

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ULTRA-360: UNCONSTRAINED DATASET FOR LARGE-SCALE TEMPORAL 3D RECONSTRUCTION ACROSS ALTITUDES AND OMNIDIRECTIONAL VIEWS

Anonymous authors

Paper under double-blind review

ABSTRACT

Significant progress has been made in photo-realistic scene reconstruction over recent years. Various disparate efforts have enabled capabilities such as multi-appearance or large-scale reconstruction from images acquired by consumer-grade cameras. How far away are we from digitally replicating the real world in 4D? So far, there appears to be a lack of well-designed dataset that can evaluate the holistic progress on large-scale scene reconstruction. We introduce a collection of imagery on a campus, acquired at different seasons, times of day, from multiple elevations, views, and at scale. To estimate many camera poses over such a large area and across elevations, we apply a semi-automated calibration pipeline to eliminate visual ambiguities and avoid excessive matching, then visually verify all calibration results to ensure accuracy. Finally, we benchmark various algorithms for automatic calibration and dense reconstruction on our dataset, named ULTRA-360, and demonstrate numerous potential areas to improve upon, e.g., balancing sensitivity and specificity in feature matching, densification and floaters in dense reconstruction, multi-appearance overfitting, etc. We believe ULTRA-360 can serve as the benchmark that reflect realistic challenges in an end-to-end scene-reconstruction pipeline.

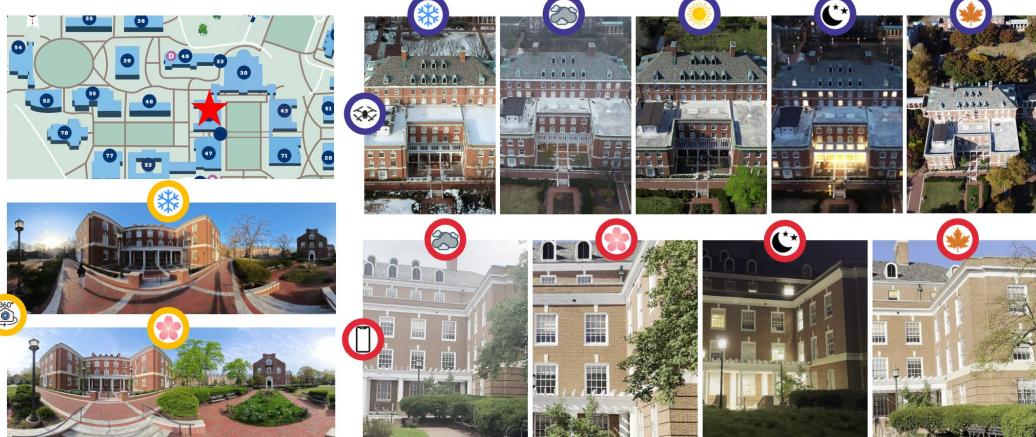


Figure 1: Sample images of one building, Building #10, in our imagery collected over multiple seasons, elevations, and multiple camera types to enable fully immersive 3D/4D reconstruction.

1 INTRODUCTION

Immersive digitalization of the 3D world is of great interests for Computer Vision and Graphics researchers, with many real-world applications in Robotics, AR/VR, Autonomous Driving, Urban Planning, etc. Tremendous progress has been made in recent years with neural rendering innovations. Methods such as Neural Radiance Field (NeRF) (Mildenhall et al., 2020) and 3D Gaussian

Splatting (Kerbl et al., 2023) have improved quality in photorealistic scene reconstruction and novel-view synthesis. Various follow-up works have further extended this capability at larger scale (Turki et al., 2022; Liu et al., 2024a; Tancik et al., 2022b), to model sites across time (Martin-Brualla et al., 2021; Chen et al., 2022; Yang et al., 2023; Kulhanek et al., 2024b; Xu et al., 2024c; Zhang et al., 2024), and in various challenging scenarios, such as sparsity, incorrect exposure, or on degraded images (Zhu et al., 2023; Tang et al., 2025; Peng & Chellappa, 2023; Gao et al., 2024; Wu et al., 2025). With rapid progress and a vast amount of visual data online, we are closer than ever to achieving immersive 3D, perhaps even 4D, digitalization of the world. However, the current advances in neural reconstruction are often measured with disparate benchmarks and in specific aspects; collections of data from the internet (Snavely et al., 2006; Wallingford et al., 2024) are also difficult to be used for accurate evaluations, given the myriad of uncontrollable variables within the collection.

Pose and the Structure-from-Motion (SfM) point cloud from camera calibration are essential to dense reconstruction. Inverse rendering work typically assumes *known camera poses*, but how realistically can we assume accurate camera calibration, particularly for large scale scenes? Methods that address multi-view inconsistencies (Martin-Brualla et al., 2021; Chen et al., 2022; Yang et al., 2023; Kulhanek et al., 2024b; Xu et al., 2024c; Zhang et al., 2024) work well on small scale scenes with *dense* camera coverage. Are these methods adaptable to sparser coverage or in large scale scenes? While open source efforts (Tancik et al., 2023; Yu et al., 2022) have attempted to accommodate different methods and datasets, they have largely stalled as software complexity grows over time. How realistically can we reconstruct city-scale scenes with only 2D images, in an end-to-end manner? We summarize two limitations in the current benchmark datasets for calibration, dense reconstruction and Novel View Synthesis (NVS):

Lack of Scale in Camera Coverage. Current datasets are typically limited in two areas: the perspective camera format and the limited camera coverage. Perspective cameras are ubiquitous and easy to use; however, their limited Field-of-Views (FoV) lead to partial observation of the scene. As such, reconstructions are only viewable in one direction and are undesirable for immersive exploration. The distribution of cameras are also focused on one aspect of the scene, e.g. either on the ground (Tancik et al., 2022a; Meuleman et al., 2023) or in the air (Turki et al., 2022; Crandall et al., 2011). While aerial observations can recover large scale structures, ground observations contain much richer details. Additionally, the limited camera coverage makes NVS evaluation overly reliant on test cameras that are close to training cameras, and does not reveal issues such as obvious floaters (Warburg et al., 2023) in unconstrained exploration of the 3D asset.

Lack of Scale in Realism and Time. Synthetic data from unlimited perspectives and FoV can be generated from virtual engines (Li et al., 2023; Xiangli et al., 2022; Mittal et al., 2023), but such data lacks realism. Real images are full of inconsistencies that cannot be fully simulated, e.g., lighting, seasonality, weather, etc. So far, datasets that demonstrate these realistic scenarios (Snavely et al., 2006; Sabour et al., 2023) are small in scale and difficult to evaluate against. For example, Phototourism (Snavely et al., 2006) comprises of internet images collected at unknown time. As a result, methods (Martin-Brualla et al., 2021; Xu et al., 2024b; Kulhanek et al., 2024a; Xu et al., 2024a) developed on these datasets requires access to *test-view* images during evaluation to optimize appearance information. Various temporal concepts such as seasonality and structural modifications are neither fully transient nor based on only appearance changes.

We propose a dataset for Unconstrained Large-scale Temporal 3D Reconstruction across Altitudes, named *ULTRA-360*. *ULTRA-360* is collected at a campus and aims to reconstruct and visualize the entire campus in 4D, with *hundreds of videos* collected across the span of *two years*, where the video frames are calibrated with *manual inspection* and aligned to a *consistent coordinate system*. *ULTRA-360* provides:

1. **Immersive Ground Acquisition:** Both *perspective* and *360 panorama* images on the ground level are collected and calibrated to facilitate immersive 3D reconstruction.
2. **Multi-Elevation Acquisition:** Both *ground* and *aerial* images from multiple elevations are collected and calibrated to ensure full coverage of the buildings.
3. **Multi-Seasonality Acquisition:** Images are acquired across multiple seasons in a two year period, capturing the gradual changes over time.
4. **Large-Scale Calibration:** Twenty academic buildings are collected across multiple elevations, camera models, years, and are calibrated together.

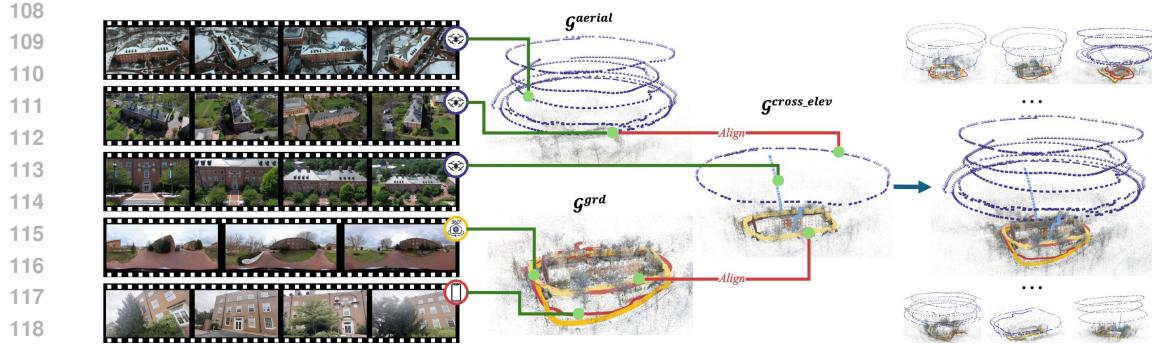


Figure 2: Visualization of the large-scale camera calibration process.

We perform detailed evaluations of current State-of-The-Art methods on ULTRA-360, both in feature matching and dense reconstruction. The results reveal encouraging process and challenges to be addressed. For feature matching, recent innovations allow us to find correspondences across large distances. Despite such progress, SoTA feature matching methods (Lowe, 2004; DeTone et al., 2018; Edstedt et al., 2024b; Sun et al., 2021; Leroy et al., 2024; Sarlin et al., 2020) lie between the spectrum of *insufficient true positives* between images with large baselines and *significant false positives* between images with visual ambiguities. Scene graph optimization techniques (Cai et al., 2023; Xiangli et al., 2024; Arandjelovic et al., 2018; Duisterhof et al., 2024) can ameliorate such a process, but still requires various manual intervention.

Dense reconstruction from multiple elevations suffers from difficulties in sufficient densification and severe sky floaters, despite improvements to Level-of-Details. Multi-appearance modeling is often entangled with view-direction bias if treated as a per-image optimization. We make several modifications, including neural sky modeling and time-based appearance modeling, to tackle these issues, and expect future research to improve immersive reconstruction based on ULTRA-360.

2 RELATED WORK

Table 1: A comparison of existing multi-view datasets highlighting key properties, including scale, diversity of appearances, FoV, and viewpoint variation.

Dataset	# images	Scale	Real/Synthetic	Time	Camera Type	Elevation
Phototourism (Snavely et al., 2006)	150K	Scene	Real	Uncontrolled	Perspective	Ground
MegaScenes (Tung et al., 2024)	2M	Scene	Real	Uncontrolled	Perspective	Ground
BlendedMVS (Yao et al., 2020)	5K	Scene	Real+Synthetic	Single	Perspective	Ground
UrbanScene3D (Crandall et al., 2011)	128K	Scene	Real+Synthetic	Single	Perspective	Aerial
Quad 6K (Crandall et al., 2011)	5.1K	Scene	Real	Single	Perspective	Aerial
Mill 19 (Turki et al., 2022)	3.6K	Scene	Real	Single	Perspective	Aerial
OMMO (Lu et al., 2023)	14.7K	Scene	Real	Day/Night	Perspective	Aerial
Block-NeRF (Tancik et al., 2022b)	2.8M	City	Real	Day/Night		Ground
KITTI-360 (Liao et al., 2023)	300K	City	Real	Single		Ground
NuScenes (Caesar et al., 2020)	1.4M	City	Real	Day/Night/Rainy		Ground
MatrixCity (Li et al., 2023)	519K	City	Synthetic	Diff. Weather/Lighting	Perspective	Ground+Aerial
ULTRA-360	37.7 K	City	Real	Four Seasons, Day/Night	Perspective+360	Ground+Aerial

2.1 MULTI-VIEW DATASETS FOR DENSE RECONSTRUCTION

In scene reconstruction and NVS research, the widely used benchmark datasets often focus on single objects (Mildenhall et al., 2020; Knapitsch et al., 2017; Barron et al., 2022) or indoor scenes (Lin et al., 2018). These datasets are collected in controlled environments with accurate camera estimation. Various datasets (Snavely et al., 2006; Tung et al., 2024) construct outdoor unbounded architecture datasets with multi-view images from the internet. While these datasets include appearance diversity, the uncontrolled collection method leads to lack of multi-view imagery on a single consistent appearance. Consequently, algorithms (Martin-Brualla et al., 2021; Chen et al., 2022; Yang et al., 2023; Kulhanek et al., 2024b; Xu et al., 2024c; Zhang et al., 2024) tested on these datasets require access to test-view images during evaluation to account for unique appearance variation.

