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Abstract001

Speakers often have multiple ways to express002
the same meaning. The Uniform Information003
Density (UID) hypothesis suggests that speak-004
ers exploit this variability to maintain a con-005
sistent rate of information transmission during006
language production. Building on prior work007
linking UID to syntactic reduction, we revisit008
the finding that the optional complementizer009
that in English complement clauses is more010
likely to be omitted when the clause has low in-011
formation density (i.e., more predictable). We012
advance this line of research by analyzing a013
large-scale, contemporary conversational cor-014
pus and using machine learning and neural lan-015
guage models to refine estimates of information016
density. Our results replicated the established017
relationship between information density and018
that-mentioning. However, we found that pre-019
vious measures of information density based on020
matrix verbs’ subcategorization probability cap-021
ture substantial idiosyncratic lexical variation.022
By contrast, estimates derived from contextual023
word embeddings account for additional vari-024
ance in patterns of complementizer usage.1025

1 Introduction026

Language production is highly flexible across all027

levels of linguistic analysis, such as phonetics, lex-028

icon, and syntax. Such flexibility in production029

enables researchers to ask the question: What cog-030

nitive mechanisms guide our choice among com-031

peting alternatives? A prominent account, Uniform032

Information Density (UID; Jaeger, 2010; Levy and033

Jaeger, 2007), proposes that speakers exploit this034

flexibility to maintain a consistent rate of infor-035

mation transmission. According to UID, speakers036

tend to structure their utterances to distribute infor-037

mation as evenly as possible across the linguistic038

signal to ensure robust information transmission039

while maintaining efficient use of the communica-040

1Code is available anonymously here.

tion channel. Following Shannon’s (1948) infor- 041

mation theory, the information density of a unit u 042

given its context is defined as: 043

I(u) = − log(P (u | context)) (1) 044

where P (u | context) denotes the contextual prob- 045

ability of u. This is also commonly referred to as 046

surprisal (Halle, 2001; Levy, 2008). 047

In an influential study, Jaeger (2010) demon- 048

strated that UID effects can be observed at the 049

syntactic level. He examined the optional com- 050

plementizer that in English complement clauses 051

(henceafter CCs; e.g., (1)) and found that that is 052

more likely to be included when the information 053

density of the CC is high—that is, when the con- 054

textual probability of a CC given the preceding 055

context, P(CC|context), is low. 056

(1) The boss complained (that) they were crazy. 057

The rationale is that an unpredicted CC would cre- 058

ate a spike in information density at the clause 059

onset without that, since the CC is unexpected, 060

while including that helps smooth the distribution 061

by signaling the upcoming structure. Conversely, 062

when a CC is highly predictable, that becomes re- 063

dundant and may introduce an information density 064

trough. This preference is illustrated in Figure 1. 065

When the CC onset is information-heavy, poten- 066

tially exceeding the channel’s capacity (Figure 1a), 067

including that can reduce peak information density 068

(Figure 1b). In contrast, when the onset is relatively 069

low in information density, mentioning that would 070

create a valley (Figure 1c), while omitting it results 071

in a smoother information profile (Figure 1d). 072

While Jaeger (2010) provided important evi- 073

dence for UID, several limitations remain in this 074

work. First, P(CC|context) was quantified using 075

matrix verbs’ subcategorization probabilities—that 076

is, the proportion of times a given verb (based on 077

its lemma) takes a CC as its syntactic object, based 078
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Figure 1: Illustration of per-word information density
(gray line represents a hypothetical channel capacity):
(a) High information density at CC onset; (b) Including
that to reduce peak information; (c) Low information
density at onset with that-mentioning; (d) Smooth pro-
file without that.

