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ABSTRACT

Significant progress has been made in photo-realistic scene reconstruction over
recent years. Various disparate efforts have enabled capabilities such as multi-
appearance or large-scale reconstruction from images acquired by consumer-grade
cameras. How far away are we from digitally replicating the real world in 4D?
So far, there appears to be a lack of well-designed dataset that can evaluate the
holistic progress on large-scale scene reconstruction. We introduce a collection
of imagery on a campus, acquired at different seasons, times of day, from multi-
ple elevations, views, and at scale. To estimate many camera poses over such a
large area and across elevations, we apply a semi-automated calibration pipeline
to eliminate visual ambiguities and avoid excessive matching, then visually verify
all calibration results to ensure accuracy. Finally, we benchmark various algo-
rithms for automatic calibration and dense reconstruction on our dataset, named
ULTRA-360, and demonstrate numerous potential areas to improve upon, e.g.,
balancing sensitivity and specificity in feature matching, densification and floaters
in dense reconstruction, multi-appearance overfitting, etc. We believe ULTRA-
360 can serve as the benchmark that reflect realistic challenges in an end-to-end
scene-reconstruction pipeline.

Figure 1: Sample images of one building, Building #10, in our imagery collected over multiple
seasons, elevations, and multiple camera types to enable fully immersive 3D/4D reconstruction.

1 INTRODUCTION

Immersive digitalization of the 3D world is of great interests for Computer Vision and Graphics
researchers, with many real-world applications in Robotics, AR/VR, Autonomous Driving, Urban
Planning, etc. Tremendous progress has been made in recent years with neural rendering innova-
tions. Methods such as Neural Radiance Field (NeRF) (Mildenhall et al., 2020) and 3D Gaussian
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Splatting (Kerbl et al., 2023) have improved quality in photorealistic scene reconstruction and novel-
view synthesis. Various follow-up works have further extended this capability at larger scale (Turki
et al., 2022; Liu et al., 2024a; Tancik et al., 2022b), to model sites across time (Martin-Brualla et al.,
2021; Chen et al., 2022; Yang et al., 2023; Kulhanek et al., 2024b; Xu et al., 2024c; Zhang et al.,
2024), and in various challenging scenarios, such as sparsity, incorrect exposure, or on degraded im-
ages (Zhu et al., 2023; Tang et al., 2025; Peng & Chellappa, 2023; Gao et al., 2024; Wu et al., 2025).
With rapid progress and a vast amount of visual data online, we are closer than ever to achieving
immersive 3D, perhaps even 4D, digitalization of the world. However, the current advances in neural
reconstruction are often measured with disparate benchmarks and in specific aspects; collections of
data from the internet (Snavely et al., 2006; Wallingford et al., 2024) are also difficult to be used for
accurate evaluations, given the myriad of uncontrollable variables within the collection.

Pose and the Structure-from-Motion (SfM) point cloud from camera calibration are essential to
dense reconstruction. Inverse rendering work typically assumes known camera poses, but how re-
alistically can we assume accurate camera calibration, particularly for large scale scenes? Methods
that address multi-view inconsistencies (Martin-Brualla et al., 2021; Chen et al., 2022; Yang et al.,
2023; Kulhanek et al., 2024b; Xu et al., 2024c; Zhang et al., 2024) work well on small scale scenes
with dense camera coverage. Are these methods adaptable to sparser coverage or in large scale
scenes? While open source efforts (Tancik et al., 2023; Yu et al., 2022) have attempted to accom-
modate different methods and datasets, they have largely stalled as software complexity grows over
time. How realistically can we reconstruct city-scale scenes with only 2D images, in an end-to-end
manner? We summarize two limitations in the current benchmark datasets for calibration, dense
reconstruction and Novel View Synthesis (NVS):

Lack of Scale in Camera Coverage. Current datasets are typically limited in two areas: the per-
spective camera format and the limited camera coverage. Perspective cameras are ubiquitous and
easy to use; however, their limited Field-of-Views (FoV) lead to partial observation of the scene.
As such, reconstructions are only viewable in one direction and are undesirable for immersive ex-
ploration. The distribution of cameras are also focused on one aspect of the scene, e.g. either on
the ground (Tancik et al., 2022a; Meuleman et al., 2023) or in the air (Turki et al., 2022; Crandall
et al., 2011). While aerial observations can recover large scale structures, ground observations con-
tain much richer details. Additionally, the limited camera coverage makes NVS evaluation overly
reliant on test cameras that are close to training cameras, and does not reveal issues such as obvious
floaters (Warburg et al., 2023) in unconstrained exploration of the 3D asset.

Lack of Scale in Realism and Time. Synthetic data from unlimited perspectives and FoV can
be generated from virtual engines (Li et al., 2023; Xiangli et al., 2022; Mittal et al., 2023), but
such data lacks realism. Real images are full of inconsistencies that cannot be fully simulated, e.g.,
lighting, seasonality, weather, etc. So far, datasets that demonstrate these realistic scenarios (Snavely
et al., 2006; Sabour et al., 2023) are small in scale and difficult to evaluate against. For example,
Phototourism (Snavely et al., 2006) comprises of internet images collected at unknown time. As
a result, methods (Martin-Brualla et al., 2021; Xu et al., 2024b; Kulhanek et al., 2024a; Xu et al.,
2024a) developed on these datasets requires access to test-view images during evaluation to optimize
appearance information. Various temporal concepts such as seasonality and structural modifications
are neither fully transient nor based on only appearance changes.

