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ABSTRACT

Optimizing high-dimensional and complex black-box functions is crucial in numer-
ous scientific applications. While Bayesian optimization (BO) is a powerful method
for sample-efficient optimization, it struggles with the curse of dimensionality and
scaling to thousands of evaluations. Recently, leveraging generative models to
solve black-box optimization problems has emerged as a promising framework.
However, those methods often underperform compared to BO methods due to
limited expressivity and difficulty of uncertainty estimation in high-dimensional
spaces. To overcome these issues, we introduce DiBO, a novel framework for solv-
ing high-dimensional black-box optimization problems. Our method iterates two
stages. First, we train a diffusion model to capture the data distribution and a surro-
gate model to predict function values with uncertainty quantification. Second, we
cast the candidate selection as a posterior inference problem to balance exploration
and exploitation in high-dimensional spaces. Concretely, we fine-tune diffusion
models to amortize posterior inference. Extensive experiments demonstrate that
our method outperforms state-of-the-art baselines across various synthetic and
real-world black-box optimization tasks. Our code is publicly available here.

1 INTRODUCTION

Optimizing high-dimensional and complex black-box functions is crucial in various scientific and
engineering applications, including hyperparameter optimization (Šehić et al., 2022), material discov-
ery (Hernández-Lobato et al., 2017), drug discovery (Negoescu et al., 2011), and control systems
(Candelieri et al., 2018).

Bayesian optimization (BO) (Kushner, 1964; Garnett, 2023) is a powerful method for solving black-
box optimization. BO constructs a surrogate model from observed data and finds an input that
maximizes the acquisition function to query the black-box function. However, it scales poorly to
high dimensions due to the curse of dimensionality (Kandasamy et al., 2015; Wang et al., 2016) and
struggles scaling to thousands of evaluations (Wang et al., 2018; Eriksson et al., 2019). To address
these challenges, several approaches have been suggested to scale up BO for high-dimensional
optimization problems. Some works propose a mapping from high-dimensional space into low-
dimensional subspace (Gómez-Bombarelli et al., 2018; Maus et al., 2022; Lee et al., 2023; Nayebi
et al., 2019; Letham et al., 2020) or assume additive structures of the target function (Duvenaud
et al., 2011; Rolland et al., 2018) to perform optimization in low-dimensional spaces. However, these
methods often rely on unrealistic assumptions.

Other works partition the search space into promising local regions and search candidates within
such regions (Eriksson et al., 2019; Wang et al., 2020), which exhibits promising results. However,
these methods may struggle to escape from local optima within a limited number of evaluations due
to several challenges. First, it is notoriously difficult to find an input that maximizes the acquisition
function in high-dimensional spaces since the function is often highly non-convex and contains
numerous local optima (Ament et al., 2023). Furthermore, as the data points lie on a tiny manifold
compared to the entire search space, the uncertainty becomes extremely high in regions too far from
the dataset (Oh et al., 2018).

Recently, generative model-based approaches have shown promising results in black-box optimization
(Brookes et al., 2019; Kumar & Levine, 2020; Wu et al., 2024). These methods utilize an inverse
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Figure 1: Motivating example of our method. In high-dimensional spaces, directly searching for input
that maximizes UCB score may lead to sub-optimal results (As depicted in of the second figure).
Sampling from the posterior distribution prevents overemphasized exploration in the boundary of
search space and leads to efficient exploration (As depicted in of the last figure).

mapping from function values to the input domain and propose candidates via sampling from the
trained model conditioned on a high score. While they alleviate aforementioned issues in BO by
converting optimization as sampling (Janner et al., 2022), their performance degrades in higher
dimensions due to the limited expressivity of underlying models (Brookes et al., 2019; Kumar &
Levine, 2020) or the difficulty of uncertainty estimation in high-dimensional spaces (Wu et al., 2024).

To overcome these issues, we introduce Diffusion models for Black-box Optimization (DiBO), a
novel generative model-based approach for high-dimensional black-box optimization. Our key idea
is to cast the candidate selection problem as a posterior inference problem. Specifically, we first train
a proxy and diffusion model, which serves as a reward function and the prior. Then, we construct
a posterior distribution by multiplying two components and sample candidates from the posterior
to balance exploration and exploitation in high-dimensional spaces. Instead of searching for input
that maximizes the acquisition function, sampling from the posterior prevents us from choosing the
samples that lie too far from the dataset, as illustrated in Figure 1.

Our method iterates two stages. First, we train a diffusion model to effectively capture high-
dimensional data distribution and a surrogate model to predict function values with uncertainty
quantification. During training, we adopt a reweighted training scheme proposed in prior generative
model-based approaches to focus on high-scoring data points (Kumar & Levine, 2020; Krishnamoor-
thy et al., 2023; Tripp et al., 2020). Second, we sample candidates from the posterior distribution.
As the sampling from the posterior distribution is intractable, we train an amortized sampler to
generate unbiased samples from the posterior by fine-tuning the diffusion model. While the posterior
distribution remains highly non-convex, we can capture such complex and multi-modal distribution by
exploiting the expressivity of the diffusion models. By repeating these two stages, we progressively
get close to the high-scoring regions of the target function.

As we have a limited budget for evaluations, it is beneficial to choose modes of the posterior
distribution as proposing candidates. To accomplish this, we propose two post-processing strategies
after training the amortized sampler: local search and filtering. Concretely, we generate many samples
from the amortized sampler and improve them via local search. Then, we filter candidates with
respect to the unnormalized posterior density. By incorporating these strategies, we can further boost
the sample efficiency of our method across various optimization tasks.

We conduct extensive experiments on four synthetic and three real-world high-dimensional black-box
optimization tasks. We demonstrate that our method achieves superior performance on a variety of
tasks compared to state-of-the-art baselines, including BO methods, generative model-based methods,
and evolutionary algorithms.

