
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

KNOWLEDGE AUGMENTATION: IN-CONTEXT OR IN-
PARAMETER?

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative language models rely on knowledge augmentation to enhance their
ability to complete a variety of tasks by incorporating relevant external informa-
tion. The most common approach is in-context knowledge injection, where the
relevant information is appended directly to the model’s input. While straight-
forward and easy to implement, this approach is limited for complex reasoning
tasks due to input length constraints and shallow integration of external and inter-
nal knowledge in language models. To overcome these limitations, we introduce
an in-parameter knowledge injection method, which temporarily embeds external
knowledge into the model’s parameters. By injecting knowledge this way, the lan-
guage models can access and reason over the information more flexibly, enhanc-
ing performance on tasks requiring sophisticated reasoning. We conduct deep ex-
plorations of both in-context and in-parameter knowledge injection, highlighting
their respective advantages and limitations. Through comprehensive experiments
across tasks of varying complexity, we demonstrate that in-parameter knowledge
injection is particularly advantageous for complex tasks requiring deep reason-
ing. In contrast, in-context injection remains effective for simpler tasks where the
answer can be directly extracted. Our findings provide practical guidance for se-
lecting appropriate knowledge augmentation strategies based on the complexity
of the task1.

1 INTRODUCTION

Generative language models have significantly changed the field of natural language processing
by demonstrating remarkable capabilities across a variety of tasks (Brown et al., 2020; Chowdhery
et al., 2022; Touvron et al., 2023; Scao et al., 2022; Zhang et al., 2022). A critical factor contributing
to their success is their ability to utilize external knowledge effectively and efficiently, thereby im-
proving their performance on specific tasks (Lewis et al., 2020). Currently, the predominant method
for knowledge augmentation is the in-context knowledge injection paradigm, wherein relevant infor-
mation is appended directly to the model’s input (Dong et al., 2022; Lewis et al., 2020; Levy et al.,
2024). This paradigm is widely adopted due to its simplicity in implementation and immediate
applicability, as it requires no modifications to the model’s parameters.

However, despite its straightforward implementation, the in-context method faces limitations.
Firstly, The finite length of the input context restricts the amount of external knowledge that can
be incorporated (Levy et al., 2024). More critically, as shown by previous studies, language models
process knowledge in input prompts and model parameters differently(Nanda et al., 2023), which
means that simply adding information to the input may not be enough to activate the full power of
language models’ knowledge reasoning abilities. This shortcoming becomes evident in tasks that
require multi-hop inference or advanced reasoning over the injected knowledge (Li et al., 2024a;
Levy et al., 2024).

In contrast, an alternative yet underexplored approach is in-parameter knowledge injection(Meng
et al., 2022; Li et al., 2024b). Specifically, we can temporarily inject external knowledge into lan-
guage models through localized fine-tuning and restoring the original language model parameters
once the task is finished. Unlike the input context, a model’s parameters are not constrained by
length, offering the potential to incorporate more extensive and nuanced information. By internal-

1We have open-sourced all the code, data, and models in the following anonymous GitHub link:
https://anonymous.4open.science/r/In-parameter-Knowledge-Injection/

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Prompt Template

Knowledge

Encoding

Parametric Knowledge
Representation

{External Knowledge}

Answer the following Question
based on the provided information:
Question: {Question}

LLM
Weight: 𝜽

𝜽! = 𝜽 + ∆𝜽𝜽∆𝜽 = 𝒇(𝒌, 𝜽)

LLM
Weight: 𝜽!

LLM
Weight: 𝜽

······

······

······

Tokenize

Widely-Used Paradigm: Inject the Passage to the Input Context

Original LLM

Original LLM

I······

Response Generation:

Question

Prompt

Construction

Our Proposed Paradigm: Inject the Passage to the LLM’s Parameter

I······

Response Generation:

QuestionUser’s Input:

Relevant
Passage(s)

Figure 1: An illustration of in-context and in-parameter knowledge augmentation paradigms. Func-
tion f updates parameters θ by incorporating external knowledge K, resulting in a parameter shift
∆θ and new parameters θ′ = θ +∆θ.

izing external knowledge within the parameters, the language model can flexibly utilize this infor-
mation and engage in deeper reasoning. Despite its potential, in-parameter knowledge injection has
not been thoroughly explored. Unlike the in-context paradigm which directly places knowledge to-
kens into the language model’s context, the in-parameter paradigm is more complex and requires
updating the model’s parameters. This necessitates an effective representation learning method in-
corporating passage-specific knowledge into the parameters while allowing the language model to
apply this knowledge flexibly.

In this paper, we address this research gap by investigating circumstances under which methods, i.e.,
in-context or in-parameter, could produce better effectiveness in knowledge augmentation. Given
that no prior studies have explored the temporary injection of relevant knowledge through in-
parameter approaches, we propose a novel In-Parameter Knowledge Injection method. This simple
yet effective method efficiently integrates external knowledge into the model’s internal parameters,
enhancing its reasoning capabilities regarding the injected knowledge and integrating it with other
internal parametric knowledge. By generating knowledge-specific parametric representations tai-
lored to the knowledge being injected, our proposed approach enables the model to internalize and
apply the injected external information during response generation.

We design a series of progressive experiments tailored to incrementally increase both the difficulty
level of the tasks and the requisite amount of reasoning needed for their resolution. This struc-
tured approach allowed us to evaluate the effectiveness of different knowledge injection methods
under varying complexities. Our findings reveal a distinct trend: as task complexity and the depth of
reasoning over injected knowledge rise, the in-parameter knowledge injection approach becomes in-
creasingly advantageous. In scenarios demanding sophisticated reasoning, such as multi-document
reading comprehension and multi-hop inference across multiple documents, injecting knowledge
directly into the model’s parameters markedly enhances performance. Conversely, the in-context
approach demonstrates superior efficacy for straightforward questions or direct answer extraction
from the context. This nuanced understanding of knowledge utilization underscores the critical im-
portance of aligning the knowledge injection methodology with the specific demands of the task at
hand.

In conclusion, our work provides a comprehensive analysis of the two paradigms of knowledge
augmentation in language models. We highlight the strengths and limitations of each method and
offer practical guidance on selecting the appropriate approach based on the task requirements. The
contributions of this paper are as follows:

• We propose a simple yet effective method for in-parameter knowledge injection that leverages
representation learning to incorporate external knowledge into the parameters of language models.