We propose a dataset for Unconstrained Large-scale Temporal 3D Reconstruction across Altitudes,
named ULTRA-360. ULTRA-360 is collected at a campus and aims to reconstruct and visualize
the entire campus in 4D, with hundreds of videos collected across the span of two years, where the
video frames are calibrated with manual inspection and aligned to a consistent coordinate system.
ULTRA-360 provides:

1. Immersive Ground Acquisition: Both perspective and 360 panorama images on the
ground level are collected and calibrated to facilitate immersive 3D reconstruction.

2. Multi-Elevation Acquisition: Both ground and aerial images from multiple elevations are
collected and calibrated to ensure full coverage of the buildings.

3. Multi-Seasonality Acquisition: Images are acquired across multiple seasons in a two year
period, capturing the gradual changes over time.

4. Large-Scale Calibration: Twenty academic buildings are collected across multiple eleva-
tions, camera models, years, and are calibrated together.
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Figure 2: Visualization of the large-scale camera calibration process.

We perform detailed evaluations of current State-of-The-Art methods on ULTRA-360, both in fea-
ture matching and dense reconstruction. The results reveal encouraging process and challenges to
be addressed. For feature matching, recent innovations allow us to find correspondences across
large distances. Despite such progress, SoTA feature matching methods (Lowe, 2004; DeTone et al.,
2018; Edstedt et al., 2024b; Sun et al., 2021; Leroy et al., 2024; Sarlin et al., 2020) lie between
the spectrum of insufficient true positives between images with large baselines and significant false
positives between images with visual ambiguities. Scene graph optimization techniques (Cai et al.,
2023; Xiangli et al., 2024; Arandjelovic et al., 2018; Duisterhof et al., 2024) can ameliorate such a
process, but still requires various manual intervention.

Dense reconstruction from multiple elevations suffers from difficulties in sufficient densification
and severe sky floaters, despite improvements to Level-of-Details. Multi-appearance modeling is
often entangled with view-direction bias if treated as a per-image optimization. We make several
modifications, including neural sky modeling and time-based appearance modeling, to tackle these
issues, and expect future research to improve immersive reconstruction based on ULTRA-360.

2 RELATED WORK

Table 1: A comparison of existing multi-view datasets highlighting key properties, including scale,
diversity of appearances, FoV, and viewpoint variation.

Dataset # images Scale Real/Synthetic Time Camera Type Elevation

Phototourism (Snavely et al., 2006) 150K Scene Real Uncontrolled Perspective Ground
MegaScenes (Tung et al., 2024) 2M Scene Real Uncontrolled Perspective Ground
BlendedMVS (Yao et al., 2020) 5K Scene Real+Synthetic Single Perspective Ground
UrbanScene3D (Crandall et al., 2011) 128K Scene Real+Synthetic Single Perspective Aerial
Quad 6K (Crandall et al., 2011) 5.1K Scene Real Single Perspective Aerial
Mill 19 (Turki et al., 2022) 3.6K Scene Real Single Perspective Aerial
OMMO (Lu et al., 2023) 14.7K Scene Real Day/Night Perspective Aerial
Block-NeRF (Tancik et al., 2022b) 2.8M City Real Day/Night 360 Ground
KITTI-360 (Liao et al., 2023) 300K City Real Single 360 Ground
NuScenes (Caesar et al., 2020) 1.4M City Real Day/Night/Rainy 360 Ground
MatrixCity (Li et al., 2023) 519K City Synthetic Diff. Weather/Lighting Perspective Ground+Aerial

ULTRA-360 37.7 K City Real Four Seasons, Day/Night Perspective+360 Ground+Aerial

2.1 MULTI-VIEW DATASETS FOR DENSE RECONSTRUCTION

In scene reconstruction and NVS research, the widely used benchmark datasets often focus on single
objects (Mildenhall et al., 2020; Knapitsch et al., 2017; Barron et al., 2022) or indoor scenes (Lin
et al., 2018). These datasets are collected in controlled environments with accurate camera estima-
tion. Various datasets (Snavely et al., 2006; Tung et al., 2024) construct outdoor unbounded archi-
tecture datasets with multi-view images from the internet. While these datasets include appearance
diversity, the uncontrolled collection method leads to lack of multi-view imagery on a single con-
sistent appearance. Consequently, algorithms (Martin-Brualla et al., 2021; Chen et al., 2022; Yang
et al., 2023; Kulhanek et al., 2024b; Xu et al., 2024c; Zhang et al., 2024) tested on these datasets
require access to test-view images during evaluation to account for unique appearance variation.

Large-scale datasets, such as Quad 6K (Crandall et al., 2011), UrbanScene3D (Crandall et al., 2011),
Mill-19 (Turki et al., 2022), and OMMO (Lu et al., 2023), have been collected from an aerial plat-
form. This limits the level of details in reconstructed models, if rendering or exploration from the
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ground perspective is desired. Driving datasets like Block-NeRF (Tancik et al., 2022b), KITTI-
360 (Liao et al., 2023), and NuScenes (Caesar et al., 2020) focus on street-level imagery, leading
to many unobserved regions such as the roof of the buildings. So far, no dataset has been proposed
for a large-scale collection of imagery spanning multiple elevations. MatrixCity (Li et al., 2023)
contains both ground and aerial imagery, but is synthesized through game engines.