Large-scale datasets, such as Quad 6K (Crandall et al., 2011), UrbanScene3D (Crandall et al., 2011), Mill-19 (Turki et al., 2022), and OMMO (Lu et al., 2023), have been collected from an aerial platform. This limits the level of details in reconstructed models, if rendering or exploration from the

162 ground perspective is desired. Driving datasets like Block-NeRF (Tancik et al., 2022b), KITTI-
 163 360 (Liao et al., 2023), and NuScenes (Caesar et al., 2020) focus on street-level imagery, leading
 164 to many unobserved regions such as the roof of the buildings. So far, no dataset has been proposed
 165 for a large-scale collection of imagery spanning multiple elevations. MatrixCity (Li et al., 2023)
 166 contains both ground and aerial imagery, but is synthesized through game engines.
 167

168 2.2 CAMERA CALIBRATION AND DENSE RECONSTRUCTION ALGORITHMS

170 Recovering dense 3D geometry from 2D images has a long history of research. Broadly speaking,
 171 camera calibration is first performed based on SfM (Schönberger & Frahm, 2016; Schönberger et al.,
 172 2016; Pan et al., 2024), which relies on reliable feature extractors (DeTone et al., 2018; Lowe,
 173 1999; Edstedt et al., 2024a; 2025) and feature matchers (Sarlin et al., 2020; Lindenberger et al.,
 174 2023b; Sun et al., 2021; Edstedt et al., 2024b; Leroy et al., 2024) to find correspondences. SfM then
 175 performs triangulation to recover camera pose and sparse geometry. Such a calibration process can
 176 be computationally expensive or get stuck in incorrect solutions due to visual ambiguities; various
 177 scene graph optimization techniques (Arandjelovic et al., 2018; Berton et al., 2023; Cai et al., 2023;
 178 Xiangli et al., 2024) have been introduced to remove unnecessarily or ambiguous image pairs based
 179 on prior knowledge. Selecting the proper scene graph or feature matching algorithms are highly
 180 subjective and unpredictable; while datasets from the Image Matching Challenging (Bellavia et al.,
 181 2025) exist, they are not constructed to be also used for dense reconstruction evaluation.

182 Dense reconstruction, or photorealistic NVS, has progressed significantly with the introduction of
 183 NeRF (Mildenhall et al., 2020) and 3DGS (Kerbl et al., 2023). By optimizing an implicit or explicit
 184 radiance field on multi-view images through differential rendering, these methods can achieve pho-
 185 torealistic rednering quality. Follow-up works has improved upon NeRF (Turki et al., 2022; Tancik
 186 et al., 2022a; Mi & Xu, 2023; Reiser et al., 2023; Xiangli et al., 2022; Meuleman et al., 2023) and
 187 3DGS (Lin et al., 2024; Liu et al., 2024b; Lu et al., 2024; Ren et al., 2024) in large scale reconstruc-
 188 tion, e.g., by splitting the scene into multiple blocks for optimization, introducing Level-of-Detail
 189 rendering, multi-appearance modeling, etc. Evaluation is done on test cameras, typically in-between
 190 training cameras; however, no quantitative evaluation has been done on more free-formed and real-
 191 istic novel views. As shown in Table 1, ULTRA-360 provides rich variations in both appearances,
 192 rendering FoVs, and cameras ranging from the ground to the sky, providing an unique opportunities
 193 to understand the effects of view-dependent effects, floaters, and details.

194 3 ULTRA-360

195 As shown in Figure 2, ULTRA-360 captures real-world, large-scale imagery with multi-appearance,
 196 multi-elevation, panorama coverage, and providing a comprehensive testing ground for evaluating
 197 modern scene reconstruction and NVS algorithms. This dataset contains over *30k calibrated images*
 198 on twenty academic halls within a campus, covering an area of approximately *140 acre* and a time
 199 period of *two years*. ULTRA-360 covers a variety of texture and material, e.g., grass, glass/windows,
 200 trees, rocks, etc., that are on the campus. In the following section, we describe the data collection
 201 process and the semi-automated calibration pipeline to construct ULTRA-360.
 202

203 3.1 LARGE-SCALE DATA COLLECTION ACROSS TIME AND ELEVATION IN 360 DEGREES

204 Table 2: Summary of ULTRA-360, where multi-view sequences are collected at different time,
 205 appearances, elevations, and FoVs.
 206

Device	# Videos	# Frames	Season	Appearance	FoV	Elevation
iPhone	19	7134	Summer, Fall	Sunny, Cloudy, Night	70°	0m
Insta360	31	23260	Spring, Winter	Sunny, Cloudy, Night	360°	0m
DJI Mini 3	81	7334	Spring, Winter	Sunny, Cloudy, Night	82°	60, 100, 120m

211 Constructing a dataset for large scale, immersive 3D reconstruction over time is laborious, time-
 212 consuming, and computationally intensive. While professional photogrammetry software and de-
 213 vices exist, they are not scalable and difficult to integrate with novel research. To enable collection
 214 at scale in coverage and time, we elect to use a variety of consumer-grade devices and develop our
 215 own processing pipeline. As shown in Table 2, for each of the twenty buildings, we systematically
 216 collect both aerial and ground-level imagery across four seasons with different lighting conditions.

216 For **ground** imagery, the data collection process involves walking around each building’s perimeter
 217 with an iPhone or Insta360 camera to capture video sequences. We perform manual inspection
 218 on all extracted frames to remove low-quality images and ensure sufficient overlap. Particularly,
 219 panorama frames are split into four perspective images, each with a 120° FoV. These four frames
 220 together cover the horizontal 360° FoV around the camera. We discard the bottom face, which has
 221 a static human operator, and the top face, which is mostly sky. Any image that contains Personally
 222 Identifiable Information (PII), e.g., faces or vehicle license plates, are blurred through automated
 223 algorithms (Wu et al., 2019).

224 For **aerial** imagery, we operate DJI drones that follow a circular flight trajectory around the building.
 225 Drone flights are planned to ensure uniform and complete coverage. Multiple elevations are
 226 collected at 60, 100, and 120m. We also keep the ascending video sequences as the drone moves
 227 from ground level to approximately 60m above ground on two sides of each building. These as-
 228 cending videos help improve calibration between ground and aerial imagery. From these videos, we
 229 sample individual frames, applying the same quality control measures as for ground-level data.

230 3.2 SEMI-AUTOMATED CAMERA CALIBRATION FOR DOPPELGANGER MITIGATION

231 After video acquisition and frame extraction, we build a semi-automated pipeline to obtain correct
 232 camera calibration for all images. Given the sheer size in the number of images and covered area,
 233 directly applying software, e.g., COLMAP (Schönberger & Frahm, 2016), is both infeasible and
 234 will lead to inaccurate results. As shown in Figure 2, we use a divide-and-conquer approach by 1.
 235 calibrating images within an elevation, 2. merging images across multiple elevations based on a
 236 manually verified cross-elevation set, and 3. merging images from different buildings into a single
 237 coordinate system.

238 **Image Calibration within an Single Elevation.** For camera calibration, a collection of images \mathcal{I} are
 239 collected at different times. Based on these images, scene graphs \mathcal{G}^{grd} and $\mathcal{G}^{\text{aerial}}$ can be constructed
 240 from the ground and aerial images. Scene graphs $\mathcal{G} = (\mathcal{I}, \mathcal{P})$ consist of \mathcal{I} as nodes, and image pairs
 241 $\mathcal{P} = \{(\mathcal{I}_i, \mathcal{I}_j)\}$ as edges. Correspondences between $(\mathcal{I}_i, \mathcal{I}_j)$ are extracted if edge \mathcal{P} exists; such
 242 correspondences are then used for triangulation in SfM. I.e., \mathcal{G} determines the visibility of \mathcal{I} to other
 243 images. Various implementations can be used to determine scene graph edges. Exhaustive scene
 244 graphs are generally more accurate, but can also lead to more false matches.

245 Visual ambiguity, often referred to as doppelgänger (Cai et al., 2023) matches, occur to cameras that
 246 are far apart due to their similar patterns. These doppelgängers are particularly common for ground
 247 image collection of *buildings*. Aerial images suffer less from visual ambiguities, as they have a
 248 more global view of the building. For $\mathcal{G}^{\text{aerial}}$, we simply use exhaustive matching. For \mathcal{G}^{grd} , we use
 249 a mixture of sequential and exhaustive scene graph constructions to avoid doppelgängers.

250 Specifically, we denote multi-appearance ground images as \mathcal{I}_i^x , where x denotes the video sequence
 251 and i denote the frame within the sequence. Image pairs $\mathcal{P} = \{\mathcal{P}_{\text{within}}^x\} \cup \{\mathcal{P}_{\text{between}}^{x,y}\}$ can be fully
 252 separated into pairs that are within sequence x and between any two sequences $\{x, y\}$. For $\mathcal{P}_{\text{within}}^x$,
 253 we use sequential matching, i.e. $\mathcal{P}_{\text{within}}^x = \{(\mathcal{I}_i^x, \mathcal{I}_j^x) | |i - j| \leq 10\}$, which prevents far-away frames
 254 to match. Such a spatial constraint is harder to determine for $\mathcal{P}_{\text{between}}^{x,y}$, as different sequences may not
 255 follow the same path or pace. To this end, we manually bucket frames into $\mathcal{S}_{\text{front}}^x$ and $\mathcal{S}_{\text{back}}^x$, which
 256 denote frames that are looking at the *front* or *backside* of the building. $\mathcal{P}_{\text{between}}^{x,y}$ can then be define
 257 as:
 258

$$\mathcal{P}_{\text{between}}^{x,y} = \{(\mathcal{I}_i^x, \mathcal{I}_j^y) | i \in \mathcal{S}_{\text{front}}^x, j \in \mathcal{S}_{\text{front}}^y\} \cup \{(\mathcal{I}_i^x, \mathcal{I}_j^y) | i \in \mathcal{S}_{\text{back}}^x, j \in \mathcal{S}_{\text{back}}^y\}. \quad (1)$$

259 We find this setup effectively eliminates cross-sequence doppelgängers, as visual ambiguity within
 260 the same side of the building can be controlled by spatial constraints of individual sequences. For
 261 panorama images, which are split into four perspective frames, $\mathcal{P}_{\text{between}}^{x,y}$ against iPhone frames only
 262 involve the building-facing side of the panorama image.

