Under review as a conference paper at ICLR 2026

VISION REMEMBER: RECOVERING VISUAL INFORMA -
TION IN EFFICIENT LVLM WITH VISION FEATURE RE-
SAMPLING

Anonymous authors
Paper under double-blind review

ABSTRACT

The computational expense of redundant vision tokens in Large Vision-Language
Models (LVLMs) has led many existing methods to compress them via a vision
projector. However, this compression may lose visual information that is crucial
for tasks relying on fine-grained spatial relationships, such as OCR and Chart
& Table Understanding. In this paper, we propose to resample original vision
features across the LLM decoder layers to recover visual information and attain
efficiency. Following this principle, we introduce Vision Remember, which in-
cludes two key modules: (1) Token-Feature Cross-Attention Layer and (2) Token
Bidirectional Self-Attention Layer. In the Token bidirectional attention, we em-
ploy self-attention mechanism to maintain the bidirectional interaction between
vision tokens and the text-guided token. In the Token-Feature interaction atten-
tion, we introduce local cross-attention to resample the visual feature and utilize
the multi-level fusion to enrich the visual representation. We conduct compre-
hensive experiments on multiple visual understanding benchmarks and the results
with the LLaVA-NeXT baseline show that Vision Remember outperforms Token-
Packer by 2.7 and FastV by 5.7 across nearly all the settings. The experimental
results also validate the generalization capability of the proposed method when
combined with various efficient vision projectors and LVLM:s.

1 INTRODUCTION

In recent years, with the rapid advancement of Large Language Models (LLMs) (Achiam et al.,
2023; [Touvron et al., [2023} |Bai et al.l 2023a; [Cai et al., 2024; |Liu et al., [2024a)), a growing body
of research has focused on integrating visual parsing, understanding and generation capabilities into
LLM, leading to the development of a series of Large Vision-Language Models (LVLMs) (Alayrac
et al., 2022} |Bai et al., |2023b; |Li et al.| 2023 Liu et al., [2024bid; Lu et al., 2024). The general
approach involves aligning vision tokens with the linguistic domain via a projector and then con-
catenating with text tokens before feeding them into an LLM.

However, vision encoders often produce a large number of vision tokens (e.g., 576 in LLaVA-
1.5 (Liu et al., 2024b)), max 2880 in LLaVA-NeXT (Liu et al., [2024c), and max 5760 in LLaVA-
OneVision (Li et al., [2024a) for an image), which occupy the majority of the input embeddings.
Due to the quadratic complexity of the attention mechanism with respect to the number of tokens,
longer input embeddings consume significant computational resources and memory, impeding the
applications of LVLMs in practice, particularly under computationally constrained scenarios such
as edge computing and robotics.

Many existing studies try to improve the efficiency and have found that vision tokens exhibit sig-
nificant redundancy (Chen et al.| [2024b; |[Zhang et al., 2024b} Xing et al., 2024). As a result, they
have made efforts to reduce the number of vision tokens. There are two typical approaches: (1)
redesigning the projector to directly compress the vision tokens (Yao et al.||2024b;|Cha et al.,2024;
Chu et al., 2023 |2024; L1 et al., [2025; |Shen et al., [2024)), and (2) pruning unimportant vision to-
kens (Chen et al.| 2024b; Xing et al.| 2024} Zhang et al., 2024b; Zhuang et al.| [2024). For example,
DeCo (Yao et al.l [2024b) employs Adaptive Average Pooling, and Qwen2.5-VL (Bai et al.| [2025)
uses PixelShuffle to compress vision tokens. VisPruner (Zhang et al.| [2024a) maintains the domi-
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Figure 1: Preliminary analysis. (a) Compressing the vision tokens can cause information loss,
resulting in performance degradation. The proposed Vision Remember alleviates this problem. (b)
We extract vision tokens from distinct components of LVLM and evaluate the classification accuracy
on Tiny-ImageNet. The compression only happens in pooling. Our analysis identifies two primary
sources of visual information loss: Information Bottleneck in Token Compression and Visual Cues
Forgetting in Progressive Alignment.

nant tokens and prunes the other tokens in the vision encoder. Nonetheless, these methods may lose
visual information, which is important for the tasks that rely on fine-grained spatial relationships,
such as OCR and Chart & Table understanding.

To systematically identify the reasons for visual information loss, we evaluate the classification ca-
pacity of vision tokens extracted from different components of LVLM on the TinyImageNet dataset.
Similar to linear probing, we freeze all the parameters in LVLM and only train a lightweight clas-
sification head composed of a single cross-attention layer followed by a linear layer. As shown in
Fig.[Ib] we identify two fundamental reasons for the performance degradation: (1) Information Bot-
tleneck in Token Compression - The compression of vision tokens inevitably discards fine-grained
visual details (e.g., texture patterns, small objects), while the surviving tokens lack the representa-
tional capacity to reconstruct such high-frequency visual information; (2) Visual Cues Forgetting
in Progressive Alignment - During the cross-modal alignment process, where vision tokens sequen-
tially interact with text tokens in the LLM’s attention layers, visual features undergo gradual atten-
uation due to dominant linguistic priors, resulting in visual cues forgetting across the LLM decoder.
Hence, we raise a question: Since the problem comes from the compression in the projector and the
forgetting in LLM, can we recover the original vision features between the LVLM decoder layers?

