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Abstract
We introduce InstaAug, a method for automati-
cally learning input-specific augmentations from
data. Previous methods for learning augmenta-
tions have typically assumed independence be-
tween the original input and the transformation ap-
plied to that input. This can be highly restrictive,
as the invariances we hope our augmentation will
capture are themselves often highly input depen-
dent. InstaAug instead introduces a learnable in-
variance module that maps from inputs to tailored
transformation parameters, allowing local invari-
ances to be captured. This can be simultaneously
trained alongside the downstream model in a fully
end-to-end manner, or separately learned for a
pre-trained model. We empirically demonstrate
that InstaAug learns meaningful input-dependent
augmentations for a wide range of transformation
classes, which in turn provides better performance
on both supervised and self-supervised tasks.

1. Introduction
Data augmentation is an important tool in deep learn-
ing (Shorten & Khoshgoftaar, 2019). It allows one to incor-
porate inductive biases and invariances into models (Chen
et al., 2019; Lyle et al., 2020), providing an effective regular-
ization technique that aids generalization (Goodfellow et al.,
2016). It has proved particularly successful for computer vi-
sion tasks, forming an essential component of many modern
supervised (Krizhevsky et al., 2012; Perez & Wang, 2017;
Mikołajczyk & Grochowski, 2018; Cubuk et al., 2020) and
self-supervised (Bachman et al., 2019; Chen et al., 2020;
Tian et al., 2020; Foster et al., 2021) approaches.

Algorithmically, data augmentations apply a random trans-
formation τ : X → X , τ ∼ p(τ), to each input data point
x ∈ X , before feeding this augmented data into the down-
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(a) Color jittering (red line indicates class boundary)

(b) Cropping

Figure 1: Different inputs require different augmentations.
In (a), a leaf is invariant to color change from yellow to
green, but the same transformation changes a lemon to a
lime. In (b), the same effect is shown for cropping. Solid
rectangles represent the patches that preserve the labels of
the original images ([left] grass, [right] cattle), while dashed
rectangles represent patches with different labels.

stream model. These transformations are resampled each
time the data point is used (e.g. at each training epoch), ef-
fectively populating the training set with additional samples.
Augmentation is also sometimes used at test time by ensem-
bling predictions from multiple transformations of the input.
A particular augmentation is defined by the choice of the
transformation distribution p(τ), whose construction forms
the key design choice. Good transformation distributions
induce substantial and wide-ranging changes to the input,
while preserving the information needed for prediction.

To try and ensure a good augmentation scheme, previous
work has looked to learn this transformation distribution
from data (Cubuk et al., 2018; Lim et al., 2019; Benton
et al., 2020). However, existing approaches typically assume
independence between the input x and the transformation
distribution p(τ). As such, they are only able to learn global
invariances, severely limiting their flexibility and potential
impact. For example, when using color jittering, changing
the color of a leaf from yellow to green would preserve its
label, but the same transformation would change a lemon to
a lime (see Figure 1a). This transformation cannot, therefore,
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be usefully applied as a global augmentation, even though it
is a useful invariance for the specific input instance of a leaf.
Similar examples regularly occur for other transformations,
such as cropping (see Figure 1b).

Another line of recent work (Zhou et al., 2020; Cheung &
Yeung, 2022) has instead looked to utilize instance-aware
augmentations by defining a small predefined set of allow-
able transformations, then introducing a policy that assigns
probabilities (and magnitudes) to elements of this set as a
function of the input. While these approaches allow some
of the shortfalls of global augmentations to be overcome,
they do not have the flexibility to learn fine-grained trans-
formation distributions, or uncover underlying invariances.

To address these shortfalls, we introduce InstaAug, a new
approach to learn instance-specific augmentations by cap-
turing local invariances that are specific to the region of the
provided input. InstaAug is based on using a transformation
distribution of the form p(τ ;ϕ(x)), where ϕ is a deep neu-
ral network that maps inputs to transformation distribution
parameters. We refer to ϕ as an invariance module. It can
be trained simultaneously with the downstream model in a
fully end-to-end manner, or individually with a fixed pre-
trained model. Both cases only require access to training
data and optimize a single objective function that minimizes
the training error while maintaining transformation diversity.
As such, InstaAug allows one to directly learn powerful and
general augmentations, without requiring access to addi-
tional data or annotations.

We evaluate InstaAug in both supervised and self-supervised
settings, focusing on image classification and contrastive
learning respectively. Our experimental results show that
InstaAug is able to uncover meaningful invariances that
are consistent with human cognition, and improve model
performance for various tasks compared with baseline mod-
els. While we primarily focus on the case where the
invariance module is trained alongside the downstream
model (to allow augmentation during training), we find
that InstaAug can also provide substantial performance
gains when used to learn test-time augmentations for large
pre-trained models. Accompanying code is provided at
https://github.com/NingMiao/InstaAug.

2. Background
Data augmentation methods operate as a wrapper algorithm
around some downstream model, f , randomly transform-
ing the inputs x ∈ X before they are passed to the model.
The outputs of the augmented model are given by f(τ(x)),
where τ : X 7→ X represents the transformation, sam-
pled from some transformation distribution p(τ). The aim
of this augmentation is to instill inductive biases into the
learned model, leading to improved generalization by cap-
turing invariances of the problem. It can be used both during

training to provide additional synthetic training data, and/or
at test-time, where ensembling the predictions from multi-
ple transformations can provide a useful regularization that
often improves performance (Shanmugam et al., 2021).

Some approaches look to learn aspects of the augmenta-
tion (Cubuk et al., 2018; 2020; Lim et al., 2019; Ho et al.,
2019; Hataya et al., 2020; Li et al., 2020; Zheng et al., 2022).
These approaches can be viewed as learning parameters of
p(τ), helping to automate its construction and tuning. Of
particular relevance, Augerino (Benton et al., 2020) provides
a mechanism for learning augmentations using a simple end-
to-end training scheme, where the parameters of the down-
stream model and transformation distribution are learned
simultaneously using the (empirical) risk minimization

minf,θ Ex,y∼pdata

[
Eτ∼pθ(τ) [L(f(τ(x)), y)]

]
+λR(θ), (1)

where L is a loss function and λR(θ) is a regularization
term that encourages large transformations.

All of these approaches can be thought of as global aug-
mentation schemes, in that transformations are sampled
independently to the input. For an unrestricted, universal,
class of transformations, this assumption can be justified
through the noise outsourcing lemma (Kallenberg & Kallen-
berg, 1997): any conditional distribution Y |X = x can be
expressed as a deterministic function g : X ×R → Y of the
input and some independent noise ε ∼ N (0, I). Thus, using
reparameterization, the dependency on x can, in principle,
be entirely dealt with by the transformation itself. However,
in practice, the transformation class must be restricted to
provide the desired inductive biases, meaning this result no
longer holds and so the independence assumption can cause
severe restrictions. For example, sampling color jitterings
independently to the input is equivalent to the unrealistic
assumption that the labels of all images x are invariant to
the same group of changes (cf. Figure 1a).