263 **Cross-Elevation Calibration.** To connect calibrations from different elevations, we perform an ad-
 264 dditional calibration on a cross-elevation set. Specifically, we calibrate a panorama ground sequence
 265 with an aerial sequence. Registering cameras across a large baseline is challenging, due to a lack of
 266 sufficient correspondences. To assist cross-elevation calibration, we record two transitional drone
 267 sequences from ground to air for each building. Similar to ground images, transitional drone images
 268 can experience visual ambiguities at ground level. The two sequences are distributed on the front

270 and backside of the building. We manually define the scene graph $\mathcal{G}^{\text{cross_elev}}$, i.e.,
 271

$$272 \quad \mathcal{P}^{\text{cross_elev}} = \{\mathcal{P}_{\text{grd}}^{\text{grd}}\} \cup \{\mathcal{P}_{\text{trans}}^{\text{grd}}\} \cup \{\mathcal{P}_{\text{aerial}}^{\text{grd}}\} \cup \{\mathcal{P}_{\text{trans}}^{\text{trans}}\} \cup \{\mathcal{P}_{\text{aerial}}^{\text{trans}}\} \cup \{\mathcal{P}_{\text{aerial}}^{\text{aerial}}\}, \quad (2)$$

273 where \mathcal{P}_y^x denotes image pairs between two elevations (note that $\mathcal{P}_y^x \equiv \mathcal{P}_x^y$). For ground images,
 274 we apply sequential matching similar to the ground-only scenario previously, i.e., $\mathcal{P}_{\text{grd}}^{\text{grd}} \equiv \mathcal{P}_{\text{within}}^x$.
 275 We do not match ground and aerial images directly, i.e., $\mathcal{P}_{\text{aerial}}^{\text{grd}} = \emptyset$, as few accurate matches can be
 276 found and removing these pairs accelerate the feature matching process. Both $\mathcal{P}_{\text{aerial}}^{\text{trans}}$ and $\mathcal{P}_{\text{aerial}}^{\text{aerial}}$ are
 277 exhaustive. Finally, ground-transition and transition-transition pairings can be defined as:
 278

$$279 \quad \mathcal{P}_{\text{trans}}^{\text{grd}} = \{(\mathcal{I}_i^{\text{grd}}, \mathcal{I}_j^{\text{trans}}) | i \in \mathcal{S}_{\text{front}}^{\text{grd}}, j \in \mathcal{S}_{\text{front}}^{\text{trans}}\} \cup \{(\mathcal{I}_i^{\text{grd}}, \mathcal{I}_j^{\text{trans}}) | i \in \mathcal{S}_{\text{back}}^{\text{grd}}, j \in \mathcal{S}_{\text{back}}^{\text{trans}}\}, \quad (3)$$

$$280 \quad \mathcal{P}_{\text{trans}}^{\text{trans}} = \{(\mathcal{I}_i^{\text{trans}}, \mathcal{I}_j^{\text{trans}}) | i \in \mathcal{S}_{\text{front}}^{\text{trans}}, j \in \mathcal{S}_{\text{front}}^{\text{trans}}\} \cup \{(\mathcal{I}_i^{\text{trans}}, \mathcal{I}_j^{\text{trans}}) | i \in \mathcal{S}_{\text{back}}^{\text{trans}}, j \in \mathcal{S}_{\text{back}}^{\text{trans}}\}.$$

283 We use both SP+SG (DeTone et al., 2018; Sarlin et al., 2020) and RoMa (Edstedt et al., 2024b)
 284 to compute correspondences based on $\mathcal{P}^{\text{cross_elev}}$, and COLMAP (Schönberger & Frahm, 2016) to
 285 perform SfM. Finally, we select the best results from different matchers.

287 3.3 COORDINATE ALIGNMENT

288 Since SfM systems estimate camera up to an *arbitrary* scale and orientation, we need to align multiple
 289 coordinate systems together. Given the same 3D points in two coordinate systems, Procrustes
 290 Alignment (Gower, 1975) finds the scale, rotation, and translation $\{s, r, t\}$ transformations between
 291 them:

$$293 \quad s^*, r^*, t^* = \arg \min_{s, r, t} \sum_i \|s(r p_{\mathcal{X}}^i + t) - p_{\mathcal{Y}}^i\|^2, \quad (4)$$

295 where $p^{i, \mathcal{X}}$ and $p^{i, \mathcal{Y}}$ are 3D points in coordinate system \mathcal{X} and \mathcal{Y} . To better align the camera systems,
 296 we optimize based on both the camera center $P_{\text{pos}}^{i, \mathcal{X}} \in \mathbb{R}^{1 \times 3}$ and rotation $R^{i, \mathcal{X}} \in \mathbb{R}^{3 \times 3}$. Specifically,
 297 we represent camera rotation by backprojecting three points based on camera center and rotation:
 298

$$299 \quad P_{\text{rot}}^{i, \mathcal{X}} = P_{\text{pos}}^{i, \mathcal{X}} + s^{\mathcal{X}} R^{i, \mathcal{X}}, P_{\text{rot}}^{i, \mathcal{Y}} = P_{\text{pos}}^{i, \mathcal{Y}} + s^{\mathcal{Y}} R^{i, \mathcal{Y}} \quad (5)$$

301 where $s^{\mathcal{X}} = \|\sigma^{\mathcal{X}}\|$, and $\sigma^{\mathcal{X}}$ is the standard deviations of $P_{\text{pos}}^{i, \mathcal{X}}$; $s^{\mathcal{Y}}$ is similarly defined. Based on
 302 $P_{\text{rot}}^{i, \mathcal{X}}$ and $P_{\text{rot}}^{i, \mathcal{Y}}$, we update Eq. (4) as follows:

$$305 \quad (s^*, r^*, t^*) = \arg \min_{s, r, t} \sum_i \|s(r P_{\text{pos}}^{i, \mathcal{X}} + t) - P_{\text{pos}}^{i, \mathcal{Y}}\|^2 + \|s(r P_{\text{rot}}^{i, \mathcal{X}} + t) - P_{\text{rot}}^{i, \mathcal{Y}}\|^2. \quad (6)$$

307 We show that this significantly improves the rotation alignment accuracy in our appendix.

308 **Single Building Alignment.** For every building, we obtain $(s_{\text{grd}}^*, r_{\text{grd}}^*, t_{\text{grd}}^*)$ from the ground-only
 309 coordinate system to the cross-elevation coordinate system. This is done by applying Eq. (6) on the
 310 panorama sequence, which are calibrated in both systems. Similarly, we find $(s_{\text{aerial}}^*, r_{\text{aerial}}^*, t_{\text{aerial}}^*)$
 311 for aerial cameras based on the shared aerial sequence. All images of a single building can then be
 312 transformed into a unified coordinate frame.

313 **Campus-wide Alignment** To put cameras from all buildings into the same system, we perform a
 314 similar alignment process. To accomplish this, we first calibrate a subset of aerial images from
 315 every building, captured during summer from an altitude of 60m. Based on the shared aerial images,
 316 we use Eq. (6) to find the transformation of every building’s individual coordinate system to the
 317 campus-wide aerial calibration.

319 4 EXPERIMENTS

320 We examine SoTA camera calibration and dense reconstruction algorithms on ULTRA-360. Specifically,
 321 two challenges are explored in camera calibration: 1. finding true positive matches between
 322 far-apart images, e.g., across elevation; 2. avoiding false positive matches between images that are

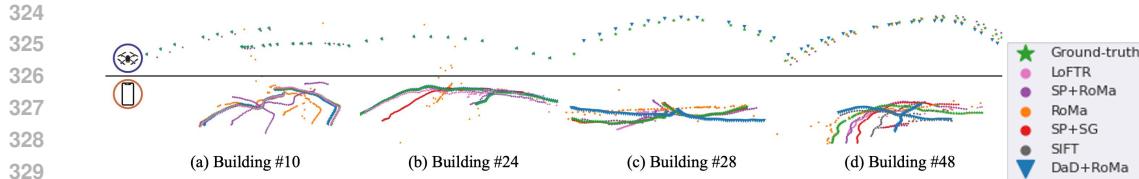


Figure 3: Visualization of multi-elevation camera poses obtained from different matching methods.

not visible to each other but have similar patterns. Two challenges are explored in dense reconstruction: 1. cross-elevation NVS and 2. multi-appearance NVS. Through experiments, we observe progress in these four challenges and many areas for future research to improve upon.

Cross-Elevation Feature Matching. For each building in ULTRA-360, we select a portion of the front side perspective ground images and aerial images acquired at 120m, *without* the transitional images that connect them. We test six popular feature matching algorithms: SIFT (Lowe, 2004), SP+SG (DeTone et al., 2018; Sarlin et al., 2020), **SP+LG** (DeTone et al., 2018; Lindenberger et al., 2023a), LoFTR (Sun et al., 2021), RoMa (Edsteds et al., 2024b), and RoMa filtered by two feature extractors, SuperPoint (DeTone et al., 2018) and DaD (Edsteds et al., 2025). Exhaustive matching is used for all scenarios mentioned above. In addition, we test four contemporary feed-forward matching methods: VGGsFm (Wang et al., 2024), VGGT (Wang et al., 2025), MAST3R (Leroy et al., 2024) and MAST3R-SfM (Duisterhof et al., 2025). We report AUC@10, computed from Relative Rotation Accuracy (RRA) and Relative Translation Accuracy (RTA). To isolate the cross-elevation challenge, AUC is computed only over ground-aerial pairs. For each ground-aerial pair, we measure the angular errors in rotation and translation and take the AUC of the minimum of RRA and RTA over 10-degrees threshold, a common metric for calibration.

As shown in Table. 3 and visualized in Fig. 3, calibrating cross-elevation images is challenging. In general, no algorithms can correctly calibrate all scenarios correctly. Interestingly, RoMa (Edsteds et al., 2024b)-based methods are the only ones with the ability to find cross-elevation correspondences. This can be attributed to its DINOv2 (Oquab et al., 2023) foundation model backbone. Despite the high sensitivity, RoMa (Edsteds et al., 2024b) is prone to false positives, as ground images are often falsely matched to each other due to similar patterns on the building. To this end, we find that SP (DeTone et al., 2018) or DaD (Edsteds et al., 2025) can help filter these false positives. However, they can still fail in Fig. 3(c) and (e).

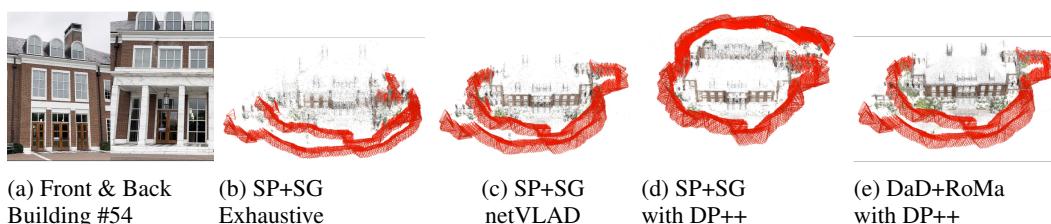


Figure 4: Visualization of calibration with various scene graph optimization methods given visual ambiguity in (a). All but (d) lead to suboptimal calibration solutions.

Automated Scene Graph Optimization. Various methods have been proposed to optimize the viewing scene graph to remove visually ambiguous pairs (Cai et al., 2023; Xiangli et al., 2024) and reduce excessive computation (Arandjelovic et al., 2018; Berton et al., 2023). These approaches are important for unconstrained calibration, where sensitive feature matchers are necessary, and false positive matches pose significant challenges. To this end, we evaluate several methods on ULTRA-360, particularly the ground panorama sequences.

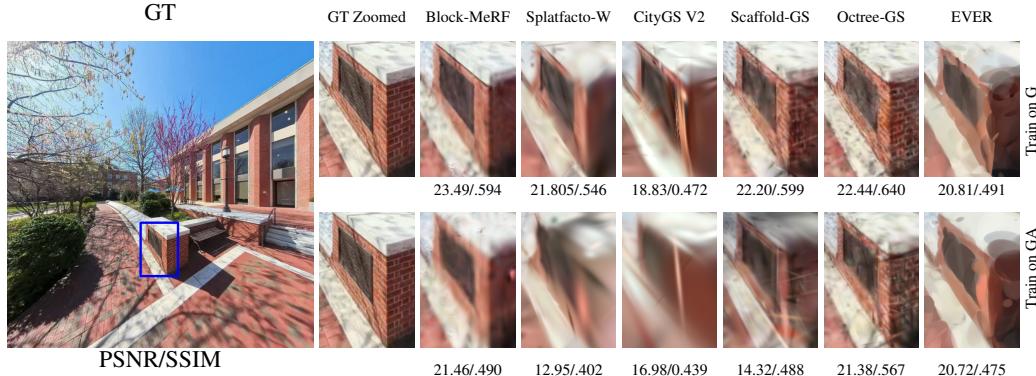
As visualized in Fig. 4, exhaustive matching often leads to the worst results both in accuracy and computation due to visual ambiguities. NetVLAD (Arandjelovic et al., 2018) reduces computation by cutting down unnecessary pairs, but cannot resolve doppelgangers. Doppelganger++ (Xiangli et al., 2024) simplifies the scene graph and address doppelgangers to some degree; however, sensitive matchers like RoMa (Edsteds et al., 2024b) still finds enough false matches to lead to a deformed calibration, whereas SuperGlue (Sarlin et al., 2020) is less sensitive but more specific, achieving the correct solution. In summary, selecting appropriate scene graphs and feature matchers to obtain

378
379
380
Table 3: Cross-Elevation camera poses obtained from different matching methods. Measured in
AUC@10 (higher is better).