• We conduct extensive experiments across various scenarios to compare the performance of in-
context and in-parameter knowledge injection methods. Our findings highlight the strengths and
limitations of each approach, providing practical guidance on selecting the most suitable method
based on task requirements.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 PROBLEM FORMULATION OF KNOWLEDGE AUGMENTATION

Knowledge augmentation for language models involves temporarily integrating relevant external
information to aid the model in executing specific tasks. This relevant knowledge is utilized solely
for the duration of the task and is subsequently discarded. The main goal of knowledge augmentation
is to enhance the model’s performance by incorporating relevant information that is not adequately
covered in its pre-training data. Two primary paradigms for injecting this knowledge into language
models are in-context and in-parameter, as illustrated in Figure 1. In this section, we provide a
formal definition of these methods, explaining their distinct mechanisms for injecting knowledge.

2.1 IN-CONTEXT KNOWLEDGE INJECTION PARADIGM

In the in-context knowledge injection paradigm, the relevant external knowledge is appended di-
rectly to the model’s input as part of the prompt. This paradigm uses a prompt template with inserted
knowledge, guiding the model to generate a response based on the provided information. Different
performances in knowledge augmentation can be realized by adjusting the prompt design. For a
given task, we have the query q and the external knowledge base K. The input to the model becomes
(q,K), and the model is instructed to generate the answer a based on q and K.

The advantage of the in-context paradigm is that it provides a simple and direct way to inject knowl-
edge into the model without altering its parameters, making it straightforward to implement. How-
ever, this method is constrained by the maximum context length the model can handle and may not
enable deep integration of the knowledge into the model’s internal reasoning.

2.2 IN-PARAMETER KNOWLEDGE INJECTION PARADIGM

While researchers have extensively explored and clearly defined in-context knowledge augmenta-
tion, there has been little investigation into in-parameter knowledge augmentation, and no precise
definition for this paradigm has been established. In this paper, we define in-parameter knowledge
injection as the process whereby relevant external knowledge is converted into a parametric repre-
sentation and then incorporated directly into the model’s parameters. This approach involves using
representation learning techniques to embed the knowledge into the model’s parameters, enabling it
to utilize this information at a more fundamental level when generating responses.

To achieve this, we define a parameter update function fϕ parameterized by ϕ. This function takes
the external knowledge K and the current model parameters θ as inputs to compute a conditional
parameter shift ∆θ. The computation is formalized as:

∆θ = fϕ(K, θ), θ′ = θ +∆θ, (1)

where ∆θ is the parametric knowledge representation that represents the adjustment to the model
parameters necessary to incorporate the external knowledge. The updated parameters θ′ integrate
this knowledge directly into the model. The updated model M′ with parameters θ′ is then used to
generate the answer a. This process enables the model to utilize external knowledge at a fundamental
level during response generation, enhancing its reasoning capabilities.

The in-parameter paradigm allows the model to deeply integrate knowledge into its parameters, en-
abling intrinsic use during response generation. This approach overcomes context length limitations
and enhances the language model’s reasoning capabilities. However, it requires real-time parameter
modifications, which, if not properly handled, may introduce additional implementation complexity
and computational cost.

3 METHODOLOGY OF IN-PARAMETER KNOWLEDGE INJECTION

Our proposed In-Parameter Knowledge Injection method, illustrated in Figure 2, integrates external
knowledge K directly into the parameters of a pre-trained language model M by computing Low-
Rank Adaptation (LoRA) (Hu et al.) based parametric knowledge representations (the calculation of
parametric knowledge representation can be performed offline). This process begins by generating
synthetic question-answer (QA) pairs from the provided passages, which are then used to compute

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

External
Knowledge (𝒌)

LLM
Weight: 𝜽

LLM
Weight: 𝜽!

Passage: {Passage}
--

Generate QA pairs based on the
passage. Ensure the Question
can be answered directly from
the passage content.
--

Your Answer:

Q1, A1

Q2, A2

Q3, A3

Prompt
Construction

Input Generate Fine-tuning

with LoRA

LoRA Weight

I······

Response Generation:

Question

Figure 2: An illustration of our proposed in-parameter knowledge injection framework. The prompt
shown is a simplified representation. The detailed prompt is in Appendix A.

LoRA parameters representing the knowledge. These parameters can be directly added to the lan-
guage model. The process described above consists of two key phases: the Parametric Knowledge
Encoding Phase and the Generation Phase. In the following sections, we will provide a detailed
explanation of each phase.

3.1 PARAMETRIC KNOWLEDGE ENCODING PHASE

As described in Section 2.2, given a question q and relevant knowledge k, we aim to integrate k into
the language model’s parametric knowledge and enable the language model to effectively utilize
this knowledge for subsequent tasks. The purpose of the Parametric Knowledge Encoding (PKE)
Phase is precisely designed to achieve this. In the PKE Phase, we encode the external knowledge K
into parametric knowledge representation that can be directly injected into the model’s parameters
θ. The process is as follows:

QA Pair Generation Using Auxiliary Language Model To effectively inject the external knowl-
edge K into the language model, we first convert each passage k ∈ K into a suitable format for
knowledge integration. This process involves generating question-answer (QA) pairs for each pas-
sage, which serve as the basis for training the language model to integrate the knowledge.

Specifically, we utilize an auxiliary language model A to generate QA pairs from each passage. For
each k ∈ K, we apply a structured prompt template T to format the passage before passing it to A.
This prompt template is carefully designed to elicit informative and diverse QA pairs that reflect the
core content of the passage (detailed in Appendix A).

Using the prompt template T , the auxiliary language model A generates a set of QA pairs for each
passage k. We aggregate all generated QA pairs into a dataset D:

D =
⋃
k∈K

{(k, ui, ai) | i ∈ 1, 2, . . . , n} , (2)

where D represents the collection of all tuples (k, ui, ai), where each (ui, ai) pair corresponds to a
specific question and answer derived from passage k, and n is the number of QA pairs we generated,
which is a tunable hyperparameter. This dataset serves as the foundation for computing LoRA-based
parametric knowledge representations, which consist of additional parameters that can be directly
integrated into the language model to internalize the external knowledge represented by K.

LoRA-Based Parametric Knowledge Integration To integrate the external knowledge K into the
language model M, we compute LoRA-based parametric knowledge representations—additional
parameters that can be directly added to M as a form of knowledge embedding.

For each sample (k, ui, ai) in D, we construct the input by concatenating the passage k, the question
ui, and the answer ai into a single sequence. The model is trained using the standard language
modeling objective to predict all the tokens in the input sequence based on all preceding tokens.
This next-token prediction approach allows the model to learn the contextual relationships between
the passage, question, and answer, thereby internalizing the knowledge contained in K.

We employ LoRA to introduce low-rank adaptations to the model’s weight matrices. For each weight
matrix W ∈ Rd×k in the model parameters θ, we introduce low-rank matrices A and B such that:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

W ′ = W +∆W = W +AB⊤, (3)

where A ∈ Rd×r, B ∈ Rk×r, and r ≪ min(d, k). These low-rank matrices ∆θ = {A,B}
constitute the parametric knowledge representation that can be directly integrated into the original
model M.