on corpus-derived frequencies. This static mea-079

sure might not not fully capture dynamic predic-080

tive processes and may conflate predictability with081

verb-specific variation. Second, the study used a082

relatively small and outdated dataset: about 8,000083

CCs with 31 matrix verbs from the Switchboard084

corpus (Godfrey et al., 1992; Marcus et al., 1999),085

which may limit the generalizability of the findings.086

Given the theoretical importance of Jaeger’s (2010)087

findings, a reexamination using larger datasets and088

more refined predictability measures is needed.089

To address these limitations, in the current work090

we analyzed a modern large-scale corpus called091

Conversation: A Naturalistic Dataset of Online092

Recordings (CANDOR; Reece et al., 2023). To093

preview, we extracted over 50,000 unique cases of094

CCs after data cleaning, encompassing 50 unique095

matrix verbs. In addition, we incorporated insights 096

from machine learning and neural language models, 097

especially contextual word embeddings, to refine 098

measures of structural predictability. Such refined 099

estimation also allows us to investigate whether 100

improved predictability of CCs leads to better mod- 101

eling of that-mentioning. 102

2 Related Work 103

2.1 Psycholinguistic Evidence for UID 104

Research supporting the UID hypothesis in lan- 105

guage production spans multiple linguistic levels, 106

including phonetics (Aylett and Turk, 2004), lexi- 107

cal choice (Mahowald et al., 2013), syntax (Jaeger, 108

2010), and discourse (Asr and Demberg, 2015). 109

For example, past research across many different 110

languages has consistently demonstrated that when 111

a word or phoneme is more predictable in con- 112

text, it is typically produced with a shorter duration 113

and exhibits reduced phonological and phonetic 114

detail (Aylett and Turk, 2004; Bell et al., 2009; 115

Cohen Priva, 2015; Pimentel et al., 2021; Pluy- 116

maekers et al., 2005, among others). At the lexical 117

level, Mahowald et al. (2013) found that speakers 118

are more likely to use shortened forms of words 119

(e.g., math instead of mathematics) in more pre- 120

dictive contexts. Similarly, at the syntactic level, 121

studies have shown that optional syntactic markers, 122

such as that in English CCs (e.g., I think (that) the 123

weather is very nice; Jaeger, 2010) and object rela- 124

tive clauses (e.g., the groceries (that) they brought 125

home; Levy and Jaeger, 2007), are more frequently 126

omitted when the upcoming syntactic structure is 127

highly predictable. The relationship between infor- 128

mation density and syntactic reduction also extends 129

cross-linguistically, such as in subject doubling in 130

French (Liang et al., 2024) and optional indefinite 131

articles in German (Lemke et al., 2017). 132

However, the predictions of UID are not always 133

borne out. For example, Zhan and Levy (2018) 134

found that variation in the use of specific versus 135

general classifiers in Mandarin Chinese is better ex- 136

plained by availability-based production accounts. 137

In addition, Kuperman et al. (2007) observed that 138

Dutch interfixes are pronounced longer when they 139

have higher contextual probability, contrary to UID 140

predictions, which they attributed to paradigmatic 141

enhancement. These divergent findings underscore 142

the need for further evaluation of UID. 143
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2.2 Neural Language Model and Structural144