To answer the above question, this paper present Vision Remember, an approach that resamples
original visual features multiple times across the LVLM decoder layers to compensate for the lost
vision cues. The main motivation is that the features obtained by the vision encoder contain original
vision information, and we can re-inject them into vision tokens, not in the projector, but between
the decoder layers. Following this principle, we introduce the first key module: Token-Feature
Cross-Attention Layer, which employs local cross-attention to interact the vision tokens and vision
features. Furthermore, we also aggregate multi-level features to enrich the visual representation and
enhance the model’s ability of visual comprehension. Another key module is Token Bidirectional
Self-Attention Layer. Casual attention mask inherently restricts cross-token interactions in visual
representations while preventing access to subsequent textual cues, consequently disregarding tex-
tual descriptions of foreground objects. To address this issue, this module employs self-attention
mechanisms to enable mutual attention among vision tokens, and introduces text-guided tokens to
implicitly characterize the region of interests.

We evaluate our proposed method on LLaVA-NeXT (Liu et al.l 2024c), the most widely adopted
baseline in academia, and assess the model’s performance through average scores across eleven
comprehensive benchmarks. Experimental results demonstrate consistent performance gains when
our method is combined with various efficient visual projectors. Specifically, Vision Remember
achieves improvements of +3.0 (6.6%), +3.2 (7.2%), and +4.4 (10.1%) for Average Pooling, Pix-
elShuffle, and Perceiver Resampler, respectively. On identical baselines, our approach outperforms
prior works, TokenPack (Li et al., [2025) and FastV (Chen et al., 2024b), by margins of +2.7 (5.9%)
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and +5.7 (13.3%). To further validate the generalizability of our method, we conduct experiments
on two different baselines Qwen2.5-VL (Bai et al., [2025) and MiniCPM-V-2 (Yao et al.| [2024c)),
and observe performance improvements. These experiments demonstrate that Vision Remember
can serve as a fundamental component when constructing an efficient LVLM.

2 RELATED WORK

2.1 LARGE VISION-LANGUAGE MODELS

Many works focus on endowing LLMs with visual understanding capabilities, transforming them
into LVLMs (Yao et al.l [2024c} [Liu et al.| |2024¢; |Chen et al., [2024d; |Liu et al.| 2024b; |/Abdin et al.,
2024} |Liu et al.l |2024c; Tong et al.l 2025; Wang et al., 2024; |[Lu et al., 2024). Based on differences
in visual signal integration methods, we categorize existing approaches into two classes: (1) Token
Concatenation and (2) Visual Feature Sampling.

Token Concatenation based LVLM. These methods align the vision tokens into the linguistic do-
main by a projector, and then concatenate them with text tokens before feeding into the LLM. Blip-2
(L1 et al.l [2023) and LLaVA (Liu et al. 2024d) both adopt this paradigm, but the main difference
is that Blip-2 uses Q-Former to bridge different modalities, while LLaVA directly employs MLP
layers to map vision tokens into the language domain. LLaVA-NeXT (Liu et al.,[2024c) introduces
dynamic image cropping to enhance the fine-grained understanding capabilities. Mini-Gemini (Gao
et al., 2024) and Cambrian-1 (Tong et al., |2025) have explored various combination methods of
multiple vision encoders. DenseConnector (Yao et al., 2024a) and MMFuser (Cao et al., [2024),
enhance existing LVLMs by leveraging multi-level visual features. However, the aforementioned
methods primarily focus on enhancing the understanding capabilities of LVLMs, while neglecting
the efficiency of the models. Larger foundational models and longer input sequences can result in
significant computational resource consumption during inference.

Visual Feature Sampling based LVLM. Several approaches inject visual information into LLMs
via cross-attention layers, where text tokens serve as queries while visual features act as keys and
values. Flamingo (Alayrac et al.,[2022)) introduced gated x-attention layers, which enable the model
to understand visual inputs by employing Recent work has focused on enhancing the visual under-
standing capabilities of LVLMs. LLaMA 3 (Dubey et al.;[2024)) also adopts this paradigm, construct-
ing multimodal models with varying parameter counts, and achieves strong performance through
large-scale training. EVLM (Chen et al., [2024a) and NVLM (Dai et al., 2024) integrate these
two paradigms, constructing hybrid-architecture LVLMs. However, gated cross-attention mecha-
nisms incur significant parameter overhead—for instance, in LLaMA 3, merely 8 cross-attention
layers account for 100B parameters. Unlike previous approaches, our method performs sampling
exclusively on the vision tokens by leveraging local cross-attention mechanisms. In contrast, prior
methods typically employ global attention, which involves sampling across the entire sequence of
tokens, including both vision and text modalities. Our design introduces minimal parameters while
maintaining model efficiency.