3. InstaAug: Capturing Local Invariances
In order to remedy the problems of global augmentations,
we propose InstaAug. InstaAug learns an input dependent
distribution p(τ ;ϕ(x)) of information-preserving transfor-
mations that actively makes use of the input x via the invari-
ance module ϕ, as opposed to learning a global transforma-
tion distribution pθ(τ). This generalizes the hypothesis class
of transformation distributions, and significantly increases
the flexibility and expressivity of the resulting augmenta-
tion, without undermining our ability to carefully control
the inductive biases that are imparted. It can also informally
be viewed as a mechanism for learning invariances that are
local to the specific input.

We argue that a good augmentation strategy needs to fulfill
two properties. First, the transformations should preserve
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Figure 2: Summary of InstaAug.

the information in x that is necessary for the task at hand.
For example, transformations must preserve information
about the label for supervised tasks. Second, the set of trans-
formations needs to have sufficient ‘diversity’ to effectively
augment the data; we quantify this as the entropy of the
transformation distribution p(τ ;ϕ(x)). In addition to their
intuitive nature, in Appendix A we provide theoretical anal-
ysis that shows these requirements naturally originate from
a decomposition of the generalization error between the true
risk and augmented empirical risk of f . For simplicity, we
describe InstaAug for the specific case where f is a classifier
in the remainder of this section.

3.1. Model structure

InstaAug is based around using a simple plug-in invari-
ance module, ϕ, between the input x and the classifier f ,
as shown in Figure 2. We assume a parametric family of
distributions p(τ ; ·) over some transformation space, then
use ϕ, which is a trainable neural network, to predict its
parameters for a given input. During training, we sample
a transformation τ ∼ p(τ ;ϕ(x)), which is applied to x to
generate an augmented sample τ(x), before feeding this
into the classifier f .

3.2. Training

Good augmentations should induce substantial changes to
the input x while preserving all necessary information about
the task at hand, thereby capturing the maximum possible
invariance. Figure 3a illustrates the tension between these
two objectives experienced by global augmentation schemes.
Wider-ranging transformations are generally beneficial for
generalization, but ‘excessive’ transformations will generate
samples that will be incorrectly classified. In Figure 3a we
see this in the red area, where the augmentations for a pair
of data points have started to overlap, creating ambiguity
and inevitably misclassifications. Using instance-specific
augmentations (Figure 3b) allows for a better trade-off of
these needs. However, to achieve this we need our objec-
tive to encourage diversity in augmentations, not just low
training error. It should also let the level of diversity vary

(a) Global augmentation (b) InstaAug

Figure 3: InstaAug learns more diverse augmentations that
also preserve labels compared to global augmentations. ⋆
and are samples from two different classes. Blue and
green shades represent label-preserving augmentations for
each class. In (a), the upper ⋆ would benefit from being
further augmented, but some of the augmented samples for
the lower ⋆ are already over-augmented and indistinguish-
able from another class (see the red intersection). InstaAug
solves this problem by learning a different augmentation for
each instance, as shown in (b).

between inputs, as some points will be able to support larger
transformations than others.

Based on these needs, training is done by simultaneously
minimizing a conventional expected loss with respect to
both ϕ and f (or just ϕ if f is a fixed pre-trained classifier
as per Section 5.3), while regularizing the average entropy
of the transformations, Ex∼pdata [H[p(τ ;ϕ(x))]]. The core
motivation for this setup is that minimizing the expected
loss will naturally encourage the information needed for pre-
diction to be preserved, but the regularization on entropy is
needed to enforce diversity. Further motivation is provided
by the theoretical analysis of Appendix A.

By appropriately parameterizing p(τ ;ϕ(x)) (see Sec-
tion 3.3), we can write down its entropy in closed form.
We can then formulate the problem as minimizing the fol-
lowing w.r.t. f and ϕ:

Ex,y∼pdata,τ∼p(τ ;ϕ(x)) [L(f(τ(x)), y)−λH[p(τ ;ϕ(x))]] ,
(2)

where L is the loss of the downstream task, for which we
will generally use the cross-entropy. Unlike in the Augerino
objective of Equation (1), λ here is an automatically-tuned
weight of the entropy term that enables precise control over
transformation diversity. Specifically, we initialize λ with a
small positive value, then increase it when the average en-
tropy drops below a lower bound Hmin and decrease it when
it exceeds an upper bound Hmax) during training. Here
Hmin and Hmax are hyperparameters, through which we can
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Figure 4: Location-related parameterization of crops by a
CNN. The shaded area (bottom right) shows a simplified
3-layer CNN, and squares represent units at different convo-
lutional layers. Each unit defines a patch in the input image
(shown in the same color) through its receptive field. The
activation value of the unit then gives the corresponding
unnormalized log probability for that patch.

directly control the diversity level of learned transforma-
tions during the whole training process. As described in
Table E.1, they can easily be tuned.

This dynamic λ is necessary because the requirement for λ
is different at different stages of training. In the beginning,
when the classifier is weak, we need a small λ to avoid
the transformations becoming overly diverse, which results
in different classes overlapping with each other. As the
classifier gets more powerful during training, larger λ is
needed to compete with the cross-entropy term L.

Using this approach, the invariance module and down-
stream model can be trained simultaneously using end-to-
end gradient descent, utilizing the reparameterization trick
to deal with the stochasticity of τ when possible (Kingma &
Welling, 2014), and the REINFORCE estimator (Williams,
1992) otherwise. The approach can also be extended to re-
gression or self-supervised learning by substituting the loss
function L (see Appendix C).

3.3. Parameterization of augmentations

The parameterization method is another critical factor in
the quality of learned invariances. A good parameterization
should be flexible enough to reflect the complexity of real
data while not creating obstacles to gradient-based learning.
Here we focus on parameterizing transformations that are
frequently used in computer vision, though our framework
can easily be extended to other domains. Due to the varied
characteristics of different image transformations, we design
two different parameterization methods for p(τ ;ϕ(x)).

Uniform parameterization. For simpler transformations,
such as rotation and color jittering, we find that a uniform
distribution is enough for parameterizing p(τ ;ϕ(x)), such
that ϕ(x) returns a pair (θmin, θmax) representing extrema

of the possible transformations. For example, for rotations,
these represent the maximum and minimum rotation angles,
such that τ(x) = R(θ)x, where θ ∼ U(θmin, θmax) and
R(θ) is the rotation operator. To compose multiple trans-
formations, we simply sample them independently, such
that p(τ1, . . . , τK ;ϕ(x)) =

∏K
k=1 p(τk;ϕk(x)). This pro-

vides a similar parameterization to (Benton et al., 2020), but
where (θmin, θmax) now critically varies with the input x
and there is no symmetry assumption on this range.

Location-related parameterization Using this uniform
parameterization is unfortunately not appropriate for more
complex transformations like cropping. Firstly, the distribu-
tion of crop centers may be multi-modal, since important
information may exist in different parts of an image. Sec-
ondly, the desired crop size and center are often highly
correlated so cannot be sampled independently. Finally, we
encountered significant practical training issues when using
the uniform parameterization for cropping, with ϕ becoming
trapped in local optima with little transformation diversity.

