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ABSTRACT

We propose Partitioned Learned Count-Min Sketch (PL-CMS), a new approach
to learning augmented frequent item identification in data streams. Our method
builds on the learned Count-Min Sketch (LCMS) algorithm of Hsu et al. (ICLR
2019), which combines a standard Count-Min Sketch frequency estimation data
structure with a learned model, by partitioning items in the input stream into two
sets. Items with sufficiently high predicted frequencies have their frequencies
tracked exactly, while the remaining items, with low predicted frequencies, are
placed into the Count-Min Sketch data structure.
Inspired by an approach of Vaidya et al. for learning augmented Bloom filters
(ICLR 2021), our PL-CMS algorithm partitions items into different sets, based on
multiple predicted frequency thresholds. Each set is handled by a separate Count-
Min Sketch data structure. Unlike classic LCMS, this allows our algorithm to
take advantage of the full prediction space of the learned model. We demonstrate
that, given fixed partitioning thresholds, the parameters of our data structure can
be efficiently optimized using a convex program. Empirically, we show that, on
a variety of benchmarks, PL-CMS obtains a lower false positive rate for frequent
item identification as compared to LCMS and standard Count-Min Sketch.

1 INTRODUCTION

Frequent item identification in massive data streams is a fundamental problem, with applications
across machine learning (Medini et al., 2019), networking (Tang et al., 2020; Chabchoub et al.,
2009), data mining, and databases (Beyer & Ramakrishnan, 1999; Fang et al., 1998). The goal is to
identify all items that appear sufficiently often in the data stream, while using a just small amount of
processing space – i.e., significantly less than is required to store an exact frequencies of every item.

Commonly, this task is formalized as the (ε, k)-frequent items (or ‘heavy-hitters’) problem
(Woodruff, 2016). Given a data stream of length n, a frequency parameter k, and an error toler-
ance ε ∈ (0, 1), to solve this problem, an algorithm should identify as heavy-hitters all items with
frequency ≥ n

k , but no items with frequency < (1 − ε)nk . We can relax this problem, allowing the
algorithm to have a small false positive rate (FPR). I.e., a small fraction of items with frequency
< (1− ε)nk that are misidentified as heavy-hitters.

A wide variety of algorithms for the (ε, k)-frequent items problem and its variants have been pro-
posed. These include Misra-Gries summaries (Misra & Gries, 1982), Lossy Counting (Manku &
Motwani, 2002), multi-stage Bloom filters (Estan & Varghese, 2002), Space-Saving (Metwally et al.,
2005), Count-Sketch (Charikar et al., 2002) and CountSieve (Braverman et al., 2015).

One of the most popular approaches is the Count-Min Sketch (CMS) data structure (Cormode &
Muthukrishnan, 2005). CMS maintains a set of t tables with m ‘buckets’ each. Each time an item
appears, it is hashed using t random hash functions, into one bucket in each table. Each bucket stores
a counter of the total frequency of the items that have been hashed into it. In this way, the t buckets
that an item x is hashed into (one in each table) have counters at least as large as the frequency of
x, but potentially larger, due to hash collisions. An approximate frequency of x can be obtained by
taking the minimum value across the tables of the buckets that x hashes into. This value is always
higher than the true frequency of x, but ideally by only a small amount if m and t are large enough.

CMS yields a natural approach to solving (ε, k)-frequent items: we simply output all elements of the
stream whose approximate frequency is at least nk . Since the CMS frequency estimates are always
overestimates, we thus identify all true frequent items with frequency ≥ n

k . Further, one can show
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that, for any ε, δ ∈ (0, 1), CMS with t = O(log(1/δ)) tables and m = O(k/ε) buckets in each table
misidentifies an item with frequency< (1− ε)nk as a heavy hitter with probability at most δ. That is,
the algorithm achieves expected FPR δ (Cormode & Muthukrishnan, 2005). This space complexity
is optimal up to logarithmic factors for worst-case input streams (Bhattacharyya et al., 2018).