2.2  EFFICIENT LARGE VISION LANGUAGE MODELS

Many works focus on improving the efficiency of LVLMs by reducing the number of visual tokens,
which can generally be categorized into the following two types: (1) redesigning the projector to
directly compress the visual tokens; (2) directly pruning the unimportant vision tokens between the
decoder layers.

Projector Design. DeCo (Yao et al [2024b)) provides a detailed analysis of the “dual abstraction”
phenomenon in Q-Former and proposes using 2D adaptive average pooling directly in the projector
to perform downsampling of visual tokens. By utilizing Point-to-Region attention in the local re-
gion, TokenPacker (Li et al., 2025) enhances fine-grained understanding capability while preserving
spatial information. MobileVLM (Chu et al.| 2023}, 2024)) introduces a convolutional LDP module
for visual token compression, whereas Qwen2-VL (Wang et al.| [2024) and InternVL (Chen et al.,
2024e¢) employ PixelShuffle.

Vision Token Pruning. FastV (Chen et al., 2024b) introduces a method that prunes the last top-k
visual tokens based on attention values. This plug-and-play approach can be integrated into vari-
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Figure 2: Vision Remember framework. We insert the proposed Vision Remember between the
LLM decoder layers. Adaptive Average Pooling is used to compress the vision tokens. In Vision
Remember, we adopt local attention as shown in the blue part. A vision token only focuses ona s X s
local region in the multi-level vision feature to improve the computational efficiency and capture the
fine-grained spatial information.

ous LVLMs in a training-free paradigm. SparseVLM (Zhang et al., 2024b) proposed a rank-based
strategy to adaptively determine the pruning ratio for each layer. PyramidDrop (Xing et al., 2024)
divides the entire LVLM decoder into multiple stages and performs pruning at a fixed ratio after the
last layer in each stage. VisionZip (Yang et al., 2025) and VisPruner (Zhang et al.l |2024a) prunes
the redundant tokens in the vision encoder, while preserving the structural integrity of LLM.

Unlike existing approaches, our proposed method focuses on recovering lost visual cues rather than
further optimizing model operational efficiency.

3  VISION REMEMBER

In this section, we first give a brief introduction to the widely used LLaVA series (Liu et al.||2024cj
Li et al., [2024a; |Liu et al., [2024bid), which serve as our baseline. We then introduce our proposed
Vision Remember, including two key components: Token-Feature Cross-Attention Layer and Token
Bidirectional Self-Attention Layer. Notably, Vision Remember is not only bound to LLaVA but also
can be integrated into other Efficient LVLMs.

3.1 PRELIMINARY

We choose the widely used LLaVA-NeXT (Liu et al., |2024c) as our baseline, which consists of
three components: 1) Vision Encoder, 2) Vision Projector, and 3) Large Language Model. Vision
Encoder, typically a Vision Transformer (ViT) or Convolution Neural Network (CNN) that has been
trained on a large amount of data, is primarily used to extract vision features from the input image.
Then, a 2-layer MLP named Vision Projector is adopted to align the vision features with linguistic
space. Finally, the text tokens T; and the vision tokens T, after alignment are concatenated and fed
into a LLM to generate the response R with length L in an auto-regressive manner, which can be

formulated as:
L

P(RIT,, Ty) = [ [ p(ri|T0, Te, 7). (1)
=1

3.2 TOKEN-FEATURE CROSS-ATTENTION LAYER

To compensate for the lost visual information and recover the visual cues, we retain the original
vision feature and interact with the vision tokens from the LLM decoder layers.
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Multi-level Vision Feature. Many studies have demonstrated that different layers in ViT (Dosovit-
skiy et al.,2020) exhibit different attention patterns. Shallow layers tend to focus on low-level local
spatial information, while deeper layers tend to emphasize global semantic features. Effectively
utilizing the multi-level vision features can significantly enhance the LVLM’s parsing and under-
standing capability. Here, we directly concatenate the vision features from different layers along the
feature dimension to form information-rich vision features.

Local Attention To avoid disrupting the inductive bias in images and better utilize spatial structural
information, we adopt the local attention mechanism during the interaction process. As shown in
Fig[2] given the vision token from the LLM decoder layers, we first expand its dimension by a
MLP layer to match the vision features dimension D. Then following Swin Transformer (Liu et al.,
2021), we divide the vision features into n? local regions of size s x s in the spatial dimension
H x W (typically, H = W), where n = H/s. We reshape the partitioned vision features F,, €

RBXHXWXD o R(Bn*)xs*xD 4 serve as key and value. For vision tokens, we perform the same
operation, but the size of the local region is 1 x 1, serving as the query. In this way, a vision token
only performs cross-attention with an s X s local region, rather than attending globally to all vision
features.

The benefits of using local attention can be summarized as follows: (1) computational efficiency
and (2) localized contextual information. First, local attention reduces the computational complexity
compared to traditional global attention mechanisms. By partitioning the vision features into smaller
local regions, each vision token only attends to a limited number of visual features, resulting in faster
processing and improved efficiency. Second, local attention allows each vision token to focus on a
specific local region of vision features. This attention mechanism helps capture more fine-grained
contextual information and spatial relationships within the region, leading to better understanding
and representation of the visual content.