We, therefore, propose an alternative location-related param-
eterization (LRP) for cropping, which is based on defining
a large set of representative crops, then constructing ϕ to
map from inputs to a vector of probabilities over this set. As
shown in Figure 4, this is achieved using a CNN where each
hidden unit corresponds to a possible crop defined by its
receptive field. In order to select crops with different sizes,
units from different layers are utilized, with those of ear-
lier/latter layers representing smaller/larger crops. This pa-
rameterization proved more effective than simply outputting
the probabilities from a conventional network, due to the
greater parameter sharing between related crops. We note
that it can also be directly extended to other transformations,
such as masking, local blurring, pixel-wise perturbation, and
local color jittering.

4. Related Work
Hard-coded invariance. Many recent works have looked
to hard-code global invariance in neural networks. For exam-
ple, various architectures have been designed to be invariant
to translation (Chaman & Dokmanic, 2021; Zhang, 2019),
rotation (Worrall et al., 2017; Zhou et al., 2017; Marcos
et al., 2017), scaling (Worrall & Welling, 2019; Sosnovik
et al., 2019) or other group actions (Cohen & Welling, 2016;
Xu et al., 2021). Unfortunately, they require the set of invari-
ant transformations to be closed under composition, leaving
out many practical transformations that do not form a group.

Learning augmentations. There have been numerous
prior works that automatically learn global augmentations
and invariance from data. As discussed in Section 2,
Augerino (Benton et al., 2020) is perhaps the most closely
linked such approach to InstaAug as it also relies on end-
to-end training (see Appendix B for further discussion on
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(a) Augerino (b) InstaAug (Ours)

Figure 5: Learned invariances for the Mario and Iggy dataset.
The blue arcs show the training data range, while the green
arcs show example learned transformation distributions.

its similarities and differences to InstaAug). AutoAug-
ment (Cubuk et al., 2018) instead uses reinforcement learn-
ing to find augmentation strategies that increase accuracy on
a separate validation set. Various follow-up works have im-
proved its efficiency and/or performance (Lim et al., 2019;
Ho et al., 2019; Tang et al., 2019; Hataya et al., 2020; Li
et al., 2020; Cubuk et al., 2020; Zheng et al., 2022).

Augmentation policies. A couple of recent works have
further looked to learn augmentation policies that allow a
degree of dependency on the input or class label, namely
AdaAug (Cheung & Yeung, 2022) and MetaAugment (Zhou
et al., 2021). These policies assign probabilities and magni-
tudes to a fixed finite list of possible transformation opera-
tions. Though they can depend on the input, they only make
discrete choices and cannot learn a fine-grained transfor-
mation distribution in the way that InstaAug does; they are
thus not suitable for capturing local invariances. For exam-
ple, using InstaAug with cropping learns a joint distribution
over patch positions and sizes, whereas these methods only
learn a probability for whether to apply cropping or not,
and a scalar magnitude to use if it is applied. Further, both
AdaAug and MetaAugment require a separate validation
set, only consider augmentation during training (so cannot
be used for pre-trained classifiers), and cannot be applied
in unsupervised settings. AdaAug also has the additional
restriction that its policy is based on a linear mapping from
the penultimate layer of the classification model, so its in-
put dependence is inherently limited. Meanwhile, although
MetaAugment learns a sample-level policy network, in prac-
tice it averages this policy among training samples to form
a global policy applied to all samples.

Other related work. The spatial transformer (Jaderberg
et al., 2015) aims to learn instance-specific transformations,
but only applies a single transformation to each input rather
than a distribution of transformations, making it distinct
from data augmentation. Luo et al. (2020) and Kim et al.

(2020a) both also learn instance-specific augmentations.
However, the latter consider only test-time augmentation,
while the former introduces an approach that is highly spe-
cialized to test recognition and cannot be applied in the
more general settings we consider. Tamkin et al. (2020)
and Chen et al. (2021) both utilize adversarial augmenta-
tions to increase robustness. Zhou et al. (2020) learn symme-
tries shared across several datasets through a meta-learning
scheme. Mixup methods (Zhang et al., 2018; Yun et al.,
2019; Ramé et al., 2021) can also be thought of as a spe-
cific type of data augmentation. Some of them (Kim et al.,
2020c;b; Park et al., 2022), allow for input dependence
through gradient-based saliency (Simonyan et al., 2013).
However, they use a fixed augmentation strategy rather than
learning a transformation distribution.

5. Supervised Learning Experiments
5.1. Rotated 2D images

We first consider a simple synthetic dataset proposed in
Benton et al. (2020). The dataset contains four categories,
(1) upright Mario; (2) upside-down Mario; (3) upright Iggy;
and (4) upside-down Iggy. Each of the four base images is
randomly rotated in the interval of [−π/4, π/4] to form the
training dataset. The task is to predict the correct character
(Mario vs Iggy) and the orientation (up vs down). We assess
whether InstaAug is able to learn the ‘best’ rotation range
for each sample—i.e. the maximum range that avoids ‘up’
and ‘down’ classes from overlapping.

Figure 5 shows that InstaAug effectively recovers the broad-
est range of rotations for each image while preserving labels,
while Augerino only learns a subset of these ranges. This
can be most easily seen by the fact that the transforma-
tion distributions (shown in green) always extend to very
close to the true class boundary for InstaAug, but not for
Augerino. These gains are because Augerino learns a single
global augmentation distribution shared across all images
(note the shared transformation distribution arcs), which are
inevitably limited for any given input.

5.2. Cropping

We now move to more realistic images and to the most
common and effective form of image augmentation: crop-
ping. We first evaluate the performance of jointly train-
ing InstaAug and the classifier on Tiny-Imagenet (TinyIN,
64× 64), as it inherits the image complexity of ImageNet
whilst being within our computational budget. TinyIN is a
standard testbed for data augmentations. Full experiment
details are given in Appendix D.1.

We benchmark InstaAug alongside several augmentation
baselines, including random crop, Augerino, and AdaAug.
For random crop, we use a uniform distribution on patch
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Table 1: Test accuracy for Tiny-ImageNet with cropping
augmentation. The Instance column indicates whether the
method is instance-specific or not. Statistics are computed
over 10 runs, except for MixUp methods, whose results
are directly taken from their respective papers. We omit
comparison to other global augmentation schemes, as these
only learn the size ranges of the cropping, which is already
covered by the hyperparameter tuning of Random crop.

Method Instance Accuracy (%)

No augmentation ✗ 55.06±0.10

Random crop ✗ 64.49±0.12

MixUp ✗ 63.74
CutMix ✗ 65.09
MixMo ✗ 64.80
Puzzle-Mix ✓ 63.48
Co-Mixup ✓ 64.15
Saliency grafting ✓ 64.84

Augerino ✗ 55.02±0.29

AdaAug ✓ 64.03±0.19

-w/ LRP ✓ 62.01±0.23

InstaAug (ours) ✓ 66.02±0.18

-w/o LRP ✓ 55.39±0.19

-w/o input ✗ 63.20±0.12

-class-specific ✗/✓ 60.55±0.50

size and position, tuning the bounds on the former through a
comprehensive hyperparameter sweep to ensure appropriate
scaling. We further compare to other prior works that have
obtained competitive results on TinyIN (Zhang et al., 2018;
Yun et al., 2019; Ramé et al., 2021; Kim et al., 2020c;b;
Park et al., 2022), directly taking their reported results.