1.1 LEARNING AUGMENTED FREQUENT ITEM IDENTIFICATION

In recent years, significant work has focused on learning augmented algorithms, which use machine
learning models to improve the performance of classical algorithms by adjusting their behavior with
respect to the learned, underlying input distribution. (Kraska et al., 2018; Mitzenmacher, 2018; Lyk-
ouris & Vassilvitskii, 2021; Purohit et al., 2018; Roughgarden, 2021). Several works have focused
in particular on learning augmented approaches to frequent item estimation (Aamand et al., 2019;
Du et al., 2021; Dolera et al., 2022; Li et al., 2023).

Hsu et al. (2019) propose a Learned Count-Min Sketch (LCMS) algorithm, which improves the
performance of CMS using a learned model. In particular, their model uses the features of an item
to produce a score for that item – with higher scores meant to correspond to more frequent items. The
algorithm fixes a single score threshold, and for any item in the data stream whose score is above that
threshold, tracks its frequency exactly. That is, an array of ‘unique buckets’ is maintained, where
each item with score above the threshold is assigned its own counter. Items that receive a score
below the threshold (i.e., that are predicted to have low frequency) are placed in a classic Count-Min
Sketch data structure, which returns frequency estimates for these items.

Hsu et al. (2019) demonstrate that on several benchmarks, their LCMS data structure can output
frequency estimates with much smaller error than classic CMS, for a given space budget. Intuitively,
the learned model is able to identify many of the most frequent items and avoid putting them in the
CMS, leading to fewer instances of infrequent items appearing frequent due to hash collisions.

Despite the success of this approach, it leaves open a natural question: the LCMS algorithm only
makes very limited use of the learned model, thresholding its output at a single value. Items with
very low scores (i.e., that are very unlikely to be heavy-hitters) are treated no-differently from items
with scores just below the threshold. It is natural to ask if even further performance gains can be had
by using the output of the learned model in a less coarse manner.

Recently, Zhang et al. (2020) propose two other learning-based variants of CMS. The first is similar
to LCMS, but instead of tracking the frequencies of predicted heavy items exactly, directly returns
frequency predictions from the learned model as estimates. The second splits the input items into
three classes based on the model predictions. For the items with the highest predicted frequencies,
the algorithm exactly tracks frequencies. For the items in next highest group, the algorithm uses
the learned model frequency estimates directly. For the items with the lowest predicted frequencies,
the algorithm employs a CMS data structure. Zhang et al. (2020) show favorable performance as
compared to non-learning-based variants of CMS, however their approach hinges on the ability to
train a highly accurate learned model, that can be used directly for frequency estimation.

1.2 OUR CONTRIBUTIONS

Our main contribution is Partitioned Learned Count-Min Sketch (PL-CMS), an extension of LCMS
that takes advantage of the full model output space, does not require a highly accurate model, and is
able to achieve significantly better frequent item identification performance on several benchmarks.

The idea of PL-CMS is simple: we partition the input items into several classes, based on multiple
thresholds for the learned model output score. As in LCMS, those items with the highest predicted
frequencies are placed into unique buckets, with exact frequency counts. Each other class of items
is placed into its own Count-Min Sketch data structure. For a schematic, see Figure 1. By separating
the input items in this way, we can separately optimize the parameters of the CMS data structure
for each class, allowing us to achieve a lower false positive rate given a fixed space budget for the
(ε, k)-frequent items problem. For example, for items with fairly high predicted frequencies, we
may be able to use relatively small tables in the CMS data structure, without risking a large number
of false positives, despite the high number of hash collisions.
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Figure 1: Partitioned Learned Count-Min Sketch (PL-CMS). Observe that items are partitioned
based on scores returned by the learned model, with score thresholds denoted by l1, . . . , lc. ti, mi

denote the number of tables and buckets for each Count-Min Sketch CMSi. Our approach takes
advantage of the learned model output space more extensively than the standard LCMS algorithm,
which uses just a single score threshold.