Method	Building #10	#24	#28	#34	#48	#49	#54
LoFTR	0	0	0	0	0	0	0
SP+RoMa	0.3738	0	0	0	0.6986	0	0.5966
RoMa	0.0854	0.0023	0	0.0036	0.5030	0	0.1388
SP+SG	0	0	0	0	0	0	0
SP+LG	0	0	0	0	0	0	0
SIFT	0	0	0	0	0	0	0
DaD+RoMa	0.6941	0.8000	0	0.7915	0.5465	0.7440	0.6380
VGGT	0.1384	0	0	0	0.0003	0	0
VGGSFm	0	0	0	0	0	0	0
MAS3R	OOM	0	0	0	0	0	0
MAS3R-SfM	0	0	0	0	0	0	0

393
394
395
396
Table 4: Quantitative evaluation on multi-elevation reconstruction. We split the training set into
either ground-only (G), aerial-only (A), or ground-aerial combined (GA) imagery. The test views
are also separated into ground-only (G) and aerial-only (A) subsets. Due to different collection
conditions, we only evaluate DSIM in *cross-elevation rendering*.

Train	Test	Block-MERF			Splatfacto-W			CityGS V2			Scaffold-GS			Octree-GS			EVER		
		PSNR	SSIM	DSIM	PSNR	SSIM	DSIM	PSNR	SSIM	DSIM	PSNR	SSIM	DSIM	PSNR	SSIM	DSIM	PSNR	SSIM	DSIM
G	G	21.020	0.609	0.118	21.925	0.657	0.166	20.702	0.655	0.168	21.551	0.658	0.122	21.360	0.667	0.109	21.971	0.641	0.146
A	G	-----	0.588	-----	0.639	-----	0.522	-----	-----	0.595	-----	-----	0.608	-----	-----	0.619	-----	-----	0.619
GA	G	19.655	0.574	0.235	21.569	0.647	0.183	20.585	0.643	0.188	21.140	0.635	0.154	21.184	0.653	0.116	21.522	0.624	0.175
A	A	27.451	0.779	0.015	29.440	0.860	0.016	28.997	0.840	0.009	30.286	0.878	0.006	29.950	0.874	0.005	26.397	0.720	0.023
G	A	-----	0.847	-----	0.714	-----	0.743	-----	-----	0.822	-----	-----	0.755	-----	-----	0.740	-----	-----	0.740
GA	A	13.453	0.106	0.407	23.206	0.669	0.042	20.129	0.598	0.173	26.135	0.748	0.022	26.488	0.759	0.024	23.433	0.644	0.039

404
405
good calibration still requires manual inspection and expertise. For more complete metrics and
visualizations regarding image registration, please refer to our appendix.406
407
408
409
Large-scale Dense Reconstruction and NVS. We select ten buildings from ULTRA-360 to evaluate
410 current progress in robust, large-scale 3D reconstruction. For each building, we split training data
411 into three configurations: 1. ground images only, 2. aerial images only, 3. both ground and aerial
412 images. For each configuration, we evaluate from held-out ground and aerial cameras separately.413
414
415
416
For baselines, we choose six SoTA methods for evaluation: Splatfacto-W (Xu et al., 2024a), Block-
417 MERF (Song et al., 2024), CityGaussianV2 (Liu et al., 2024b), Scaffold-GS (Lu et al., 2024),
418 Octree-GS (Ren et al., 2024) and EVER (Mai et al., 2024). Multiple metrics are used to evaluate
419 NVS performance: Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM) are used
420 for low-level quality evaluation. Perceptual similarity metrics DreamSim (Fu et al., 2023) (DSIM)
421 are used to quantify semantic similarity, which helps in cases where pixel-wise groundtruth is not
422 available due to e.g., changed lighting conditions.423
424
425
426
427
428
429
430
431
Figure 5: Visualization of ground image rendering from different reconstruction methods and two
training configurations: ground-only images (G) and ground+aerial images (GA).

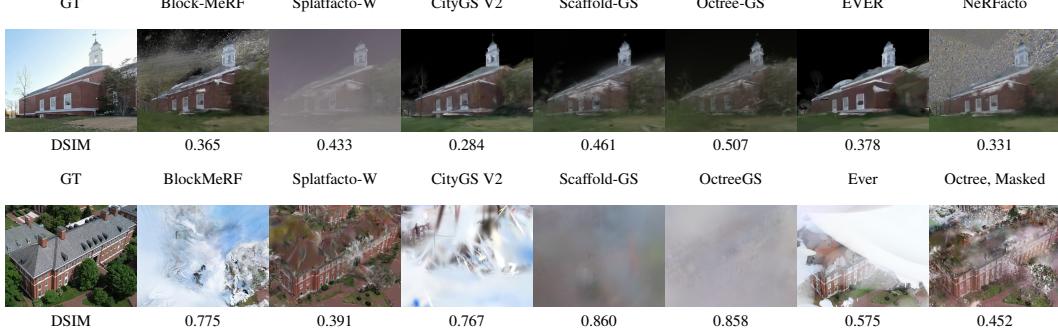


Figure 6: Top: ground view renderings from aerial-image-only reconstructions. Bottom: aerial view renderings from ground-image-only reconstructions.

As shown in Table 4, and visualized in Figures 5 and 6, we observe that Octree-GS (Ren et al., 2024) performs the best out of all methods, particularly when training data contain multi-elevation images. This can be attributed to its Level-of-Detail implementation. Scaffold-GS (Lu et al., 2024) achieves comparable fidelity through hierarchical Gaussian decomposition. All methods perform much worse given cross-elevation images for training compared to using single-elevation only. Interestingly, this may not be due to limited capacity. As shown in Table 5, cross-elevation reconstructions have significantly less Gaussians compared to single-elevation reconstructions, despite being strictly a superset in its training data. This likely indicates densification algorithms experience challenges when Gaussians’ positional gradients are pulled from different directions.

By rendering cross-elevation cameras, we can observe various artifacts from current methods. Significant floaters exist when ground-only reconstructions are rendered from aerial perspectives. Notably, Splatfacto-W (Xu et al., 2024a) achieves superior aerial rendering through its background modeling. As shown in Figure 6, we also implement an implicit neural network to model sky in Octree-GS, which significantly reduce floaters. CityGS (Liu et al., 2024a;b) performs best on ground-view reconstruction from aerial data via geospatial-aware Gaussian priors optimized for large-scale aerial image.

Multi-Appearance Reconstruction and Zero-Shot NVS. ULTRA-360 contains multi-view sequences collected at different time. We use these sequences to evaluate multi-appearance reconstruction. Wild-GS (Xu et al., 2024b) and Gaussian-Wild (Zhang et al., 2024) are used as baselines, both of which require test image for evaluation. Unlike previous datasets (Snavely et al., 2006), ULTRA-360 has access to multi-view groundtruth at *every appearance*. This allows us to evaluate the effect of per-training-image embeddings on test images. As shown in Table 6, we find that previous approaches lead to severe entanglement between view direction and the general appearances. Specifically, if we apply embedding from a training image that is the farthest away from the current test view, a significant drop in performance can be observed. The larger the performance drop suggests that the embeddings and networks are learned to overfit the input images, instead of the general 3D appearance. By modifying the per-image embedding to a time-based embedding, we can both remove the reliance on test-images at render time and achieve more 3D consistent appearance modeling. We provide more details and visualizations in our appendix.

Table 5: The average number of 3D Gaussians under different training configurations

Train	Splatfacto-W	CityGS V2	Octree-GS	EVER
G	340244	569325	3191058	535701
A	630093	287026	527991	70738
GA	309018	241688	2230053	262366

Table 6: Quantitative evaluation of multi-appearance reconstruction and rendering based on ULTRA-360.

	Wild-GS			Gaussian-Wild		
	PSNR	SSIM	DSIM	PSNR	SSIM	DSIM
Test Image Embedding	28.133	0.864	0.015	26.528	0.767	0.020
Nearest Train Image Embedding	28.003	0.863	0.014	26.567	0.757	0.020
Farthest Train Image Embedding	22.506	0.770	0.061	25.621	0.757	0.023
Time Embedding	27.973	0.860	0.014	26.277	0.762	0.021

5 DISCUSSION AND CONCLUSION

In this work, we propose a dataset called ULTRA-360 for Unconstrained Large-scale Temporal 3D Reconstruction across Altitudes. ULTRA-360 contains 37.7k frames collected from hundreds of

486 videos across the campus and includes academic buildings from multiple seasons, multiple elevations,
 487 and multiple camera types. To this end, we ensure cameras from different elevations can find
 488 correspondences based on ground-to-aerial transitional images. We also eliminate false matches
 489 through manually defined scene graphs.

490 Popular feature matching and scene graph optimization algorithms are evaluated to measure how
 491 imagery from ULTRA-360 can be calibrated without assistance. Some methods demonstrate significant
 492 improvement in finding difficult true positives, at the cost of more false positives. While proper
 493 filtering based on keypoint extraction can lead to less false positives, current camera cali-
 494 bration pipeline still fall into incorrect solutions due to visual ambiguities, even with scene graph
 495 optimization. This showcases the need for a potentially more global approach in addressing doppel-
 496 gangers rather than relying pair-wise prediction.

497 We also evaluate various dense reconstruction methods on ULTRA-360. We find that current meth-
 498 ods, even those designed for large scale reconstruction, perform much worse given cross-elevation
 499 images for training compared to using single-elevation only. This likely indicates limitations in
 500 densification algorithms at scale. Multi-appearance reconstruction is also benchmarked. Several
 501 methods require access to test-time images to model appearance. Based on ULTRA-360, we find
 502 that these methods tend to generate embeddings that are heavily over-fitted to specific viewpoint,
 503 leading to suboptimal results to other views of the same appearance.

504 ULTRA-360 provides many novel directions for research, including the study on out-of-distribution
 505 NVS, campus-scale immersive 4D reconstruction, and potentially serving as test-grounds for eval-
 506 uating geometric plausibility for generative models. In the future, we will continue to expand on
 507 ULTRA-360 to include more buildings and temporal variations.

509 REFERENCES

511 Relja Arandjelovic, Petr Gronát, Akihiko Torii, Tomás Pajdla, and Josef Sivic. Netvlad: CNN
 512 architecture for weakly supervised place recognition. *IEEE Trans. Pattern Anal. Mach. Intell.*,
 513 40(6):1437–1451, 2018. doi: 10.1109/TPAMI.2017.2711011. URL <https://doi.org/10.1109/TPAMI.2017.2711011>.

515 Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. Mip-
 516 nerf 360: Unbounded anti-aliased neural radiance fields. In *IEEE/CVF Conference on Computer*
 517 *Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022*, pp.
 518 5460–5469. IEEE, 2022. doi: 10.1109/CVPR52688.2022.00539. URL <https://doi.org/10.1109/CVPR52688.2022.00539>.

521 Fabio Bellavia, Jiri Matas, Dmytro Mishkin, Luca Morelli, Fabio Remondino, Amy
 522 Tabb, Eduard Trulls, Kwang Moo Yi, Sohier Dane, Addison Howard, and María
 523 Cruz. Image matching challenge 2025. [https://kaggle.com/competitions/](https://kaggle.com/competitions/image-matching-challenge-2025)
 524 image-matching-challenge-2025, 2025. Kaggle.

525 Gabriele Berton, Gabriele Trivigno, Barbara Caputo, and Carlo Masone. Eigenplaces: Training
 526 viewpoint robust models for visual place recognition. In *Proceedings of the IEEE/CVF Interna-*
 527 *tional Conference on Computer Vision*, pp. 11080–11090, 2023.