The optimization objective is to minimize the negative log-likelihood of the target tokens over the
entire input sequence:

min
∆θ

L(θ +∆θ) = −
∑

(k,ui,ai)∈D

T∑
t=1

logPθ+∆θ(xt |x<t), (4)

where x = [k;ui; ai] is the concatenated input sequence, and T is the total number of tokens in
the sequence. By computing gradients over the entire input—including the passage, question, and
answer—the model effectively learns to internalize the external knowledge.

The resulting LoRA parameters ∆θ serve as the parametric knowledge representation, which can
be directly added to the original model M to enhance its performance on tasks requiring the in-
tegrated knowledge. Importantly, this entire process can be performed offline; each passage
or a group of passages can be processed in advance to compute their respective parametric
representations, eliminating the need for real-time computation during online deployment.

3.2 GENERATION PHASE

In the Generation Phase, we augment the original model M with the parametric knowledge repre-
sentation ∆θ to create an updated model M′ with parameters θ′ = θ + ∆θ. This updated model
is used to generate answers to the question q without providing the knowledge passages K as input.
By internalizing the knowledge into its parameters, the model leverages this information flexibly,
enabling deeper reasoning and more informed responses.

3.3 EFFICIENCY COMPARISON BETWEEN IN-CONTEXT AND IN-PARAMETER PARADIGM

The in-context paradigm appends external knowledge directly to the input prompt during infer-
ence, increasing the input length and the computational resources required. Specifically, it demands
more GPU memory due to the longer sequences processed by the model’s self-attention mechanism,
whose computational complexity scales quadratically with input length. The in-parameter paradigm
involves encoding the parametric knowledge representation. This process consumes time and mem-
ory for calculating the representation, but it can be performed offline. As a result, the model
can simply load these pre-computed parameters for real-time queries without additional processing
overhead. During inference, the model operates with input lengths comparable to standard queries
without appended knowledge, leading to reduced GPU memory usage and faster inference times.

In summary, while the in-context method saves on training time by eliminating the need for calcu-
lating the parametric knowledge representation, it incurs higher inference costs due to longer input
sequences and increased GPU memory usage. The in-parameter method front-loads the compu-
tational effort during an offline training phase and thus benefits from reduced inference time and
memory usage, making it capable of handling real-time queries.

4 EXPERIMENTAL SETUP

4.1 TASKS AND DATASETS

We design a series of progressive experiments tailored to incrementally increase both difficulty and
the requisite amount of reasoning needed for the resolution. This structured approach allows us to
evaluate the effectiveness of different knowledge injection methods under varying complexities. To
be specific, our experiments span from simple fact extraction to complex multi-hop reasoning tasks,
using a variety of datasets suited to each task’s requirements.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Level 1: Fact Extraction Task Our initial experiments focus on queries that ask about explicit facts
directly present in the relevant passage or document without requiring additional reasoning. This
is the simplest form of query, where the model’s primary task is to locate and extract the relevant
information. For this experiment, we use the TriviaQA dataset (Joshi et al., 2017), which consists of
question-answer pairs where the answers are explicit facts found within the given passages.

Level 2: Comparative Reasoning Task To introduce a higher level of complexity, we consider
tasks that require simple reasoning over information extracted from two documents. Specifically,
we focus on comparison questions, which involve comparing two or more entities from the same
group based on certain attributes. For example, a question might ask, “Who was born first, Bill
Clinton or Donald Trump?” Answering such questions requires the model to extract relevant facts
from multiple documents and perform a comparison. We utilize the Comparison subset of the
2WikiMultihopQA (2WQA) dataset (Ho et al., 2020) for this task.

Level 3: Multi-Step Comparative Reasoning Task Further increasing the difficulty, we examine
bridge-comparison questions, which require an additional reasoning step for each extracted answer
before performing the comparison. These questions combine elements of bridge questions with
comparison questions. For instance, instead of directly comparing two books, a question might
ask, “Which book has the author born first, Pride and Prejudice or 1984?” To answer, the model
needs to identify the authors of the books and then compare their dates of birth. We use the Bridge
Comparison subset of the 2WQA dataset for this task.

4.2 EVALUATION METRICS

For all tasks, we evaluate the models based on their ability to provide correct answers. We extract
the final answer from the generated output using pattern-matching techniques. The extracted answer
is then compared with the reference answer, utilizing methods such as exact match at the answer
level, along with token-level measurements of the F1 score. The details of our experimental set-
tings, including the instructions provided to the models and the evaluation protocols, are available
in Appendix B.

4.3 IMPLEMENTATION DETAILS

For in-context knowledge injection, we directly concatenate the relevant passages to the prompt tem-
plate and input the combined text into the language model’s context. The specific prompt templates
and the designing process are detailed in Appendix D. For in-parameter knowledge injection, we
employ GPT-4 as the external model to generate question-answer (QA) pairs based on the passages.
The specific configurations, including batch size, epochs, learning rate, and LoRA parameters, are
detailed in Appendix B. The experiments utilized the Qwen2.5-1.5B-Instruct (Yang et al., 2024) and
LLaMA3.2-1B-Instruct (Meta, 2024) models, with all conducted using PyTorch on 40GB NVIDIA
A100 GPUs. The generation settings, including the decoding strategy, and hardware specifics, are
detailed in Appendix B.

5 EXPERIMENTAL RESULTS

In this section, we comprehensively evaluate different knowledge injection methods across tasks
with varying levels of complexity. Our objective is to understand how each method performs under
different reasoning demands and to identify the circumstances under which each method is most
effective. The methods compared are:

• In-context (IC): Directly inputting the Passage and Question into the language model.

• IC with QA pairs (IC-QA): Inputting the Passage, Question, and the QA pairs generated by
the auxiliary language model for knowledge augmentation as introduced in Section 3.1.

• In-Parameter (IP): Injecting knowledge directly into the model’s parameters using the method
from Section 3.

• IP & IC: Combining the In-Parameter method with In-context by both injecting knowledge
into the parameters and concatenating the Passage into the input.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Comparison of In-context and In-Parameter knowledge injection methods for the Fact
Extraction Task, with the best results in bold and second-best results underlined. An accompanying
diagram on the left illustrates the task’s complexity.

Which snooker player was simply
known as The Grinder?

Cliff Thorburn is a Canadian
……
His slow, determined style of
play earned him the nickname
The Grinder

Cliff Thorburn

Qwen2.5-1.5B-Instruct LLaMA3.2-1B-Instruct
Method EM F1 EM F1

In-Context 0.4913 0.6246 0.5896 0.6979
IC-QA 0.5202 0.6200 0.6012 0.6962

In-Parameter 0.2486 0.3685 0.3006 0.3903
IP & IC 0.5087 0.6604 0.5260 0.6487

Table 2: Experimental results of In-context and In-Parameter knowledge injection method on the
Comparative Reasoning Task. The best results are in bold and the second-best results are underlined.
The diagram on the left illustrates the task difficulty.