Other choices. There are three optional interaction mechanisms in Vision Remember: (1) Local
Attention, (2) Deformable Cross Attention (Zhu et al., 2020; Shen et al.,[2024), and (3) Naive Global
Attention (Vaswani et al., [2017). For Deformable Cross Attention and Naive Global Attention, we
all use vision tokens as query, vision features as key & value, but the difference is that the former uses
deformable attention to deal with multi-level vision features and enhance sparse spatial information.
The comparison between the three interaction mechanisms in Sec[4.4]shows that Local Attention and
Deformable Cross Attention both get positive promotion, and the former gets the best performance.

3.3 TOKEN BIDIRECTIONAL SELF-ATTENTION LAYER

As mentioned in Sec[I] causal attention mask used in the LLM decoder ensures each token can
only attend to preceding tokens in the sequences. This is naturally suited for language modeling,
as textual signals are inherently sequential. However, visual signals are inherently two-dimensional
and encode rich spatial relationships. Imposing causal masking during visual token modeling would
fundamentally restrict cross-token interactions in visual representations (Liu et al.,|2024f} Zhu et al.}
2024; |Li et al., 2024b). To address this problem, we introduce Token Bidirectional Self-Attention
Layer, which employs self-attention mechanism with full attention.

In current Large Vision-Language Models (LVLMs) such as LLaVA and Qwen2.5-VL, visual to-
kens are typically prepended to text tokens during sequence concatenation. The inherent property
of causal attention prevents visual tokens from perceiving subsequent text tokens, effectively caus-
ing the model to disregard user prompt inputs when processing visual tokens. User prompts often
contain referential attributes for target objects or foreground elements (e.g., ‘the person wearing red’
versus ‘the person wearing blue’). Ignoring such input priors prevents the model from distinguishing
which visual tokens actually merit attention (i.e., those containing the referenced foreground) during
visual token processing. We first extract text tokens from hidden states in the decoder layer, and then
compress them along the sequence dimension with Adaptive Max Pooling to get the text-guided to-
ken. Finally, we concatenate vision tokens with the text-guided token to enable fully cross-modal
interaction through the self-attention mechanism.

3.4 TRAINING.

Following the common practice, we train the Vision Remember in multiple phases.
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Table 1: Performance gain with various efficient vision projectors. Performance with proposed
Vision Remember is marked in gray . A.A.P means Adaptive Average Pooling. Our proposed
method can improve the LVLM’s ability of visual parsing and understanding when combined with
various efficient vision projectors.

: >
& 3 s \d N \2¢ 5°
s° & & 3 S & & & © Nl
A\Q \¢ \ad '\/Q ‘bé ) 4 S &
L A ¥
AAP 574 12148 476 548 531 30.1 35.6 36.5 52.3 41.0 31.8 45.5
o 58.7 11762 519 559 516 29.6 37.1 48.7 54.2 49.6 37.3 48.5(+3.0)
) 56.8 12347 476 563 523 30.7 37.1 322 47.8 39.4 30.3 44.8
PixelShuffle
58.8 11441 507 543 528 29.1 37.4 483 53.3 48.8 36.8 48.0(+3.2)
. 557 12135 459 572 526 30.7 36.3 31.3 39.5 42.1 28.8 43.7
Perceiver
59.0 11492  50.1 557 522 29.3 36.8 48.7 53.8 49.3 373 48.1(+4.4)
LDPv2 57.8 12248 482 547 526 30.3 34.8 39.5 53.4 434 32.6 46.2
V.
58.7 1191.1 50.1 559 518 29.5 37.3 47.5 53.9 49.3 36.9 48.2(+2.0)

Phase-1: Language-Image Alignment. In this phase, we use the image-caption pairs in the CC-
558K dataset (Liu et al., [2024d) to train the Vision Projector and Vision Remember, keeping the
Vision Encoder and LLM frozen. The main purpose of this phase is to align the hidden representa-
tion space between the vision and language modalities.

Phase-2: Visual Instruct Tuning. In this phase, we include the LLM in training. The 779K
mixture dataset (Liu et al., 2024c) is used to enhance the LVLM’s ability of vision understanding
and instruction following. To support high-resolution input images, the AnyRes (L1 et al., [2024a)
technique is adopted during this phase.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

We choose the widely used LLaVA-NeXT (Liu et al.l 2024c) as baseline, SigLIP-Large (Zhai et al.|
2023) as Vision Encoder and Qwen2 (Yang et al.} [2024) series as LLM. The size of per tile of
input image is resized to 384 x 384, so the shape of feature map from SigLIP-Large-patch16-384
is 24 x 24, and then 2D Adaptive Average Pooling is employed to compress the spatial resolution
to 8 x 8, resulting in 64 vision tokens per patch (i.e. compression ratio is 1/9). If not specified,
we select layers 7, 15, and 23 from the vision encoder to form multi-level vision features and insert
Vision Remember before the first and fourth decoder layers. We train all models for one epoch, and
use the AdamW optimizer with Cosine learning rate schedule. In phase-1, the learning rate is le-3
and the batch size is 256, and in phase-2, the learning rate is 2e-4 and the batch size is 32. The
experiments are conducted on 8 x Nvidia A100 GPUs.