2 PRELIMINARIES

2.1 BLACK-BOX OPTIMIZATION

In black-box optimization, our objective is to find a design x ∈ X that maximizes the target black-box
function f(x), where R is the max number of rounds and B is a batch size per round.

find x∗ = argmax
x∈X

f(x) with R rounds of B batch of queries (1)

Querying designs in batches is practical in many real-world scenarios, such as biological sequence
designs (Jain et al., 2022; Kim et al., 2024a). As the evaluation process is expensive in most cases,
developing an algorithm with high sample efficiency is critical in black-box optimization.
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2.2 DIFFUSION PROBABILISTIC MODELS

Diffusion probabilistic models (Sohl-Dickstein et al., 2015; Ho et al., 2020) are a class of generative
models that aim to approximate the true distribution q0(x0) with a parametrized model of the form:
pθ(x0) =

∫
pθ(x0:T ) dx1:T , where x0 and latent variables x1, · · · ,xT share the same dimensionality.

The joint distribution pθ(x0:T ), often referred to as the reverse process, is defined via a Markov chain
that starts from a standard Gaussian prior pT (xT ) = N (0, I):

pθ(x0:T ) = pT (xT )

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) = N
(
µθ(xt, t),Σt

)
. (2)

pθ(xt−1|xt) is a Gaussian transition from step t to t− 1.

We choose forward process as fixed to be a Markov chain that progressively adds Gaussian noise to
the data according to a variance schedule β1, . . . , βT :

q(x1:T |x0) =

T∏
t=1

q
(
xt|xt−1

)
, q

(
xt|xt−1

)
= N

(√
1− βt xt−1, βtI

)
. (3)

Training Diffusion Models. We can train diffusion models by optimizing the variational lower
bound of negative log-likelihood, Eq0 [− log pθ(x0)]. Following Ho et al. (2020), we can use a
simplified loss with noise parameterization:

L(θ) = Ex0∼q0, t∼U(1,T ), ϵ∼N (0,I)

[
∥ϵ− ϵθ(xt, t)∥2

]
(4)

Here, ϵθ(xt, t) is the learned noise estimator, and µθ(xt, t) = 1√
αt

(
xt −

√
βt√

1−ᾱt
ϵθ(xt, t)

)
,

where αt = 1− βt and ᾱt =
∏t
s=1 αs.

Fine-tuning Diffusion Models for Posterior Inference. Given a diffusion model pθ(x) and
a reward function r(x), we can define a posterior distribution ppost(x) ∝ pθ(x)r(x), where the
diffusion model serves as a prior. Sampling from the posterior distribution enables us to solve various
downstream tasks (Chung et al., 2023; Lu et al., 2023; Venkatraman et al., 2024). For example, in
offline reinforcement learning, if we train a conditional diffusion model µ(a|s) as a behavior policy,
it requires sampling from the product distribution of behavior policy and Q-function (Nair et al.,
2020), i.e., π(a|s) ∝ µ(a|s) exp(β ·Q(s, a)).

When the prior is modeled as a diffusion model, the sampling from the posterior distribution is
intractable due to the hierarchical nature of the sampling process. Fortunately, we can utilize relative
trajectory balance (RTB) loss suggested by Venkatraman et al. (2024) to learn amortized sampler pψ
that approximates the posterior distribution by fine-tuning the prior diffusion model as follows:

L(x0:T ;ψ) = (logZψ + log pψ(x0:T )− log r(x0)− log pθ(x0:T ))
2 (5)

where x0 = x and Zψ is the partition function estimator. If the loss converges to zero for all possible
trajectories x0:T , the amortized sampler matches the posterior distribution.

One of the main advantages of RTB loss is that we can train the model in an off-policy manner. In
other words, we can train the model with the samples from the distribution different from the current
policy pψ to ensure mode coverage (Sendera et al., 2024; Akhound-Sadegh et al., 2024).

3 METHOD

In this section, we introduce DiBO, a novel approach for high-dimensional black-box optimization
by leveraging diffusion models. Our method iterates two stages to find an optimal design in high-
dimensional spaces. First, we train a diffusion model to capture the data distribution and a surrogate
model to predict function values with uncertainty quantification. During training, we apply a
reweighted training scheme to focus on high-scoring regions. Next, we sample candidates from the
posterior distribution. To further improve sample efficiency, we adopt local search and filtering to
select diverse modes of posterior distribution as candidates. We then evaluate the selected candidates,
update the dataset, and repeat the process until we find an optimal design. Figure 2 shows the
overview of our method.
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Figure 2: Overview of our method. Phase 1: Train diffusion models and surrogate models. Phase 2:
Sampling candidates from the posterior distribution and post-processing via local search and filtering.
Then, we evaluate samples, update the dataset, and repeat the process until convergence.

3.1 PHASE 1: TRAINING MODELS

In each round r, we have a pre-collected dataset of input-output pairs Dr = {(xi, yi)}Ii=1, where
I is the number of data points. We first train a diffusion model pθ(x) using Dr to capture the data
distribution. We choose a diffusion model as it has a powerful capability to learn the distribution of
high-dimensional data across various domains (Ramesh et al., 2022; Ho et al., 2022). We also train
a surrogate model to predict function values using the dataset Dr. As it is notoriously difficult to
accurately predict all possible regions in high-dimensional spaces with a limited amount of samples,
we need to properly quantify the uncertainty of our proxy model. To this end, we train deep ensembles
fϕ1

, · · · , fϕK
to estimate the epistemic uncertainty (Lakshminarayanan et al., 2017).

Reweighted Training. In the training stage, we introduce a reweighted training scheme to focus on
high-scoring data points since our objective is to find an optimal design that maximizes the target
black-box function. Reweighted training has been widely used in generative modeling for black-box
optimization, especially in offline settings (Kumar & Levine, 2020; Krishnamoorthy et al., 2023; Kim
et al., 2024b). Formally, we can compute the weight for each data point as follows:

w(y,Dr) =
exp(y)∑

(x′,y′)∈Dr
exp(y′)

(6)

Then, our training objective for proxies and diffusion models can be described as follows:

L(ϕ1:K) =

K∑
k=1

∑
(x,y)∈Dr

w(y,Dr) (y − fϕk
(x))

2
, L(θ) = −

∑
(x,y)∈Dr

w(y,Dr) · LELBO(θ). (7)

3.2 PHASE 2: SAMPLING CANDIDATES

After training models, we sample candidates from the posterior distribution to query the black-box
function. As sampling from the posterior is intractable, we introduce an amortized sampler that
generates unbiased samples from the posterior by fine-tuning the pre-trained diffusion model. Then,
to further boost the sample efficiency, we apply post-processing strategies, local search and filtering,
to select diverse modes of the posterior distribution as candidates.