PL-CMS is inspired by the work of Dai & Shrivastava (2020) and Vaidya et al. (2020) on learning
augmented Bloom filters. Both papers enhance a simple learned Bloom filter by separating the
output score space of a learned model into multiple regions according to different threshold values,
and assigning the items in each region to a separate Bloom filter. They demonstrate that this approach
leads to space savings over several Bloom filter variants, including standard, learning augmented
with a single score threshold, and the sandwiched learned Bloom filter (Mitzenmacher, 2018).

Parameter Optimization. As with the partitioned learned Bloom filters of Dai & Shrivastava (2020)
and Vaidya et al. (2020), a key challenge with PL-CMS is optimizing the multiple algorithm param-
eters, including the number of regions and the associated threshold values, and the space budget
allocated to each CMS data structure. In the Bloom filter setting, Vaidya et al. (2020) demonstrate
how to optimize these parameters via dynamic programming, given a fixed number of regions.

In the case of PL-CMS, parameter optimization is more difficult. Nevertheless, we show that given
a fixed set of thresholds that partition the learned model output space, we can efficiently optimize
the space allocations for each region’s CMS data structure, as well as the parameters of these data
structures, in order to minimize the false positive rate for frequent items detection. Specifically, we
show how to optimize the number and size of the tables for each CMS data structure, assuming
a fixed space allocation. We then apply an adjusted upper-bound formula for the theoretical false
positive rate of CMS to optimize the space allocations themselves via a convex program.

Empirical Performance. We evaluate our algorithm on four datasets: Macbeth, Bible, Beijing
PM2.5 concentration, and AOL search queries. We show that PL-CMS obtains a significantly lower
false positive rate for frequent item detection, as compared to standard CMS and LCMS on datasets
with heavy-tailed (Zipfian) frequency distributions. This is a commonly assumed input distribution
in prior work (Hsu et al., 2019; Aamand et al., 2019; Zhang et al., 2020; Du et al., 2021). On datasets
with very skewed, non-heavy-tailed frequency distributions, PL-CMS does not offer significant ad-
vantages, as there is not much to gain from further partitioning of the learned model ouput space.
However, we demonstrate that PL-CMS still matches the performance of LCMS in these cases.

We remark that, while prior work focuses on various error metrics, such as the mean-squared fre-
quency estimation error over all items in the stream (Zhang et al., 2020) or the average absolute
estimation error (Hsu et al., 2019), we focus specifically on FPR for frequent item identification.
In many applications, performance on this task is the key goal. An interesting direction for future
research would be to develop algorithms that take advantage of the full learned model output space
in order to improve performance on other frequency estimation error metrics.

2 PARTITIONED LEARNED COUNT-MIN SKETCH

In this section, we formally describe the design of the Partitioned Learned Count-Min Sketch (Sec-
tion 2.1), and derive a theoretical upper bound for its expected false positive rate (Section 2.2). We
will later use this upper bound in Section 3 to optimize the parameters of the algorithm in order to
achieve a minimal false positive rate given a fixed space budget.
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2.1 DESIGN

As discussed, the PL-CMS data structure assumes access to a learned model that is trained to predict
frequencies of items in the input stream. We also assume a fixed set of score thresholds l1 > l2 >
. . . > lc, which partition the learned model output space into c + 1 regions: all inputs with score
≥ l1, all inputs with scores in [li+1, li) for 1 ≤ i ≤ c − 1, and all inputs with score < lc. Except
for the first region with scores ≥ l1, each score region, which we number from 1 to c, is associated
with a CMS data structure, denoted CMSi. This data structure uses ti tables (associated with ti
2-universal hash functions), each with mi buckets.