4.2 BENCHMARKS

We conduct extensive experiments on 11 benchmarks to validate the understanding and parsing ca-
pabilities of the proposed method. The benchmarks can be divided into the following types based on
different focus areas: (1) General Question Answer benchmarks include GQA (Hudson & Manning,
2019), MME-Perception (Fu et al., |2024) and RealWorldQA (xAI teaml 2024)). (2) Comprehensive
Knowledge Reasoning benchmarks include ScienceQA _Image (Lu et al., 2022), AI2D (Kembhavi
et al., 2016), MMMU (Yue et al.| 2024) and MMStar (Chen et al., |2024c)). (3) OCR&Chart Pars-
ing benchmarks include ChartQA (Masry et al.| [2022), DocVQA (Mathew et al.| [2021)), TextVQA
(Singh et al., 2019) and OCRBench (Liu et al., [2023). To compare the performance of LVLM, we
take the average scores on the whole benchmark.

4.3 MAIN RESULTS

Performance gain with various efficient vision projectors. To demonstrate the effectiveness of
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Table 2: Performance gain with various compression ratio. Performance with proposed Vision
Remember is marked in gray . Adaptive Average Pooling is used in projector to downsample the
vision tokens. The proposed method demonstrates consistent performance improvements across
varying compression ratios, with greater performance gains observed at higher compression ratios
(i.e., fewer retained tokens).
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584 12070 488 569 529 312 355 455 52.6 46.9 357 | 477(+4.4)

Vision Remember, we report the performance when combined with various efficient vision projec-
tors (Yao et al. [2024b; [Shen et al.| 2024} [Chen et al.} 2024d; [Chu et al.| [2023; [2024)). Just as Tab/I]
shows, when different projectors are combined with Vision Remember, the LVLM’s ability of vi-
sual understanding are all improved. Specifically, the proposed method can lift the average score
of Adaptive Average Pooling by +3.0, PixelShuffle by +3.2, and Perceiver Resamplers by +4.4. The
higher improvements are primarily concentrated on benchmarks including GQA, RealWorldQA,
ChartQA, DocVQA, TextVQA, and OCRBench, which demonstrates that Vision Remember can al-
leviate the visual information loss and enhance the LVLM’s ability to understand fine-grained visual
features and spatial relationships, especially in tasks such as OCR and Chart/Table analysis.

Performance gain with various compression ratios. Tab[2] presents the performance gains with
various compression ratios. We first employ the Adaptive Average Pooling to compress the vision
tokens with three ratios: 4x, 9%, and 16x, i.e 144, 64 and 36 vision tokens remain in each patch,
respectively. Then we integrate the proposed Vision Remember and compare the average score on
11 benchmarks. Specifically, our method achieves performance gains of +2.4, +3.0, and +4.1 at
compression ratios of 4x, 9%, and 16x, respectively. These results demonstrate that Vision Remem-
ber consistently improves performance across varying compression rates, with greater performance
gains observed at higher compression ratios.

Comparison with other efficient methods. Tab[3|presents the performance comparison with other
efficient methods, including the pruning-based methods FastV (Chen et al.| 2024b), PyramidDrop
(Xing et al., [2024)), VisPruner (Zhang et al.,|2024a), and compress-based methods DeCo (Yao et al.,
2024b), TokenPacker (Li et al., |2025). For fair comparison, we keep the experiment under consis-
tent settings, including the training data, model size, and compression ratio. Our approach achieves
the best average accuracy across all three LLM scales in Tab[3} 48.5 with Qwen2-0.5B (+1.9 over
VisPruner and +3.3 over TokenPacker), 55.5 with Qwen2-1.5B (+1.4 over VisPruner and +3.0 over
TokenPacker), and 60.2 with Qwen2-7B (+1.6 over VisPruner and +2.9 over TokenPacker). Notably,
VisPruner prunes redundant visual tokens in the vision encoder, while FastV and PyramidDrop per-
form token pruning within the LLM. All these methods rely on attention maps to determine which
tokens to retain or drop. However, Flash Attention (Dao et al.,|2022)) and Scaled Dot-Product Atten-
tion (SDPA)—widely adopted techniques for accelerating attention computation—do not support the
output of attention maps by design. Consequently, the aforementioned pruning methods cannot be
fully integrated with these accelerating techniques at certain layers, leading to significant efficiency
bottlenecks. We will provide a detailed comparative analysis in Sec[4.5] Compared with DeCo and
TokenPacker, our method not only consider the information bottleneck in token compression, but
also recover the lost visual cues in progressive alignment, thus achieves better performance.