Amortizing Posterior Inference. Our key idea is to sample candidates from the probability distribu-
tion that satisfies two desiderata: (1) promote exploration towards both high-rewarding and highly
uncertain regions and (2) prevent the sampled candidates from deviating excessively from the data
distribution. To accomplish these objectives, we can define our target distribution as follows:

ptar(x) = argmax
p∈P

Ex∼p [rϕ(x)]−
1

β
·DKL (p ∥ pθ) (8)

where rϕ(x) = µϕ(x)+γ ·σϕ(x) is UCB score from the proxy, and µϕ(x), σϕ(x) indicate mean and
the standard deviation from proxy predictions, respectively. P denotes the set of feasible probability
distributions and β is an inverse temperature. Target distribution that maximizes the right part of the
Equation (8) can be analytically derived as follows (Nair et al., 2020):

ptar(x) =
1

Z
· pθ(x) exp (β · rϕ(x)) (9)
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where Z =
∫
x∈X pθ(x) exp (β · rϕ(x)) is a partition function. As we do not know the partition

function, sampling from ptar is intractable. Therefore, we introduce amortized sampler pψ ≈ ptar,
which can be obtained by fine-tuning the diffusion model with relative trajectory balance loss
suggested by Venkatraman et al. (2024). Formally, we train pψ with following objective:

L(x0:T ;ψ) = (logZψ + log pψ(x0:T )− β · rϕ(x0)− log pθ(x0:T ))
2 (10)

where x0 = x, and Zψ is a parameterized partition function.

As mentioned in the previous section, we can employ off-policy training to effectively match the target
distribution. To this end, we train pψ with the on-policy trajectories from the model mixed with the
trajectories generated by samples from the pre-collected dataset Dr. Please refer to Appendix B.3.1
for more details on off-policy training.

After training pψ, we can generate unbiased samples from our target distribution. However, as
we have a limited evaluation budget, it is advantageous to refine candidates to exhibit a higher
probability density of target distribution, i.e., modes of distribution. To achieve this, we introduce
two post-processing strategies: local search and filtering.

Local Search. First, we generate a set of candidates {xi}Mi=1 by sampling from pψ. For each
candidate xi, we perform a local search using gradient ascent to move it toward high-density regions.
Formally, we update the original candidate xi to x∗

i as follows:

xj+1
i ← xji + η · ∇x=xj

i
(pθ(x) · exp(β · rϕ(x))) , (11)

for j = 0, . . . , J − 1, where x0
i = xi, x

J
i = x∗

i (12)

where η is the step size, and J is the number of updates. To estimate the marginal probability pθ(x),
we employ the probability flow ordinary differential equation (PF ODE) Song et al. (2021) with a
differentiable ODE solver. As the amortized sampler pψ is parametrized as a diffusion model, we can
expect that it generates samples across diverse possible promising regions. Then, the local search
procedure guides samples towards modes of each promising region (Kim et al., 2024c).

Filtering. After the local search, we introduce filtering to select B candidates for evaluation among
generated samples {x∗

1, · · · ,x∗
M}. To be specific, we select the top-B samples with respect to the

unnormalized target density, pθ(x) · exp(β · rϕ(x)). Through filtering, we can effectively capture the
high-quality modes of the posterior distribution, thereby improving the sample efficiency.

3.3 EVALUATION AND MOVING DATASET

After selecting candidates, we evaluate their function values by querying the black-box function.
Then, we update the dataset with new observations. When updating the dataset, we remove the
samples with the lowest function values if the size of the dataset is larger than the buffer size L. We
empirically find that it reduces the computational complexity during training and ensures that the
model concentrates more on the high-scoring regions.

4 EXPERIMENTS

In this section, we present experimental results on high-dimensional black-box optimization tasks.
First, we conduct experiments on four synthetic functions commonly used in the BO literature
(Eriksson et al., 2019; Wang et al., 2020). Then, we perform experiments on three high-dimensional
real-world tasks, including HalfCheetah-102D from MuJoCo Locomotion, RoverPlanning-100D, and
DNA-180D from LassoBench. The description of each task is available in Appendix A.

4.1 BASELINES

We evaluate our method against state-of-the-art (SOTA) baselines for high-dimensional black-box
optimization, including BO methods: TuRBO (Eriksson et al., 2019), LA-MCTS (Wang et al., 2020),
MCMC-BO (Yi et al., 2024), CMA-BO (Ngo et al., 2024), an evolutionary search approach: CMA-ES
(Hansen, 2006), and existing generative model-based algorithms: CbAS (Brookes et al., 2019), MINs
(Kumar & Levine, 2020), DDOM (Krishnamoorthy et al., 2023), and Diff-BBO (Wu et al., 2024).
Details about baseline implementation can be found in Appendix C.
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Figure 3: Comparison between our method against baselines in synthetic tasks. Experiments are
conducted with four random seeds and mean and one standard deviation are reported.

4.2 SYNTHETIC FUNCTION TASKS

We benchmark four synthetic functions that are widely used for evaluating high-dimensional black-
box optimization algorithms: Rastrigin, Ackley, Levy, and Rosenbrock. We evaluate each function
in both D = 200 and 400 dimensions and set the search space X = [lb, ub]D for each function
following previous works (Wang et al., 2020; Yi et al., 2024). All experiments are conducted with
initial dataset size |D0| = 200, batch size B = 100, and 10, 000 as the maximum evaluation limit.1

As shown in Figure 3, our method significantly outperforms all baselines across four synthetic
functions. Furthermore, we observe that our method not only discovers high-scoring designs but
also achieves high sample efficiency. It highlights that our key idea, sampling candidates from the
posterior distribution, enables effective exploration of promising regions in high-dimensional spaces
and mitigates the risk of converging sub-optimal regions.

We find that generative model-based approaches such as CbAS and MINs perform well in the early
stage but struggle to improve the performance through subsequent iterations. While diffusion-based
methods (DDOM, Diff-BBO) show consistent improvements across various tasks, the performance
lags behind that of recent BO methods. These results demonstrate that the superiority of our method
stems not just from using diffusion models but also from our novel framework calibrated for high-
dimensional black-box optimization.