Which of the following person died first,
Fleetwood or George Whitaker?

George Whitaker
(Sept 25, 1840 –
March 6, 1916)

Fleetwood

Fleetwood
(Jan 1, 1634 –
August 1698)

Qwen2.5-1.5B-Instruct LLaMA3.2-1B-Instruct
Method EM F1 EM F1

In-Context 0.2148 0.3240 0.2517 0.2635
IC-QA 0.1846 0.2426 0.1342 0.1394

In-Parameter 0.3188 0.3826 0.4765 0.5154
IP & IC 0.3960 0.4473 0.4732 0.5127

By progressively increasing the difficulty level of the tasks—from simple fact extraction to complex
multi-step reasoning—we aim to reveal how each knowledge injection method scales with task
complexity and reasoning requirements.

5.1 FACT EXTRACTION TASK

In this initial task, we assess the models’ abilities to extract explicit facts directly present in the pro-
vided passages without additional reasoning. This task represents the simplest scenario, focusing
on straightforward entity extraction. As shown in Table 1, the In-context and IC-QA methods out-
perform the In-Parameter methods on both the Qwen and LLaMA models. This outcome suggests
that when the required information is readily available in the input, providing the passage directly to
the model is the most effective approach.

The superior performance of the in-context methods can be attributed to the models’ proficiency
in understanding and extracting information from the immediate context. On the other hand, the
In-Parameter methods underperform in this task. One possible explanation is that injecting knowl-
edge into the parameters may introduce unnecessary complexity for simple tasks and might not
capture the precise details or could potentially obscure the exact information needed for fact extrac-
tion. These findings highlight that for tasks involving direct extraction of information with minimal
reasoning, in-context methods are more advantageous.

5.2 COMPARATIVE REASONING TASK

In the next level of complexity, models are required to perform reasoning over information extracted
from two documents. This involves comparison questions where the answer is not explicitly stated
but must be inferred through basic reasoning. Table 2 reveals a notable shift in performance: the In-
Parameter and IP & IC methods now outperform the in-context approaches on both models. This
suggests that as the task requires the integration of multiple pieces of information and reasoning
over them, embedding knowledge into the model’s parameters becomes more effective.

These findings demonstrate that as complexity and reasoning demands grow, embedding knowledge
directly into the model’s parameters becomes increasingly beneficial. The In-Parameter method
allows the model to internalize external knowledge, enabling deeper integration and more flexi-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Performance comparison of In-context and In-Parameter knowledge injection methods on
the Multi-Step Comparative Reasoning Task. The best results are in bold and the second-best results
are underlined. The diagram on the left illustrates the task difficulty.

Which film has the director born first, Once
A Gentleman or The Girl In White?

Once a Gentleman
is directed by
James Cruze

Once a Gentleman

The Girl in White
is directed by
John Sturges

James Cruze
(March 27, 1910 –
August 3, 1942)

John Sturges
(January 3, 1910 –
August 18, 1992)

Qwen2.5-1.5B-Instruct LLaMA3.2-1B-Instruct
Method EM F1 q EM F1

In-Context 0.2617 0.3578 0.3188 0.3483
IC-QA 0.2181 0.2545 0.2785 0.2969

In-Parameter 0.3557 0.3964 0.3758 0.4102
IP & IC 0.3289 0.3493 0.4027 0.4278

ble reasoning across multiple pieces of information. Moreover, combining In-Parameter with In-
Context knowledge further enhances performance, indicating that parameter-injected knowledge
supplemented by contextual information yields better outcomes.

5.3 MULTI-STEP COMPARATIVE REASONING TASK

At the highest level of complexity, the models tackle multi-step comparative reasoning tasks that re-
quire chaining several inference steps before arriving at the answer. This involves not only extracting
information but also performing sequential reasoning over that information. As shown in Table 3,
the In-Parameter and IP & IC methods continue to outperform the in-context methods, with the
performance gap widening compared to the previous task. This trend underscores the increasing
efficacy of in-parameter knowledge injection as the reasoning demands escalate.

A possible reason for this is that the in-parameter methods enable the models to handle the com-
plexity of multi-hop reasoning more effectively. By embedding knowledge into the parameters, the
models develop richer internal representations that support complex inferential chains. This inter-
nalization allows for more sophisticated reasoning. The combined IP & IC method often yields the
best performance, suggesting a synergistic effect. Providing the model with both internalized knowl-
edge and contextual information may facilitate reasoning by offering multiple avenues for accessing
and processing the necessary data. In contrast, the in-context methods face some challenges in this
task. The necessity to conduct multiple reasoning steps within the input context likely overwhelms
the models, leading to diminished performance. This highlights the limitations of relying solely on
in-context information for complex reasoning tasks.

5.4 ANALYSIS

The experiments indicate a clear trend: in-parameter knowledge injection becomes more effective as
task complexity and reasoning demands increase, enhancing the model’s deeper reasoning capabili-
ties. In-context methods perform better in simple fact extraction tasks as models can readily utilize
the provided context. However, for higher-order reasoning, in-context approaches are limited by the
capacity to reason based on the injected knowledge. In such cases, in-parameter methods provide an
advantage by embedding knowledge internally, enabling deeper reasoning based on its parametric
knowledge. These findings suggest that selecting a knowledge injection method based on the task
complexity can significantly enhance model performance.

6 ABLATION STUDY

6.1 INFLUENCE OF FEW-SHOT CHAIN-OF-THOUGHT EXAMPLES

To evaluate whether incorporating few-shot chain-of-thought (CoT) (Wei et al., 2023) examples
affects our conclusions, we introduced CoT into the prompts for the Comparative Reasoning Task
and the Multi-Step Comparative Reasoning Task. The experimental results are shown in Table 4.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Comparison of performance with and without few-shot chain-of-thought (CoT) prompting.
The best and second-best results are highlighted in bold and underlined, respectively. The left figure
illustrates the setting. The models used are Qwen2.5-1.5B-Instruct and LLaMA3.2-1B-Instruct.

Who died first, Fleetwood
or George Whitaker?

Fleetwood died on 25 August 1698, while
George Whitaker ……
So the Ans is Fleetwood.