When an item arrives in the stream, it is passed to the learned model, which determines which region
it falls in. If its score is ≥ l1, then its frequency is tabulated in a ‘unique bucket’. That is, when
the item first arrives, a counter is allocated for it. On future arrivals, this counter is incremented
in order to record the exact frequency of the item. Alternatively, if the item falls in score region
i ∈ {1, . . . , c}, it is inserted into CMSi.

Assume that our algorithm is allocated a space budget of S counters. Let m denote the number of
counters allocated to unique buckets, i.e., the number of unique items in the stream with predicted
score ≥ l1. We will always assume that l1 is set large enough such that m < S.

Let S′ = S −m denote the space remaining to allocate to our c different CMS data structures. For
simplicity, we will denote the space allocated to CMSi as ri ·S′ where ri ∈ [0, 1] and

∑c
i=1 ri = 1.

2.2 FALSE POSITIVE RATE UPPER BOUND

Determining the fraction of space ri allocated to each CMS data structure within PL-CMS, along
with the parameters mi and ti of these data structures is crucial to the performance of the algorithm.
Our aim is to optimize these parameters to obtain a low false positive rate for the (ε, k)-frequent
items identification problem. To do so, we first derive a closed form upper bound for the false
positive rate of PL-CMS given a fixed space budget S′. This upper bound depends on the parameters
ri,mi, and ti for i ∈ {1, . . . c}. It also depends on several statistics of the input dataset. In particular:

1. The fraction of infrequent elements assigned to each region (i.e., the number of unique
items assigned to that region with frequency < (1 − ε)nk divided by the total number of
unique items with frequency < (1− ε)nk ), which we denote by Fi

2. The total frequency of all items assigned to the region, which we denote by Ei.

As we will see in Section 3, exactly optimizing the parameters of PL-CMS requires knowledge of
these statistics. However, in our empirical evaluation, we show that these quantities can be effec-
tively approximated from historical or other training data, allowing for approximate optimization.

2.2.1 PER ITEM FALSE POSITIVE PROBABILITY

Consider an infrequent item in the data stream x with true frequency fx < (1 − ε) · n/k, which is
placed in CMSi based on its learned model output score. We start by calculating an upper bound
on the probability that x is a false positive. Let f̂x,i,j be the estimated frequency of x in table j of
CMSi. Let hi,j(·) be the random hash function employed by this table, which maps input items to
indices {1, . . . ,mi}. As is standard in the literature (Cormode & Muthukrishnan, 2005), we assume
that hi,j is 2-universal – i.e., for any x 6= y, Pr[hi,j(y) = hi,j(x)] ≤ 1/mi. We have:

E
[
f̂x,i,j − fx

]
= E

fx +
 ∑

y 6=x s.t.
hi,j(y)=hi,j(x)

fy

− fx
 ≤ 1

mi
· Ei, (1)

where Ei denotes the sum of frequencies of items whose predictions place them in the region i.
Applying Markov’s inequality, we then have:

Pr
[
f̂x,i,j − fx ≥ ε ·

n

k

]
≤

Ei
mi
εn
k

≤ k

ε ·mi · n
· Ei. (2)
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Since we take a minimum counter over t tables to obtain an element’s frequency estimate in CMSi,
which we denote by f̂x,i = mintij=1 f̂x,i,j , we can upper bound the probability of having error at
least εnk in this estimate by upper bounding the probability that all individual independent counters
have large estimation error. That is:

Pr
[
f̂x,i − fx ≥ ε ·

n

k

]
=
∏
j∈[ti]

Pr[f̂x,i,j − fx ≥ ε ·
n

k
] ≤

(
k

ε ·mi · n
· Ei
)ti

, (3)

where we substitute the inequality from equation 2 to obtain the final bound.

Observe that since x has frequency< (1−ε)nk , it can only be a false positive if f̂x,i ≥ n
k > fx+ε· nk .

Thus, equation 3 upper bounds the false positive probability for x when assigned to CMSi.