2.2 CAMERA CALIBRATION AND DENSE RECONSTRUCTION ALGORITHMS

Recovering dense 3D geometry from 2D images has a long history of research. Broadly speaking,
camera calibration is first performed based on SfM (Schönberger & Frahm, 2016; Schönberger et al.,
2016; Pan et al., 2024), which relies on reliable feature extractors (DeTone et al., 2018; Lowe,
1999; Edstedt et al., 2024a; 2025) and feature matchers (Sarlin et al., 2020; Lindenberger et al.,
2023b; Sun et al., 2021; Edstedt et al., 2024b; Leroy et al., 2024) to find correspondences. SfM then
performs triangulation to recover camera pose and sparse geometry. Such a calibration process can
be computationally expensive or get stuck in incorrect solutions due to visual ambiguities; various
scene graph optimization techniques (Arandjelovic et al., 2018; Berton et al., 2023; Cai et al., 2023;
Xiangli et al., 2024) have been introduced to remove unnecessarily or ambiguous image pairs based
on prior knowledge. Selecting the proper scene graph or feature matching algorithms are highly
subjective and unpredictable; while datasets from the Image Matching Challenging (Bellavia et al.,
2025) exist, they are not constructed to be also used for dense reconstruction evaluation.

Dense reconstruction, or photorealistic NVS, has progressed significantly with the introduction of
NeRF (Mildenhall et al., 2020) and 3DGS (Kerbl et al., 2023). By optimizing an implicit or explicit
radiance field on multi-view images through differential rendering, these methods can achieve pho-
torealistic rednering quality. Follow-up works has improved upon NeRF (Turki et al., 2022; Tancik
et al., 2022a; Mi & Xu, 2023; Reiser et al., 2023; Xiangli et al., 2022; Meuleman et al., 2023) and
3DGS (Lin et al., 2024; Liu et al., 2024b; Lu et al., 2024; Ren et al., 2024) in large scale reconstruc-
tion, e.g., by splitting the scene into multiple blocks for optimization, introducing Level-of-Detail
rendering, multi-appearance modeling, etc. Evaluation is done on test cameras, typically in-between
training cameras; however, no quantitative evaluation has been done on more free-formed and real-
istic novel views. As shown in Table 1, ULTRA-360 provides rich variations in both appearances,
rendering FoVs, and cameras ranging from the ground to the sky, providing an unique opportunities
to understand the effects of view-dependent effects, floaters, and details.

3 ULTRA-360

As shown in Figure 2, ULTRA-360 captures real-world, large-scale imagery with multi-appearance,
multi-elevation, panorama coverage, and providing a comprehensive testing ground for evaluating
modern scene reconstruction and NVS algorithms. This dataset contains over 30k calibrated images
on twenty academic halls within a campus, covering an area of approximately 140 acre and a time
period of two years. ULTRA-360 covers a variety of texture and material, e.g., grass, glass/windows,
trees, rocks, etc., that are on the campus. In the following section, we describe the data collection
process and the semi-automated calibration pipeline to construct ULTRA-360.

3.1 LARGE-SCALE DATA COLLECTION ACROSS TIME AND ELEVATION IN 360 DEGREES

Table 2: Summary of ULTRA-360, where multi-view sequences are collected at different time,
appearances, elevations, and FoVs.

Device # Videos # Frames Season Appearance FoV Elevation
iPhone 19 7134 Summer, Fall Sunny, Cloudy, Night 70◦ 0m

Insta360 31 23260 Spring, Winter Sunny, Cloudy, Night 360◦ 0m
DJI Mini 3 81 7334 Spring, Winter Sunny, Cloudy, Night 82◦ 60, 100, 120m

Constructing a dataset for large scale, immersive 3D reconstruction over time is laborious, time-
consuming, and computationally intensive. While professional photogrammetry software and de-
vices exist, they are not scalable and difficult to integrate with novel research. To enable collection
at scale in coverage and time, we elect to use a variety of consumer-grade devices and develop our
own processing pipeline. As shown in Table 2, for each of the twenty buildings, we systematically
collect both aerial and ground-level imagery across four seasons with different lighting conditions.
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For ground imagery, the data collection process involves walking around each building’s perimeter
with an iPhone or Insta360 camera to capture video sequences. We perform manual inspection
on all extracted frames to remove low-quality images and ensure sufficient overlap. Particularly,
panorama frames are split into four perspective images, each with a 120◦ FoV. These four frames
together cover the horizontal 360◦ FoV around the camera. We discard the bottom face, which has
a static human operator, and the top face, which is mostly sky. Any image that contains Personally
Identifiable Information (PII), e.g., faces or vehicle license plates, are blurred through automated
algorithms (Wu et al., 2019).

For aerial imagery, we operate DJI drones that follow a circular flight trajectory around the build-
ing. Drone flights are planned to ensure uniform and complete coverage. Multiple elevations are
collected at 60, 100, and 120m. We also keep the ascending video sequences as the drone moves
from ground level to approximately 60m above ground on two sides of each building. These as-
cending videos help improve calibration between ground and aerial imagery. From these videos, we
sample individual frames, applying the same quality control measures as for ground-level data.