Chain of Thought Reasoning:

Chain of Thought
Few-Shot Examples Comparative Reasoning Multi-Setp Comparison

Method Qwen LLaMA Qwen LLaMA
In-Context 0.3154 0.3960 0.4094 0.2013

IC-QA 0.2987 0.3020 0.4195 0.2483

In-Parameter 0.3456 0.4497 0.4027 0.4094
IP & IC 0.3859 0.4765 0.3993 0.3523

The In-Parameter and IP & IC methods continued to outperform the in-context approaches. This
consistency suggests that embedding knowledge directly into the model’s parameters is inherently
effective for complex reasoning tasks, regardless of the presence of CoT examples in the prompts.
These findings indicate that our earlier conclusions about the superiority of in-parameter knowledge
injection are robust and not significantly influenced by the addition of CoT examples. The models’
ability to handle intricate reasoning appears to rely more on internalized knowledge than on explicit
reasoning cues provided during inference.

6.2 PERFORMANCE ON LARGER MODEL

To explore whether the observed trends persist with larger models, we conducted experiments on
the comparison dataset using the LLaMA3-8B-Instruct model, which has a significantly larger pa-
rameter count compared to the models used in previous experiments.

As shown in Figure 3 these results are consistent with our earlier findings. The In-Parameter and
IP & IC methods outperform the in-context approaches, reinforcing the effectiveness of embedding
knowledge into the model’s parameters for tasks requiring reasoning over multiple documents. No-
tably, the IP & IC method achieves the highest performance, suggesting that combining internalized
knowledge with contextual information continues to provide benefits even in larger models.

6.3 EFFECT OF QA PAIR GENERATION

To evaluate the effectiveness of the QA pair generation step in our In-Parameter Knowledge Injection
method, we conducted an ablation study comparing two training strategies:

• Passage-Only Training: The language model is fine-tuned directly on the knowledge passages K
using the standard language modeling objective, without generating QA pairs.

• Passage with Generated QA Training: Our proposed method, where an auxiliary language model
generates QA pairs from each passage, and the model is fine-tuned on the concatenated sequences
of passage, question, and answer.

As shown in Table 5, incorporating generated QA pairs into the training process significantly en-
hances the model’s performance. The model trained with QA pairs outperforms the passage-only
model by a substantial margin across all evaluation metrics, demonstrating the effectiveness of
our approach. The notable performance improvement can be attributed to the explicit question-
answering context provided by the generated QA pairs. Training on these pairs enables the model to
better internalize and organize the external knowledge, learning not just the memorize the content
of the passages but also how to apply this knowledge to respond to specific queries. In contrast,
passage-only training lacks this targeted learning mechanism, leading to less effective knowledge
integration and application.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 3: EM score of
LLaMA3-8B-Instruct on the
comparative reasoning task.

Table 5: Ablation study results comparing Passage-Only Training
and Passage with Generated QA Training. The best results are in
bold.

Qwen2.5-1.5B-Instruct LLaMA3.2-1B-Instruct
Method QA EM F1 EM F1

In-Parameter w QA 0.3188 0.3826 0.4765 0.5154
w/o QA 0.0168 0.0773 0.3926 0.4246

IP & IC w QA 0.3960 0.4473 0.4732 0.5127
w/o QA 0.1107 0.1926 0.2819 0.3123

7 RELATED WORKS

In-Context Knowledge Injection In-context knowledge injection is a prevalent method for aug-
menting language models with external information by appending relevant passages directly to
the input context. This approach has been widely used in tasks such as reading comprehension
and Retrieval-Augmented Generation (RAG), where models generate responses based on both the
prompt and the injected knowledge (Lewis et al., 2020; Zhou et al., 2024; Su et al., 2024). RAG
systems typically retrieve relevant documents and incorporate them into the input to enhance per-
formance on specific tasks. To improve the efficacy of in-context knowledge injection, some studies
have focused on optimizing prompts and instructions. For example, Trivedi et al. (2022) introduced
IR-CoT, which investigates how to design prompts and few-shot examples to effectively integrate
knowledge into the context, thereby enhancing the model’s reasoning capabilities over the injected
information. To address the limited context window of language models, various context compres-
sion techniques have been proposed to mitigate constraints on the amount of external knowledge
that can be included (Ge et al., 2023; Verma, 2024).

In-Parameter Knowledge Injection In contrast, in-parameter knowledge injection embeds exter-
nal knowledge directly into the model’s parameters, offering the potential to incorporate more exten-
sive and nuanced information without the constraints of input length. This approach is relatively un-
derexplored, with the most closely related areas being knowledge editing and continued pre-training.
Knowledge editing methods, such as Knowledge Neurons (Dai et al., 2021), Rank-One Model Edit-
ing (Meng et al., 2022), and Self-Edit (Liu et al., 2024), permanently modify language models to
incorporate new information, typically addressing specific facts or entities. These approaches are
not designed for the temporary integration of extensive external knowledge tailored to specific tasks.
Continued pre-training increases a model’s knowledge through further training on extra data, yet it
requires substantial resources and time. To alleviate this, parameter-efficient fine-tuning (PEFT)
techniques like LoRA (Hu et al.), Adapter (Houlsby et al., 2019), and Prefix-Tuning (Li & Liang,
2021) serve as alternatives. These methods allow efficient integration of knowledge with minimal
updates to model parameters. For instance, LoRA adjusts model weights with low-rank updates,
and Prefix-Tuning enhances input sequences with a learnable prefix. Although these approaches
improve task performance efficiently, they mainly focus on task adaptation rather than quick,
query-specific knowledge updates.
In contrast, our method temporarily injects external knowledge directly into the model’s parameters
by encoding the knowledge into parametric knowledge representation. Much like directly appending
a passage to the input context, our method does not permanently alter the parameters of the LLM.
Instead, the passage related to a specific query is temporarily embedded into the parameters, serving
only that query.

8 CONCLUSION
In this paper, we proposed an effective in-parameter knowledge augmentation method, directly inte-
grating external knowledge into generative language model parameters via representation learning.
Our experiments compared in-context and in-parameter methods across diverse tasks. Results show
that in-parameter knowledge injection excels in reasoning-intensive scenarios, such as advanced
comprehension and multi-document inference, due to deeper knowledge integration. In contrast,
the in-context method is better suited for simple tasks where answers are directly extractable. The
selection between these two methods in practical applications depends on a trade-off: in-parameter
offers performance gains for complex reasoning, while in-context minimizes latency for simpler
tasks. Practitioners should decide based on specific application needs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

9 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have thoroughly documented all set-
tings and details within the paper. Moreover, we have meticulously organized and open-
sourced all the code, data, and models used in this study. These resources are available
at the following anonymous GitHub link: https://anonymous.4open.science/r/
In-parameter-Knowledge-Injection/.

REFERENCES

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons in
pretrained transformers. arXiv preprint arXiv:2104.08696, 2021.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu,
and Zhifang Sui. A survey on in-context learning. arXiv preprint arXiv:2301.00234, 2022.