Knowledge145

A range of studies has probed neural language146

models’ sensitivity to linguistic structures. Linzen147

et al. (2016), for instance, evaluated LSTMs’ ability148

to capture subject-verb agreement using template-149

based test data. Extending this approach, Warstadt150

et al. (2020) developed a broader benchmark en-151

compassing a diverse set of linguistic phenomena152

(see also Hu et al., 2020). Many of these studies153

rely on surprisal-based evaluations, assuming that154

ungrammatical continuations should elicit higher155

surprisal than grammatical ones (e.g., Futrell et al.,156

2019; Wilcox et al., 2018). Other work has adapted157

stimuli from psycholinguistic experiments, compar-158

ing language model surprisal to human behavioral159

or neural data (Arehalli and Linzen, 2020; Hao,160

2023; Huang et al., 2024; Michaelov and Bergen,161

2020). For critical overviews of this literature, see162

Limisiewicz and Mareček (2020) and Linzen and163

Baroni (2021)164

Beyond surprisal-based evaluations, researchers165

have also assessed models’ syntactic knowledge166

through attention head analyses (e.g., Clark et al.,167

2019; Ryu and Lewis, 2021), meta-linguistic168

prompting (e.g., Dentella et al., 2024; Katzir, 2023;169

Zhou et al., 2023; though see Hu and Levy, 2023,170

for critiques of this method), and examinations of171

contextual word embeddings (e.g., Li et al., 2022;172

Peters et al., 2018; Petty et al., 2022; Tenney et al.,173

2019; Wilson et al., 2023). For instance, Peters et al.174

(2018) demonstrated that contextual embeddings175

encode a wide range of syntactic information, such176

as part-of-speech and syntactic boundaries, while177

Li et al. (2022) showed that contextual word em-178

beddings are sensitive to argument structure even179

in semantically anomalous sentences.180

3 Structural Predictability Model181

We trained several neural binary classifiers using182

either hand-selected linguistic features from the183

pre-CC context or contextual word embeddings184

of the matrix verb, to estimate the structural pre-185

dictability of CCs. Hand-selected features offer186

interpretability and theoretical grounding but may187

overlook subtle or high-dimensional patterns in the188

linguistic context. In contrast, contextual word189

embeddings (e.g., from BERT or GPT models) en-190

code nuanced semantic and syntactic information191

by capturing how the meaning of a word dynami-192

cally changes depending on its surrounding context,193

but come at the cost of interpretability (Kennedy 194

et al., 2021). To balance the trade-off, we evaluate 195

models trained on each feature type separately. 196

3.1 Linguistic Features 197

We included features from the matrix verb and the 198

matrix subject in the pre-CC context. For the ma- 199

trix verb, we included its subcategorization prob- 200

ability, estimated from the CANDOR corpus (see 201

Appendix A), as well as its log frequency (SUB- 202

TLEX; Brysbaert and New, 2009), factivity (i.e., 203

whether it presupposes the truth of the clause it 204

introduces); Karttunen, 1971), tense (base form vs. 205

inflected), and position within the sentence. We 206

also included two features related to the matrix sub- 207

ject: form (I, You, Other pronouns vs. Other nouns) 208

and log frequency. 209

To identify the most effective feature set, we per- 210

formed incremental feature selection, adding fea- 211

tures one at a time starting from the matrix verb’s 212

subcategorization probability. A feature was re- 213

tained only if it improved model fit according to 214

Akaike Information Criteria (AIC; Akaike, 1974) 215

and Bayesian Information Criteria (BIC; Schwarz, 216

1978), both of which balance model fit and com- 217

plexity by penalizing the inclusion of unnecessary 218

parameters. We also experimented with Lasso re- 219

gression (Tibshirani, 1996), where we first fitted a 220

linear regression model using all features simulta- 221

neously with an L1 penalty to encourage sparsity in 222

the feature set. Features with nonzero coefficients 223

were then used to predict CC presence. 224

3.2 Contextual Word Embeddings 225

To capture richer predictive cues, we extracted con- 226

textual embeddings of the matrix verb from GPT-2 227

Small (GPT-2 henceforth; Radford et al., 2019). 228

Note that this context only includes pre-CC infor- 229

mation, not information after the CC onset (e.g., 230

we extracted the embeddings of complained from 231

the boss complained). GPT-2’s autoregressive ar- 232

chitecture enables embeddings based solely on pre- 233

ceding context, aligning with incremental sentence 234

processing. We used the final hidden state of the 235

verb token and reduced the 768-dimensional em- 236

beddings to 50 dimensions via PCA (Jolliffe, 2002), 237

preserving over 99% of the variance. 238

3.3 Training Data 239

The training data come from the CANDOR corpus 240

(Reece et al., 2023), a large-scale dataset of 1,656 241

dyadic conversations recorded over Zoom. The 242
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corpus is publicly available and can be requested243