In order to ablate the effects of input-dependency and our
location-related parameterization (LRP, see Figure 4) on In-
staAug, we additionally assess the performance of InstaAug
(without LRP) by using same uniform parameterization as
Augerino; InstaAug (without input) that uses the LRP and
general InstaAug setup, but shares the transformation distri-
bution across all inputs rather than learning an input-specific
augmentation; and InstaAug (class-specific), which takes
training labels instead of images as inputs. Test-time aug-
mentation using 50 transformation samples is deployed for
all variants of InstaAug, along with the Augerino, AdaAug,
and random augmentation baselines (see Appendix C.2).
For InstaAug (class-specific), this test-time augmentation
is based on random cropping, as class information is not
available at test-time and simply omitting test-time augmen-
tation performed poorly. Following prior works, we choose
the PreActResNet-18 architecture (He et al., 2016b) with
width = 1 as the classifier for all methods.

Table 1 shows the (top-1) test accuracy for each method. In
agreement with prior works, we find that random cropping
increases accuracy by 9.4% over no augmentation, which is

(A) InstaAug (w/o input) (B) InstaAug

(a) (b) (c) (d) (e) (f)

Figure 6: InstaAug (B) learns more sensible crops compared
to random and learned global (A) augmentations. Columns
(a, d) show examples of sampled crops, with red edges
indicating higher probability. Columns (b, e) show den-
sity maps for the crop centers, with brighter color meaning
higher probability. Columns (c, f) give the proportion of
crops (red) above a particular size threshold, showing that
InstaAug produces fewer large crops.

achieved where cropping scale = [0.1, 1]. InstaAug outper-
forms random cropping and its own global version without
input by 1.5% and 2.8% respectively, highlighting the effect
of learning instance-specific augmentation.

Allowing only for class dependence actually produces even
worse performance than just ignoring the input completely,
presumably because of the inevitable resulting mismatch
in the augmentations used in training and testing. Meth-
ods with mean-field uniform parameterization (including
Augerino and InstaAug without LRP) performed extremely
poorly, noticeably worse than just random cropping. This
is because they were found to become easily stuck at lo-
cal minima with low cropping diversity, leading to similar
performance as no augmentation. The original version of
AdaAug achieves similar performance to Random crop, but
is incapable of dealing with the large search space of LRP,
leading to a small reduction in performance when this is
added. Note that the potentially unexpectedly good per-
formance of the random cropping baseline compared to
the other global baselines stems from the careful hyper-
parameter sweep used to tune its crop size, which proved
more effective than these more direct training mechanisms.
See Appendix E.3 for more discussion.

Figure 6 shows example crops and learned transforma-
tion distributions for InstaAug and a global augmentation
scheme (InstaAug without input). We see that InstaAug
is able to learn a cropping scheme that focuses on the key
aspect of the input image, while the baselines cannot.
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Table 2: InstaAug boosts the test accuracy (%) with test-
time augmentation on Imagenet. Invariance modules learned
on ResNet-50 can also be directly applied to other models
such as ResNet-18 and XCiT to improve generalization with-
out fine-tuning. By contrast, global augmentation schemes
are actually detrimental to test-time augmentation.

Method #Sample ResNet50 ResNet18 XCiT

No aug 1 80.43 69.73 86.34

Random crop 4 78.45±0.04 66.13±0.04 82.05±0.01

AutoAug 4 77.84±0.05 59.50±0.01 81.40±0.00

FastAutoAug 4 77.87±0.06 61.43±0.02 81.42±0.01

InstaAug 4 80.92±0.04 70.59±0.05 86.43±0.04

Random crop 10 79.60±0.01 67.87±0.01 82.84±0.00

AutoAug 10 79.20±0.04 63.96±0.03 82.43±0.02

FastAutoAug 10 79.28±0.01 65.65±0.02 82.45±0.02

InstaAug 10 81.18±0.02 70.96±0.03 86.47±0.02

5.3. Applying InstaAug to a fixed classifier

InstaAug can also be used to learn suitable augmentations
for a fixed pre-trained classifier. This can most notably be
useful as a means to learn test-time augmentations. As the
invariance module is itself only a small network, it can be
done relatively cheaply, even when the dataset and down-
stream model are very large. We exploit this on the larger
Imagenet dataset (224 × 224) (Deng et al., 2009), again
focusing on cropping augmentations and utilizing the LRP
parameterization from Section 3.3.

Training the invariance module in this setting is done in
exactly the same way as elsewhere, using the training proce-
dure of Section 3.2 with the normal training data. The only
thing that is changed is that f is now fixed to a pre-trained
classifier—specifically, the ResNet-50 (He et al., 2016a)
from Wightman (2019) (which did not use an invariance
module during training)—rather than being simultaneously
learned. We are thus simply learning invariances, without
affecting the training of f .

In Table 2, we show the effect of using the learned invariance
module for test-time augmentation, finding that it is able to
noticeably improve accuracy, unlike the baseline test-time
augmentations of random cropping, AutoAugment (Cubuk
et al., 2018), and Fast AutoAugment (Lim et al., 2019). Note
that AdaAug cannot be used in this fixed-classifier setting.

In order to evaluate the generalization performance of our
learned augmentation module, we further apply the aug-
mentation trained on ResNet-50 to two different models
with zero fine-tuning: ResNet-18 (He et al., 2016a) and
XCiT (Ali et al., 2021). We find that the learned augmen-
tation transfers very effectively to these different models,
which implies that the local invariances InstaAug learns to
reflect the natural invariances of the underlying classifica-
tion problem, rather than being specific to the model that
was used to train the augmentation module.

Table 3: InstaAug achieves higher general accuracy than
baseline methods when trained on D45 (Daylight, 4500K).

Method Test aug? Accuracy (%)

No aug ✗ 72.87±0.10

Random aug ✗ 79.99±0.13

Augerino ✗ 78.97±0.10

AdaAug ✗ 75.27±0.30

InstaAug ✗ 81.11±0.20

Random aug ✓ 80.55±0.16

Augerino ✓ 79.34±0.14

AdaAug ✓ 76.43±0.15

InstaAug ✓ 81.35±0.19

Table 4: InstaAug significantly outperforms baseline meth-
ods in general test accuracy (%) on different difficulty levels.
Difficulty level is controlled by the number of randomly
sampled lighting conditions seen. Test-time augmentation
is included for random and InstaAug and we repeat each
experiment for 10 times.

#Lighting conditions 1 2 4 8

No aug 68.5±2.6 78.1±1.8 84.8±0.7 87.8±0.5

Random augmentation 72.7±2.7 80.8±1.3 85.9±0.6 87.3±0.3

InstaAug 76.0±2.5 83.6±1.1 88.2±0.5 89.6±0.3

5.4. Color jittering on textures

Color jittering is another important type of data augmenta-
tion, which can help models generalize to different lighting
conditions. We benchmark on the texture classification
dataset RawFooT (Bianco et al., 2017). RawFooT includes
68 different samples of raw food and each sample has an
image taken under each of 46 lighting conditions (see Fig-
ure C.1 for examples), which makes it an ideal testbed to
investigate methods’ generalization ability between different
lighting conditions. We crop the original images to create
the train set and test set. For each original image with a
resolution of 800× 800, we randomly sample 200 different
200× 200 patches in the upper half as training images. The
same procedure is taken on the lower half to produce test
images, giving a train set and a test set for each different
lighting condition. To evaluate the generalization ability to
a broader range of lighting conditions, we evenly mix test
images from all lighting conditions to form a general test
set, while controlling the conditions during training.