Tao Ge, Jing Hu, Lei Wang, Xun Wang, Si-Qing Chen, and Furu Wei. In-context autoencoder for
context compression in a large language model. arXiv preprint arXiv:2307.06945, 2023.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
qa dataset for comprehensive evaluation of reasoning steps. arXiv preprint arXiv:2011.01060,
2020.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. arXiv preprint arXiv:1705.03551, 2017.

Mosh Levy, Alon Jacoby, and Yoav Goldberg. Same task, more tokens: the impact of input length
on the reasoning performance of large language models. arXiv preprint arXiv:2402.14848, 2024.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. Long-context llms struggle with
long in-context learning. arXiv preprint arXiv:2404.02060, 2024a.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun Ma, and Jie Yu. Pmet: Precise model
editing in a transformer, 2024b. URL https://arxiv.org/abs/2308.08742.

Jiateng Liu, Pengfei Yu, Yuji Zhang, Sha Li, Zixuan Zhang, and Heng Ji. Evedit: Event-based
knowledge editing with deductive editing boundaries, 2024.

11

https://anonymous.4open.science/r/In-parameter-Knowledge-Injection/
https://anonymous.4open.science/r/In-parameter-Knowledge-Injection/
https://arxiv.org/abs/2308.08742

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in Neural Information Processing Systems, 35:17359–17372, 2022.

Meta. Llama 3.2 1b instruct, 2024. URL https://huggingface.co/meta-llama/
Llama-3.2-1B-Instruct. Accessed: 2024-09.

Neel Nanda, Senthooran Rajamanoharan, János Kramár, and Rohin Shah. Fact find-
ing: Attempting to reverse-engineer factual recall on the neuron level, December
2023. URL https://www.lesswrong.com/posts/iGuwZTHWb6DFY3sKB/
fact-finding-attempting-to-reverse-engineer-factual-recall.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-
parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100, 2022.

Weihang Su, Yichen Tang, Qingyao Ai, Zhijing Wu, and Yiqun Liu. DRAGIN: Dynamic retrieval
augmented generation based on the real-time information needs of large language models. In Lun-
Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 12991–13013,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.acl-long.702. URL https://aclanthology.org/2024.acl-long.702.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving re-
trieval with chain-of-thought reasoning for knowledge-intensive multi-step questions. arXiv
preprint arXiv:2212.10509, 2022.

Sourav Verma. Contextual compression in retrieval-augmented generation for large language mod-
els: A survey. arXiv preprint arXiv:2409.13385, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Yujia Zhou, Zheng Liu, Jiajie Jin, Jian-Yun Nie, and Zhicheng Dou. Metacognitive retrieval-
augmented large language models. In WWW, pp. 1453–1463. ACM, 2024.

12

https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
https://www.lesswrong.com/posts/iGuwZTHWb6DFY3sKB/fact-finding-attempting-to-reverse-engineer-factual-recall
https://www.lesswrong.com/posts/iGuwZTHWb6DFY3sKB/fact-finding-attempting-to-reverse-engineer-factual-recall
https://aclanthology.org/2024.acl-long.702
https://arxiv.org/abs/2201.11903

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A PROMPT TEMPLATE FOR QA GENERATION

In order to systematically generate high-quality question-answer (QA) pairs from each knowledge
passage, we designed a specialized prompt template for the auxiliary language model. The primary
objective of this prompt is to ensure that the generated QA pairs are both informative and diverse,
accurately reflecting the essential content of the original passage. This structured approach facilitates
effective knowledge integration by providing the language model with clear and consistent training
data.

A.1 DESIGN CONSIDERATIONS

Several key factors influenced the design of the prompt template:

• Clarity and Specificity: The prompt explicitly instructs the model to generate three distinct
questions, each answerable using the passage.

• Structured Output Format: By specifying the exact format for the questions and answers, in-
cluding fields such as “question”, “answer”, and “full answer”, we facilitate automated parsing
and processing of the generated data. We used a simple example to help the model understand
the format we need.

• Quality Control: Requiring that each question be answerable using the provided passage helps
maintain the relevance and accuracy of the QA pairs, preventing the introduction of extraneous
or speculative information. This clarity helps in minimizing ambiguity and ensures that the
generated QA pairs are directly relevant to the source material.

A.2 PROMPT TEMPLATE

The following prompt template is used to guide the auxiliary language model in generating QA
pairs:

Prompt Template for QA Generation

I will provide a passage of text, and you need to generate three different questions
based on the content of this passage. Each question should be answerable using the
information provided in the passage. Additionally, please provide an appropriate
answer for each question derived from the passage.
You need to generate the question and answer in the following format:
[

{
“question”: “What is the capital of France?”,
“answer”: “Paris”,
“full answer”: “The capital of France is Paris.”

},
]
This list should have at least 3 elements. You only need to output this list in the
above format.
Passage:
{passage}

When applying the prompt template, the passage is dynamically inserted into the designated place-
holder, ensuring that each QA generation task is contextually tied to its corresponding knowledge
excerpt. The auxiliary language model processes this prompt to produce a structured list of simple
single-hop QA pairs, adhering strictly to the specified format.

B EXPERIMENT DETAILS

This appendix provides a comprehensive overview of the models used, the experimental setting, and
the evaluation methodologies employed in our study.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B.1 MODEL DESCRIPTIONS

In our experiments, we utilized two language models Qwen2.5-1.5B-Instruct and LLaMA3.2-1B-
Instruct. Thes instruction-tuned models excel in dialogue applications, offering enhanced perfor-
mance for complex tasks.

• Qwen2.5-1.5B-Instruct (Yang et al., 2024): Qwen2.5-1.5B-Instruct is part of the latest
Qwen2.5 series of multilingual large language models, featuring 1.5 billion parameters. This
instruction-tuned, text-only model is optimized for multilingual dialogue use cases, includ-
ing agentic retrieval and summarization tasks. Qwen2.5-1.5B-Instruct supports long-context
handling of up to 128K tokens and is fine-tuned using supervised fine-tuning (SFT) and rein-
forcement learning with human feedback (RLHF) to enhance helpfulness and safety.

• LLaMA3.2-1B-Instruct (Meta, 2024): LLaMA3.2-1B-Instruct model is an instruction-tuned,
text-only variant optimized for multilingual dialogue use cases, including agentic retrieval and
summarization tasks. Architecturally, LLaMA3.2 employs an optimized transformer-based
auto-regressive framework, ensuring efficient and scalable language generation capabilities.
The instruction-tuned versions leverage supervised fine-tuning (SFT) and reinforcement learn-
ing with human feedback (RLHF) to better align with human preferences for helpfulness and
safety.