here. These conversations capture spontaneous, un-244

scripted exchanges between strangers and are sup-245

plemented with detailed survey data. The corpus246

includes 1,456 unique participants representing a247

diverse range of gender identities, educational back-248

grounds, ethnicities, and generations. The mean249

conversation duration is 31.3 minutes (SD = 7.96,250

min = 20). All analyses in this study are based251

on existing transcripts from the corpus, totaling252

approximately 8 million words. Transcripts were253

segmented using the Cliffhanger algorithm, which254

groups utterances based on terminal punctuation255

(e.g., periods, exclamations, questions) and inte-256

grates backchannels into broader conversational257

units.258

Transcripts were automatically parsed using259

spaCy’s dependency parser (Honnibal et al., 2020),260

following Universal Dependencies conventions261

(de Marneffe et al., 2021; Nivre et al., 2016). We262

began with 86 matrix verbs that can take CCs, iden-263

tified by Jaeger (2010) and Jaeger and Grimshaw264

(2013). Based on frequency in the CANDOR cor-265

pus, we selected the 50 most frequent verbs (≥ 100266

occurrences; see Appendix A).267

We then extracted all instances of these 50 verbs,268

regardless of whether they were followed by a CC,269

direct object, or other dependents. We excluded270

cases where the verb was sentence-final or the ma-271

trix subject was missing. Each instance is labeled272

as 1 if followed by a CC and 0 otherwise. The final273

dataset consists of 236,504 training examples, with274

33.01% labeled as 1.275

3.4 Model Architecture, Training, and276

Evaluation277

We trained feedforward neural networks to predict278

CC presence. The input features are fed into three279

hidden layers (128, 64, and 32 units, respectively)280

with ReLU activation, batch normalization, and 0.2281

dropout. The final layer uses sigmoid activation to282

produce probabilities ranging from 0 to 1. Before283

training, all numerical predictors are z-scored, and284

categorical variables factor-encoded.285

The model is trained using binary cross-entropy286

loss and optimized with Adam (learning rate =287

0.001, weight decay = 1e-5) in minibatches of 1024288

instances. Training proceeds for up to 50 epochs,289

with early stopping if validation loss does not im-290

prove after five epochs. We used five-fold strati-291

fied cross-validation to maintain class distribution292

across splits.293

3.5 Structural Predictability Model Results 294

Results from the incremental selection of linguistic 295

features are presented in Table 1. Recall that a new 296

feature was added only if it improved model per- 297

formance in terms of AIC and BIC. Table 1 reports 298

the change in AIC and BIC relative to the previ- 299

ously selected model. For reference, we also report 300

each model’s F1 score and log loss. As shown 301

in Table 1, including subcategorization probability 302

leads to reductions in both AIC and BIC relative to 303

the baseline model, as well as lower log loss and 304

higher F1 scores. However, none of the additional 305

linguistic features resulted in further improvements 306

according to both AIC and BIC. In fact, the more 307

complex models even show slight decreases in F1 308

scores. Thus, among the linguistic features consid- 309

ered, only subcategorization probability enhanced 310

the predictions of CC presence. 311

After applying Lasso Regression, four of seven 312

features were retained: subcategorization proba- 313

bility, verb frequency, factivity, and subject form. 314

Using this refined set, we trained a structural pre- 315

dictability model with the same neural network ar- 316

chitecture. However, although this model achieved 317

a lower log loss (0.4790), the model showed a de- 318

crease in F1 score (0.6519) and an increase in BIC 319

compared to the model using only Subcategoriza- 320

tion Probability. This result is consistent with ear- 321

lier findings from incremental feature selection, fur- 322

ther confirming that additional linguistic features 323

do not improve predictive performance. 324

In contrast, the model trained on contextual word 325

embedding features achieved a log loss of 0.442 326

and an F1 score of 0.6906, outperforming all mod- 327

els based on hand-selected features. 328

Based these results, we proceeded to test how 329

well information density derived from (i) verb sub- 330

categorization probabilities and (ii) from contextual 331

word embeddings predicts that-mentioning. 332

4 Information Density and 333

that-Mentioning 334

This section reports our statistical models predict- 335

ing that-mentioning. We examined whether higher 336

information density—estimated from verb sub- 337

categorization probabilities and contextual word 338

embeddings—leads to increased that-mentioning, 339

as predicted by UID. Additionally, we assessed 340

whether more accurate estimates of CC structural 341

predictability improve the overall fit of models pre- 342

dicting that-mentioning. 343
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Features AIC ∆ BIC ∆ F1 Log Loss
Intercept only – – 0.000 0.6346
Subcategorization Probability -13629.10 -13629.10 0.6598 0.4905
+ Verb Frequency 128.94 1456.78 0.6598 0.4892
+ Factivity 320.06 1647.90 0.6598 0.4912
+ Tense 156.09 1483.93 0.6541 0.4895
+ Position 247.66 1575.50 0.6596 0.4904
+ Subject Form -313.63 1014.20 0.6470 0.4845
+ Subject Frequency -514.77 813.07 0.6451 0.4824

Table 1: Model comparisons predicting CC presence. Lower AIC, BIC, and log loss, and higher F1 scores indicate
better performance.