4.4 ABALTION STUDY

Key Components. Tab[a| presents the results of the ablation study that evaluate the contributions
of different key components. By incrementally adding Local Attention, Multi-level Fusion, Bidi-
rectional Interaction, and Text guided Token, the results demonstrate performance gains over the
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Table 3: Performance comparison with other efficient methods. We reproduce these methods
under the consistent settings. Blue means performance drop compared with our method.

Q

S 8 s © s F F &
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¥ F&H & TP & & & & S w¥

Qwen2-0.5B as LLM
FastV (Chen et al.j2024b) 55.1 11414 481 554 50.8 29.6 34.4 25.6 424 447 27.9 |42.8(-5.7)
PDrop (Xing et al.|[2024) 55.1 12048 509 575 525 302 35.4 353 47.6 47.8 257 |45.3(-3.2)

VisPruner (Zhang et al.|[2024a) | 57.6 11942 493 569 534 293 36.1 38.8 43.7 50.2 38.0 |46.6(-1.9)

DeCo (7Ya0 etal, 20é4b) 574 12148 47.6 548 53.1  30.1 35.6 36.5 52.3 41.0 31.8 |45.5(-3.0)

TokenPacker (Li et al.,|2025) | 57.3 11758 50.3 553 519 317 36.6 38.8 50.7 42.9 30.1 |45.8(-2.7)
Ours 58.7 11762 519 559 51.6 29.6 37.1 48.7 54.2 49.6 373 48.5

Qwen2-1.5B as LLM
FastV (Chen et al.:2024b) 572 1329.1 533 700 59.7 333 39.8 41.5 48.0 49.8 29.8 |50.0(-5.5)
PDrop (Xing et al.}|2024) 563 13246 56.0 695 60.6 33.1 40.0 46.2 62.9 55.1 257 |52.0(-3.5)

VisPruner (Zhang et al.||2024a) | 59.8 1323.3 54.5 692 628 322 39.6 48.4 62.9 57.8 423 |54.1(-1.4)

DeCo (Yao et al.}[2024b) 61.3 13389 524 687 628 348 38.6 47.6 63.4 49.4 389 [53.2(-2.3)

TokenPacker (Li et al }[2025) | 60.3 1361.6 54.0 67.6 623 33.6 37.7 46.1 61.8 50.3 362 |52.5(-3.0)
Ours 62.6 1360.6 57.7 682 63.7 327 38.8 54.8 63.4 56.9 441 55.5

QOwen2-7B as LLM
FastV (Chen et al.:2024b) 59.7 14747 592 673 68.1 358 43.0 51.2 57.2 54.1 345 |54.9(-5.3)
PDrop (Xing et al.}|2024) 58.9 1467.7 603 703 66.5 38.0 41.5 50.6 67.8 61.4 32.8 |56.5(-3.7)

VisPruner (Zhang et al.||2024a) | 62.1 1474.1 58.0 69.1 702 357 43.1 60.0 65.5 61.7 423 |58.3(-1.9)

DeCo (Yao et al.; [2024b) 61.6 14254 587 70.8 704 382 44.4 58.8 67.9 56.3 42,6 |58.2(-2.0)

TokenPacker (Li et al.,|2025) | 60.6 1463.6 583 735 692 369 43.5 56.2 66.3 53.6 39.2  |57.3(-2.9)
Ours 622 14889 62.0 730 714 386 44.5 62.0 68.1 60.7 44.9 60.2

baseline. The baseline achieves an average score of 42.9, whereas Local Attention boosts the av-
erage to 45.7. Introducing Multi-level Fusion further increases the average to 46.3, and integrating
Bidirectional Interaction achieves an average score of 46.6. Notably, the simultaneous use of all
yields the highest average score of 46.7, an improvement of +3.8 over the baseline. The results
clearly indicate that each module positively contributes to overall performance, and their combined
usage provides the most significant enhancement, particularly in complex tasks such as OCR&Chart
understanding.

Interaction Methods in Vision Remember. Tab[b]investigates the impact of different interaction
methods within the Vision Remember. Due to focus on all image features without taking into account
the visual local context information, Global Attention yields the poorest results (average score 43.7).
Deformable Attention takes into account local sparse sampling, but learning the offsets can cause
the model confusion about reasonable sampling points, leading to suboptimal result (average score
45.1). Local Attention achieves the best results (average score 46.7).

Insertion Position in LLM. We also conduct ablation study on the insertion layers of Vision Re-
member, and the results are reported in the Tab@ If we insert vision remember after the first layer,
the average score gets +3.4 improvement and yields 46.3 When we insert vision remember after the
first and fourth layers, the average score yields 46.7. Further insertion into subsequent layers leads
to the performance saturating without measurable gains in the average metric. This is because the
middle layers are ‘thinking and reasoning’ (Wu et al., 2024; Yu & Lee} [2025; Basu et al.,|2024)), and
introducing too many visual features may destroy this pattern.

4.5 MORE ANALYSIS

Performance gain on other baselines. We also evaluate the proposed method on two different
baselines: Qwen2.5-VL-3B (Bai et al., [2025)) and MiniCPM-V-3B (Yao et al.}2024c)). Qwen2.5-VL
employs NaViT (Dehghani et al.| [2023) as vision encoder and pixelshuffle merger to compress the
vision tokens, while MiniCPM-V uses MiniCPM as LLM and Q-Former like perceiver resampler as
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Table 4: Ablation studies. The default setting is marked in gray .