B.2 EXPERIMENTAL SETTING

Our experimental framework comprises two primary datasets: TriviaQA and 2WikiMultihopQA.
Below, we provide detailed descriptions of the setting and procedures applied to each.

B.2.1 2WIKIMULTIHOPQA

We employed two data types from the 2WikiMultihopQA dataset: Comparison and Bridge Compar-
ison. For each data type, the first 298 questions were selected to generate responses for evaluation
during the main experiment. The ablation study experiment for LLaMA3-8B-Instruct utilizes the
first 103 questions.

For every question within these categories, we extracted the pertinent information and created three
question-answer pairs for each extracted segment. To enhance the model’s ability to recall and
effectively utilize passage information, we organized the training data for in-parameter training as
follows:

• (Q, P, A) Prompts: Two QA pairs combine the question (Q), passage (P), and answer (A),
encouraging the model to associate the passage with the corresponding answer.

• (Q, A) Prompts: One QA pair includes only the question and answer, facilitating the model’s
ability to generate answers based on the learned passage content.

B.2.2 TRIVIAQA

We employed the Wikipedia development set from TriviaQA, where all relevant documents are
sourced from Wikipedia. To reduce the complexity of reading comprehension for the model, we
implemented a filtering process that retained only passages containing 3,000 tokens or fewer for
each question. Initially, the dataset included 308 questions; after filtering, 173 questions remained,
each containing at least one relevant piece of information within the length limit. These filtered
questions were used for our experiments.

For every question within these categories, we extracted the pertinent information and created six
question-answer pairs for each extracted segment. Following the aforementioned format in 2Wiki-
MultihopQA, each question includes three (Q, P, A) prompts and three (Q, A) prompts to enhance
the model’s ability to effectively recall and utilize passage information.

B.3 EVALUATION DETAILS

To assess the performance of our models, we employed two primary evaluation metrics: Exact
Match (EM) and F1 Score.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

For tasks that require direct answer generation, we incorporate the prompt phrase “The answer is”
within the input. This encourages the model to produce the answer immediately following this
phrase, ensuring consistency with the expected output format.

For tasks that involve reasoning and necessitate the generation of a Chain-of-Thought (CoT), we
provide eight few-shot examples that utilize CoT. Each few-shot example concludes with the phrase
“So, the answer is xxx”, which guides the model to follow this pattern and facilitates accurate
answer matching.

B.4 TRAINING PARAMETER CONFIGURATION

The training parameters and LoRA parameters used in our In-Parameter Knowledge Injection
method are on Table 6.

Table 6: Configuration of Training Parameters

Parameter Value
Number of Training Epochs 3
Learning Rate 3 ×10−4

LoRA Alpha 32
LoRA Dropout 0.01

LoRA Rank
Qwen2.5-1.5B-Instruct: 2
LLaMA3.2-1B-Instruct: 2
LLaMA3-8B-Instruct: 16

C MORE ABLATION STUDY RESULTS

C.1 EFFECT OF LORA PARAMETERS

To investigate the impact of LoRA parameters, we conducted an ablation study using the LLaMA3.2-
1B-Instruct model on the first 103 questions of the Comparison dataset. We systematically varied
the rank, α and dropout rates, as detailed in Table 7, to assess their effects on performance.

The experimental results indicate that changes in LoRA parameters have little influence on the
model’s performance. For smaller models, a lower rank typically leads to better performance. The
alpha parameter has a relatively minor impact, while a lower dropout rate also contributes to im-
proved performance.

Table 7: Ablation study results comparing different rank, α, and dropout configurations. The best
results are in bold.

Rank α Dropout EM F1 Prec. Recall
2 16 0.01 0.4854 0.4999 0.4977 0.5100
2 32 0.01 0.5631 0.5994 0.5959 0.6081
2 32 0.05 0.4175 0.4244 0.4236 0.4291
4 32 0.01 0.5243 0.5267 0.5275 0.5262
8 32 0.01 0.4563 0.4636 0.4628 0.4680

16 32 0.01 0.4466 0.4555 0.4547 0.4583

C.2 EFFECT OF THE NUMBER OF TRAINING EPOCHS AND KNOWLEDGE-AUGMENTED QAS

To investigate the influence of training parameters on model performance, we conducted an ablation
study using the LLaMA3.2-1B-Instruct model on the first 103 questions of the Comparison dataset.
Specifically, we examined the effects of varying the number of training epochs (#Epoch) and the
number of knowledge-augmented question-answer pairs (#QA). The performance is presented in
Tables 8 and 9.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 8: Ablation study results comparing different numbers of training epochs. The best results are
in bold.

#Epoch EM F1 Prec. Recall

1 0.5534 0.5733 0.5744 0.5748
3 0.5631 0.5994 0.5959 0.6081
5 0.3981 0.4099 0.4091 0.4146
7 0.3592 0.3893 0.3859 0.4008

The results in Table 8 indicate that three training epochs yield the best performance across all met-
rics. Training for a single epoch also achieves relatively strong results, but increasing the number
of epochs beyond three leads to a significant decline in performance. Similarly, Table 9 shows that
increasing the number of knowledge-augmented QAs up to three substantially improves the model’s
performance, with the optimal results observed at three QAs. However, adding more than three QAs
results in decreased performance.

These results suggest that excessive training may lead to overfitting or weaken the model’s ability to
generalize effectively, ultimately causing it to lose its ability to answer questions accurately.

Table 9: Ablation study results comparing different numbers of knowledge-augmented QA. The best
results are in bold.

#QA EM F1 Prec. Recall
1 0.4272 0.4387 0.4384 0.4453
2 0.4757 0.4911 0.4896 0.4947
3 0.5631 0.5994 0.5959 0.6081
4 0.4369 0.4523 0.4502 0.4615
5 0.4272 0.4535 0.4503 0.4647
6 0.4175 0.4199 0.4207 0.4194

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D PROMPT DETAILS

For methods that perform In-Context Learning solely on passages, we utilize the following prompt:

Prompt Template for In-Context Learning with Passages Only

user:

You should answer the question by referring to the knowledge provided below and
integrating your own knowledge.
Passage 1: Blind Shaft is a 2003 film about a pair of brutal con artists operating
in the illegal coal mines of present- day northern China. The film was written and
directed by Li Yang, and is based on Chinese writer Liu Qingbang’s short novel”
Shen MuSacred Wood”).
Passage 2: The Mask of Fu Manchu is a 1932 pre-Code adventure film directed
by Charles Brabin. It was written by Irene Kuhn, Edgar Allan Woolf and John
Willard based on the 1932 novel of the same name by Sax Rohmer. Starring
Boris Karloff as Fu Manchu, and featuring Myrna Loy as his depraved daughter,
the movie revolves around Fu Manchu’s quest for the golden sword and mask of
Genghis Khan. Lewis Stone plays his nemesis. Dr. Petrie is absent from this film.