We also compare our method with high-dimensional Bayesian optimization methods. While these
approaches exhibit comparable performance and often outperform generative model-based baselines,
they remain relatively sample-inefficient compared to our method. It reveals that sampling diverse
candidates from the posterior distribution can be a sample-efficient solution for high-dimensional
black-box optimization compared to choosing inputs that maximize the acquisition function.

4.3 REAL-WORLD TASKS

To evaluate the performance and adaptability of our method in real-world scenarios, we conduct
experiments on three additional tasks: HalfCheetah-102D, RoverPlanning-100D, and DNA-180D.
Each experiment starts with |D0| = 100 initial samples, a batch size of B = 50, and a maximum
evaluation limit of 2, 000.

The results are illustrated in Figure 4. Our method exhibits superiority in terms of both the per-
formance and the sample efficiency compared to baseline approaches. While other methods show
inconsistent performance—excelling on some tasks but underperforming on others—our method
consistently surpassed the baselines, highlighting its robustness across a broader range of tasks.

1For MCMC-BO, we report the score of budget 6, 000 on tasks with D = 400 due to memory constraints.
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Figure 4: Comparison between our method against baselines in real-world tasks. Experiments are
conducted with ten random seeds and mean and one standard deviation are reported.

(a) Reweighted Training (b) Sampling Procedure (c) Analysis on β (d) Analysis on L

Figure 5: Ablation on various components in DiBO. Experiments are conducted on Rastrigin-200D.

5 ADDITIONAL ANALYSIS

In this section, we carefully analyze the effectiveness of each component of our method. We conduct
additional analysis in Rastrigin-200D and HalfCheetah-102D tasks.

Ablation on Reweighted Training. We examine the impact of reweighted training during the
model training stage. We conduct experiments by omitting the reweighting component. As shown in
Figure 5a, the performance of our method significantly drops if we remove the reweighted training.
It underscores that focusing on high-scoring regions accelerates the optimization process. We also
conduct analysis on the number of training epochs in Appendix D.1. We find that naively increasing
the number of training epochs does not lead to an improvement in performance.

Ablation on Sampling Procedure. We analyze the effect of strategies we have proposed during
the sampling stage. We conduct experiments without filtering, local search, and finally completely
remove the amortized inference stage and propose samples from the diffusion model pθ. As depicted
in Figure 5b, each component of our method significantly affects the performance. Notably, when we
remove both local search and filtering strategies, we observe that the sample efficiency of our method
significantly drops, demonstrating the effectiveness of the proposed components. We also conduct
further analysis on the number of local search steps J in Appendix D.2 and the effect of off-policy
training for amortized inference in Appendix D.3.

Analysis on Inverse Temperature β. The parameter β in Equation (8) governs the trade-off
between exploitation and exploration. If β is too small, the method tends to exploit already discovered
high-scoring regions. On the other hand, if β is too large, we generate samples that deviate too far
from the current dataset and overemphasize exploration of the boundary of search space. As shown
in Figure 5c, when β is too small, it often leads to convergence on a local optimum due to limited
exploration. Conversely, if β is too large, the model becomes overly dependent on the proxy function,
resulting in excessive exploration and ultimately slowing the convergence.

Analysis on Buffer size L. As we described in Section 3.3, we introduce buffer size L to maintain
the dataset with high-scoring samples collected during the evaluation cycles. The choice of L impacts
both the time complexity and the sample efficiency of our method. As illustrated in Figure 5d, using
a small buffer size results in reaching suboptimal results, also causing early performance saturation.
In contrast, a larger buffer size can reach the optimal value as in our default setting but significantly
decelerate the rate of performance improvement.
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6 RELATED WORKS

6.1 HIGH-DIMENSIONAL BLACK-BOX OPTIMIZATION

Various approaches have been proposed to address high-dimensional black-box optimization. In
Bayesian optimization (BO), some approaches assume that high-dimensional objective functions
reside in a low-dimensional active subspace and introduce mapping to low-dimensional spaces
(Garnett et al., 2014; Nayebi et al., 2019; Letham et al., 2020). However, these methods make strong
assumptions that often fail to align with real-world problems.

Another line of BO methods utilizes local modeling or partitioning of the search space to address high
dimensionality and scalability. TuRBO (Eriksson et al., 2019) fits multiple local models and restricts
the search space to small trust regions to improve scalability. LA-MCTS (Wang et al., 2020) trains a
classifier to partition the search space, identifies promising regions for sampling, and then employs
BO-based optimizers. MCMC-BO (Yi et al., 2024) adopts Markov Chain Monte Carlo (MCMC) to
adjust a set of candidate points towards more promising positions, and CMA-BO (Ngo et al., 2024)
utilizes covariance matrix adaptation strategy to define a promising local region that has the highest
probability of containing global optimum.

6.2 GENERATIVE MODEL-BASED OPTIMIZATION

Several methods have been developed that utilize generative models to optimize black-box functions.
Most approaches learn an inverse mapping from function values to the input domain and propose
promising solutions by sampling from the trained model, conditioned on a high score (Brookes et al.,
2019; Kumar & Levine, 2020; Krishnamoorthy et al., 2023; Wu et al., 2024; Kim et al., 2024b).

Building on the success of diffusion models, leveraging diffusion models for black-box optimization
has emerged as a promising framework (Krishnamoorthy et al., 2023; Wu et al., 2024; Yun et al.,
2024). DDOM (Krishnamoorthy et al., 2023) trains a conditional diffusion model with classifier-free
guidance (Ho & Salimans, 2021) and incorporates reweighted training to enhance the performance.
Diff-BBO (Wu et al., 2024) trains an ensemble of conditional diffusion models, then employs an
uncertainty-based acquisition function to select the conditioning target value during sampling.

Diff-BBO is closely related to our work, particularly in its use of diffusion models and its focus on
online scenarios. However, utilizing multiple diffusion models results in a significant computational
burden in the training stage. Our method alleviates the computational burden by introducing a moving
dataset and effectively scaling up to high-dimensional tasks with our posterior sampling strategy.