4.1 Data344

As in previous analyses, we relied on parsed tran-345

scripts from the CANDOR corpus (Reece et al.,346

2023). We extracted CC introduced by the same347

50 matrix verbs used for training CC structural pre-348

dictability models (Appendix A) and retained only349

instances where the matrix verb preceded the CC.350

The dataset was further refined based on the fol-351

lowing criteria. First, we excluded the first CCs in352

all conversations (1,656 cases), as we are interested353

in the potential effects of whether the previous CC354

is reduced or not. Second, we removed cases lack-355

ing either a matrix subject or an embedded nomi-356

nal subject, as the identity of both the matrix and357

the embedded subjects are crucial for our analysis358

(13,076 cases). Lastly, for matrix verbs introducing359

multiple CCs, only the first occurrence was retained360

to avoid redundancy (8,097 cases excluded). After361

exclusions, we are left with 51,276 instances of362

CCs for analysis.363

4.2 Control variables364

To rigorously test UID predictions, we controlled365

for a range of variables that can also affect that-366

mentioning, largely following Jaeger (2010). We367

discuss each of them in the following subsections.368

Importantly, the UID account is not mutually ex-369

clusive with these mechanisms. See Appendix B370

for a summary of the control variables, including371

their types, levels, and relative proportions.372

4.2.1 Availability-Based Production373

According to availability-based accounts (Bock374

and Warren, 1985; Ferreira, 1996; Ferreira and375

Dell, 2000), optional elements facilitate produc-376

tion when upcoming material is less accessible377

(i.e., when upcoming material has low frequency).378

To capture such effects, we included the log fre-379

quency of the CC subject head (CC SUBJECT FRE-380

QUENCY), the form of the CC subject (CC SUB- 381

JECT FORM; I vs. You vs. Other pronouns vs. 382

Other nouns), and the matrix verb’s log frequency 383

(MATRIX VERB FREQUENCY). We also included 384

CO-REFERENTIALITY, a binary predictor indicat- 385

ing whether the matrix and CC subjects are identi- 386

cal (e.g., I think I...). 387

4.2.2 Syntactic Priming 388

Speakers tend to repeat recently encountered struc- 389

tures (Bock, 1986; Gries, 2005; Mahowald et al., 390

2016). We included PREVIOUS THAT, a binary 391

predictor indicating whether that was present in the 392

speaker’s or interlocutor’s most recent CC. 393

4.2.3 Dependency Locality 394

Longer dependencies increase production difficulty 395

(Hawkins, 2004; Roland et al., 2006). Three local- 396

ity measures were considered: MATRIX VERB-CC 397

DISTANCE (local vs. non-local), CC SUBJECT 398

LENGTH (number of the CC subject’s dependents), 399

and CC REMAINDER LENGTH (number of words 400

following the CC subject head in the same CC). 401

4.2.4 Speaker Commitment 402

It has been argued that variation in that-mentioning 403

is not meaning-equivalent (Thompson and Mulac, 404

1991), as sometimes the matrix verb conveys the 405

speaker’s level of commitment rather than introduc- 406

ing a true CC, making that unnecessary. Follow- 407

ing Jaeger (2010), we assumed that commitment 408

is highest with first-person subjects, followed by 409

second-person, and then third-person references, 410

and included MATRIX SUBJECT FORM as a four- 411

level predictor (I vs. You vs. Other pronouns vs. 412

Other nouns). 413

4.2.5 Position 414

Effects Production difficulty may vary depending 415

on when the CC occur in a sentence. We included 416
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VERB ID, the ordinal position of the matrix verb,417

as a continuous predictor.418

4.2.6 Similarity Avoidance419

Speakers may omit that to avoid adjacent similar420

forms if the CC also begins with that (Walter and421

Jaeger, 2008). We included THAT-DOUBLING as a422

binary predictor.423

4.2.7 Disfluencies424

Disfluencies can impact syntactic choices (e.g.,425

Liang et al., 2024). We included FILLED WORD426

(presence of a filled pause before the CC) and REP-427

ETITION (immediate repetition of a word, exclud-428

ing adjectives and adverbs used for emphasis).429

4.3 Statistical Modeling of that-mentioning430

Before modeling, all continuous predictors (see431

Appendix B) were standardized using z-score nor-432

malization. Binary predictors were contrast-coded,433

and the four-level categorical variables (CC SUB-434

JECT FORM and MATRIX SUBJECT FORM) were435

coded using successive difference coding: compar-436

ing I vs. You, You vs. Other Pronouns, and Other437

Pronouns vs. Other Nouns.438

We fitted a generalized linear mixed-effects439

model (GLMM; Jaeger, 2008) using the glmer()440

function from the lme4 package in R (Bates et al.,441

2015; R Core Team, 2023), with the presence of442

that as the binary dependent variable. Fixed ef-443

fects included CC information density and a set of444

control variables. To account for variability across445

individuals, we included a random intercept for446

speaker. In follow-up analyses, we also included447

a random intercept for matrix verb lemmas (verbs448

henceforce) to capture verb-specific tendencies in449

complementizer usage. While these random effects450

are not directly motivated by theoretical accounts,451

they serve to control for idiosyncratic variation in452

baseline rates of that-mentioning across speakers453

and lexical items. Model comparisons were evalu-454

ated via AIC and BIC.455

4.4 Results of that-Mentioning456

Here we report the effects of information den-457

sity on that-mentioning to test predictions from458

the UID hypothesis, alongside other control vari-459

ables. Information density was estimated using460

two approaches: the matrix verb’s subcategoriza-461

tion probability and its contextual word embedding.462

We further examine whether embedding-based esti-463

mates—shown to more accurately predict CC pres-464

Figure 2: Effects of information density (by verb Sub-
categorization Probability) on that-mentioning.