We first train on a single lighting condition D45 (4500K,
daylight) resembling natural light. Table 3 shows that In-
staAug outperforms all baselines with and without test-time
augmentation. We find that Augerino (with relaxed symme-
try restrictions on learned intervals) underperforms random
augmentation because its parameters ϕ are often stuck near
their initial values. We believe this is due to the conservative
nature of using global augmentations (cf. Figure 3), where
even a small change in the parameters may largely increase

7
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Figure 7: In- and out-of-distribution test accuracy for mod-
els trained on RawFooT D45. The round dots are random
augmentation with different hyperparameter settings. The
colors of dots change from yellow to red as hue jittering
increases; more saturated dots indicate higher saturation
jittering; larger dots mean higher brightness jittering. Thick
lines connect dots with the same hue and brightness jitter,
thin lines link dots with the same hue and saturation jitter.

the training loss, which prohibits wide-ranging augmenta-
tions. AdaAug does not perform well either, which might
be a result of its inability to learn the interval length for the
distribution of each transformation.

We also compare in-distribution and out-of-distribution gen-
eralization by splitting the 46 test sets into two groups,
according to the similarity of their lighting conditions to
D45—see Appendix D.2 for the details on the splitting
method. In Figure 7 we can see that above a certain in-
distribution performance, there exists a trade-off for random
augmentation between in-distribution accuracy and out-of-
distribution generalization, controlled through the hyper-
parameter settings. InstaAug, meanwhile, delivers higher
out-of-distribution performance than any of the hyperparam-
eter configurations, while also simultaneously giving better
in-distribution accuracy to the vast majority of them as well.

We can further vary the difficulty of the classification task
by using different numbers of lighting conditions in the
training data. In Table 4, we randomly select a set number of
lighting conditions to use as the training set for each baseline.
As expected, the accuracy increases with the number of
lighting conditions for all methods. However, the effect
of random augmentation saturates: it performs similarly to
no augmentation with 8 lighting conditions. By contrast,
InstaAug always provides improvements. In Appendix D,
we show that these gains come at very little computational
overhead at both train and test time.

6. InstaAug for Contrastive Learning
Contrastive learning aims to learn features that are approx-
imately invariant to certain augmentations. Typical con-

Table 5: Representations learned by InstaAug perform better
in the downstream linear classification task than baselines.
∗Results of Un-Mix are directly taken from (Shen et al.,
2022), which has the same network structure (ResNet-18),
training algorithms (SimCLR) and linear classifier as ours.

Method Accuracy (%)

Un-Mix (Shen et al., 2022) 49.58∗

Random crop 51.63±0.30

InstaAug (without input) 54.20±0.23

InstaAug 55.05±0.21

trastive learning methods, such as SimCLR (Chen et al.,
2020; Ermolov et al., 2021), first sample two independent
transformations, τ1, τ2 ∼ p(τ), and apply them to an in-
put image x, generating two views x1 and x2. They then
feed the transformed images to a neural encoder f , which
is trained to maximize the similarity between f(x1) and
f(x2), measured with a contrastive loss.

The choice of augmentations directly influences the learned
invariance of the encoder and thus forms a crucial ingredient
of contrastive learning (Bachman et al., 2019; Chen et al.,
2020; Tian et al., 2020). Existing schemes use global aug-
mentations that often introduce unrealistic assumptions. For
example, if there are multiple entities in an image, such as
grass and cattle in Figure 1b, random cropping will pull fea-
tures for different entities closer to each other. Consequently,
we propose InstaAug as a more flexible instance-specific
augmentation method for contrastive learning.

Applying InstaAug to contrastive learning is similar to the
supervised case shown in Section 3. The main difference
is, given an input x, we sample two τ independently from
the input-specific distribution p(τ ;ϕ(x)), before they are
applied to x. The training objective is correspondingly
changed to minimizing the contrastive loss while keeping
the diversity in a reasonable range.

We again consider TinyIN and evaluate three methods: In-
staAug, InstaAug (without input), and Random crop. We
exclude methods with uniform parameterization because of
their earlier poor performance and note that AdaAug is not
applicable for unsupervised learning. All experiments are
based on the SimCLR framework and use the PreActResNet-
18 network as the encoder. We train each model with a batch
size of 512 for 500 epochs. We then train a linear classifier
to evaluate feature quality. We use test-time augmentation—
with 10 sampled crops—as this has been shown to improve
performance (Foster et al., 2021).

Table 5 shows that InstaAug outperforms the random and
global augmentation schemes as well as Un-Mix (Shen et al.,
2022), which is a recent variant of MixUp methods for
contrastive learning. We see from the examples in Figure 8
that InstaAug focuses on the salient features containing

8
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(a) (b) (c)

Figure 8: Examples of learned croppings by InstaAug for
contrastive learning. Conventions as per Figure 6.

important information. We also notice that the sizes of
learned patches are correlated to the sizes of the objects in
the images. Thus, InstaAug is able to learn sensible instance-
specific augmentations in a fully unsupervised setting.

7. Conclusions
In this paper, we introduced InstaAug, a method for learn-
ing instance-specific data augmentations that capture lo-
cal invariances of the underlying data-generating process.
This is achieved by training an augmentation module that
parametrizes an input-dependent distribution over transfor-
mations, whose samples can be used to augment the training
data on the fly and/or for test-time augmentation. The main
benefits of InstaAug stem from its applicability to a wide
range of settings, its ease of use, and crucially its capacity
to learn meaningful augmentations that in turn improve per-
formance. Empirically, we have demonstrated these benefits
for both classification and contrastive learning problems,
considering several classes of transformations.
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A. Theoretical Analysis of Generalization
Error

We now provide a decomposition of the generalization
error—i.e. the difference between the true risk and the train-
ing risk—when using ϕ during training of the downstream
classifier f . Here we can view the objective of augmentation
as adjusting the training objective to encourage the learned
model to have a low true risk. As such, the generalization
error provides a measure of the effectiveness of the augmen-
tation for the training of f ; by analyzing the behavior of
the generalization error as a function of the augmentation
module, we can derive a characterization of the desirable
properties of the latter.

To start our analysis, we first define the true risk of the
downstream model, f , as

R(f) := E[L(f(X), Y )] (A.1)

where (X,Y ) ∼ ptrue(X,Y ) are drawn from the true data
generating distribution. In practice, one might also perform
test-time augmentation, implying a different predictive func-
tion and thus different true risk, but for the purposes of our
analysis, we will assume that this is not done, as this allows
us to focus on the impact the invariance module has on f
during training.

On the other hand, the implied training risk (i.e. our objec-
tive for training f ) when using an invariance module is the
augmented empirical risk

R̂(f, ϕ) := E[L(f(τ(xi)), yi)] (A.2)

where i ∼ Uniform{1, . . . , N} is a uniformly sampled
index for a point in the original training dataset {xn, yn}Nn=1

and τ |i ∼ p(τ ;ϕ(xi)) is the sampled transformation. Note
that the expectation in Equation (A.2) is only over i and
τ , with the data-points themselves not considered random
variables for our purposes, because we are only provided
with a single fixed training dataset.