6.3 AMORTIZED INFERENCE IN DIFFUSION MODELS

As diffusion models generate samples through a chain of stochastic transformations, sampling from
the posterior distribution is intractable. One of the widely used methods is estimating the guidance
term by training a classifier on noised data (Dhariwal & Nichol, 2021; Lu et al., 2023). However, such
data is unavailable in most cases, and it is often hard to train such a classifier in high-dimensional
settings. Although Reinforcement learning (RL) methods have recently been proposed and shown
interesting results (Black et al., 2024; Fan et al., 2024), naive RL fine-tuning does not provide
an unbiased sampler of the target distribution (Uehara et al., 2024). To this end, we choose a
relative trajectory balance proposed by Venkatraman et al. (2024) to obtain an unbiased sampler
of the posterior distribution without training an additional classifier. Furthermore, we propose two
post-processing strategies, local search and filtering, to improve the sample efficiency of our method.

7 CONCLUSION

In this work, we introduce DiBO, a novel generative model-based framework for high-dimensional
black-box optimization. We repeat the process of training models and sampling candidates to find a
global optimum in a sample-efficient manner. Specifically, by sampling candidates from the posterior
distribution, we can effectively balance exploration and exploitation in high-dimensional spaces. We
observe that our method surpasses various black-box optimization methods across synthetic and
real-world tasks.
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A TASK DETAILS

In this section, we present a detailed description of the benchmark tasks used in our experiments.

A.1 SYNTHETIC FUNCTIONS

We conduct experiments on four complex synthetic functions that are widely used in BO literature:
Rastrigin, Ackley, Levy, and Rosenbrock. Levy and Rosenbrock have global optima within long, flat
valleys, whereas Rastrigin and Ackley have numerous local optima. This characteristic makes all
four functions particularly challenging as the dimensionality increases. Following previous studies
(Wang et al., 2020; Yi et al., 2024), we set the search space for each function as, Rastrigin: [−5, 5]D,
Ackley: [−5, 10]D, Levy: [−10, 10]D, and Rosenbrock: [−5, 10]D.

A.2 MUJOCO LOCOMOTION

MuJoCo locomotion task (Todorov et al., 2012) is a popular benchmark in Reinforcement Learning
(RL). In this context, we optimize a linear policy W described by the equation a = Ws. The
average return of this policy serves as our objective, and our goal is to identify the weight matrix that
maximizes this return. We specifically focus on the HalfCheetah task, which has a dimensionality of
102. Each entry of the weight matrix W is constrained to the range [−1, 1], and we utilize 3 rollouts
for each evaluation. We followed the implementation of these tasks from the prior work Ngo et al.
(2024). 2

A.3 ROVER TRAJECTORY OPTIMIZATION

Rover Trajectory Optimization is a task determining the trajectory of a rover in a 2D environment
suggested by Wang et al. (2018). Following previous work Ngo et al. (2024), we utilized a much
harder version with a 100-dimensional variant, optimizing 50 distinct points. This task requires
specifying a starting position s, a target position g, and a cost function applicable to the state
space. We can calculate the cost c(x) for a specific trajectory solution by integrating the cost
function along the trajectory x ∈ [0, 1]100. The reward function is defined as: f(x) = c(x) +
λ (∥x0,1 − s∥1 + ∥x99,100 − g∥1) + b. We followed implementation from Wang et al. (2018). 3

A.4 LASSOBENCH

LassoBench (Šehić et al., 2022) 4 is a challenge focused on optimizing the hyperparameters of
Weighted LASSO (Least Absolute Shrinkage and Selection Operator) regression. The goal is to
fine-tune a set of hyperparameters to achieve a balance between least-squares estimation and the
sparsity-inducing penalty term. LassoBench serves both synthetic (simple, medium, high, hard) and
real-world tasks, including (Breast cancer, Diabetes, Leukemia, DNA, and RCV1). Specifically, we
focused on DNA tasks where it is a 180-dimensional hyperparameter optimization task that utilizes a
DNA dataset from a microbiological study. In Figure 4, we present the original results multiplied by
-1 for improved visibility.

2
https://github.com/LamNgo1/cma-meta-algorithm

3
https://github.com/zi-w/Ensemble-Bayesian-Optimization

4
https://github.com/ksehic/LassoBench
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B METHODOLOGY DETAILS

In this section, we provide a detailed overview of the methodology, covering model implementations
and architectures, training procedures, hyperparameter settings, and computational resources.

B.1 PSEUDOCODE

Algorithm 1 DiBO

1: Input: Initial dataset D0; Max rounds R; Batch size B; Buffer size L; Diffusion model pθ, pψ;
Proxy fϕ1 , · · · fϕK

2: for r = 0, . . . , R− 1 do
3: Phase 1. Training Models
4: Compute weights w(y,Dr) with Equation (6)
5: Train fϕ1

, · · · fϕK
with Equation (7)

6: Train pθ with Equation (7)
7:
8: Phase 2. Sampling Candidates
9: Initialize pψ ← pθ

10: Train pψ with Equation (10) using x0:T from pψ or from the dataset Dr
11: Sample {xi}Mi=1 ∼ pψ(x)
12: Update {xi}Mi=1 into {x∗

i }Mi=1 with Equation (11)
13: Filter top-B samples {xb}Bb=1 among {x∗

i }Mi=1
14:
15: Evaluation and Moving Dataset
16: Evaluate yb = f(xb), ∀b = 1, · · · , B
17: Update Dr+1 ← Dr ∪ {(xb, yb)}Bb=1
18: if |Dr+1| > L then
19: Remove bottom-(|Dr+1| − L) samples from Dr+1

20: end if
21: end for

14



Accepted as a workshop paper at FPI @ ICLR 2025

B.2 TRAINING MODELS

B.2.1 TRAINING PROXY MODEL

We train five ensembles of proxies. To implement the proxy function, we use MLP with three hidden
layers, each consisting of 256 (512 for 400 dim tasks) hidden units and GELU (Hendrycks & Gimpel,
2016) activations. We train a proxy model using Adam (Kingma, 2015) optimizer for 50 (100 for
400 dim tasks) epochs per round, with a learning rate 1× 10−3. We set the batch size to 256. The
hyperparameters related to the proxy are listed in Table 1.