529 Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liang, Qiang Xu, Anush
 530 Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset
 531 for autonomous driving. In *2020 IEEE/CVF Conference on Computer Vision and Pattern*
 532 *Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020*, pp. 11618–11628. Computer
 533 Vision Foundation / IEEE, 2020. doi: 10.1109/CVPR42600.2020.01164. URL https://openaccess.thecvf.com/content_CVPR_2020/html/Caesar_nuScenes_A_Multimodal_Dataset_for_Autonomous_Driving_CVPR_2020_paper.html.

536 Ruojin Cai, Joseph Tung, Qianqian Wang, Hadar Averbuch-Elor, Bharath Hariharan, and Noah
 537 Snavely. Doppelgangers: Learning to disambiguate images of similar structures. In *IEEE/CVF*
 538 *International Conference on Computer Vision, ICCV 2023, Paris, France, October 1-6, 2023*, pp.
 539 34–44. IEEE, 2023. doi: 10.1109/ICCV51070.2023.00010. URL <https://doi.org/10.1109/ICCV51070.2023.00010>.

540 Xingyu Chen, Qi Zhang, Xiaoyu Li, Yue Chen, Ying Feng, Xuan Wang, and Jue Wang. Hallu-
 541 cinated neural radiance fields in the wild. In *IEEE/CVF Conference on Computer Vision and*
 542 *Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022*, pp. 12933–12942.
 543 IEEE, 2022. doi: 10.1109/CVPR52688.2022.01260. URL <https://doi.org/10.1109/CVPR52688.2022.01260>.

545 David J. Crandall, Andrew Owens, Noah Snavely, and Dan Huttenlocher. Discrete-continuous
 546 optimization for large-scale structure from motion. In *The 24th IEEE Conference on Com-
 547 puter Vision and Pattern Recognition, CVPR 2011, Colorado Springs, CO, USA, 20-25 June
 548 2011*, pp. 3001–3008. IEEE Computer Society, 2011. doi: 10.1109/CVPR.2011.5995626. URL
 549 <https://doi.org/10.1109/CVPR.2011.5995626>.

550 Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superpoint: Self-supervised
 551 interest point detection and description. In *2018 IEEE Conference on Computer Vision and*
 552 *Pattern Recognition Workshops, CVPR Workshops 2018, Salt Lake City, UT, USA, June 18-
 553 22, 2018*, pp. 224–236. Computer Vision Foundation / IEEE Computer Society, 2018. doi:
 554 10.1109/CVPRW.2018.00060. URL http://openaccess.thecvf.com/content_cvpr_2018_workshops/w9/html/DeTone_SuperPoint_Self-Supervised_Interest_CVPR_2018_paper.html.

555 Bardienus Pieter Duisterhof, Lojze Zust, Philippe Weinzaepfel, Vincent Leroy, Yohann Cabon, and
 556 Jérôme Revaud. Mast3r-sfm: a fully-integrated solution for unconstrained structure-from-motion.
 557 *CoRR*, abs/2409.19152, 2024. doi: 10.48550/ARXIV.2409.19152. URL <https://doi.org/10.48550/arXiv.2409.19152>.

558 Bardienus Pieter Duisterhof, Lojze Zust, Philippe Weinzaepfel, Vincent Leroy, Yohann Cabon,
 559 and Jérôme Revaud. Mast3r-sfm: A fully-integrated solution for unconstrained structure-from-
 560 motion. In *International Conference on 3D Vision, 3DV 2025, Singapore, March 25-28, 2025*,
 561 pp. 1–10. IEEE, 2025. doi: 10.1109/3DV66043.2025.00008. URL <https://doi.org/10.1109/3DV66043.2025.00008>.

562 Johan Edstedt, Georg Bökman, Mårten Wadenbäck, and Michael Felsberg. DeDoDe: Detect, Don’t
 563 Describe — Describe, Don’t Detect for Local Feature Matching. In *2024 International Confer-
 564 ence on 3D Vision (3DV)*. IEEE, 2024a.

565 Johan Edstedt, Qiyu Sun, Georg Bökman, Mårten Wadenbäck, and Michael Felsberg. Roma: Robust
 566 dense feature matching. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition,
 567 CVPR 2024, Seattle, WA, USA, June 16-22, 2024*, pp. 19790–19800. IEEE, 2024b. doi: 10.
 568 1109/CVPR52733.2024.01871. URL <https://doi.org/10.1109/CVPR52733.2024.01871>.

569 Johan Edstedt, Georg Bökman, Mårten Wadenbäck, and Michael Felsberg. DaD: Distilled Rein-
 570 forcement Learning for Diverse Keypoint Detection. *arXiv preprint arXiv:2503.07347*, 2025.

571 Stephanie Fu, Netanel Tamir, Shobhita Sundaram, Lucy Chai, Richard Zhang, Tali Dekel, and
 572 Phillip Isola. Dreamsim: Learning new dimensions of human visual similarity using synthetic
 573 data. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey
 574 Levine (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on
 575 Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
 576 10 - 16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/9f09f316a3eaf59d9ced5ffaefe97e0f-Abstract-Conference.html.

577 Ruiqi Gao, Aleksander Holynski, Philipp Henzler, Arthur Brussee, Ricardo Martin-Brualla,
 578 Pratul P. Srinivasan, Jonathan T. Barron, and Ben Poole. CAT3D: create anything in
 579 3d with multi-view diffusion models. In Amir Globersons, Lester Mackey, Danielle Bel-
 580 grave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Advances
 581 in Neural Information Processing Systems 38: Annual Conference on Neural Infor-
 582 mation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
 583 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/89e4433fec4b99f1d859db57af1e0a0f-Abstract-Conference.html.

584 John C Gower. Generalized procrustes analysis. *Psychometrika*, 40:33–51, 1975.

594 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for real-time radiance field rendering. *CoRR*, abs/2308.04079, 2023. doi: 10.48550/ARXIV.2308.04079. URL <https://doi.org/10.48550/arXiv.2308.04079>.

595

596

597

598 Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: benchmarking 599 large-scale scene reconstruction. *ACM Trans. Graph.*, 36(4):78:1–78:13, 2017. doi: 10.1145/600 3072959.3073599. URL <https://doi.org/10.1145/3072959.3073599>.

601

602 Jonas Kulhanek, Songyou Peng, Zuzana Kukelova, Marc Pollefeys, and Torsten Sattler. Wildgaus-603 sians: 3d gaussian splatting in the wild. In Amir Globersons, Lester Mackey, Danielle 604 Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Ad-605 vances in Neural Information Processing Systems 38: Annual Conference on Neural Infor-606 mation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 607 2024*, 2024a. URL http://papers.nips.cc/paper_files/paper/2024/hash/25c0fe7b157821dd3140727dc07461da-Abstract-Conference.html.

608

609 Jonas Kulhanek, Songyou Peng, Zuzana Kukelova, Marc Pollefeys, and Torsten Sattler. Wildgaus-610 sians: 3d gaussian splatting in the wild. *CoRR*, abs/2407.08447, 2024b. doi: 10.48550/ARXIV.611 2407.08447. URL <https://doi.org/10.48550/arXiv.2407.08447>.

612

613 Vincent Leroy, Yohann Cabon, and Jérôme Revaud. Grounding image matching in 3d with mast3r. 614 In Ales Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, and GÜl Varol 615 (eds.), *Computer Vision - ECCV 2024 - 18th European Conference, Milan, Italy, September 29-616 October 4, 2024, Proceedings, Part LXXII*, volume 15130 of *Lecture Notes in Computer Science*, 617 pp. 71–91. Springer, 2024. doi: 10.1007/978-3-031-73220-1\5. URL https://doi.org/10.1007/978-3-031-73220-1_5.

618

619 Yixuan Li, Lihan Jiang, Lining Xu, Yuanbo Xiangli, Zhenzhi Wang, Dahua Lin, and Bo Dai. 620 Matrixcity: A large-scale city dataset for city-scale neural rendering and beyond. In *IEEE/CVF 621 International Conference on Computer Vision, ICCV 2023, Paris, France, October 1-6, 2023*, pp. 622 3182–3192. IEEE, 2023. doi: 10.1109/ICCV51070.2023.00297. URL <https://doi.org/10.1109/ICCV51070.2023.00297>.

623

624 Yiyi Liao, Jun Xie, and Andreas Geiger. KITTI-360: A novel dataset and benchmarks for urban 625 scene understanding in 2d and 3d. *IEEE Trans. Pattern Anal. Mach. Intell.*, 45(3):3292–3310, 626 2023. doi: 10.1109/TPAMI.2022.3179507. URL <https://doi.org/10.1109/TPAMI.2022.3179507>.

627

628 Huangjing Lin, Hao Chen, Qi Dou, Liansheng Wang, Jing Qin, and Pheng-Ann Heng. Scannet: 629 A fast and dense scanning framework for metastatic breast cancer detection from whole-slide 630 image. In *2018 IEEE Winter Conference on Applications of Computer Vision, WACV 2018, Lake 631 Tahoe, NV, USA, March 12-15, 2018*, pp. 539–546. IEEE Computer Society, 2018. doi: 10.1109/ 632 WACV.2018.00065. URL <https://doi.org/10.1109/WACV.2018.00065>.

633

634 Jiaqi Lin, Zhihao Li, Xiao Tang, Jianzhuang Liu, Shiyong Liu, Jiayue Liu, Yangdi Lu, Xiaofei Wu, 635 Songcen Xu, Youliang Yan, and Wenming Yang. Vastgaussian: Vast 3d gaussians for large scene 636 reconstruction. In *CVPR*, 2024.

637

638 Philipp Lindenberger, Paul-Edouard Sarlin, and Marc Pollefeys. Lightglue: Local feature matching 639 at light speed. In *IEEE/CVF International Conference on Computer Vision, ICCV 2023, Paris, 640 France, October 1-6, 2023*, pp. 17581–17592. IEEE, 2023a. doi: 10.1109/ICCV51070.2023. 641 01616. URL <https://doi.org/10.1109/ICCV51070.2023.01616>.

642

643 Philipp Lindenberger, Paul-Edouard Sarlin, and Marc Pollefeys. LightGlue: Local Feature Matching 644 at Light Speed. In *ICCV*, 2023b.

645

646 Yang Liu, He Guan, Chuanchen Luo, Lue Fan, Junran Peng, and Zhaoxiang Zhang. Citygaus-647 sian: Real-time high-quality large-scale scene rendering with gaussians. *CoRR*, abs/2404.01133, 648 2024a. doi: 10.48550/ARXIV.2404.01133. URL <https://doi.org/10.48550/arXiv.2404.01133>.

648 Yang Liu, Chuanchen Luo, Zhongkai Mao, Junran Peng, and Zhaoxiang Zhang. Citygaussianv2: Ef-
 649 ficient and geometrically accurate reconstruction for large-scale scenes. *CorR*, abs/2411.00771,
 650 2024b. doi: 10.48550/ARXIV.2411.00771. URL <https://doi.org/10.48550/arXiv.2411.00771>.

652

653 David G. Lowe. Distinctive image features from scale-invariant keypoints. *Int. J. Comput. Vis.*,
 654 60(2):91–110, 2004. doi: 10.1023/B:VISI.0000029664.99615.94. URL <https://doi.org/10.1023/B:VISI.0000029664.99615.94>.

655

656 D.G. Lowe. Object recognition from local scale-invariant features. In *Proceedings of the Seventh*
 657 *IEEE International Conference on Computer Vision*, volume 2, pp. 1150–1157 vol.2, 1999. doi:
 658 10.1109/ICCV.1999.790410.

659

660 Chongshan Lu, Fukun Yin, Xin Chen, Wen Liu, Tao Chen, Gang Yu, and Jiayuan Fan. A large-
 661 scale outdoor multi-modal dataset and benchmark for novel view synthesis and implicit scene
 662 reconstruction. In *IEEE/CVF International Conference on Computer Vision, ICCV 2023, Paris,*
 663 *France, October 1-6, 2023*, pp. 7523–7533. IEEE, 2023. doi: 10.1109/ICCV51070.2023.00695.
 664 URL <https://doi.org/10.1109/ICCV51070.2023.00695>.

