ/K

1− δ
f

(
1− δ

1− δ/K

)∑
Ac

P (x)

=
δf(K)

K
+

1− δ/K

1− δ
f

(
1− δ

1− δ/K

)
(1− δ)

=
δf(K)

K
+

(
1− δ

K

)
f

(
1− δ

1− δ/K

)
See that as δ → 0, the above approaches 0 + f(1). By definition of f -divergence, f(1) = 0. Thus, the f -divergence—
including the total variation distance—between P and Q can be very small, approaching 0, while the relative approximation
error stays at a constant factor K.

E.2 PROOF OF THEOREM 3.3

Proof. We will prove the above by reducing from SAT. Let f be a Boolean formula over X = {X1, . . . , Xn} and ϵ < 1
4 .

Define a new Boolean formula f ′ over X and Y : f ′ = (Y ∧ f)∨ (¬Y ∧X1 ∧ · · · ∧Xn). Clearly f ′ has MC(f)+ 1 models.
Let us now define a uniform distribution P over these models of f ′. Suppose that we can efficiently obtain a probability
distribution Q such that Df (P∥Q) < kϵ2, which in turn implies that DTV(P∥Q) < ϵ. From the definition of total variation
distance, |P (Y = 1)−Q(Y = 1)| < ϵ < 1

4 .

By construction, if f is unsatisfiable, there is no satisfying model of f ′ such that Y = 1, and thus P (Y = 1) = 0 and
Q(Y = 1) < 1

4 . Otherwise, if f is satisfiable, then there are MC(f) many satisfying model of f ′ setting Y = 1, and thus
we have MC(f) ≥ 1, P (Y = 1) = MC(f)

1+MC(f) , and

Q(Y = 1) >
MC(f)

1 +MC(f)
− 1

4
≥ 1

2
− 1

4
≥ 1

4
.

Therefore, f is satisfiable if and only if Q(Y = 1) ≥ 1
4 . In other words, we can decide SAT if we can efficiently compute an

kϵ2-Df -approximation as a model that supports tractable marginals.

E.3 PRUNING DETERMINISTIC PCS FOR PROOF OF PROPOSITION 4.3

Suppose that Q is a deterministic, decomposable and smooth probabilistic circuit. Given Q, wish to prune its edges such
that in the resulting (unnormalized) PC Q′, x is in the support of Q′ if and only if Q(x) < 1

2n+1 . We describe our pruning
algorithm below.

First, we collect the an upper bound on each edge (n, c) that is the largest probability obtainable by any assignment x
that uses that edge (propagates non-zero value through the edge in the forward pass for Q(x)). We denote this EB(n, c),
which stands for the Edge-Bound. This can be done in linear time in the size of the circuit using the Edge-Bounds
algorithm [8]. This allows us to safely prune any edge whose Edge-Bound falls below a given threshold; i.e., prune edge
(n, c) if EB(n, c) < 1

2n+1 .

Note that pruning some edges may cause the edge bounds for remaining edges to be tightened. Thus, we will repeat this
process until all Q(x) < 1

2n+1 are pruned away. Upon completion of this process, we return back the new pruned circuit Q′.

We know that this algorithm halts as there can only be a finite number of x such that Q(x) < 1
2n+1 . Moreover, given that

we have only deleted edges from a Q, our circuit Q′ is still a deterministic, decomposable and smooth probabilistic circuit
and has size polynomial in the size of Q. We are also assured by determinism that if we prune a path Q(x), there exists no
other path that can evaluate Q(x) [4]; thus all Q(x) < 1

2n+1 are deleted. Furthermore, by the property that there is only one
accepting path per assignment x, we know that we do not unintentionally delete any Q(x) ≥ 1

2n+1 .



E.4 PROOF OF PROPOSITION 4.3

Proof. Suppose that P is a uniform distribution over the support given by a Boolean function f , and Q a probability
distributions over the support given by a Boolean function h. Further suppose that DTV(P∥Q) < ϵ and 0 ≤ ϵ < 1

8 . Then,
there exists another polynomial sized decomposable and deterministic (unnormalized) PC Q′ by pruning the edges of Q
such that all assignments Q(x) < 1

2n+1 are eliminated from the resulting support of Q′. This is obtained using the algorithm
from Appendix E.3. We call the new support g. We utilize the bound on TV distance between distributions to obtain a bound
on weak approximation between their supports as follows.

DTV(P∥Q) =
1

2

∑
x|=f∧h

|P (x)−Q(x)|+
∑

x|=f∧¬h

P (x) +
∑

x|=¬f∧h

Q(x) < ϵ

=⇒
∑

x|=f∧h

|P (x)−Q(x)|+
∑

x|=f∧¬h

P (x) +
∑

x|=¬f∧h

Q(x) < 2ϵ

We partition h into the disjoint sets g and ¬g ∧ h (note that every model of g is already a model of h).∑
x|=f∧g

∣∣∣∣ 1

MC(f)
−Q(x)

∣∣∣∣+ ∑
x|=f∧(¬g∧h)

∣∣∣∣ 1

MC(f)
−Q(x)

∣∣∣∣+ MC(f ∧ ¬h)
MC(f)

+
∑

x|=¬f∧h

Q(x) < 2ϵ

The LHS of above inequality is again lower bounded by:∑
x|=f∧(¬g∧h)

∣∣∣∣ 1

MC(f)
−Q(x)

∣∣∣∣+ MC(f ∧ ¬h)
MC(f)