2.2.2 EXPECTED TOTAL FALSE POSITIVE RATE UPPER BOUND

We next compute an upper bound on the expected total false positive rate of PL-CMS by summing
the false positive probabilities over all non-frequent elements and dividing the result by the number
of unique infrequent elements M in the data stream. For i ∈ [c], let Bi denote the set of infrequent
items with frequency < (1− ε)nk assigned to CMSi. Applying equation 3, we obtain:

FPR ≤ 1

M
·
c∑
i=1

∑
x∈Bi

(
k

ε ·mi · n
· Ei
)ti
≤

c∑
i=1

Fi ·
(

k

ε ·mi · n
· Ei
)ti

, (4)

where we recall that Fi denotes the fraction of infrequent items falling into bucket i.

3 PARAMETER OPTIMIZATION

We next show how to optimize the parameters of PL-CMS using the FPR upper bound derived in
Section 2.2.2. Recall that, throughout, we assume a fixed set of thresholds defining c regions. These
thresholds in turn fix values for the statistics Ei and Fi, which we assume knowledge of throughout.
In Section 4 we demonstrate that in practice, sufficiently accurate approximations to these statistics
can be obtained from training data, allowing effective optimization of PL-CMS.

We first optimize the parameters of each CMS while keeping space allocations for each region fixed
(Sec. 3.1). We then show how to optimally allocate the space budget across regions (Sec. 3.2.

3.1 OPTIMIZING CMS PARAMETERS FOR EACH REGION

For each Count-Min Sketch CMSi, given a fixed space allocation, we first show to to find the
optimal number tables ti and bucketsmi that minimize the bound on the total expected false positive
rate given in equation 4. I.e., that minimize Fi · ( k

εmin
·Ei)ti . Suppose we allocate si = ri ·S′ units

of space to CMSi. Then we can write si = mi · ti. We substitute mi =
si
ti

and take the derivative
of our probability upper bound with respect to ti, finding a root at ti = εsin

eEik
. Thus, we set:

t∗i =
εsin

eEik
and m∗i =

si
ti

=
eEik

εn
. (5)

In the Appendix A.1, we conduct a series of experiments to verify that our theoretical optimization
of mi and ti works well in practice.

3.2 OPTIMIZING SPACE ALLOCATIONS

We next show how the optimize the space allocations for each CMS data structure within PL-CMS,
assuming a fixed total space budget S′. By plugging in the optimal t∗i andm∗i values from equation 5
into equation 4, we obtain the following bound for the expected total FPR of PL-CMS:

FPR ≤
c∑
i=1

Fi · (
1

e
)
εsin

eEik =

c∑
i=1

Fi · (
1

e
)
εriS

′n
eEik . (6)
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Observe that the only parameters that the above bound depends on are r1, . . . , rc – the fraction of
space allocated to each CMSi. Thus, it only remains to optimize these fractions. Our problem
formulation becomes:

min
r1,...,rc

c∑
i=1

Fi · (
1

e
)
εriS

′n
eEik subject to: ri ≥ 0, for i = 1, . . . , c and

c∑
i

ri = 1.

One can observe that the above function is convex in r1, . . . , rc and that the constraints are convex.
In particular, we can formulate the problem as a conic exponential optimization instance, and solve
it using e.g., the Mosek convex solver (ApS, 2022).

In practice, we find the bound of equation 6 is somewhat loose. Specifically, optimizing the space
allocation using this theoretical upper bound does not necessarily optimize the FPR in practice. To
fix this issue, we adjust the FPR bound by introducing a small constant p > 1 as follows:

FPR ≈
c∑
i=1

Fi · (
1

e
)
pεriS

′n
eEik . (7)

(a) l1 = 100, l2 = 20 (b) l1 = 400, l2 = 7

Figure 2: Comparison of the actual (equation 6) vs. adjusted (equation 7) FPR bound with the
purpose of optimizing space allocation values for 2-CMS using the Macbeth dataset with total space
= 750 (excluding the space reserved for unique buckets) where l1, l2 denote the first and second
threshold respectively. The x-axis represents the fraction of space r2 reserved for CMS2. Note,
r1 is determined by r2. The red and blue lines represent the theoretical and adjusted (with p = 3)
FPR bounds, respectively. The green line represents the lowest FPR obtained for a single learned
Count-Min Sketch in practice. The blue data points are FPR values obtained in practice by varying
the value of r2.