ence—better account for that-mentioning patterns 465

than verb-based estimates. 466

4.4.1 Verb-based Information Density 467

The relationship between verb-based information 468

density and that-mentioning is illustrated in Fig- 469

ure 2. Higher information density is generally asso- 470

ciated with increased rates of that-mentioning, con- 471

sistent with UID predictions, although substantial 472

variability across verbs remains. Results from the 473

statistical model with a speaker random intercept 474

are presented in Table 2. Generalized Variance In- 475

flation Factors (GVIFs) for fixed effects were close 476

to 1, indicating minimal multicollinearity. Mode 477

results revealed that higher verb-based informa- 478

tion density significantly increases the likelihood 479

of that-mentioning. 480

Effects of control variables also aligned with 481

several theoretical accounts. First, higher CC 482

SUBJECT FREQUENCY and MATRIX VERB FRE- 483

QUENCY predicted reduced that-mentioning, con- 484

sistent with availability-based accounts. However, 485

CC SUBJECT FORM and CO-REFERENTIALITY 486

were non-significant. We also found syntactic prim- 487

ing effects, whereby PREVIOUS that significantly 488

increased that-mentioning. Findings for depen- 489

dency locality were mixed: longer CC REMINDER 490

LENGTH increased that-mentioning as expected, 491

but shorter CC SUBJECT LENGTH and MATRIX 492

VERB-CC DISTANCE also led to higher that-use, 493

contrary to the predictions. Speaker commitement 494

effects were robust—that was more likely when the 495

matrix subject was You than I, with similar trends 496

across other subject types, suggesting that signals 497

degrees of speaker commitment. VERB ID had a 498

positive but non-significant effect. Supporting simi- 499

larity avoidance, potential that-DOUBLING reduced 500

that-mentioning. Finally, disfluencies measures 501
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Predictor Estimate p-value
Information Density 0.28 < 0.001
CC Subject Frequency -0.16 < 0.001
CC Subject Form 2–1 -0.00 = 0.99
CC Subject Form 3–2 -0.02 = 0.72
CC Subject Form 4–3 0.03 = 0.68
Matrix Verb Frequency -0.24 < 0.001
Co-referentiality -0.05 = 0.24
Previous that 0.23 < 0.001
Matrix Verb-CC Distance -0.40 < 0.001
CC Subject Length -0.04 < 0.05
CC Reminder Length 0.18 < 0.001
Matrix Subject Form 2–1 0.69 < 0.001
Matrix Subject Form 3–2 0.70 < 0.001
Matrix Subject Form 4–3 0.53 < 0.001
Verb ID 0.02 = 0.20
that-Doubling -0.53 < 0.001
Filled Word 0.04 = 0.36
Repetition 0.14 < 0.05

Table 2: Regression estimates from the model predicting
complementizer presence.

such as FILLED WORD and REPETITION increased502

that-use, with REPETITION reaching significance.503

4.4.2 Embedding-based Information Density504

As shown in Figure 3, embedding-based infor-505

mation density again positively predicted that-506

mentioning. Because the statistical results closely507

mirrored those of the previous model, we do not re-508

port them in detail. Crucially, information density509

remained a strong predictor (β = 0.15; p < 0.001).510

However, the current model performed worse,511

with AIC and BIC increasing by 392 and 391512

points, respectively, compared to the previous513

model with verb-based information density. While514

word embedding features yielded better perfor-515

mance in the structural predictability task, they516

offered no clear advantage in predicting that-517

mentioning over subcategorization probabilities.518

4.5 Follow-up Analysis: Verb Random519

Intercept520

Although the verb-based model initially outper-521

formed the embedding-based model, we were522

cautious in interpreting this as evidence that523

embedding-based information density is less effec-524

tive. In the verb-based model, information density525

is constant for each matrix verb, potentially con-526

flating information density with verb-specific ef-527

fects—a limitation of subcategorization probability528

Figure 3: Effects of information density (by contextual
word embeddings) on that-mentioning.