3.2 SEMI-AUTOMATED CAMERA CALIBRATION FOR DOPPELGANGER MITIGATION

After video acquisition and frame extraction, we build a semi-automated pipeline to obtain correct
camera calibration for all images. Given the sheer size in the number of images and covered area,
directly applying software, e.g., COLMAP (Schönberger & Frahm, 2016), is both infeasible and
will lead to inaccurate results. As shown in Figure 2, we use a divide-and-conquer approach by 1.
calibrating images within an elevation, 2. merging images across multiple elevations based on a
manually verified cross-elevation set, and 3. merging images from different buildings into a single
coordinate system.

Image Calibration within an Single Elevation. For camera calibration, a collection of images I are
collected at different times. Based on these images, scene graphs Ggrd and Gaerial can be constructed
from the ground and aerial images. Scene graphs G = (I,P) consist of I as nodes, and image pairs
P = {(Ii, Ij)} as edges. Correspondences between (Ii, Ij) are extracted if edge P exists; such
correspondences are then used for triangulation in SfM. I.e., G determines the visibility of I to other
images. Various implementations can be used to determine scene graph edges. Exhaustive scene
graphs are generally more accurate, but can also lead to more false matches.

Visual ambiguity, often referred to as doppelgänger (Cai et al., 2023) matches, occur to cameras that
are far apart due to their similar patterns. These doppelgängers are particularly common for ground
image collection of buildings. Aerial images suffer less from visual ambiguities, as they have a
more global view of the building. For Gaerial, we simply use exhaustive matching. For Ggrd, we use
a mixture of sequential and exhaustive scene graph constructions to avoid doppelgängers.

Specifically, we denote multi-appearance ground images as Ix
i , where x denotes the video sequence

and i denote the frame within the sequence. Image pairs P = {Px
within} ∪ {Px,y

between} can be fully
separated into pairs that are within sequence x and between any two sequences {x, y}. For Px

within,
we use sequential matching, i.e. Px

within = {(Ix
i , Ix

j )||i− j| ≤ 10}, which prevents far-away frames
to match. Such a spatial constraint is harder to determine for Px,y

between, as different sequences may not
follow the same path or pace. To this end, we manually bucket frames into Sx

front and Sx
back, which

denote frames that are looking at the front or backside of the building. Px,y
between can then be define

as:
Px,y

between = {(Ix
i , I

y
j )|i ∈ Sx

front, j ∈ Sy
front} ∪ {(Ix

i , I
y
j )|i ∈ Sx

back, j ∈ Sy
back}. (1)

We find this setup effectively eliminates cross-sequence doppelgangers, as visual ambiguity within
the same side of the building can be controlled by spatial constraints of individual sequences. For
panorama images, which are split into four perspective frames, Px,y

between against iPhone frames only
involve the building-facing side of the panorama image.

Cross-Elevation Calibration. To connect calibrations from different elevations, we perform an ad-
ditional calibration on a cross-elevation set. Specifically, we calibrate a panorama ground sequence
with an aerial sequence. Registering cameras across a large baseline is challenging, due to a lack of
sufficient correspondences. To assist cross-elevation calibration, we record two transitional drone
sequences from ground to air for each building. Similar to ground images, transitional drone images
can experience visual ambiguities at ground level. The two sequences are distributed on the front
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and backside of the building. We manually define the scene graph Gcross elev, i.e.,

Pcross elev = {Pgrd
grd} ∪ {Pgrd

trans} ∪ {Pgrd
aerial} ∪ {P trans

trans} ∪ {P trans
aerial} ∪ {Paerial

aerial}, (2)

where Px
y denotes image pairs between two elevations (note that Px

y ≡ Py
x ). For ground images,

we apply sequential matching similar to the ground-only scenario previously, i.e., Pgrd
grd ≡ Px

within.

We do not match ground and aerial images directly, i.e., Pgrd
aerial = ∅, as few accurate matches can be

found and removing these pairs accelerate the feature matching process. Both P trans
aerial and Paerial

aerial are
exhaustive. Finally, ground-transition and transition-transition pairings can be defined as:

Pgrd
trans = {(Igrd

i , I trans
j )|i ∈ Sgrd

front, j ∈ S trans
front} ∪ {(Igrd

i , I trans
j )|i ∈ Sgrd

back, j ∈ S trans
back },

P trans
trans = {(I trans

i , I trans
j )|i ∈ S trans

front , j ∈ S trans
front} ∪ {(I trans

i , I trans
j )|i ∈ S trans

back , j ∈ S trans
back }.

(3)

We use both SP+SG (DeTone et al., 2018; Sarlin et al., 2020) and RoMa (Edstedt et al., 2024b)
to compute correspondences based on Pcross elev, and COLMAP (Schönberger & Frahm, 2016) to
perform SfM. Finally, we select the best results from different matchers.