In Figure 2, we observe that using the adjusted FPR bound of equation 7 with a value of p = 3 to
optimize the space allocations best approximates the optimal FPR values obtained in practice for the
Macbeth dataset. We will later see that this constant works well across different datasets. Future
research studying this adjustment from a theoretical standpoint could yield valuable insight.

4 EXPERIMENTS

We next evaluate the performance of our PL-CMS algorithm on several datasets, comparing the
false positive rate in the task of identifying (ε, k)-frequent items to standard CMS and the learned
CMS approach of Hsu et al. (2019), which we denote as LCMS. Note, LCMS is equivalent to PL-
CMS with a single Count-Min Sketch data structure. We show that in many cases, PL-CMS can
obtain significantly lower false positive rates with the same space usage, as compared to existing
approaches.

4.1 METHODOLOGY

We focus on evaluating PL-CMS with two or three learned model output score thresholds, and in turn
two or three CMS data structures. We call these variants 2-CMS and 3-CMS, respectively. We find
that using a larger number of score thresholds typically does not significantly improve performance.

To establish a baseline, we first test the partitioned variants assuming exact knowledge of the total
frequency Ei and fraction of infrequent items Fi for each bucket, along with the exact number of
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unique bucketsm. This allows us to exactly optimize the parameters of PL-CMS using the approach
of Section 3. We denote the resulting idealized algorithms as 2-CMS-A and 3-CMS-A.

In Section 4.4, we show how to estimate Ei, Fi, and m effectively from training data. We then
perform parameter optimization using these estimated values. We refer to the resulting algorithms
as 2-CMS-E and 3-CMS-E, and demonstrate that they perform similarly to the idealized variants.

We compare all algorithms (PL-CMS, LCMS, and CMS) using various fixed space budgets of s
counters. This includes counters for both the CMS data structures and the unique buckets for the
learned variants. We ignore the space of the learned model itself, which is lower order in our settings.

For each dataset, we pick two different values of n
k , the cut-off for defining a ‘frequent item’. We

set these cutoffs to the 95-th and 99-th percentiles in the dataset’s frequency distribution. We test the
algorithms under a wide range of space budgets, which yield a wide range of false positive rates. For
PL-CMS and LCMS, we perform a grid search to pick learned model output threshold values that
work well in practice. For LCMS we compare three values for the first threshold l0 by scaling three
relatively high frequencies in the training dataset’s distribution which would likely yield good results
for identifying n′/k frequent items with n′ denoting the length of the training set. For 2-CMS, we
use the same set of l0 values as LCMS and add a second cutoff value l1 by targeting the middle-
frequency values of the training dataset. In the case of 3-CMS, we maintain the same two thresholds
as 2-CMS and pick a relatively small frequency for l2. For each variant, we report the false positive
rates in the task of identifying (ε, k)-frequent items returned by threshold settings which return the
lowest average FPR across different space settings. For 2-CMS-E and 3-CMS-E we use the same
sets of thresholds as 2-CMS-A and 3-CMS-A, respectively..

4.2 DATASETS

We conduct our experiments on several datasets. The first two, Macbeth and Bible are text datasets
with Zipfian-like heavy-tailed frequency distributions, obtained from the NLTK Python library (Bird
et al., 2009).Macbeth contains 3, 446 unique tokens with 18, 292 total occurrences. Bible contains
12, 567 unique tokens, with 792, 026 total occurrences. For our training data for the learned oracle
and estimation of Ei and Fi, we employ several other text datasets from the NLTK library. In
particular, Jane Austen’s Emma, a collection of poems by William Blake, and children’s stories by
Sarah Cone Bryant, totaling 215, 783 words and 9, 502 unique word tokens.