Question: Which film came out first, Blind Shaft or The Mask Of Fu Manchu?

assistant:

The answer is

For the (Q, P, A) part of the In-Parameter training data, the data is the prompt above with the answer
added at the end.

For the part that does not use knowledge, we use the following prompt:

Prompt Template for In-Context Learning with Passages Only

user:

You should answer the question by referring to the knowledge provided below and
integrating your own knowledge.

Question: Which film came out first, Blind Shaft or The Mask Of Fu Manchu?

assistant:

The answer is

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

For the (Q, A) part of the In-Parameter training data, the data is the prompt above with the answer
added at the end.

For methods that perform In-Context Learning on both passages and QA-generated knowledge, we
use the following prompt:

Prompt Template for In-Context Learning with Passages and Knowledge-
Augmented QA

user:

You should answer the question by referring to the knowledge provided below and
integrating your own knowledge.
Passage 1: Blind Shaft is a 2003 film about a pair of brutal con artists operating
in the illegal coal mines of present-day northern China. The film was written and
directed by Li Yang, and is based on Chinese writer Liu Qingbang’s short novel
”Shen Mu (Sacred Wood)”.
Passage 2: The Mask of Fu Manchu is a 1932 pre-Code adventure film directed
by Charles Brabin. It was written by Irene Kuhn, Edgar Allan Woolf, and John
Willard based on the 1932 novel of the same name by Sax Rohmer. Starring
Boris Karloff as Fu Manchu, and featuring Myrna Loy as his depraved daughter,
the movie revolves around Fu Manchu’s quest for the golden sword and mask of
Genghis Khan. Lewis Stone plays his nemesis. Dr. Petrie is absent from this film.

Here are some questions and answers about the knowledge.
Question: What is the film ”Blind Shaft” about?
Answer: A pair of brutal con artists operating in the illegal coal mines of present-
day northern China.
Question: Who wrote and directed the film ”Blind Shaft”?
Answer: Li Yang.
Question: What is the source material for the film ”Blind Shaft”?
Answer: Chinese writer Liu Qingbang’s short novel ”Shen Mu (Sacred Wood)”.
Question: Who directed the film The Mask of Fu Manchu?
Answer: Charles Brabin.
Question: Who played the character Fu Manchu in the film?
Answer: Boris Karloff.
Question: What is Fu Manchu seeking in the movie?
Answer: The golden sword and mask of Genghis Khan.

You need to answer the question: Which film came out first, Blind Shaft or The
Mask of Fu Manchu?

assistant:

The answer is

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

For tasks that require guiding the model to generate Chain-of-Thought (CoT) reasoning, we use the
following instruction to provide few-shot examples before the external knowledge:

Prompt Template for CoT fewshot

You should reference the knowledge provided below and combine it with your
own knowledge to answer the question. Please follow the format of the example I
provided above.
Here are some examples about how to answer the questions.
Question: When did the director of film Hypocrite (Film) die?
Answer: The film Hypocrite was directed by Miguel Morayta. Miguel Morayta
died on 19 June 2013. So the answer is 19 June 2013.

Question: Are both Kurram Garhi and Trojkrsti located in the same country?
Answer: Kurram Garhi is located in the country of Pakistan. Trojkrsti is located
in the country of Republic of Macedonia. Thus, they are not in the same country.
So the answer is no.

Question: Do director of film Coolie No. 1 (1995 Film) and director of film The
Sensational Trial have the same nationality?
Answer: Coolie No. 1 (1995 film) was directed by David Dhawan. The Sen-
sational Trial was directed by Karl Freund. David Dhawan’s nationality is India.
Karl Freund’s nationality is Germany. Thus, they do not have the same nationality.
So the answer is no.

Question: Who is Boraqchin (Wife Of Ögedei)’s father-in-law?
Answer: Boraqchin is married to Ögedei Khan. Ögedei Khan’s father is Genghis
Khan. Thus, Boraqchin’s father-in-law is Genghis Khan. So the answer is Genghis
Khan.

Question: Who was born first out of Martin Hodge and Ivania Martinich?
Answer: Martin Hodge was born on 4 February 1959. Ivania Martinich was born
on 25 July 1995. Thus, Martin Hodge was born first. So the answer is Martin
Hodge.

Question: When did the director of film Laughter In Hell die?
Answer: The film Laughter In Hell was directed by Edward L. Cahn. Edward L.
Cahn died on August 25, 1963. So the answer is August 25, 1963.

Question: Which film has the director died later, The Gal Who Took the West or
Twenty Plus Two?
Answer: The film Twenty Plus Two was directed by Joseph M. Newman. The Gal
Who Took the West was directed by Frederick de Cordova. Joseph M. Newman
died on January 23, 2006. Fred de Cordova died on September 15, 2001. Thus,
the person to die later from the two is Twenty Plus Two. So the answer is Twenty
Plus Two.

Question: Who is the grandchild of Krishna Shah (Nepalese Royal)?
Answer: Krishna Shah has a child named Rudra Shah. Rudra Shah has a child
named Prithvipati Shah. Thus, Krishna Shah has a grandchild named Prithvipati
Shah. So the answer is Prithvipati Shah.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

The passages and knowledge-augmented question-answer pairs follow the same format as above. In
the generation part, we guide the model to think step-by-step.

Prompt Template for CoT generation

user:
......
Let’s think step by step. Answer the questions in the same format as above.
Question: Which film came out first, Blind Shaft or The Mask Of Fu Manchu?

assistant:

Answer:

20

	Introduction
	Problem Formulation of Knowledge Augmentation
	In-Context Knowledge Injection Paradigm
	In-Parameter Knowledge Injection Paradigm

	Methodology of In-Parameter Knowledge Injection
	Parametric Knowledge Encoding Phase
	Generation Phase
	Efficiency Comparison between In-Context and In-Parameter Paradigm

	Experimental Setup
	Tasks and Datasets
	Evaluation Metrics
	Implementation Details

	Experimental Results
	Fact Extraction Task
	Comparative Reasoning Task
	Multi-Step Comparative Reasoning Task
	Analysis

	Ablation Study
	Influence of Few-shot Chain-of-Thought Examples
	Performance on Larger Model
	Effect of QA Pair Generation

	Related Works
	Conclusion
	Reproducibility Statement
	Prompt Template for QA Generation
	Design Considerations
	Prompt Template

	Experiment Details
	Model Descriptions
	Experimental Setting
	2WikiMultihopQA
	TriviaQA

	Evaluation Details
	Training Parameter Configuration

	More Ablation Study Results
	Effect of LoRA Parameters
	Effect of the Number of Training Epochs and Knowledge-Augmented QAs

	Prompt Details