Table 1: Hyperparameters for Training Proxy

Parameters Values

Architecture Num Ensembles 5
Number of Layers 3
Num Units 256 (Default) / 512 (400D)

Training

Batch size 256
Optimizer Adam
Learning Rate 1× 10−3

Training Epochs 50 (Default) / 100 (400D)

B.2.2 TRAINING DIFFUSION MODEL

We utilize the temporal Residual MLP architecture from Venkatraman et al. (2024) as the backbone
of our diffusion model. The architecture consists of three hidden layers, each containing 512 hidden
units. We implement GELU activations alongside layer normalization (Ba, 2016). During training,
we use the Adam optimizer for 50 epochs (100 for 400 dim tasks) per round with a learning rate of
1× 10−3. We set the batch size to 256. We employ linear variance scheduling and noise prediction
networks with 30 diffusion steps for all tasks. The hyperparameters related to the diffusion model are
summarized in Table 2.

Table 2: Hyperparameters for Training Diffusion Models

Parameters Values

Architecture Number of Layers 3
Num Units 512

Training

Batch size 256
Optimizer Adam
Learning Rate 1× 10−3

Training Epochs 50 (Default) / 100 (400D)

Diffusion Settings Num Timesteps 30
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B.3 SAMPLING CANDIDATES

B.3.1 FINE-TUNING DIFFUSION MODEL

We use relative trajectory balance (RTB) loss to fine-tune the diffusion model for obtaining an
amortized sampler of the posterior distribution.

L(x0:T ;ψ) =

(
log

Zψ · pψ(x0:T )

exp (β · rϕ(x0)) · pθ(x0:T )

)2

(13)

As stated in the original work by Venkatraman et al. (2024), the gradient of this objective concerning
ψ does not necessitate backpropagation into the sampling process that generates a trajectory x0:T .
Consequently, the loss can be optimized in an off-policy manner. Specifically, we can optimize
Equation (13) with (1): on-policy trajectories x0:T ∼ pψ(x0:T ) or (2): off-policy trajectories x0:T

generated by noising process given x0 sampled from the buffer.

To effectively fine-tune our diffusion model, we train pψ using both methods. For each iteration, we
select a batch of on-policy trajectories with a probability of 0.5 and off-policy trajectories otherwise.
When sampling from the buffer, we use reward-prioritized sampling to focus on data points with high
UCB scores. We conducted additional analysis on off-policy training in Appendix D.3.

We initialize ψ ← θ with each iteration, so the architecture and diffusion timestep is the same with
Table 2. During training, we use Adam optimizer for 50 epochs (100 epochs for 400D) with learning
rate 1× 10−4. We set the batch size to 256. The hyperparameters for fine-tuning the diffusion model
are summarized in Table 3.

Table 3: Hyperparameters for Finetuning Diffusion Models

Parameters Values

Architecture Number of Layers 3
Num Units 512

Training

Batch size 256
Optimizer Adam
Learning Rate 1× 10−4

Training Epochs 50 (Default) / 100 (400D)

Diffusion Settings Num Timesteps 30

All the training is done with a Single NVIDIA RTX 3090 GPU.

B.3.2 ESTIMATING MARGINAL LIKELIHOOD

During the local search and filtering in Section 3.2, we use the probability flow ordinary differential
equation (PF ODE) to estimate the marginal log-likelihood of the diffusion prior log pθ(x). We
consider the diffusion forward process as the following stochastic differential equation (SDE):

dx = f(x, t)dt+ g(t)dw (14)

and the corresponding reverse process is

dx = [f(x, t)− g(t)2∇x log pt(x)]dt+ g(t)dw̄ (15)

where w and w̄ are forward and reverse Brownian motions, and f and g are drift coefficient and
diffusion coefficient respectively. The quantity pt(x) denotes the marginal distribution of x at
time t. As we do not have direct access to score ∇x log pt(x), it should be modeled with network
approximation sθ(x, t) ≈ ∇x log pt(x), while in our case implicitly modeled by noise prediction
network ϵθ(x, t) (Kingma et al., 2021).
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There also exists a deterministic PF ODE,

dx = [f(x, t)− 1

2
g(t)2∇x log pt(x)]dt (16)

which evolves the sample x through the same marginal distributions {pt(x)} as Equations (14)
and (15), under suitable regularity conditions. (Song et al., 2021)

With the trained sθ(x, t), we can estimate log p0(x0) = log pθ(x) by applying the instantaneous
change-of-variables formula (Chen et al., 2018) to the PF ODE:

log p0(x0) = log pT (xT ) +

∫ T

0

∇ · f̄θ(x(t), t) dt (17)

where
f̄θ(x(t), t) := f(x, t)− 1

2
g(t)2sθ(x, t). (18)

However, directly computing the trace of f̄θ is computationally expensive. Following Grathwohl
et al. (2019); Song et al. (2021), we use the Skilling-Hutchinson trace estimator (Skilling, 1989;
Hutchinson, 1989) to estimate the trace efficiently:

∇ · f̄θ(x, t) = Eν [ν⊺∇f̄θ(x, t)ν], (19)

where the ν is sampled from the Rademacher distribution.

We solve Equation (17) using a differentiable ODE solver torchdiffeq (Chen, 2018) with 4th-
order Runge–Kutta (RK4) integrator, accumulating the divergence term in the integral to approximate
log p0(x0). Since the PF ODE is deterministic, this entire simulation is fully differentiable, enabling
gradient-based optimization with respect to the x0, thereby supporting the local search stage.

B.3.3 HYPERPARAMETERS

For the upper confidence bound (UCB), we fixed γ = 1.0 that controls the exploration-exploitation.
For the target posterior distribution, the inverse temperature parameter β controls the trade-off
between the influence of exp(rϕ(x)) and pθ(x). When selecting querying candidates, we sample
M = B× 102 candidates from pψ(x), perform a local search for J steps, and retain B candidates for
batched querying. After querying and adding candidates, we maintain our training dataset to contain
L high-scoring samples. We present the detailed hyperparameter settings in Table 4. We also conduct
several ablation studies to explore the effect of each hyperparameter on the performance.