665

666 Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, and Bo Dai. Scaffold-
 667 gs: Structured 3d gaussians for view-adaptive rendering. In *IEEE/CVF Conference on Computer*
 668 *Vision and Pattern Recognition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024*, pp. 20654–
 669 20664. IEEE, 2024. doi: 10.1109/CVPR52733.2024.01952. URL <https://doi.org/10.1109/CVPR52733.2024.01952>.

670

671 Alexander Mai, Peter Hedman, George Kopanas, Dor Verbin, David Futschik, Qiangeng Xu, Falko
 672 Kuester, Jonathan T. Barron, and Yinda Zhang. EVER: exact volumetric ellipsoid rendering for
 673 real-time view synthesis. *CorR*, abs/2410.01804, 2024. doi: 10.48550/ARXIV.2410.01804. URL
 674 <https://doi.org/10.48550/arXiv.2410.01804>.

675

676 Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi, Jonathan T. Barron, Alexey Dosovitskiy,
 677 and Daniel Duckworth. Nerf in the wild: Neural radiance fields for unconstrained
 678 photo collections. In *IEEE Conference on Computer Vision and Pattern Recognition, CVPR*
 679 *2021, virtual, June 19-25, 2021*, pp. 7210–7219. Computer Vision Foundation / IEEE, 2021.
 680 doi: 10.1109/CVPR46437.2021.00713. URL https://openaccess.thecvf.com/content/CVPR2021/html/Martin-Brualla_NeRF_in_the_Wild_Neural_Radiance_Fields_for_Unconstrained_Photo_CVPR_2021_paper.html.

682

683 Andreas Meuleman, Yu-Lun Liu, Chen Gao, Jia-Bin Huang, Changil Kim, Min H. Kim, and Jo-
 684 hannes Kopf. Progressively optimized local radiance fields for robust view synthesis. In *CVPR*,
 685 2023.

686

687 Zhenxing Mi and Dan Xu. Switch-nerf: Learning scene decomposition with mixture of experts
 688 for large-scale neural radiance fields. In *The Eleventh International Conference on Learning*
 689 *Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL
 690 <https://openreview.net/forum?id=PQ2zoIZqvm>.

691

692 Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
 693 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In Andrea
 694 Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm (eds.), *Computer Vision - ECCV*
 695 *2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part I*, volume
 696 12346 of *Lecture Notes in Computer Science*, pp. 405–421. Springer, 2020. doi: 10.1007/
 697 978-3-030-58452-8_24. URL https://doi.org/10.1007/978-3-030-58452-8_24.

698

699 Mayank Mittal, Calvin Yu, Qinxi Yu, Jingzhou Liu, Nikita Rudin, David Hoeller, Jia Lin Yuan,
 700 Ritvik Singh, Yunrong Guo, Hammad Mazhar, Ajay Mandlekar, Buck Babich, Gavriel State,
 701 Marco Hutter, and Animesh Garg. Orbit: A unified simulation framework for interactive robot
 learning environments. *IEEE Robotics and Automation Letters*, 8(6):3740–3747, 2023. doi:
 10.1109/LRA.2023.3270034.

702 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khali-
 703 dov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud As-
 704 sran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan
 705 Misra, Michael G. Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jégou, Julien Mairal,
 706 Patrick Labatut, Armand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features
 707 without supervision. *CoRR*, abs/2304.07193, 2023. doi: 10.48550/ARXIV.2304.07193. URL
 708 <https://doi.org/10.48550/arXiv.2304.07193>.

709 Linfei Pan, Daniel Barath, Marc Pollefeys, and Johannes Lutz Schönberger. Global Structure-from-
 710 Motion Revisited. In *European Conference on Computer Vision (ECCV)*, 2024.

711

712 Cheng Peng and Rama Chellappa. PDRF: progressively deblurring radiance field for fast scene re-
 713 construction from blurry images. In Brian Williams, Yiling Chen, and Jennifer Neville (eds.),
 714 *Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Confer-
 715 ence on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium
 716 on Educational Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA, Febru-
 717 ary 7-14, 2023*, pp. 2029–2037. AAAI Press, 2023. doi: 10.1609/AAAI.V37I2.25295. URL
 718 <https://doi.org/10.1609/aaai.v37i2.25295>.

719 Christian Reiser, Richard Szeliski, Dor Verbin, Pratul P. Srinivasan, Ben Mildenhall, Andreas
 720 Geiger, Jonathan T. Barron, and Peter Hedman. MERF: memory-efficient radiance fields for
 721 real-time view synthesis in unbounded scenes. *ACM Trans. Graph.*, 42(4):89:1–89:12, 2023. doi:
 722 10.1145/3592426. URL <https://doi.org/10.1145/3592426>.

723

724 Kerui Ren, Lihan Jiang, Tao Lu, Mulin Yu, Linning Xu, Zhangkai Ni, and Bo Dai. Octree-gs:
 725 Towards consistent real-time rendering with lod-structured 3d gaussians. *CoRR*, abs/2403.17898,
 726 2024. doi: 10.48550/ARXIV.2403.17898. URL [https://doi.org/10.48550/arXiv.
 727 2403.17898](https://doi.org/10.48550/arXiv.2403.17898).

728

729 Sara Sabour, Suhani Vora, Daniel Duckworth, Ivan Krasin, David J. Fleet, and Andrea Tagliasacchi.
 730 Robustnerf: Ignoring distractors with robust losses. In *IEEE/CVF Conference on Computer Vision
 731 and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023*, pp. 20626–
 732 20636. IEEE, 2023. doi: 10.1109/CVPR52729.2023.01976. URL [https://doi.org/10.
 733 1109/CVPR52729.2023.01976](https://doi.org/10.1109/CVPR52729.2023.01976).

734

735 Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. SuperGlue:
 736 Learning feature matching with graph neural networks. In *2020 IEEE/CVF Conference on
 737 Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020*, pp.
 738 4937–4946. Computer Vision Foundation / IEEE, 2020. doi: 10.1109/CVPR42600.2020.00499.
 739 URL https://openaccess.thecvf.com/content_CVPR_2020/html/Sarlin_SuperGlue_Learning_Feature_Matching_With_Graph_Neural_Networks_CVPR_2020_paper.html.

740

741 Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-Motion Revisited. In *Confer-
 742 ence on Computer Vision and Pattern Recognition (CVPR)*, 2016.

743

744 Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm. Pixelwise
 745 View Selection for Unstructured Multi-View Stereo. In *European Conference on Computer Vision
 746 (ECCV)*, 2016.

747

748 Noah Snavely, Steven M. Seitz, and Richard Szeliski. Photo tourism: exploring photo collections in
 749 3d. *ACM Trans. Graph.*, 25(3):835–846, 2006. doi: 10.1145/1141911.1141964. URL <https://doi.org/10.1145/1141911.1141964>.

750

751 Kaiwen Song, Xiaoyi Zeng, Chenqu Ren, and Juyong Zhang. City-on-web: Real-time neural ren-
 752 dering of large-scale scenes on the web. In Ales Leonardis, Elisa Ricci, Stefan Roth, Olga
 753 Russakovsky, Torsten Sattler, and Gü̈l Varol (eds.), *Computer Vision - ECCV 2024 - 18th Eu-
 754 ropean Conference, Milan, Italy, September 29-October 4, 2024, Proceedings, Part XLVII*, vol-
 755 ume 15105 of *Lecture Notes in Computer Science*, pp. 385–402. Springer, 2024. doi: 10.1007/
 978-3-031-72970-6_22. URL https://doi.org/10.1007/978-3-031-72970-6_22.

756 Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, and Xiaowei Zhou. Loftr: Detector-free
 757 local feature matching with transformers. In *IEEE Conference on Computer Vision and Pattern*
 758 *Recognition, CVPR 2021, virtual, June 19-25, 2021*, pp. 8922–8931. Computer Vision Founda-
 759 tion / IEEE, 2021. doi: 10.1109/CVPR46437.2021.00881. URL https://openaccess.thecvf.com/content/CVPR2021/html/Sun_LoFTR_Detector-Free_Local_Feature_Matching_With_Transformers_CVPR_2021_paper.html.

760 Matthew Tancik, Vincent Casser, Xincheng Yan, Sabeek Pradhan, Ben Mildenhall, Pratul P Srin-
 761 ivasan, Jonathan T Barron, and Henrik Kretzschmar. Block-nerf: Scalable large scene neural view
 762 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
 763 tion*, pp. 8248–8258, 2022a.

764 Matthew Tancik, Vincent Casser, Xincheng Yan, Sabeek Pradhan, Ben P. Mildenhall, Pratul P.
 765 Srinivasan, Jonathan T. Barron, and Henrik Kretzschmar. Block-nerf: Scalable large scene
 766 neural view synthesis. In *IEEE/CVF Conference on Computer Vision and Pattern Recog-
 767 nition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022*, pp. 8238–8248. IEEE, 2022b.
 768 doi: 10.1109/CVPR52688.2022.00807. URL <https://doi.org/10.1109/CVPR52688.2022.00807>.

769 Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li, Brent Yi, Terrance Wang, Alexander
 770 Kristoffersen, Jake Austin, Kamyar Salahi, Abhik Ahuja, David McAllister, Justin Kerr, and
 771 Angjoo Kanazawa. Nerfstudio: A modular framework for neural radiance field development.
 772 In Erik Brunvand, Alla Sheffer, and Michael Wimmer (eds.), *ACM SIGGRAPH 2023 Conference
 773 Proceedings, SIGGRAPH 2023, Los Angeles, CA, USA, August 6-10, 2023*, pp. 72:1–72:12. ACM,
 774 2023. doi: 10.1145/3588432.3591516. URL <https://doi.org/10.1145/3588432.3591516>.

775 Yutao Tang, Yuxiang Guo, Deming Li, and Cheng Peng. Spars3r: Semantic prior alignment and
 776 regularization for sparse 3d reconstruction. *CVPR*, 2025.

777 Joseph Tung, Gene Chou, Ruojin Cai, Guandao Yang, Kai Zhang, Gordon Wetzstein, Bharath Har-
 778 iharan, and Noah Snavely. Megascenes: Scene-level view synthesis at scale. In Ales Leonardis,
 779 Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, and Güll Varol (eds.), *Computer Vi-
 780 sion - ECCV 2024 - 18th European Conference, Milan, Italy, September 29-October 4, 2024,
 781 Proceedings, Part XXIX*, volume 15087 of *Lecture Notes in Computer Science*, pp. 197–214.
 782 Springer, 2024. doi: 10.1007/978-3-031-73397-0_12. URL https://doi.org/10.1007/978-3-031-73397-0_12.

783 Haithem Turki, Deva Ramanan, and Mahadev Satyanarayanan. Mega-nerf: Scalable construction
 784 of large-scale nerfs for virtual fly- throughs. In *IEEE/CVF Conference on Computer Vision and*
 785 *Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022*, pp. 12912–12921.
 786 IEEE, 2022. doi: 10.1109/CVPR52688.2022.01258. URL <https://doi.org/10.1109/CVPR52688.2022.01258>.

787 Matthew Wallingford, Anand Bhattad, Aditya Kusupati, Vivek Ramanujan, Matt Deitke, Aniruddha
 788 Kembhavi, Roozbeh Mottaghi, Wei-Chiu Ma, and Ali Farhadi. From an image to a scene: Learn-
 789 ing to imagine the world from a million 360° videos. *Advances in Neural Information Processing
 790 Systems*, 37:17743–17760, 2024.

791 Jianyuan Wang, Nikita Karaev, Christian Rupprecht, and David Novotný. Vggsfm: Visual geometry
 792 grounded deep structure from motion. In *IEEE/CVF Conference on Computer Vision and Pattern*
 793 *Recognition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024*, pp. 21686–21697. IEEE, 2024.
 794 doi: 10.1109/CVPR52733.2024.02049. URL <https://doi.org/10.1109/CVPR52733.2024.02049>.