The generalization error can now be defined as R̂(f, ϕ)−
R(f). At a high level, we are interested in finding a ϕ
that ensures this has a low magnitude. More precisely, we
want ϕ to ensure that the minimizer of the training risk,
f̂∗ := argminf R̂(f, ϕ), gives as low a true risk, R(f̂∗),
as possible. Therefore, we want to keep the generalization
error magnitude small across different f (relative to the cor-
responding variations in R̂(f, ϕ) itself), so that the optima
of the training and true risks are as similar as possible. In
other words, we want a ϕ that ensures R̂(f, ϕ) − R(f) is
small (in magnitude) for all f , especially those close to f̂∗.
If we do hypothetically drive the generalization error to zero
for all f , we will have a mechanism for directly training to
the true risk using a finite original training dataset.

To aid with decomposing the generalization error, it is con-
venient to further define the following random variables
through their conditional distributions:

Ŷ |i ∼ ptrue(Y = Ŷ |X = xi) with Ŷ ⊥⊥ τ, (A.3)

Ỹ |i, τ ∼ ptrue(Y = Ỹ |X = τ(xi)). (A.4)

We can now write down our decomposition as follows:

R̂(f, ϕ)−R(f) = E[L(f(τ(xi)), Ŷ )− L(f(τ(xi)), Ỹ )]︸ ︷︷ ︸
(A)

+ E[L(f(τ(xi)), Ỹ )− L(f(X), Y )]︸ ︷︷ ︸
(B)

+ E[L(f(τ(xi)), yi)− L(f(τ(xi)), Ŷ )]︸ ︷︷ ︸
(C)

.

(A.5)

From this, we see that if the magnitude of (A), (B), and
(C) are all small, then our generalization error magnitude
will be small as well. Moreover, if we can construct a ϕ
such that these terms are small for all f , then we can ensure
effective generalization performance. We will now look at
each term individually.

(A) provides a precise characterization of how well our
transformation preserves the label distribution; it is the dif-
ference between the expected loss under the true label dis-
tribution of the untransformed inputs and the expected loss
under the true label distribution of the transformed inputs,
making predictions using the transformed inputs in both
cases. In particular, by noting that we have

(A) = E
[
E
[
L(f(τ(xi)), Ŷ )− L(f(τ(xi)), Ỹ )

∣∣∣i, τ]]
(A.6)

where f(τ(xi)) is deterministic given τ and i, we have
that Ỹ |i, τ, d

= Ŷ |i,∀i, τ is a sufficient (but not necessary)
condition to ensure (A) = 0 for all f .1 That is, it is zero for
all f if the conditional distribution on the labels is the same
for both the original and transformed inputs for all possible
pairs (i, τ), i.e. all possible original inputs and sampled
transformations. One simple way to ensure this is to have τ
always be equal to the identity mapping, so this term prefers
limited transformations.

By contrast, if the transformation destroys information about
the label, Ŷ |i and Ỹ |i, τ will now differ, such that, in gen-
eral, (A) ̸= 0 and, moreover, it will vary with f . Here
we typically expect that (A) ≥ 0,2 as we are making pre-
dictions using the transformed inputs, so the expected loss

1Note that Ŷ d
= Ỹ alone is not generally sufficient, as matching

in marginal distribution does not ensure that the joint distributions
with i and τ also match, in turn yielding different expectations.

2Note, though, that this is not formally guaranteed, even for the

12



Learning Instance–Specific Augmentations by Capturing Local Invariances

under the true label distribution for the transformed inputs
will tend to be less than that when labels are generated us-
ing the untransformed input. To keep the magnitude of (A)
low, we need to ensure that transformations maintain the
conditional label distribution as well as possible, i.e. that
transformations preserve all input information that is salient
for predicting labels.

Conveniently, minimizing R̂(f, ϕ) with respect to ϕ, as done
by the InstaAug training setup of Section 3.2, will naturally
try to reduce (A). Given we expect the term to typically
be positive, this provides an explanation for why InstaAug
can be effective without any separate consideration in the
objective for the need for transformations to maintain the
class label distribution.

(B) represents how well our transformation captures the true
input distribution. Here we can utilize the fact that, by the
definition of Ỹ ,

E
[
L(f(τ(xi)), Ỹ )

∣∣∣τ(xi) = x
]
= E [L(f(X), Y )|X = x]

=: r(x)

(A.7)

to write it as

(B) = E[r(τ(xi))]− E[r(X)], (A.8)

where r : X 7→ R+ maps inputs to their true expected
loss. We thus see that τ(xi)

d
= X is a sufficient (but not

necessary) condition to ensure that (B) = 0 for all f . That
is (B) is always 0 if the process of choosing one of the
training inputs at random followed by applying a sampled
transformation to that input produces samples distributed
exactly according to the true input distribution. Unlike for
(A), there is no simple scenario in which we can ensure
this is true, with the use of the identity transformation now
likely to give significant discrepancies by failing to provide
sufficient coverage of the input space: though the xi may
originally have been sampled from ptrue(X), there is only
a finite set of them, such that repeated sampling from this
finite set represents a substantially different distribution to
ptrue(X). In fact, (B) nicely encapsulates the desire to
perform augmentation in the first place, by showing how it
can be used to increase the coverage of the input space.

How to best manage Term (B) will vary depending on the
type of model used and the form of our transformations.
In some situations, it may be that no matter how diverse
our transformations are within the class of those allowable,
τ(xi) will still only cover a subset of the support of X . Here
the most important factor for keeping (B) small will be to

cross entropy loss and an f that exactly captures the true distribu-
tion. This is because, while Gibbs’ inequality ensures the optimal
q given p for a cross-validation expected loss Ep(Y )[− log q(Y )]
is q = p, in general, the optimal p given q is not p = q.

maximize the diversity of the transformations, e.g. by maxi-
mizing their entropy, to ensure the best possible coverage of
the true input space. In other cases, it might also be possible
to “over–diversify” the inputs, such that τ(xi) can become
more diffuse than X for some choices of ϕ, potentially caus-
ing training to lack focus on the particular test-time input
distribution we care about. Here we may need to ensure
that the entropy of the transformation does not become so
large as to cause such over-diversification, creating a more
complex trade-off with the need to ensure sufficient cover-
age. These two scenarios respectively motivate the lower
and upper bounds on the transformation distribution entropy
used when training the augmentation module.3

For augmentation of high-dimensional data, the former,
coverage-limited, scenario is expected to be significantly
more likely, as our original training data will generally pro-
vide quite poor coverage of the true input distribution, while
our transformations will not generally be sufficiently pow-
erful to produce unrepresentative inputs. Moreover, when
working with large deep learning models, prediction in one
region of the input space is rarely harmed by the addition of
data in another input region. Thus, for the typical scenarios,
we expect InstaAug to be deployed in, increasing the en-
tropy of the transformations will directly relate to reducing
the magnitude of (B). Note here that it will typically be the
case that (B) < 0 provided that the transformations main-
tain the label distribution, as the accuracy of the downstream
model will typically be higher for the transformations of the
original training data that for the test data.