+
∑

x|=¬f∧h

Q(x)

>
∑

x|=f∧(¬g∧h)

∣∣∣∣ 12n − 1

2n+1

∣∣∣∣+ MC(f ∧ ¬h)
MC(f)

+
∑

x|=¬f∧g

Q(x)

>
∑

x|=f∧(¬g∧h)

∣∣∣∣ 12n − 1

2n+1

∣∣∣∣+ MC(f ∧ ¬h)
MC(f)

+
MC(¬f ∧ g)

2n+1

as MC(f) ≤ 2n and Q(x) < 1/2n+1 for every x |= ¬g ∧ h. Thus,

2ϵ >
∑

x|=f∧(¬g∧h)

∣∣∣∣ 12n − 1

2n+1

∣∣∣∣+ MC(f ∧ ¬h)
MC(f)

+
MC(¬f ∧ g)

2n+1

>
MC(f ∧ (¬g ∧ h))

2n+1
+

MC(f ∧ ¬h)
MC(f)

+
MC(¬f ∧ g)

2n+1

>
MC(f ∧ (¬g ∧ h))

2n+1
+

MC(f ∧ ¬h)
2n+1

+
MC(¬f ∧ g)

2n+1
=

MC(f ∧ ¬g) +MC(¬f ∧ g)

2n+1
,

implying MC(f ∧¬g)+MC(¬f ∧ g) < 2n+2ϵ = 2n(4ϵ). Note that the last equality above is due to ¬h implying ¬g. Thus,
g is a 4ϵ-weak-approximator of f , and we can represent it as a polynomially sized d-DNNF by taking the decomposable and
deterministic PC Q′ and converting it to a Boolean circuit (⊕ and ⊗ to ∨ and ∧ respectively) [4, 41].

E.5 PROOF OF THEOREM 4.1

Proof of Theorem 4.1. Suppose we have a deterministic, decomposable PC, Q that is an ϵ-DTV-Approximator of Pn where
ϵ = ( 1

16 − Ω(1/Poly(n2))) and η = 1
(1−1/

√
2)2n2 . Consider the uniform distribution U over Sn. By the triangle inequality,

DTV(U∥Q) ≤ DTV(U∥Pn) + DTV(Pn∥Q) < DTV(U∥Pn) + ϵ − Ω(1/Poly(n2)). By [1, Proposition 7], the DNNF
constructed to represent the Sauerhoff function is a disjunction of two OBDDs, which respectively represent RTn, CTn.
As each OBDD is a deterministic circuit, their PC counterpart (OR to sum and AND to product) will still represent
the same Boolean functions [4]. Thus, the non-deterministic PC representing Pn based on this construction only has
one non-deterministic sum node at the root, and can return values at most 2. This allows us to see that DTV(U∥P ) ≤∣∣∣ 1
|Sn| −

2
|Sn|+1

∣∣∣ < 1
|Sn| < 1

(1−β)2n2 < η because |Sn| > (1 − β)2n
2

for β < 1/
√
2. |Sn| > (1 − β)2n

2

is derived

from the low 0-density property of Sn under the uniform distribution [35]. Thus, DTV(U∥Q) < ϵ− Ω(1/Poly(n2)) + η.
Since, Ω(1/Poly(n2)) is unspecified, we can add η to this and more simply say DTV(U∥Q) < ϵ − Ω(1/Poly(n2)).
By Proposition 4.3, we can construct a d-DNNF C′ from Q—by replacing ⊕ and ⊗ to ∨ and ∧ respectively—that is a
( 14 − Ω(1/Poly(n2)))-weak-approximation of Sn. Thus, by Proposition 4.4, |Q′| = 2Ω(n).



E.6 PROOF OF THEOREM B.5

Proof. Let P be some distribution over X and Y,E ⊂ X such that Y = X \E. We know that for any assignment y, e such
that P (e) > 0, we have P (y, e) = P (e)P (y|e). Let k such that for some e, we have P (e) < 1/k. We construct another
distribution Q such that Q(y∗, e) = P (e)P (y∗|e) + kϵP (e) where y∗ maximizes P (y|e). Also for another assignment
y1, define Q(y1, e) = P (e)P (y1|e)− kϵP (e). For all other points we keep P (y, e) = Q(y, e). Note that Q is normalized
by construction. Thus, we calculate the total variation distance as

1

2

(
|P (e)P (y∗|e)− P (e)P (y∗|e)− kϵP (e)|+ |P (e)P (y1|e)− (P (e)p(y1|e) + kϵP (e))|

)
=

1

2

(
|−kϵP (e)|+ |kϵP (e))|

)
= kϵP (e) < ϵ.

Then, as P (e) shrinks we can allow kϵ to grow much larger, so long as Q(y∗, e) still represents a true probability distribution.
This in turn leads to an unbounded conditional MAP:

|P (y∗|e)−Q(y∗|e)| = |P (y∗|e)− P (y∗|e)− kϵ| = kϵ

Furthermore, if y∗ is the same for both P,Q then the implication also extends to conditionals.

F COUNTEREXAMPLES

Counterexample 1 (Bounded MAP doesn’t imply bounded DTV(P∥Q)). Suppose that |maxx P (x)−maxx Q(x)| < ϵ,
where P is a distribution over a set of n variables and Q the same distribution over a set of n variables such that the support
of Q is disjoint from the support of P . Then, |maxx P (x)−maxx Q(x)| = 0, but DTV(P∥Q) = 1 as the supports are
disjoint.
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