Table 4: Hyperparameters during sampling candidates

Inverse Temperature β Local Search Steps J Buffer Size L

Synthetic 200D 105 10 1000 (Rastrigin) / 500 (Others)
Synthetic 400D 105 15 1000 (Rastrigin) / 500 (Others)

HalfCheetah 102D 104 10 300
RoverPlanning 100D 105 30 300

DNA 180D 105 50 300
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C BASELINE DETAILS

In this section, we provide details of the baseline implementation and hyperparameters used in our
experiments.

TuRBO (Eriksson et al., 2019): We use the original code 5 and keep all settings identical to those in
the original paper. For all the algorithms utilizing TuRBO as a base algorithm (TuRBO, LA-MCTS,
MCMC-BO), we use TuRBO-1 (No parallel local models).

LA-MCTS (Wang et al., 2020): We use the original code 6 and keep all settings identical to those in
the original paper.

MCMC-BO (Yi et al., 2024): We utilize the original code 7 and adjust the standard deviation of the
proposal distribution during the Metropolis-Hastings steps to replicate the results from the original
paper. Due to memory constraints during the MCMC steps, we report a total of 6,000 evaluations for
the D = 400 tasks.

CMA-BO (Ngo et al., 2024): We use the original code 8 and keep all settings identical to those in the
original paper.

CbAS (Brookes et al., 2019): We reimplement the original code 9 with PyTorch and keep all settings
identical to those in the original paper.

MINs (Kumar & Levine, 2020): We reimplement the code from Trabucco et al. (2022) 10 with
PyTorch and keep all settings identical to those in the original paper.

DDOM (Krishnamoorthy et al., 2023): To ensure a fair comparison, we reimplement the original
code 11 to work with our diffusion models and add classifier free guidance for conditional generation.
We use the same method-specific hyperparameters following the original paper and tune the training
epochs (200 as a default, 400 for D = 400 tasks) for each task to optimize performance.

Diff-BBO (Wu et al., 2024): As there is no open-source code, we implement it according to the details
provided in the original paper. As with DDOM, we use the original method-specific hyperparameters
and tune the training epochs (200 as a default, 400 for D = 400 tasks) for each task to improve
performance.

CMA-ES (Hansen, 2006): We use an existing library pycma (Hansen et al., 2019) and adjust the
initial standard deviation as σ0 = 0.1, which gives better performance on all tasks.

5
https://github.com/uber-research/TuRBO

6
https://github.com/facebookresearch/LA-MCTS

7
https://drive.google.com/drive/folders/1fLUHIduB3-pR78Y1YOhhNtsDegaOqLNU?usp=sharing

8
https://github.com/LamNgo1/cma-meta-algorithm

9
https://github.com/dhbrookes/CbAS

10
https://github.com/brandontrabucco/design-bench

11
https://github.com/siddarthk97/ddom
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D EXTENDED ADDITIONAL ANALYSIS

In this section, we present additional analysis on DiBO that is not included in the main manuscript
due to the page limit.

D.1 EFFECT OF TRAINING EPOCHS

The number of epochs for training models can be crucial in the performance of black-box optimization
algorithms. If we use too small a number of epochs, the proxy may underfit, and the diffusion model
may find it hard to capture the complex data distribution accurately. On the other hand, if we use
too large a number of epochs, the proxy and the diffusion may overfit to the dataset, and the overall
procedure takes longer time for each round.

To this end, we conduct experiments on Rastrigin-200D and HalfCheetah-102D by varying training
epochs. As shown in the Figure 6, when we use large training epochs, the performance improves
significantly at the early stage but eventually converges to the sub-optimal results due to the overfitting
of the proxy and diffusion model, which may hinder exploration towards promising regions.

Figure 6: Performance of DiBO in Rastrigin-200D and HalfCheetah-102D by
varying training epochs. Experiments are conducted with four random seeds.
Mean and one standard deviation are reported.
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D.2 ANALYSIS ON LOCAL SEARCH STEPS J

We conduct additional analysis on local search steps J . Through local search, we can capture the
modes of the target distribution, which leads to high sample efficiency. However, using too large local
search steps may focus on exploiting a single mode with the highest density of the target distribution,
resulting in sub-optimal results.

To this end, we conduct experiments on Rastrigin-200D and HalfCheetah-102D by varying J . As
shown in the Figure 7, our method shows a relatively slow learning curve when we remove the
local search. On the other hand, if we use too large J , it struggles to escape from local optima and
eventually results in sub-optimal results.

Figure 7: Performance of DiBO in Rastrigin-200D and HalfCheetah-102D by
varying J . Experiments are conducted with four random seeds. Mean and one
standard deviation are reported.

D.3 EFFECT OF OFF-POLICY TRAINING IN AMORTIZED INFERENCE

During the fine-tuning stage, we employ off-policy training with the RTB loss function, as detailed in
Appendix B.3.1. To assess the impact of this approach, we conduct a comparative experiment using
only on-policy training.

As illustrated in Figure 8, off-policy training demonstrates a significant performance advantage over
on-policy training. In on-policy training, the model is restricted to learning only from the generated
samples. Consequently, crucial data points, particularly those associated with significant events, are
rarely encountered during training. In contrast, off-policy training effectively captures these critical
regions by directly leveraging information from a replay buffer, enabling the model to learn from
informative data points efficiently.

Figure 8: Performance of DiBO in Rastrigin-200D and HalfCheetah-102D with
and without off-policy training. Experiments are conducted with four random
seeds. Mean and one standard deviation are reported.
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D.4 ANALYSIS ON INITIAL DATASET SIZE |D0|

The size of the initial dataset |D0| can be crucial in the performance of black-box optimization
algorithms. If the initial dataset is too small and concentrates on a small region compared to the whole
search space, it is hard to explore diverse promising regions without proper exploration strategies.

To this end, we conduct experiments by varying |D0| on the synthetic tasks. As shown in the Figure 9,
our method demonstrates robustness regarding the size of the initial dataset. It indicates that our
exploration strategy, proposing candidates by sampling from the posterior distribution, is powerful
for solving practical high-dimensional black-box optimization problems.