(a) Ablation study of key components.

Local Attn Multi-level | Bidir Interact Text Token | General Knowledge OCR&Chart | Average Score
Baseline 54.6 43.7 334 42.9
4 56.4 437 39.5 45.7(+2.8)
. v v 55.4 44.0 422 46.3(+3.4)
Vision Remember
v v v 55.7 439 424 46.6(+3.7)
v v v v 55.9 439 425 46.7(+3.8)

(b) Experimental results with various interaction (c) Experimental results with various insertion posi-
methods in Vision Remember. tions of Vision Remember.

Interaction ‘General Knowledge OCR&Chart | Average Score Insertion‘General Knowledge OCR&Chart | Average Score

Global Attn | 54.1 433 36.4 43.7 1 55.5 43.6 42.0 46.3
Defor Attn | 54.8 43.0 40.0 45.1 1.4 55.9 439 42.5 46.7
Local Attn | 55.9 439 425 46.7 14,7 559 44.0 425 46.7

Table 5: More analysis on various baselines and efficiency. The default setting is marked in gray .

(a) Performance gain on different baselines. (b) Efficiency comparison on a NVIDIA A100 GPU.

Baseline | General Knowledge OCR&Chart | Average Score Methods ‘ TTFT/ms | TPS 1 ‘ Average Score
58.1 51.2 59.5 56.1 LLaVA-NeXT 150.9 359 49.8
Qwen2.5-VL ava-Re
59.7 532 60.9 57.8(+1.7) VisPruner 151.3 44.8 47.5
.. 56.6 57.4 40.9 50.4 TokenPacker 103.8 45.2 47.6
MiniCPM-V
58.1 58.1 415 51.5(+1.1) Ours 104.2 45.1 49.7

projector. Since none of them released their training data, we re-trained the models on the LLaVA-
NeXT (Liu et al) 2024c)) training set, and the final results are reported in TabB_E} Our proposed
method achieves performance improvements across two baselines, proving its effectiveness and ro-
bustness. This experiment also demonstrates that Vision Remember could be considered as a basic
component when constructing an Efficient LVLM.

Efficiency analysis. Tab[5b|presents the efficiency comparison. We chose two metrics, TTFT (Time
to First Token) and TPS (Tokens per Second), to evaluate the efficiency of the proposed method and
others. TTFT reflects the prefilling stage (limited on computational capacity) latency, and TPS indi-
cates the decoding stage (limited on memory bandwidth) efficiency. Compared with LLaVA-NeXT
(Liu et al.| 2024c), which does not compress the vision tokens, our method saves 46.7ms (31%) in
the prefilling stage, and improves TPS to 45.1, while only gets 0.1 (0.2%) drop on the average score.
Although the Vision Remember module remains inactive during the decoding stage, our method
reduces the KV cache length (because of the vision token compression in the prefilling stage) and
improves the decoding efficiency. VisPruner relies on attention maps to select important tokens
and could not be compatible with Flash Attention or SDPA. Consequently, it cannot accelerate the
compute-bound prefilling phase.

5 CONCLUSION

In this paper, we investigate the visual information loss in Efficient LVLMs and identify two rea-
sons: Information Bottleneck and Visual Cues Forgetting. And then we propose Vision Remember
to recover the lost visual information with vision feature resampling. Equipped with Token-Feature
Cross-Attention Layer and Token Bidirectional Self-Attention Layer, the proposed method cap-
tures more fine-grained contextual information and spatial relationships, enhancing the capability
of visual parsing and understanding. Comprehensive experiments validate the effectiveness of the
proposed method when combined with various efficient vision projectors and LVLMs. We hope our
work can promote community interest in Efficient LVLMs, especially on small models with fewer
parameters.
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A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS
We used the Large Language Model only for language refinement of this manuscript, including
grammar, clarity, and readability improvements. No technical content, experimental design, anal-

ysis, or conclusions were generated or influenced by the LLM. All scientific ideas, methods, and
results are solely the authors’ original work.

A.2 MORE EXPERIMENTS

Due to page limitations, we give more experimental analysis in the Appendix.

Table 6: Performance comparison with SVA aggregation. Our method is marked in gray .