3.3 COORDINATE ALIGNMENT

Since SfM systems estimate camera up to an arbitrary scale and orientation, we need to align mul-
tiple coordinate systems together. Given the same 3D points in two coordinate systems, Procrustes
Alignment (Gower, 1975) finds the scale, rotation, and translation {s, r, t} transformations between
them:

s∗, r∗, t∗ = argmin
s,r,t

∑
i

∥s(rpiX + t)− piY∥2, (4)

where pi,X and pi,Y are 3D points in coordinate system X and Y . To better align the camera systems,
we optimize based on both the camera center P i,X

pos ∈ R1×3 and rotation Ri,X ∈ R3×3. Specifically,
we represent camera rotation by backprojecting three points based on camera center and rotation:

P i,X
rot = P i,X

pos + sXRi,X , P i,Y
rot = P i,Y

pos + sYRi,Y (5)

where sX = ||σX ||, and σX is the standard deviations of P i,X
pos ; sX is similarly defined. Based on

P i,X
rot and P i,Y

rot , we update Eq. (4) as follows:

(s∗, r∗, t∗) = argmin
s,r,t

∑
i

∥s(rP i,X
pos + t)− P i,Y

pos ∥2 + ∥s(rP i,X
rot + t)− P i,Y

rot ∥2. (6)

We show that this significantly improves the rotation alignment accuracy in our appendix.

Single Building Alignment. For every building, we obtain (s∗grd, r
∗
grd, t

∗
grd) from the ground-only

coordinate system to the cross-elevation coordinate system. This is done by applying Eq. (6) on the
panorama sequence, which are calibrated in both systems. Similarly, we find (s∗aerial, r

∗
aerial, t

∗
aerial)

for aerial cameras based on the shared aerial sequence. All images of a single building can then be
transformed into a unified coordinate frame.

Campus-wide Alignment To put cameras from all buildings into the same system, we perform a
similar alignment process. To accomplish this, we first calibrate a subset of aerial images from
every building, captured during summer from an altitude of 60m. Based on the shared aerial images,
we use Eq. (6) to find the transformation of every building’s individual coordinate system to the
campus-wide aerial calibration.

4 EXPERIMENTS

We examine SoTA camera calibration and dense reconstruction algorithms on ULTRA-360. Specif-
ically, two challenges are explored in camera calibration: 1. finding true positive matches between
far-apart images, e.g., across elevation; 2. avoiding false positive matches between images that are
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Figure 3: Visualization of multi-elevation camera poses obtained from different matching methods.

not visible to each other but have similar patterns. Two challenges are explored in dense recon-
struction: 1. cross-elevation NVS and 2. multi-appearance NVS. Through experiments, we observe
progress in these four challenges and many areas for future research to improve upon.

Cross-Elevation Feature Matching. For each building in ULTRA-360, we select a portion of the
front side perspective ground images and aerial images acquired at 120m, without the transitional
images that connect them. We test six popular feature matching algorithms: SIFT (Lowe, 2004),
SP+SG (DeTone et al., 2018; Sarlin et al., 2020), SP+LG (DeTone et al., 2018; Lindenberger et al.,
2023a), LoFTR (Sun et al., 2021), RoMa (Edstedt et al., 2024b), and RoMa filtered by two feature
extractors, SuperPoint (DeTone et al., 2018) and DaD (Edstedt et al., 2025). Exhaustive matching
is used for all scenarios mentioned above. In addition, we test four contemporary feed-forward
matching methods: VGGSfM (Wang et al., 2024), VGGT (Wang et al., 2025), MASt3R (Leroy
et al., 2024) and MASt3R-SfM (Duisterhof et al., 2025). We report AUC@10, computed from
Relative Rotation Accuracy (RRA) and Relative Translation Accuracy (RTA). To isolate the cross-
elevation challenge, AUC is computed only over ground–aerial pairs. For each ground–aerial pair,
we measure the angular errors in rotation and translation and take the AUC of the minimum of RRA
and RTA over 10-degrees threshold, a common metric for calibration.

As shown in Table. 3 and visualized in Fig. 3, calibrating cross-elevation images is challenging. In
general, no algorithms can correctly calibrate all scenarios correctly. Interestingly, RoMa (Edstedt
et al., 2024b)-based methods are the only ones with the ability to find cross-elevation correspon-
dences. This can be attributed to its DINOv2 (Oquab et al., 2023) foundation model backbone.
Despite the high sensitivity, RoMa (Edstedt et al., 2024b) is prone to false positives, as ground im-
ages are often falsely matched to each other due to similar patterns on the building. To this end, we
find that SP (DeTone et al., 2018) or DaD (Edstedt et al., 2025) can help filter these false positives.
However, they can still fail in Fig. 3(c) and (e).

(a) Front & Back
Building #54

(b) SP+SG
Exhaustive

(c) SP+SG
netVLAD

(d) SP+SG
with DP++

(e) DaD+RoMa
with DP++

Figure 4: Visualization of calibration with various scene graph optimization methods given visual
ambiguity in (a). All but (d) lead to suboptimal calibration solutions.

Automated Scene Graph Optimization. Various methods have been proposed to optimize the
viewing scene graph to remove visually ambiguous pairs (Cai et al., 2023; Xiangli et al., 2024) and
reduce excessive computation (Arandjelovic et al., 2018; Berton et al., 2023). These approaches are
important for unconstrained calibration, where sensitive feature matchers are necessary, and false
positive matches pose significant challenges. To this end, we evaluate several methods on ULTRA-
360, particularly the ground panorama sequences.