Term (C) is the error from the fact that we only have one
sample of the label for each original training input, rather
than the full label distribution. As Ŷ ⊥⊥ τ , we have limited
ability to reduce it through controlling ϕ; it essentially rep-
resents the irreducible noise in R̂(f, ϕ) from only having
a finite number of true labels. Note that it is not related to
the model’s ability to generalize to unseen inputs, as it is
based on variability in other possible labels we might have
seen for our training inputs themselves; if Y |X is actually
deterministic, it is exactly zero. As such, it is of limited
interest for our analysis, while it will thankfully generally
be much smaller than the other terms for practical problems
unless we have both a very small dataset and a very noisy
true label distribution.

Putting everything together, we see that (A) and (B) re-
spectively encapsulate the competing needs of the invari-
ance module to maintain the conditional label distribution
(i.e. preserve the label information) and maximize cover-

3Note here that the entropy bounds in Section 3.2 are on are on
the entropy on the parameters of τ , rather than τ(xi) itself. This
is because it is difficult to directly control the latter during the
training, with the former providing a more practical proxy that is
expected to generally be representative.
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age of the input space. We have also seen that the former
is typically naturally taken care of by minimizing R̂(f, ϕ)
with respect to ϕ, motivating the cross-entropy term in Equa-
tion (2), but the latter requires separate consideration, which
we deal with through the regularization term.

B. Details of Augerino
As a method to learn invariance, Augerino (Benton et al.,
2020) is quite different from the previous approaches, which
usually require an extra validation set. The basic idea be-
hind Augerino is to use a few parameters (θ) to control the
transformation distribution on input images and learn these
parameters with the training loss of the classifier. Specifi-
cally, it minimizes the loss

Lλ(x; y) ≜ E[L(f(τ(x)); y)] + λ · R(θ), (B.1a)

where L(x; y) is the cross-entropy loss and R(θ) is a reg-
ularization function on the volume of the support of the
distribution weighted by the hyper-parameter λ.

Comparison with InstaAug. InstaAug shares with
Augerino the ideas of tuning augmentation parameters by
the classifier loss and using test time augmentation to boost
performance, but they are different in the following aspects.
The most significant difference is that InstaAug is instance-
specific, while Augerino learns global augmentations. Be-
sides, Augerino uses a single scalar θ to parameterize a
symmetric uniform distribution (U [−θ, θ]) over each type
of transformations, which lacks the flexibility to model more
complex augmentations, such as cropping.

In addition, Augerino uses a fixed weight λ to balance the
training loss and augmentation diversity. However, we find
that, in more complicated settings, this is quite impracti-
cal. Specifically, we need different λ in different stages of
training. If we use a large λ from the start of training, the
diversity will quickly diverge to maximum, because the clas-
sifier is very weak and the loss is consequently dominated
by the diversity term. This will block the training of the clas-
sifier because transformed samples from different classes
are quite mixed with each other. Otherwise, if we choose
a small λ, the diversity will converge to zero after a few
epochs, yielding similar results as the vanilla model without
augmentation. In neither of the case can we learn a useful
augmentation. Consequently, InstaAug directly constrains
the diversity to keep it stable during training.

C. Method details
C.1. Regression and self-supervised learning

In Section 3, we use classification as an example to intro-
duce InstaAug. However, InstaAug can be easily applied to
other tasks including regression and self-supervised learn-

Algorithm 1 Location related parameterization
Input: Image x, layer number n_layer, channel number Mi

Output: Probability of patches Pcrop

F
′
0 = x

for ( i = 1; i ≤ n_layer; i = i+ 1 )
Fi = Conv2d(F

′
i−1, kernel=2, stride=1, output_channel=Mi)

F
′
i = Pooling(Fi, kernel=2) ; // Conv and pooling

F
′′
i = Conv2d(F

′
i , kernel=1, stride=1, output_channel=1)

// Concentrate info to single channel

logiti = Flatten(F
′′
i ) ; // Use activations of

units at different layers as logits for
patches of different sizes

logits = Concat([logiti])
Pcrop = Normalize(Exponential(logits))

ing. For regression, the classifier (see Figure 2) is replaced
by a regressor and the loss function L in Equation (2) is
changed accordingly to absolute or square error. For self-
supervised contrastive learning, we replace the classifier
and cross-entropy loss with the feature extractor and con-
trastive loss (such as SimCLR loss (Chen et al., 2020)),
respectively. In addition, the sampler samples 2 rather than
1 transformations to generate multiple views for an input x.

C.2. Test-time augmentation

Besides augmenting data during training, the learned invari-
ance can also be applied to test-time augmentation. Given
a test image x, we sample n different transformations τi
from p(τ ;ϕ(x)) and apply them to x to generate n different
views τi(x). After feeding these views to the classifier, f ,
we use the mean logit 1

n

∑n
i=1 f(τi(x)) to predict x’s label.

When only learning invariance for test-time augmentation,
InstaAug can be trained with a fixed pre-trained classifier at
a lower computation cost.

C.3. Other parametrization methods

Besides the uniform and location-related parameterization,
we also tried VAE-like methods to parameterize augmenta-
tions, such as cropping. The main idea is to have a Gaus-
sian latent variable and a neural decoder to map the latent
Gaussian distributions to a continuous distribution on trans-
formation parameters (in this case, the centers and sizes of
crops). However, similar to the uniform parameterization,
we find the VAE-like parameterization unstable and easily
stuck at local minima.

C.4. Network structures

In all of our experiments, we use PreActResNet-18 as the
base structure of ϕ for both uniform and location-related
parameterizations. When dealing with multiple transforma-
tions, for example in Section 5.4, we use the same network
to generate parameters for all transformations simultane-
ously.
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D45 D50 D55 D60 D65 (I=1) D65 (I=0.75) D27 (A=90) D65+D95 D65+D27 D95+D27 Red Green

Figure C.1: Examples of RawFooT data. Each row contains images in the same class (corn, candies, floor, red cabbage)
under different lighting conditions. The left and right half of lighting conditions are in the easy and hard groups, respectively.

D. Experimental details
D.1. Cropping

Supervised training Based on the Mixmo code-
base4 (Ramé et al., 2021), we use stochastic gradient de-
scent (SGD) optimizer to train baselines and InstaAug. For
the classifier, the initial learning rate is set to 0.2 (with mo-
mentum 0.9 and weight decay 1e− 4). A scheduler is used
to decrease the learning rate by a factor of 0.9 once valida-
tion accuracy doesn’t increase for 10 epochs. The learning
rate of the augmentation module ϕ is fixed at 1e− 5. Batch
size is set to 100 and we pre-train InstaAug for 10 epochs
without augmentation. We train the model until convergence
and the maximum epoch is set to 150.

Contrastive training We directly apply InstaAug on the
codebase5 from (Ermolov et al., 2021). Because of the
characteristics of contrastive learning, we set the batch size
to 512. Same as the supervised case, we use SGD optimizer
to train the augmentation module ϕ. Differently, we use
Adam optimizer (Kingma & Ba, 2015) (with learning rate
1e−3 and weight decay 1e−6) to train the base model. We
train each model for 500 epochs and decrease the learning
rate by a factor of 0.8 at step 450 and 475.

Implementation of LRP As an example, we show how
to implement location-related parameterization with a basic
CNN structure in Algorithm 1.