Our third data set is Beijing PM2.5 (Chen, 2017), which was previously used by Zhang et al. (2020)
to evaluate learning-augmented CMS. This dataset covers a 4-year period and includes PM2.5 con-
centration values (treated as frequencies) for each day, along with other features like temperature,
pressure, and wind speed. After preprocessing, the dataset comprises 41, 757 observations (i.e.,
unique items), with a cumulative PM2.5 concentration (i.e., total frequency) of 4, 117, 792.

Our final dataset is an AOL search query dataset, as employed by Hsu et al. (2019), which comprises
search queries collected over 90 days, accompanied by their respective frequencies (Huang, 2006).
Due to space constraints, we relegate further details and results on this dataset to Appendix A.3.2.

4.3 LEARNED MODELS

Our evaluation focuses on the relative performance of our PL-CMS algorithm as compared to the ex-
isting LCMS approach of Hsu et al. (2019). As such, we employ relatively simple learned frequency
estimation models within these algorithms.

For the Zipfian datasets (Macbeth and Bible), we simply predict the frequencies of words in the
literary text datasets by utilizing Zipf’s Law and assuming that we know the length of the datasets
n. In particular, we utilize a training dataset to predict the word ranking of an incoming item and
use it to obtain a frequency estimate resulting from Zipf’s Law. We describe our predictor in more
detail in the Appendix A.2. The Zipfian oracle obtains a mean absolute prediction error (MAE) of
3.79 and 44.77 on the Macbeth and Bible datasets, respectively.

For the PM2.5 dataset, we choose several key features including date, dew point, temperature, pres-
sure, combined wind direction, and cumulative wind speed to input into our learned model. We
divide the dataset into 20% training and 80% test sets and use Scikit-learn (Pedregosa et al., 2011)
to train a straightforward neural network with three hidden layers of sizes 100,100 and 20 to make
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predictions of the PM2.5 values (i.e., the frequencies) using the other parameters. We use the Adam
optimizer (Kingma & Ba, 2017) and ReLU as the activation function. The resulting model achieves
a regression score of 0.488 and an MAE of 43.50.

4.4 ESTIMATING Ei, Fi, AND m

Recall, that the exact algorithms 2-CMS-A and 3-CMS-A require that we know the proportion of
infrequent items Fi, and the total frequency of items Ei within each region i as well as the value
of m for the process of parameter optimization. To estimate the first two quantities we make an
assumption that we have prior knowledge of the total stream length, denoted as n. In practice, one
could approximate n using past data.

Here we focus on the estimation process for Zipfian datasets (Macbeth and Bible) – a similar ap-
proach can be applied to the remaining datasets. Unlike the text corpora, the latter datasets do not
require approximating the number of unique items u of the testing dataset in order to estimate m.

Specifically, for the Zipfian datasets, we first use Heap’s law (Herdan, 1960) which approximates
the true number of unique words by D(n) ≈ K · nβ , where n represents the dataset length, and K
and β are free parameters. Typically, β falls in [0.4, 0.6]. We use the training dataset to fit these two
parameters and then apply the parameters to estimate the number of unique words in the test dataset,
given the total number of items n.

We next approximate Ei and Fi for each region of the testing dataset. To do so, we scan the training
dataset and record E′i and F ′i values using adjusted values for the score thresholds as well as the
heavy-hitter cut-off (1 − ε) · n/k (which is relevant to computing Fi). In particular, we scale all of
these values by a factor of n′/n, where n′ is the length of the training dataset, so that they represent
the same relative frequency in the testing and training datasets. We also record a unique bucket count
m′ for the training dataset, using the same adjusted thresholds.