As visualized in Fig. 4, exhaustive matching often leads to the worst results both in accuracy and
computation due to visual ambiguities. NetVLAD (Arandjelovic et al., 2018) reduces computation
by cutting down unnecessary pairs, but cannot resolve doppelgangers. Doppelganger++ (Xiangli
et al., 2024) simplifies the scene graph and address doppelgangers to some degree; however, sensitive
matchers like RoMa (Edstedt et al., 2024b) still finds enough false matches to lead to a deformed
calibration, whereas SuperGlue (Sarlin et al., 2020) is less sensitive but more specific, achieving
the correct solution. In summary, selecting appropriate scene graphs and feature matchers to obtain
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Table 3: Cross-Elevation camera poses obtained from different matching methods. Measured in
AUC@10 (higher is better).

Method Building #10 #24 #28 #34 #48 #49 #54

LoFTR 0 0 0 0 0 0 0
SP+RoMa 0.3738 0 0 0 0.6986 0 0.5966
RoMa 0.0854 0.0023 0 0.0036 0.5030 0 0.1388
SP+SG 0 0 0 0 0 0 0
SP+LG 0 0 0 0 0 0 0
SIFT 0 0 0 0 0 0 0
DaD+RoMa 0.6941 0.8000 0 0.7915 0.5465 0.7440 0.6380
VGGT 0.1384 0 0 0 0.0003 0 0
VGGSfM 0 0 0 0 0 0 0
MASt3R OOM 0 0 0 0 0 0
MASt3R-SfM 0 0 0 0 0 0 0

Table 4: Quantitative evaluation on multi-elevation reconstruction. We split the training set into
either ground-only (G), aerial-only (A), or ground-aerial combined (GA) imagery. The test views
are also separated into ground-only (G) and aerial-only (A) subsets. Due to different collection
conditions, we only evaluate DSIM in cross-elevation rendering.

Block-MERF Splatfacto-W CityGS V2 Scaffold-GS Octree-GS EVER
Train Test PSNR SSIM DSIM PSNR SSIM DSIM PSNR SSIM DSIM PSNR SSIM DSIM PSNR SSIM DSIM PSNR SSIM DSIM

G G 21.020 0.609 0.118 21.925 0.657 0.166 20.702 0.655 0.168 21.551 0.658 0.122 21.360 0.667 0.109 21.971 0.641 0.146
A G - - - - - - - - - - 0.588 - - - - - - - - - - 0.639 - - - - - - - - - - 0.522 - - - - - - - - - - 0.595 - - - - - - - - - - 0.608 - - - - - - - - - - 0.619

GA G 19.655 0.574 0.235 21.569 0.647 0.183 20.585 0.643 0.188 21.140 0.635 0.154 21.184 0.653 0.116 21.522 0.624 0.175
A A 27.451 0.779 0.015 29.440 0.860 0.016 28.997 0.840 0.009 30.286 0.878 0.006 29.950 0.874 0.005 26.397 0.720 0.023
G A - - - - - - - - - - 0.847 - - - - - - - - - - 0.714 - - - - - - - - - - 0.743 - - - - - - - - - - 0.822 - - - - - - - - - - 0.755 - - - - - - - - - - 0.740

GA A 13.453 0.106 0.407 23.206 0.669 0.042 20.129 0.598 0.173 26.135 0.748 0.022 26.488 0.759 0.024 23.433 0.644 0.039

good calibration still requires manual inspection and expertise. For more complete metrics and
visualizations regarding image registration, please refer to our appendix.

Large-scale Dense Reconstruction and NVS. We select ten buildings from ULTRA-360 to evaluate
current progress in robust, large-scale 3D reconstruction. For each building, we split training data
into three configurations: 1. ground images only, 2. aerial images only, 3. both ground and aerial
images. For each configuration, we evaluate from held-out ground and aerial cameras separately.

For baselines, we choose six SoTA methods for evaluation: Splatfacto-W (Xu et al., 2024a), Block-
MERF (Song et al., 2024), CityGaussianV2 (Liu et al., 2024b), Scaffold-GS (Lu et al., 2024),
Octree-GS (Ren et al., 2024) and EVER (Mai et al., 2024). Multiple metrics are used to evaluate
NVS performance: Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM) are used
for low-level quality evaluation. Perceptual similarity metrics DreamSim (Fu et al., 2023) (DSIM)
are used to quantify semantic similarity, which helps in cases where pixel-wise groundtruth is not
available due to e.g., changed lighting conditions.
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Figure 5: Visualization of ground image rendering from different reconstruction methods and two
training configurations: ground-only images (G) and ground+aerial images (GA).
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Figure 6: Top: ground view renderings from aerial-image-only reconstructions. Bottom: aerial view
renderings from ground-image-only reconstructions.

As shown in Table 4, and visualized in Figures 5 and 6, we observe that Octree-GS (Ren et al., 2024)
performs the best out of all methods, particularly when training data contain multi-elevation images.
This can be attributed to its Level-of-Detail implementation. Scaffold-GS (Lu et al., 2024) achieves
comparable fidelity through hierarchical Gaussian decomposition. All methods perform much worse
given cross-elevation images for training compared to using single-elevation only. Interestingly, this
may not be due to limited capacity. As shown in Table 5, cross-elevation reconstructions have
significantly less Gaussians compared to single-elevation reconstructions, despite being strictly a
superset in its training data. This likely indicates densification algorithms experience challenges
when Gaussians’ positional gradients are pulled from different directions.