D.2. Color jittering on textures

Training. We use PreActResNet-18 (width = 1) on tex-
ture recognition task on RawFooT and train it with SGD

4https://github.com/alexrame/
mixmo-pytorch.git, under Apache License v2.0.

5https://github.com/htdt/self-supervised.
git, under Apache License v2.0.

Table D.1: Splitting of Lighting conditions.

Group Lighting id

Easy (1) 1-4,10,14-31
Hard (2) 5-9, 11-13, 32-46

optimizer. The learning rate is 0.02 (with momentum 0.9
and weight decay 1e−4) for the classifier and 1e−5 for the
augmentation module ϕ. We train each model for 50 epochs
and learning rate schedulers are not necessary in this task.

Random augmentation baseline. We sweep over the vari-
ation range on each channel to find the best hyperparameters
for the random augmentation baseline. For hue (h-jittering),
we sweep between [0, 0.5] with stride 0.1, and for satura-
tion (s-jittering) as well as brightness value (v-jittering), we
sweep between [0, 1.0] with stride 0.2, which yields 216 dif-
ferent settings in total. The best accuracy shown in Table 3
is achieved where h,s,v= 0.0, 0.2, 0.8.

In-distribution vs. out-of-distribution generalization.
To further investigate the effect of each augmentation
method, we additionally split the 46 test sets into two
equally-sized groups. The first group contains lighting
conditions similar to D45, such as daylight with different
temperatures, for which the vanilla model without augmen-
tation trained on D45 has high test accuracy. The second
group contains lighting conditions that are dramatically dif-
ferent from D45, for example, pure red light, which are
more difficult for the vanilla method. Then the average
accuracy on the first group can be regarded as a measure
of in-distribution generalization, while the accuracy on the
second group reflects out-of-distribution generalization.

D.3. Time complexity

On a single 1080Ti, each iteration of training InstaAug on
TinyIN takes 0.25s, and each epoch takes 250s. As it takes
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(I) Input (II) InstaAug (III) Augerino

(a) (b) (c) (d) (e) (f) (g)

Figure D.1: Examples of learned color jittering. (a) Origi-
nal image; (b, f) Average hue (H) of original image (blue
dot) and learned hue jittering (red arc) for InstaAug and
Augerino; (c,g) learned saturation (S) and brightness value
(V) of original image (blue dot) and learned hue jittering (red
line segment) for InstaAug and Augerino; (d,e) examples of
images transformed by InstaAug.

150 epochs (1.5× 105 iterations) for the model to converge,
the total training time is about 10h. For random augmenta-
tion, each iteration takes 0.15s, and each epoch takes 150s.
It takes the same 150 epochs (1.5× 105 iterations) to con-
verge, so the total training time is about 7h. All of the other
augmentation learning approaches are slower than random
augmentation, with some of them being noticeably slower
than InstaAug itself. For example, the exploitation stage of
AdaAug has the time complexity as random augmentation,
which is 0.15s/iter, 150s/epoch, and 7h for the whole train-
ing process. However, its exploration took us more than 15h
because it requires averaging the representations of a large
number of augmented samples.

The training speed of InstaAug on RawFoot (color jittering)
is similar to random augmentation (0.37s/iter vs. 0.40s/iter),
though it takes more epochs (about 40) compared with
random augmentation, which usually converges after 25
epochs.

E. Additional Results and Discussion
E.1. RawFooT

Figure D.1 shows some examples of learned color jittering.
Though it’s not easy to fully understand them, we can still
find some patterns. For example, InstaAug tends to increase
the brightness of darker images (row 1 and 3) and decrease

Table E.1: Model performance with different choice of Hmin

and Hmax on supervised cropping.

Hmin Hmax Accuracy (%)

0.0 0.5 52.12
0.5 1.0 61.28
1.0 1.5 62.91
1.5 2.0 64.39
2.0 2.5 65.04
2.5 3.0 65.05
3.0 3.5 66.03
3.5 4.5 65.60
4.0 4.5 64.35
4.5 5.0 64.17

0.0 1.0 51.78
1.0 2.0 63.96
2.0 3.0 65.25
3.0 4.0 65.78
4.0 5.0 64.23

the brightness of brighter images (row 4). Also, InstaAug
is more likely to change saturation compared with hue and
brightness, which is consistent with the common belief that
saturation contains less information than hue and brightness.

InstaAug’s behavior is quite different on different samples.
It even decides not to augment the H and V channels of the
image in the second row. In comparison, Augerino adds or
multiplies noise to each channel with the same distribution
across all samples, which is harmful in many cases. For
example, the input image in the last row is already very
bright. but Augerino allows further increasing its brightness.
Then brightness values of many pixels will be capped at 1.0,
which leads to loss of information.

E.2. Hyperparameter Ablation

The two hyperparameters of InstaAug are Hmin and Hmax,
which reflect human preference on augmentation diversity.
To investigate how Hmin and Hmax influence model per-
formance and provide a guide on how to choose them, we
perform an ablation study for the experiment of Section 5.2,
wherein we sweep over possible intervals of length 0.5
and 1.0. From Table E.1, we find that the best accuracy
is achieved when [Hmin,Hmax] is set to [3, 3.5], while any
sub-interval of [2, 4] produces significantly better results
compared with random augmentation.

To show the effect of dynamically tuning λ in InstaAug,
we compare it with results with fixed λ in Figure E.1. We
find that for small λ ≤ 0.1, the entropy term is nearly
0 throughout training, which gives a result similar to no
augmentation. For large λ ≥ 0.5, the model suffers from
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Figure E.1: Model performance with fixed λ on super-
vised cropping, compared with dynamic tuning λ used in
InstaAug.

excessive augmentations throughout training which hinders
the training of the classifier and InstaAug module. There
is also a performance plateau for 0.15 ≤ λ ≤ 0.5, whose
accuracy is between 64.0 and 65.0. However, even the best
of them is not as good as dynamic tuning, which is probably
a result of their inability to keep transformation diversity
stable during different stages of the training process.

E.3. Why is the Random Augmentation baseline so
strong?

It is perhaps initially surprising that the Random Augmenta-
tion baseline in 5.2 is so strong compared to the other global
augmentation schemes. In short, this occurs because the
extensive hyperparameter sweep used for it turns out to be
a more effective tuning mechanism than directly training
global parameters simultaneously to the model. To be more
precise, for any global cropping scheme (which includes
random crop, Augerino, and InstaAug without input), there
is little to be gained from using a non-uniform distribution
on the position of the crops. As such, the only thing that
can be usefully learned is the distribution on the size of the
crops themselves. For the random crop baseline, we do an
exhaustive sweep to establish the best distribution on crop
sizes, meaning that this baseline represents a near-optimal
global cropping augmentation. By comparison, InstaAug
(without input) must still learn the optimal cropping size
distribution during training, and the results suggest that it
does not always manage to do this perfectly, tending to
prefer under-diverse transformations. This is perhaps not
surprising, as it does not have access to a validation set,
unlike the hyperparameter sweep implicitly being deployed
for the random crop baseline. The problem is seen even
more starkly for Augerino, where the lack of LRP causes
training to become stuck in highly sub-optimal local optima
that yield very little transformation diversity.
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