795 Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
 796 Novotný. VGGT: visual geometry grounded transformer. In *IEEE/CVF Conference on Computer
 797 Vision and Pattern Recognition, CVPR 2025, Nashville, TN, USA, June 11-15, 2025*, pp. 5294–
 798 5306. Computer Vision Foundation / IEEE, 2025. doi: 10.1109/CVPR52734.2025.00499. URL
 799 https://openaccess.thecvf.com/content/CVPR2025/html/Wang_VGGT_Visual_Geometry_Grounded_Transformer_CVPR_2025_paper.html.

810 Frederik Warburg, Ethan Weber, Matthew Tancik, Aleksander Holynski, and Angjoo Kanazawa.
 811 Nerfbusters: Removing ghostly artifacts from casually captured nerfs. In *IEEE/CVF International*
 812 *Conference on Computer Vision, ICCV 2023, Paris, France, October 1-6, 2023*, pp. 18074–18084.
 813 IEEE, 2023. doi: 10.1109/ICCV51070.2023.01661. URL <https://doi.org/10.1109/ICCV51070.2023.01661>.

814

815 Jay Zhangjie Wu, Yuxuan Zhang, Haithem Turki, Xuanchi Ren, Jun Gao, Mike Zheng Shou, Sanja
 816 Fidler, Zan Gojcic, and Huan Ling. Difix3d+: Improving 3d reconstructions with single-step
 817 diffusion models. *arXiv preprint arXiv:* 2503.01774, 2025.

818

819 Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2.
 820 <https://github.com/facebookresearch/detectron2>, 2019.

821

822 Yuanbo Xiangli, Linning Xu, Xingang Pan, Nanxuan Zhao, Anyi Rao, Christian Theobalt, Bo Dai,
 823 and Dahua Lin. Bungeenerf: Progressive neural radiance field for extreme multi-scale scene
 824 rendering. In Shai Avidan, Gabriel J. Brostow, Moustapha Cissé, Giovanni Maria Farinella, and
 825 Tal Hassner (eds.), *Computer Vision - ECCV 2022 - 17th European Conference, Tel Aviv, Israel,*
 826 *October 23-27, 2022, Proceedings, Part XXXII*, volume 13692 of *Lecture Notes in Computer*
 827 *Science*, pp. 106–122. Springer, 2022. doi: 10.1007/978-3-031-19824-3_.7. URL https://doi.org/10.1007/978-3-031-19824-3_7.

828

829 Yuanbo Xiangli, Ruojin Cai, Hanyu Chen, Jeffrey Byrne, and Noah Snavely. Doppelgangers++: Im-
 830 proved visual disambiguation with geometric 3d features. *CoRR*, abs/2412.05826, 2024. doi: 10.
 831 48550/ARXIV.2412.05826. URL <https://doi.org/10.48550/arXiv.2412.05826>.

832

833 Congrong Xu, Justin Kerr, and Angjoo Kanazawa. Splatfacto-w: A nerfstudio implementation of
 834 gaussian splatting for unconstrained photo collections. *CoRR*, abs/2407.12306, 2024a. doi: 10.
 835 48550/ARXIV.2407.12306. URL <https://doi.org/10.48550/arXiv.2407.12306>.

836

837 Jiacong Xu, Yiqun Mei, and Vishal M. Patel. Wild-gs: Real-time novel view synthe-
 838 sis from unconstrained photo collections. In Amir Globersons, Lester Mackey, Danielle
 839 Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Ad-
 840 vances in Neural Information Processing Systems 38: Annual Conference on Neural Infor-
 841 mation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,*
 842 2024, 2024b. URL http://papers.nips.cc/paper_files/paper/2024/hash/bb11f79ad86f5e33e2a7c850cbdfed42-Abstract-Conference.html.

843

844 Jiacong Xu, Yiqun Mei, and Vishal M. Patel. Wild-gs: Real-time novel view synthesis from uncon-
 845 strained photo collections. *CoRR*, abs/2406.10373, 2024c. doi: 10.48550/ARXIV.2406.10373.
 846 URL <https://doi.org/10.48550/arXiv.2406.10373>.

847

848 Jiawei Yang, Marco Pavone, and Yue Wang. Freenerf: Improving few-shot neural rendering with
 849 free frequency regularization. In *IEEE/CVF Conference on Computer Vision and Pattern Recog-
 850 nition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023*, pp. 8254–8263. IEEE, 2023.
 851 doi: 10.1109/CVPR52729.2023.00798. URL <https://doi.org/10.1109/CVPR52729.2023.00798>.

852

853 Yao Yao, Zixin Luo, Shiwei Li, Jingyang Zhang, Yufan Ren, Lei Zhou, Tian Fang, and Long
 854 Quan. Blendedmvs: A large-scale dataset for generalized multi-view stereo networks. In *2020*
 855 *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle,*
 856 *WA, USA, June 13-19, 2020*, pp. 1787–1796. Computer Vision Foundation / IEEE, 2020.
 857 doi: 10.1109/CVPR42600.2020.00186. URL https://openaccess.thecvf.com/content_CVPR_2020/html/Yao_BlendedMVS_A_Large-Scale_Dataset_for_Generalized_Multi-View_Stereo_Networks_CVPR_2020_paper.html.

858

859 Zehao Yu, Anpei Chen, Bozidar Antic, Songyou Peng, Apratim Bhattacharyya, Michael Niemeyer,
 860 Siyu Tang, Torsten Sattler, and Andreas Geiger. Sdfstudio: A unified framework for surface
 861 reconstruction, 2022. URL <https://github.com/autonomousvision/sdfstudio>.

862

863 Dongbin Zhang, Chuming Wang, Weitao Wang, Peihao Li, Minghan Qin, and Haoqian Wang. Gaus-
 864 sian in the wild: 3d gaussian splatting for unconstrained image collections. In Ales Leonardis,

864 Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, and G  l Varol (eds.), *Computer Vi-
865 sion - ECCV 2024 - 18th European Conference, Milan, Italy, September 29-October 4, 2024,
866 Proceedings, Part LXXVI*, volume 15134 of *Lecture Notes in Computer Science*, pp. 341-359.
867 Springer, 2024. doi: 10.1007/978-3-031-73116-7\20. URL https://doi.org/10.1007/978-3-031-73116-7_20.

869 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
870 effectiveness of deep features as a perceptual metric. In *CVPR*, 2018.

872 Zehao Zhu, Zhiwen Fan, Yifan Jiang, and Zhangyang Wang. Fsgs: Real-time few-shot view synthe-
873 sis using gaussian splatting, 2023.

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

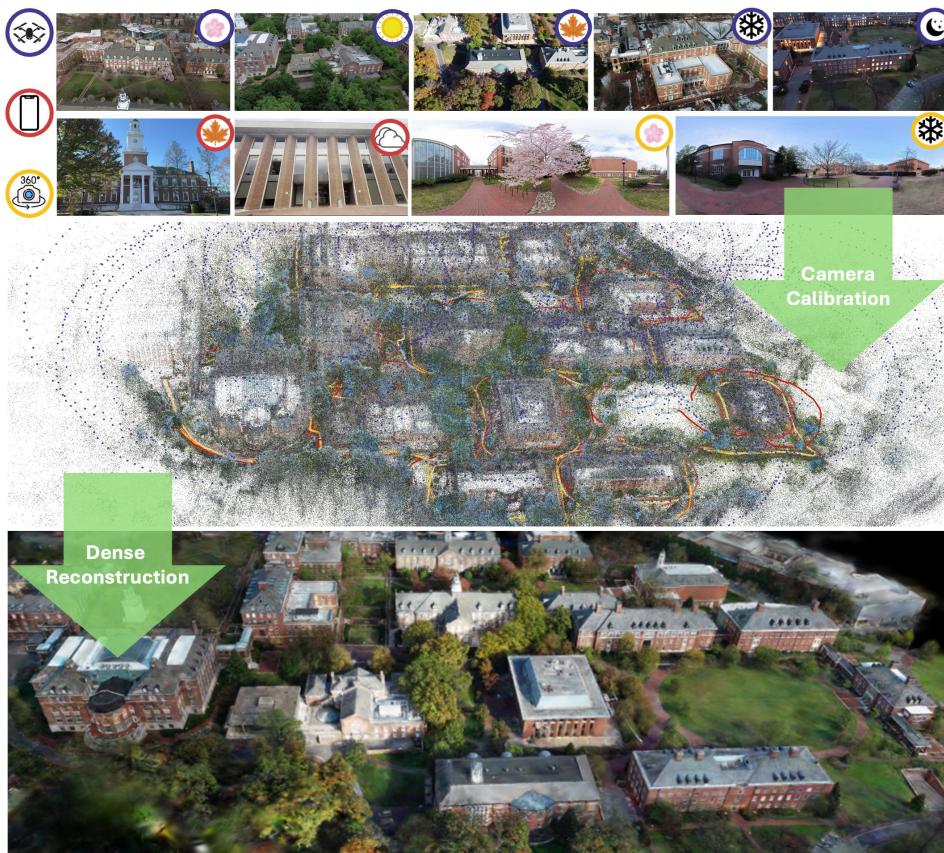
913

914

915

916

917

918 A APPENDIX / SUPPLEMENTAL MATERIAL
919920 A.1 RECONSTRUCTED CAMPUS VISUALIZATION
921949
950 Figure A: A visualization of the reconstructed campus.
951

952 Figure A shows a visualization of the reconstructed campus based on our collected imagery over
953 two years. The dataset is collected over multiple seasons, elevations, and multiple camera types
954 to enable fully immersive 3D/4D reconstruction. All images have been calibrated into a unified
955 coordinate system through a semi-automated process and manual verification.

956 A.2 CROSS-ELEVATION FEATURE MATCHING
957

958 As shown in Figure B, we provide additional visualization of camera pose estimations for five
959 buildings using six feature matching configurations, complementing the results shown in Figure 3.
960 Overall, DaD+RoMa achieves higher accuracy, successfully estimating more camera poses with
961 lower error. However, it fails to register the ground-level images in Figure B(a) and encounters false
962 positive matches in Figure B(c), demonstrating the challenge of cross-elevation feature matching
963 and underscoring the necessity of adopting the proposed single elevation calibration strategy.

964 We also visualize the absolute error of each estimated camera pose with respect to the ground truth
965 after alignment in Figure C. Specifically, we sort these errors in ascending order; for images that
966 fail to be calibrated, we assign a large error. DaD+RoMa is generally capable of estimating most
967 camera poses except Figure C(d). Although SIFT struggles to register the multi-elevation images
968 simultaneously, the successfully estimated poses tend to exhibit lower error, indicating higher
969 confidence. We also observe that RoMa without any feature extractor leads to unstable results, which
970 is reflected in the gradual increase in error across its estimated poses. This correlates with the ob-
971 servation that RoMa’s raw correspondences contain both many true positives and false positives. In
972 general, LoFTR and SP+SG performs similarly, compromising between sensitivity and specificity.

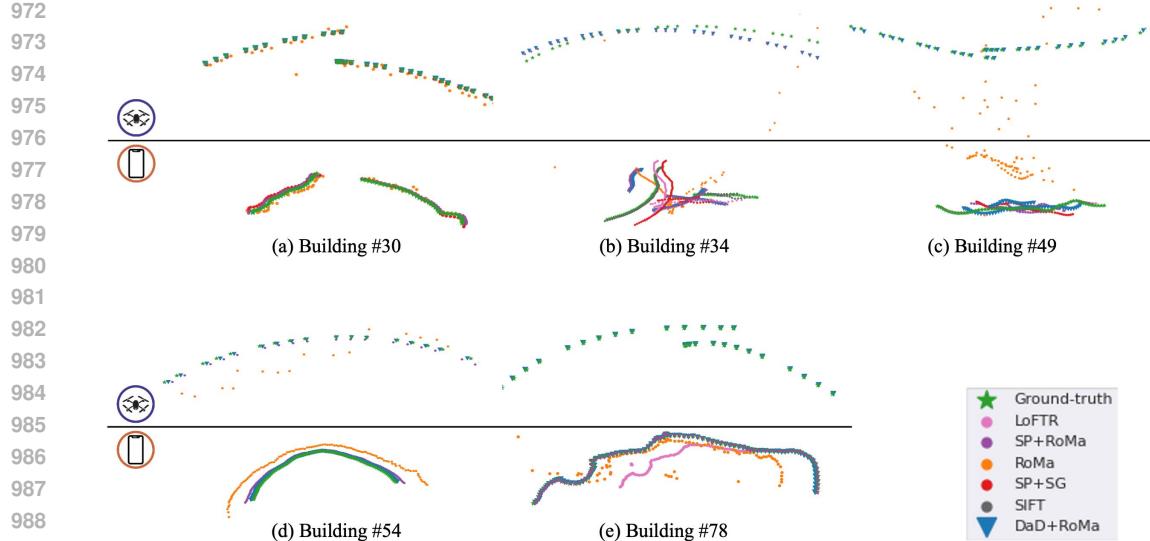


Figure B: Additional visualization of multi-elevation camera positions obtained from different matching methods.