By rendering cross-elevation cameras, we can observe various artifacts from current methods. Sig-
nificant floaters exist when ground-only reconstructions are rendered from aerial perspectives. No-
tably, Splatfacto-W (Xu et al., 2024a) achieves superior aerial rendering through its background
modeling. As shown in Figure 6, we also implement an implicit neural network to model sky
in Octree-GS, which significantly reduce floaters. CityGS (Liu et al., 2024a;b) performs best on
ground-view reconstruction from aerial data via geospatial-aware Gaussian priors optimized for
large-scale aerial image.

Multi-Appearance Reconstruction and Zero-Shot NVS. ULTRA-360 contains multi-view se-
quences collected at different time. We use these sequences to evaluate multi-appearance recon-
struction. Wild-GS (Xu et al., 2024b) and Gaussian-Wild (Zhang et al., 2024) are used as baselines,
both of which require test image for evaluation. Unlike previous datasets (Snavely et al., 2006),
ULTRA-360 has access to multi-view groundtruth at every appearance. This allows us to evaluate
the effect of per-training-image embeddings on test images. As shown in in Table 6, we find that pre-
vious approaches lead to severe entanglement between view direction and the general appearances.
Specifically, if we apply embedding from a training image that is the farthest away from the cur-
rent test view, a significant drop in performance can be observed. The larger the performance drop
suggests that the embeddings and networks are learned to overfit the input images, instead of the
general 3D appearance. By modifying the per-image embedding to a time-based embedding, we can
both remove the reliance on test-images at render time and achieve more 3D consistent appearance
modeling. We provide more details and visualizations in our appendix.

Table 5: The average number of 3D Gaus-
sians under different training configurations

Train Splatfacto-W CityGS V2 Octree-GS EVER
G 340244 569325 3191058 535701
A 630093 287026 527991 70738

GA 309018 241688 2230053 262366

Table 6: Quantitative evaluation of multi-appearance recon-
struction and rendering based on ULTRA-360.

Wild-GS Gaussian-Wild
PSNR SSIM DSIM PSNR SSIM DSIM

Test Image Embedding 28.133 0.864 0.015 26.528 0.767 0.020
Nearest Train Image Embedding 28.003 0.863 0.014 26.567 0.757 0.020
Farthest Train Image Embedding 22.506 0.770 0.061 25.621 0.757 0.023

Time Embedding 27.973 0.860 0.014 26.277 0.762 0.021

5 DISCUSSION AND CONCLUSION

In this work, we propose a dataset called ULTRA-360 for Unconstrained Large-scale Temporal 3D
Reconstruction across Altitudes. ULTRA-360 contains 37.7k frames collected from hundreds of
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videos across the campus and includes academic buildings from multiple seasons, multiple eleva-
tions, and multiple camera types. To this end, we ensure cameras from different elevations can find
correspondences based on ground-to-aerial transitional images. We also eliminate false matches
through manually defined scene graphs.

Popular feature matching and scene graph optimization algorithms are evaluated to measure how
imagery from ULTRA-360 can be calibrated without assistance. Some methods demonstrate sig-
nificant improvement in finding difficult true positives, at the cost of more false positives. While
proper filtering based on keypoint extraction can lead to less false positives, current camera cali-
bration pipeline still fall into incorrect solutions due to visual ambiguities, even with scene graph
optimization. This showcases the need for a potentially more global approach in addressing doppel-
gangers rather than relying pair-wise prediction.

We also evaluate various dense reconstruction methods on ULTRA-360. We find that current meth-
ods, even those designed for large scale reconstruction, perform much worse given cross-elevation
images for training compared to using single-elevation only. This likely indicates limitations in
densification algorithms at scale. Multi-appearance reconstruction is also benchmarked. Several
methods require access to test-time images to model appearance. Based on ULTRA-360, we find
that these methods tend to generate embeddings that are heavily over-fitted to specific viewpoint,
leading to suboptimal results to other views of the same appearance.

ULTRA-360 provides many novel directions for research, including the study on out-of-distribution
NVS, campus-scale immersive 4D reconstruction, and potentially serving as test-grounds for eval-
uating geometric plausibility for generative models. In the future, we will continue to expand on
ULTRA-360 to include more buildings and temporal variations.
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Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khali-
dov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud As-
sran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan
Misra, Michael G. Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jégou, Julien Mairal,
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 RECONSTRUCTED CAMPUS VISUALIZATION

Figure A: A visualization of the reconstructed campus.

Figure A shows a visualization of the reconstructed campus based on our collected imagery over
two years. The dataset is collected over multiple seasons, elevations, and multiple camera types
to enable fully immersive 3D/4D reconstruction. All images have been calibrated into a unified
coordinate system through a semi-automated process and manual verification.

A.2 CROSS-ELEVATION FEATURE MATCHING

As shown in Figure B, we provide additional visualization of camera pose estimations for five
buildings using six feature matching configurations, complementing the results shown in Figure 3.
Overall, DaD+RoMa achieves higher accuracy, successfully estimating more camera poses with
lower error. However, it fails to register the ground-level images in Figure B(a) and encounters false
positive matches in Figure B(c), demonstrating the challenge of cross-elevation feature matching
and underscoring the necessity of adopting the proposed single elevation calibration strategy.