S -S: & \o N § & g A§ <b°§
Without multi-level vision feature

SVA 1,4 58.1 1187.6 45.1 55.2 535 34.0 28.2 38.8 42.6 29.9 4.5

SVA 1,4,7,..,16 | 58.0 1198.9 452 54.9 535 355 30.9 39.4 41.8 315 45.1

SVA 1,47,.22 | 589 1218.8 45.9 55.3 52.8 333 29.9 40.3 423 30.5 45.0
With multi-level vision feature

SVA 1,4 574 11819 447 55.5 53.1 345 30.7 40.0 41.6 31.1 44.8

SVA 1,47,.,16 | 579 1217.4 45.0 54.2 52.0 34.0 30.0 384 42.1 31.0 44.6

SVA 147,..22 | 577 1183.0 44.4 55.6 532 29.2 35.8 38.5 41.4 30.7 4.4

Ours 1.4 59.5 1205.6 49.7 54.7 535 30.7 37.5 52.1 51.7 40.3 49.0

Comparison with SVA aggregation. We compare the proposed Vision Remember with SVA Ag-
gregation(Tong et al.l 2025), and the results are shown in TabJ6] Since SVA emphasizes the multiple
vision encoders ensemble, different from the starting point of efficient LVLM, we extracted the ag-
gregation method separately and integrated it into our baseline model. Specifically, we retain only a
single vision encoder and compress the vision tokens with average pooling in the vision projector.
In the aggregation phase, we also incorporated multi-layer vision features. It can be observed that
SVA Aggregation does not utilize multi-layer vision features effectively, and its performance is also
lower than our method.

Multi-level Vision Features in Vision Remember. Vision Remember effectively utilizes multi-
level vision features. We have conducted ablation experiments on this key component, and the
results are shown in the Tab[7] When only the visual features from the 23rd layer (the same as the
Vision Projector) are used, the average score is 45.4, compared to the baseline (44.4, which can be
calculated from the Tab[T), showing an improvement of +1.0. We can observe that as the number of
sampled layers increases, the average score gradually improves. To accelerate the experiments, we
use 3 layers fusion in validation experiments.
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Table 7: Ablation results on vision features from different SigLip layers

) g I ~ 3 \‘? g OY: OY" 45‘;5
S8 § &8s & & & ¢
23 58.1 1239.7 49.2 54.0 52.4 31.9 36.6 412 41.0 44.6 31.3 45.7
11-23 58.8 1191.3 47.7 55.0 52.4 31.6 36.5 44.3 43.6 46.0 32.5 46.2
7-15-23 59.5 1209.9 47.7 55.7 52.9 29.9 37.1 44.1 45.0 473 33.6 46.7
5-11-17-23 58.8 1184.5 47.5 55.8 535 29.9 36.5 46.5 44.8 48.6 33.7 46.7

A.3 DETAILED ABLATION RESULTS

Due to page limitations, we give detailed ablation results (as the same as in Sec{4.4) in the Appendix.
Performance gain on other baselines.

Table 8: Performance gain on different baselines.

Py >
\od ~
S S N < & & F & o &
5 & & 9 S = > & S S
& \at \ad @ & ) < ol 5
F & @@ @ & N @@ @@ & & <& & Yﬁ%
. 50.3 13489 523 745 583 - 39.4 41.1 336 52.1 36.8 50.4
MiniCPM-V-2
513 14042 528 752  59.1 - 39.9 41.6 33.6 522 386 | SL5(+1.1)
597 13474 473 590 670 346 442 61.8 61.1 62.6 52.6 56.1
Qwen2.5-VL
599 1438.1 473 635 676 362 455 62.6 61.4 63.0 56.5 | 57.8(+1.7)
Insertion Position in LLM.
Table 9: Abalation on insertion position.
o S > \y \y &
) S \o S S & & <& K& <
K \ & Q' ™ Q S & S S b .
5 & & & FYEF § 8 & &
1 589 11976 478 562  53.1 29.2 359 453 443 47.2 313 46.3
14 595  1209.9 47.7 557 529 29.9 37.1 44.1 45.0 473 33.6 46.7
147 588 12280 475 565 527 30.2 36.7 455 437 473 335 46.7
147,10 | 589 11769 481 545 528 29.1 38.8 44.1 44.4 47.8 342 46.5
Interaction Methods in Vision Remember.
Table 10: Ablation on interaction methods in Vision Remember..
S 3 \ \a &
& g \od N © & o o) Q& 2
RS & (o) 9 & S & B Q x4 .
& 5 \a Q & & S ol %
o« & & & F ¥ F §F & & & & ¢
Global Attn 563 1199.8 459 542 528 30.8 355 36.4 377 414 29.9 43.7
Deformable Attn | 57.5 12344 452 545 521 30.3 35.0 0.7 41.6 43.9 316 45.1
Local Attn 595 12099 477 557 529 29.9 37.1 44.1 45.0 473 33.6 46.7

A.4 REPRODUCIBILITY STATEMENT

We utilize 558K image-caption pairs from the LLaVA-filtered CC3M dataset https://
huggingface.co/datasets/liuhaotian/LLaVA-Pretrain for pretraining and 779K
mixture instruction following data https://huggingface.co/datasets/lmms-lab/
LLaVA-NeXT-Data| for instruction tuning, which are all publicly and freely available for aca-
demic research. We also use LLaVA-OneVison-SI datasets https://huggingface.co/
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datasets/lmms-lab/LLaVA-OneVision-Data, and this dataset is also publicly and freely
available for academic research. We implement all methods with LLaVA-NeXT | (https://
github.com/LLaVA-VL/LLaVA-NeXT codebase, which are released under the Apache-2.0
license.
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