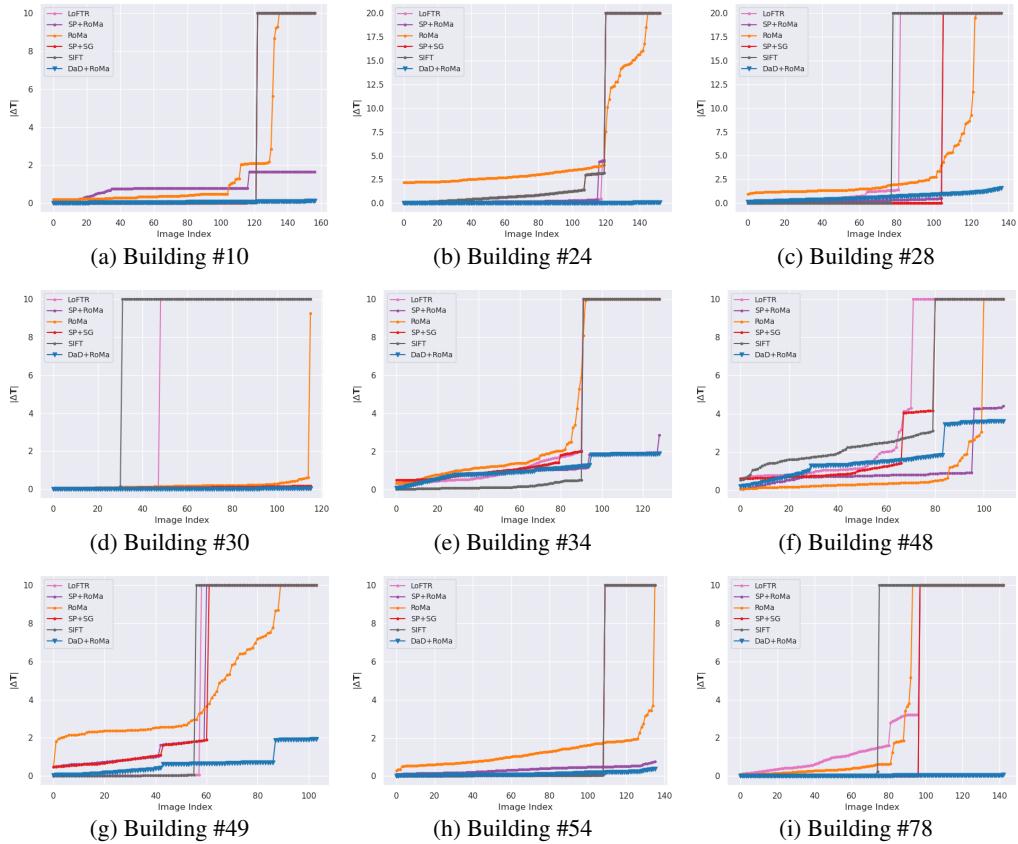
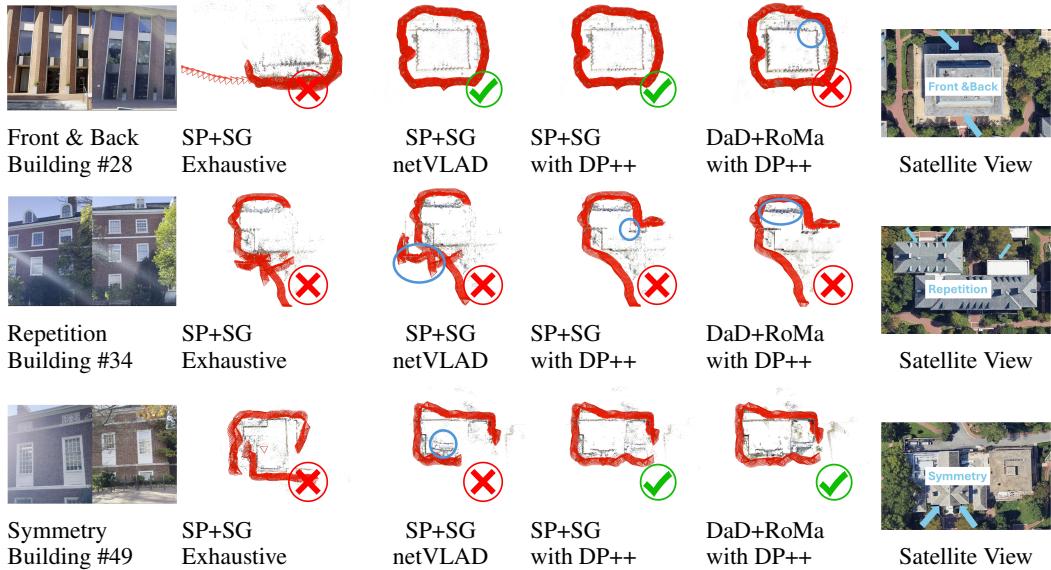


Figure C: Visualization of multi-elevation camera position error across nine buildings

A.3 AUTOMATED SCENE GRAPH OPTIMIZATION

We provide more examples in Figure D to demonstrate the challenge in visual ambiguities. Many buildings look similar from different angles. Exhaustive matching, e.g., with SP+SG, often fails. Without any knowledge of acquisition time, netVLAD (Arandjelovic et al., 2018) sometimes can

1026 help prune away unnecessarily pairs to achieve better reconstruction; however, it's also very unreliable.
 1027 Doppelganger++ (Xiangli et al., 2024) does better at eliminating confusing pairs, but different
 1028 feature matchers can still be prone to errors in different scenarios.
 1029



1040 Figure D: Visualization of calibration with various scene graph optimization methods given visual
 1041 ambiguity. A satellite view is provided to demonstrate the true locations of the images.
 1042

1043 A.4 LARGE-SCALE DENSE RECONSTRUCTION AND NVS

1044 Our dense reconstruction evaluation uses PSNR, SSIM, and DSIM as primary metrics. As a perceptual
 1045 similarity metric LPIPS (Zhang et al., 2018) is also included in Appendix Tables A and B for
 1046 completeness.

1047 Table A: LPIPS on multi-elevation reconstruction.

Train	Test	Block-MERF	Splatfacto-W	CityGS V2	Scaffold-GS	Octree-GS	EVER
G	G	0.513	0.522	0.512	0.483	0.443	0.467
A	G	0.899	0.846	0.861	0.871	0.881	0.829
GA	G	0.602	0.539	0.553	0.541	0.487	0.503
A	A	0.175	0.188	0.173	0.102	0.123	0.299
G	A	0.920	0.881	0.912	0.911	0.846	0.869
GA	A	0.708	0.394	0.532	0.277	0.266	0.355

1048 A.5 MULTI-APPEARANCE RECONSTRUCTION AND ZERO-SHOT NVS

1049 Figure E shows the rendering results using different embeddings in the multi-appearance experiment.
 1050 The difference maps between the rendered and ground truth images are also shown. It can be
 1051 seen that the image rendered with the embedding farthest from the training view exhibits a significant
 1052 overall appearance difference. These visual comparisons highlight a key drawback of per-image
 1053 embeddings that they are view-dependent and lack consistency across different views.
 1054

1055 A.6 COORDINATE ALIGNMENT

Mip-NeRF 360	$E_R(\mu) \downarrow$	$E_T(\mu) \downarrow$
Procrustes Alignment	0.196	0.0144
+ RANSAC	0.179	0.0114
+ Rotation Points	0.156	0.0117

1056 Table C: Improvements over Procrustes Alignment baseline in average rotation error E_R and trans-
 1057 lation error E_T . Incorporating rotation points further minimizes the overall error.
 1058

1059 We test the alignment algorithm on the Mip-NeRF 360 (Barron et al., 2022) dataset. Specifically,
 1060 we calibrate a sparse subset of the images, then attempt to align it to the groundtruth coordinate

1061 Table B: LPIPS of multi-appearance recon-
 1062 struction.

	Wild-GS	Gaussian-Wild
Test Image Embedding	0.114	0.289
Nearest Train Image Embedding	0.115	0.288
Farthest Train Image Embedding	0.195	0.299
Time Embedding	0.118	0.298

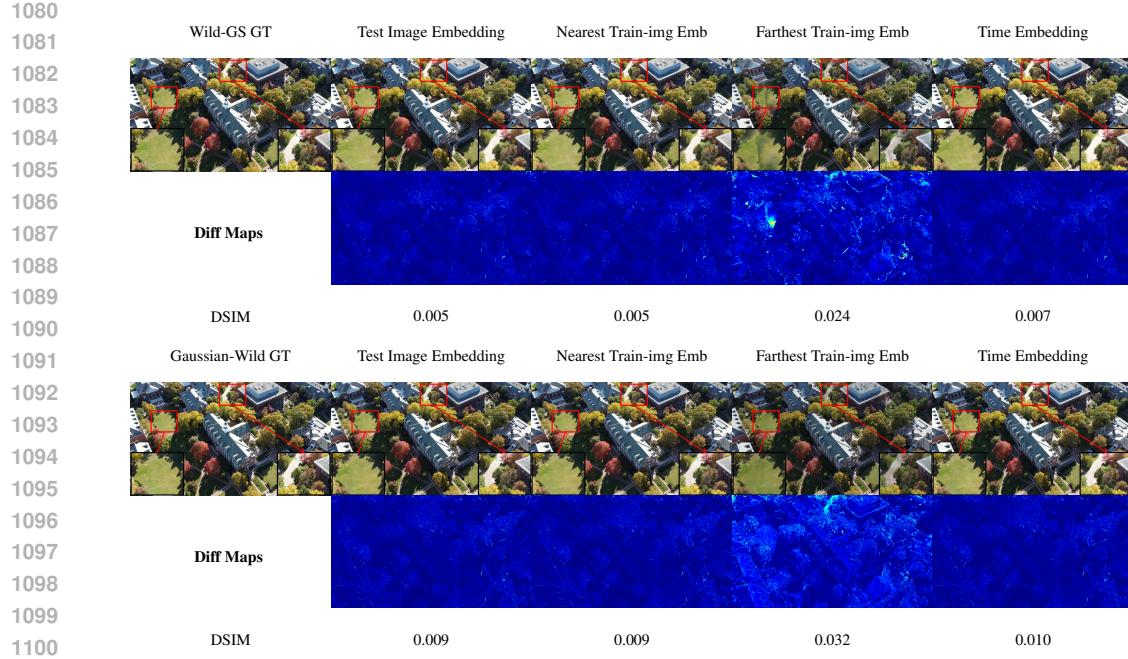


Figure E: The rendering result of Wild-GS and Gaussian-Wild on different appearance embeddings. Zoom-in images are shown in the bottom left and right; better viewed when magnified.

system. Sparse calibration leads to inaccuracy, and makes the alignment process more noisy. As shown in Tab. Table C, applying constraint on both the translation and rotation points indeed reduce the rotation error significantly.

A.7 ADDITIONAL SCENE RECONSTRUCTION VISUALIZATION

Please refer to the videos for additional rendering of 3D structures of the campus buildings.

A.8 THE USE OF LARGE LANGUAGE MODELS (LLMs)

We do not use any large language models in this work when constructing our dataset nor when drafting the paper.