Figure 9: Performance of DiBO in synthetic functions by varying |D0|. Experiments are conducted
with four random seeds. Mean and one standard deviation are reported.

D.5 ANALYSIS ON BATCH SIZE B

The batch size B can be crucial in the performance of black-box optimization algorithms. As the
number of evaluations is mostly limited, if we use too large B, it is hard to focus on high-scoring
regions. On the other hand, if we use too small B, it hinders exploration, and it is hard to escape from
local optima.

To this end, we conduct experiments by varying B on the synthetic tasks. Note that we fix the batch
size for all main experiments as B = 100. We visualize the experiment results in Figure 10. We can
observe that our method shows robust performance across different B while using a large batch size
leads to slightly slow convergence compared to using a small batch size. Using a smaller batch size
shows better sample efficiency but also leads to an increase in computational time.

Figure 10: Performance of DiBO in synthetic functions by varying B. Experiments are conducted
with four random seeds. Mean and one standard deviation are reported.
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D.6 ANALYSIS ON UNCERTAINTY ESTIMATION

To promote exploration, we estimate uncertainty with an ensemble of proxies and adopt an upper
confidence bound (UCB) to define the target distribution. Specifically, we use: rϕ(x) = µϕ(x) + γ ·
σϕ(x), where γ controls the degree of uncertainty bonus. We evaluated two aspects of this approach
in the HalfCheetah-102D task.

To analyze the effectiveness of ensemble strategy for uncertainty estimation, besides our ensemble
method, we test Monte Carlo (MC) dropout (Gal & Ghahramani, 2016) and a setup without uncertainty
estimation (one proxy). As shown in Figure 11a, the ensemble strategy effectively estimates the
uncertainty and improves sample efficiency compared to others.

To analyze if UCB with uncertainty bonus promotes exploration, we conduct experiments by varying
the parameter γ and analyzing its impact on performance. Figure 11b demonstrate that increasing γ
leads to more extensive search space exploration. However, excessively large γ values (γ = 10.0)
dilute the focus on exploitation, slowing convergence.

(a) Analysis on uncertainty estimation
methods

(b) Analysis on γ

Figure 11: Performance of DiBO in HalfCheetah-102D with varying uncertainty
estimation methods and gamma γ. Experiments are conducted with four random
seeds. Mean and one standard deviation are reported.

These findings demonstrate that an ensemble of proxies effectively captures uncertainty even in
high-dimensional spaces. Moreover, designing a target distribution that incorporates UCB helps
balance exploration and exploitation, improving sample efficiency during optimization.
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D.7 TIME COMPLEXITY OF OUR METHOD

We report the average running time per each round in Table 5. All training is done with a single
NVIDIA RTX 3090 GPU and Intel Xeon Platinum CPU @ 2.90GHZ. As shown in the table, the
running time of our method is similar to generative model-based approaches and mostly faster than
BO methods. It demonstrates the efficacy of our proposed method.

Table 5: Average time (in seconds) for each round in each method.

Rastrigin-200D Rastrigin-400D Ackley-200D Ackley-400D Levy-200D Levy-400D Rosenbrock-200D Rosenbrock-400D

TuRBO 244.39 ± 0.21 1089.09 ± 0.04 33.91 ± 0.24 41.50 ± 0.06 167.58 ± 0.21 59.70 ± 0.02 452.21 ± 0.15 45.05 ± 0.01
LA-MCTS 222.95 ± 6.59 256.82 ± 8.89 150.27 ± 3.97 184.14 ± 1.67 90.47 ± 1.69 229.80 ± 11.99 154.56 ± 4.08 223.59 ± 7.52
MCMC-BO 341.98 ± 3.54 429.02 ± 4.61 370.03 ± 4.17 345.60 ± 3.42 337.87 ± 3.65 429.02 ± 4.61 419.07 ± 5.12 448.56 ± 5.13
CMA-BO 643.14 ± 4.01 833.97 ± 2.12 661.15 ± 4.52 854.23 ± 2.77 694.67 ± 4.59 871.33 ± 3.66 645.65 ± 4.95 857.39 ± 2.53

CbAS 212.69 ± 5.27 213.64 ± 5.79 207.35 ± 4.01 213.67 ± 6.62 212.61 ± 4.05 212.69 ± 9.83 203.87 ± 1.43 221.68 ± 5.01
MINs 28.36 ± 0.45 32.20 ± 0.12 28.83 ± 0.41 29.14 ± 0.60 29.91 ± 0.17 29.95 ± 0.37 30.22 ± 1.02 28.81 ± 0.67
DDOM 23.74 ± 0.28 26.57 ± 0.11 23.53 ± 0.04 26.62 ± 0.16 23.40 ± 0.15 26.46 ± 0.15 23.19 ± 0.12 26.55 ± 0.15
Diff-BBO 128.75 ± 0.89 143.80 ± 1.16 131.16 ± 0.86 143.96 ± 1.68 130.07 ± 0.74 143.97 ± 1.79 128.33 ± 1.74 144.03 ± 1.58

CMA-ES 0.03 ± 0.01 0.05 ± 0.00 0.03 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.05 ± 0.00 0.03 ± 0.00 0.04 ± 0.00

DiBO 42.74 ± 0.26 79.63 ± 1.07 39.72 ± 0.18 71.99 ± 0.10 39.55 ± 0.10 72.21 ± 0.53 39.57 ± 0.28 72.88 ± 0.34

D.8 ANALYSIS ON MORE COMPUTATION TIME

In this section, we present supplementary results demonstrating that more computing time can
significantly improve performance beyond the results reported in the main text. For example, on the
Ackley-200D benchmark, with the local search steps J = 50 and buffer size, L = 2000 improves
performance from the default configuration value of −0.643 to a score of −0.260. While increasing
the number of local search steps has a possibility of converging to the local optimum, a large buffer
size complements this issue. However, using larger J and L leads to an increase in computational
complexity. Exploring methods that reduce the complexity of training while maintaining large buffer
sizes and local search steps may be a promising research direction. We leave it as a future work.

Figure 12: Performance of DiBO in Ackley-200D with local search epochs
J = 50, and buffer size L = 2000. Experiments are conducted with four random
seeds. Mean and one standard deviation are reported.
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