we mentioned earlier. To address this, we refitted 529

both models with an added random intercept for 530

matrix verbs. 531

We found that adding a matrix verb random in- 532

tercept substantially reduced AIC and BIC for both 533

the verb-based and embedding-based models (Ta- 534

ble 3), indicating that a substantial portion of vari- 535

ation in complementizer usage is attributable to 536

verb-specific preferences—patterns tied to individ- 537

ual matrix verbs that were not captured by fixed 538

effects in the previous models. 539

Additionally, the effects of information density 540

diverged. In the verb-based model, the effect of 541

information density became non-significant (β = 542

0.14; p = 0.18), suggesting that its earlier effect 543

was largely driven by verb-specific variation. In 544

contrast, information density estimated from con- 545

textual word embeddings remained a significant 546

predictor even after controlling for verb identity 547

(β = 0.12; p < 0.001). Furthermore, between 548

the two models with verb random intercepts, the 549

embedding-based model showed better fit, reduc- 550

ing AIC and BIC by 25 and 26 points, respectively, 551

suggesting that embedding-based information den- 552

sity captures additional variance in patterns of that- 553

mentioning. 554

5 Discussion 555

This study revisited Jaeger (2010) using a large 556

and modern dataset from the CANDOR corpus. 557

We analyzed over 50,000 instances of CCs to test 558

how information density—estimated from different 559

sources—predicts that-mentioning, alongside other 560

predictors motivated by alternative theories. We 561

also evaluated whether improved estimates of infor- 562

mation density lead to better model performance. 563

Our results replicated the core finding that higher 564
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Model AIC BIC
Verb-based information density, without verb random intercept 33344 33521
Embedding-based information density, without verb random intercept 33736 33912
Verb-based information density, with verb random intercept 32302 32488
Embedding-based information density, with verb random intercept 32277 32462

Table 3: Model comparison based on AIC and BIC.