We also visualize the absolute error of each estimated camera pose with respect to the ground truth
after alignment in Figure C. Specifically, we sort these errors in ascending order; for images that
fail to be calibrated, we assign a large error. DaD+RoMa is generally capable of estimating most
camera poses except Figure C(d). Although SIFT struggles to register the multi-elevation images
simultaneously, the successfully estimated poses tend to exhibit lower error, indicating higher con-
fidence. We also observe that RoMa without any feature extractor leads to unstable results, which
is reflected in the gradual increase in error across its estimated poses. This correlates with the ob-
servation that RoMa’s raw correspondences contain both many true positives and false positives. In
general, LoFTR and SP+SG performs similarly, compromising between sensitivity and specificity.
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Figure B: Additional visualization of multi-elevation camera positions obtained from different
matching methods.

(a) Building #10 (b) Building #24 (c) Building #28

(d) Building #30 (e) Building #34 (f) Building #48

(g) Building #49 (h) Building #54 (i) Building #78

Figure C: Visualization of multi-elevation camera position error across nine buildings

A.3 AUTOMATED SCENE GRAPH OPTIMIZATION

We provide more examples in Figure D to demonstrate the challenge in visual ambiguities. Many
buildings look similar from different angles. Exhaustive matching, e.g., with SP+SG, often fails.
Without any knowledge of acquisition time, netVLAD (Arandjelovic et al., 2018) sometimes can
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help prune away unnecessarily pairs to achieve better reconstruction; however, it’s also very unreli-
able. Doppelganger++ (Xiangli et al., 2024) does better at eliminating confusing pairs, but different
feature matchers can still be prone to errors in different scenarios.

Front & Back
Building #28

SP+SG
Exhaustive

SP+SG
netVLAD

SP+SG
with DP++

DaD+RoMa
with DP++ Satellite View

Repetition
Building #34

SP+SG
Exhaustive

SP+SG
netVLAD

SP+SG
with DP++

DaD+RoMa
with DP++ Satellite View

Symmetry
Building #49

SP+SG
Exhaustive

SP+SG
netVLAD

SP+SG
with DP++

DaD+RoMa
with DP++ Satellite View

Figure D: Visualization of calibration with various scene graph optimization methods given visual
ambiguity. A satellite view is provided to demonstrate the true locations of the images.

A.4 LARGE-SCALE DENSE RECONSTRUCTION AND NVS

Our dense reconstruction evaluation uses PSNR, SSIM, and DSIM as primary metrics. As a percep-
tual similarity metric LPIPS (Zhang et al., 2018) is also included in Appendix Tables A and B for
completeness.

Table A: LPIPS on multi-elevation reconstruction.

Train Test Block-MERF Splatfacto-W CityGS V2 Scaffold-GS Octree-GS EVER
G G 0.513 0.522 0.512 0.483 0.443 0.467
A G 0.899 0.846 0.861 0.871 0.881 0.829

GA G 0.602 0.539 0.553 0.541 0.487 0.503
A A 0.175 0.188 0.173 0.102 0.123 0.299
G A 0.920 0.881 0.912 0.911 0.846 0.869

GA A 0.708 0.394 0.532 0.277 0.266 0.355

Table B: LPIPS of multi-appearance recon-
struction.

Wild-GS Gaussian-Wild
Test Image Embedding 0.114 0.289

Nearest Train Image Embedding 0.115 0.288
Farthest Train Image Embedding 0.195 0.299

Time Embedding 0.118 0.298

A.5 MULTI-APPEARANCE RECONSTRUCTION AND ZERO-SHOT NVS

Figure E shows the rendering results using different embeddings in the multi-appearance experi-
ment. The difference maps between the rendered and ground truth images are also shown. It can be
seen that the image rendered with the embedding farthest from the training view exhibits a signifi-
cant overall appearance difference. These visual comparisons highlight a key drawback of per-image
embeddings that they are view-dependent and lack consistency across different views.

A.6 COORDINATE ALIGNMENT

Mip-NeRF 360 ER(µ) ↓ ET (µ) ↓
Procrustes Alignment 0.196 0.0144

+ RANSAC 0.179 0.0114
+ Rotation Points 0.156 0.0117

Table C: Improvements over Procrustes Alignment baseline in average rotation error ER and trans-
lation error ET . Incorporating rotation points further minimizes the overall error.

We test the alignment algorithm on the Mip-NeRF 360 (Barron et al., 2022) dataset. Specifically,
we calibrate a sparse subset of the images, then attempt to align it to the groundtruth coordinate
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Wild-GS GT Test Image Embedding Nearest Train-img Emb Farthest Train-img Emb Time Embedding

Diff Maps

DSIM 0.005 0.005 0.024 0.007

Gaussian-Wild GT Test Image Embedding Nearest Train-img Emb Farthest Train-img Emb Time Embedding

Diff Maps

DSIM 0.009 0.009 0.032 0.010

Figure E: The rendering result of Wild-GS and Gaussian-Wild on different appearance embeddings.
Zoom-in images are shown in the bottom left and right; better viewed when magnified.

system. Sparse calibration leads to inaccuracy, and makes the alignment process more noisy. As
shown in Tab. Table C, applying constraint on both the translation and rotation points indeed reduce
the rotation error significantly.

A.7 ADDITIONAL SCENE RECONSTRUCTION VISUALIZATION

Please refer to the videos for additional rendering of 3D structures of the campus buildings.

A.8 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We do not use any large language models in this work when constructing our dataset nor when
drafting the paper.
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