information density increases the likelihood of565

overt that, as predicted by UID. Information den-566

sity estimated from verb subcategorization proba-567

bilities provided strong predictive power but likely568

reflected verb-specific preferences rather than a569

general effect of information density. This was570

confirmed by follow-up models with random in-571

tercepts for matrix verbs, which eliminated the ef-572

fect of verb-based information density. In contrast,573

embedding-based information density remained574

significant in predicting that-mentioning, suggest-575

ing it captures more abstract, verb-independent in-576

formation. Moreover, this is consistent with the577

results of structural predictability models, where578

GPT-2 embeddings did outperform all other fea-579

tures, including verb subcategorization probability,580

in predicting CC presence, suggesting that it offers581

a better measure of information density.582

However, we do note that after including the verb583

random intercept, Jaeger (2010) still found signifi-584

cant effects of verb-based measures of information585

content. This discrepancy may be attributed to dif-586

ferences in dataset size and verb diversity. Jaeger’s587

(2010) study was based on on a smaller dataset588

with a more limited set of verbs, which may have589

amplified the observed effects590

Beyond UID, we also found support for other ac-591

counts of that-mentioning. First, lower-frequency592

matrix verbs and CC onsets were associated with593

more that-mentioning, consistent with availability-594

based accounts. We also found syntactic priming:595

speakers were more likely to include that if the596

previous CC did. Evidence for dependency local-597

ity was mixed—longer CC remainders increased598

that-mentioning, but greater distance between the599

matrix verb and CC onset, as well as longer CC600

subjects, showed the opposite pattern. This may be601

due to parsing errors or shifting usage patterns. Ef-602

fects of speaker commitement were also observed,603

with higher levels of speaker commitment leading604

to less overt that. Finally, we observed similarity605

avoidance (reduced that-use in potential that-that606

sequences) and disfluency effects (filled words and607

repetitions increased that-mentioning). 608

Our findings also shed light on the structural 609

sensitivity of GPT-2, particularly its contextual 610

word embeddings. Embeddings of the matrix 611

verb—derived solely from pre-CC context—were 612

predictive of upcoming syntactic structure, sug- 613

gesting that GPT-2 captures fine-grained structural 614

cues. This approach offers a promising avenue for 615

future work to leverage contextual embeddings for 616

modeling syntactic prediction more broadly. 617

6 Conclusion 618

This study provides robust support for UID at the 619

syntactic level in naturalistic conversations. Infor- 620

mation density estimated from contextual word em- 621

beddings significantly predicted that-mentioning, 622

even after controlling for verb-specific preferences. 623

Additionally, we showed that verb-specific pref- 624

erences also played an important role, and that 625

information density measures derived from verbs’ 626

subcategorization probabilities might have been 627

conflated with verb-specific preferences. These 628

findings highlight limitations of conventional lin- 629

guistic features in modeling predictive processes, 630

and suggest that high-dimensional linguistic repre- 631

sentations such as contextual word embeddings of- 632

fer a more effective and flexible alternative. Our re- 633

sults also demonstrate that that-reduction is shaped 634

by multiple interacting pressures—including infor- 635

mation density, availability, speaker commitment, 636

syntactic priming, and form avoidance. 637

Lastly, our work underscores the value of com- 638

bining large naturalistic corpora with machine 639

learning and NLP techniques for studying psy- 640

cholinguistics. The use of the CANDOR corpus 641

allowed us to examine that-mentioning in spon- 642

taneous, naturalistic speech across a diverse lin- 643

guistic samples. By leveraging machine learning 644

and contextual word embeddings from neural lan- 645

guage models, we developed more nuanced predic- 646

tors of structural choices. This approach not only 647

improves predictive accuracy but also opens new 648

avenues for modeling linguistic behavior at scale. 649
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Limitations650

There are several limitations to the present study.651

First, the conversational transcripts were automati-652

cally generated, and dependency structures were de-653

rived using automatic parsers. As a result, the data654

may contain transcription and parsing errors. Sec-655

ond, we relied on GPT-2 to estimate online spoken656

language predictions, although GPT-2 is primarily657

trained on written text. This may limit its ability658

to fully capture characteristics of spontaneous spo-659

ken language. Moreover, our analysis was based660

on a single language model architecture. Future661

work should explore alternative models, including662

those trained on conversational data or designed for663

speech-oriented tasks, to assess the generalizabil-664

ity of our findings. Lastly, although our analysis665

found that no linguistic features significantly im-666

proved the structural predictability of complemen-667

tizer clauses, it is possible that we did not exhaust668

the full range of relevant linguistic predictors. Fu-669

ture research could investigate additional features670

that may contribute to CC presence.671

Ethical Considerations672

We employed AI-based tools (Claude and Chat-673

GPT) for writing and coding assistance. These674

tools were used in compliance with the ACL Policy675

on the Use of AI Writing Assistance.676
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Verb Lemma Total Occurrences CC Occurrences Subcat Probability (%)
know 119,678 28,664 23.95
think 46,610 35,080 75.26
mean 30,281 1,916 6.33
say 24,805 13,612 54.88
like 23,578 3,381 14.34
see 20,578 7,111 34.56
take 15,314 994 6.49
feel 11,274 2,298 20.38
guess 9,744 6,101 62.61
hear 9,166 2,408 26.27
tell 7,264 3,345 46.05
find 6,579 1,948 29.61
love 6,290 762 12.11
thank 5,521 289 5.23
remember 4,626 2,191 47.36
read 3,649 346 9.48
show 3,170 650 20.50
understand 2,984 1,092 36.60
suppose 2,911 326 11.20
hope 2,488 1,869 75.12
teach 2,380 238 10.00
figure 2,327 912 39.19
believe 1,970 947 48.07
imagine 1,891 874 46.22
check 1,754 114 6.50
care 1,693 263 15.53
decide 1,428 579 40.55
realize 1,395 974 69.82
agree 1,324 172 12.99
hold 1,313 107 8.15
wish 1,291 1,028 79.63
worry 1,028 90 8.75
expect 980 349 35.61
consider 840 264 31.43
mind 733 208 28.38
notice 721 324 44.94
mention 645 190 29.46
answer 561 26 4.63
explain 561 106 18.89
bet 480 272 56.67
accept 465 49 10.54
complain 423 53 12.53
stress 234 23 9.83
admit 209 98 46.89
respond 176 11 6.25
joke 156 32 20.51
promise 146 58 39.73
judge 119 19 15.97
claim 110 47 42.73
suggest 108 50 46.30

Table 4: Verb-level complement clause frequencies and subcategorization probabilities.
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Predictor Type Values / Distribution
CC Subject Frequency Continuous –
CC Subject Form Categorical (4 lev-

els)
I (29.62%), You (13.15%), other pronouns
(41.80%), other NPs (15.42%)

Matrix Verb Frequency Continuous –
Co-referentiality Binary yes (32.72%), no (67.28%)
Previous that Binary present (11.46%), absent (88.54%)
Matrix Verb-CC Distance Binary local (84.73%), non-local (16.27%)
CC Subject Length Continuous –
CC Reminder Length Continuous –
Matrix Subject Form Categorical (4 lev-

els)
I (72.70%), You (10.37%), other pronouns
(13.49%), other NPs (3.44%)

Position Continuous –
that-Doubling Binary present (3.03%), absent (96.97%)
Filled Word Binary present (10.32%), absent (89.68%)
Repetition Binary present (4.12%), absent (95.88%)

Table 5: Overview of predictors included in the statistical model, along with their types and distribution where
applicable.
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