To obtain estimates for Ei, Fi, and the number of unique buckets m for the testing dataset, we then
scale back our estimates: Ei ≈ E′i/n′ ·n andm ≈ m′/u′ ·D(n), where u′ denotes the true number of
unique words in the training dataset. Since F ′i is a fraction, we expect that F ′i roughly approximates
Fi, so Fi ≈ F ′i . Note, for the PM2.5 and AOL datasets, we can simply use m ≈ m′/n′ · n
as an estimate of m since the ratio of unique items in the training and testing datasets is roughly
proportional to their respective lengths (which is not true for the Zipfian datasets). It is also worth
mentioning that, in case these procedures underestimate the true count m of the most heavy items,
we store the remaining elements in CMS1.

4.5 RESULTS

Macbeth. For this dataset, we set nk = 16 and n
k = 80. For n

k = 16, we use the following set of
thresholds for 2-CMS-A and 3-CMS-A, respectively: (l1 = 200, l2 = 100) and (l1 = 300, l2 = 200,
l3 = 100). We demonstrate that both actual and estimated 2-CMS outperform the standard and
learned CMS in terms of the FPR by more than 5% on average (Figure 3). In addition, both 3-CMS
variants achieve a roughly 10% lower false positive rate as compared to CMS and LCMS. We note
that 3-CMS assigns most of its space to CMS3 and sets both m1 and m2 to 1. Although it accrues
a lot of error in the first two regions, the true fraction of infrequent items in CMSi and CMS2 is
relatively low and the total frequencies falling into these regions is relatively high. Thus, by filtering
the heavy items from CMS3 we are able to obtain a lower overall FPR. We include results for
setting n

k = 80 in the Appendix A.3.1, in which we show that the 3-CMS variants outperform the
rest by 10% on average.

Bible. For our experiments, we set nk = 118 and n
k = 879. For the first setting we set the thresholds

for 2-CMS-A and 3-CMS-A as: (l1 = 3000, l2 = 250) and (l1 = 2000, l2 = 300, l3 = 250).
Figure 3 shows that for n

k = 118, all partitioned heuristics outperform CMS and LCMS by about
10% in terms of the false positive rate. When we set n

k = 879, given thresholds (l1 = 3000,
l2 = 250) and (l1 = 2000, l2 = 400, l3 = 250) for 2-CMS-A and 3-CMS-A, respectively, PL-CMS
gives a substantial advantage in FPR in comparison to the baseline algorithms – from a 10% to over
20% reduction in FPR as we decrease the total space. We observe that in both these settings 3-CMS
performs similarly to 2-CMS. This is due to the dataset being larger and hence having a more skewed
distribution, where adding another partition to PL-CMS to separate middle-frequent elements does
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not offer any advantages in identifying heavy hitters with much higher relative frequencies. In
particular, both 2-CMS and 3-CMS allocate almost all of the space budget for the items in the
last region with predicted frequency less than lc since it exhibits the largest predicted fraction of
infrequent items. At the same time, 3-CMS’ second Count-Min Sketch CMS2 does not contain
a sufficiently large amount of frequencies in order to lower the FPR in CMS3, yielding a similar
performance to 2-CMS.

Figure 3: False positive rate vs. space for Macbeth and Bible datasets with different nk values.

PM2.5. In Figure 4 we notice that PL-CMS substantially outperforms the baseline algorithms for
smaller space allocations and lower values of n

k . We observe that for n
k = 284, with thresholds

(l1 = 300, l2 = 200, l3 = 100), 3-CMS obtains a 22% lower FPR using 2000 units of space. Since
CMS exhibits a large amount of collisions in a limited space setting, separating the elements into
different Count-Min Sketch data structures yields a lower FPR. For larger space allocations, 3-CMS
yields a similar amount of infrequent items in CMS2 and CMS3 with relatively large amounts of
total frequencies in each, in which case it is cheaper to store all the elements in a single CMS.

Figure 4: False positive rate vs. space for the PM2.5 dataset with different nk values.

5 CONCLUSION

We have introduced the Partitioned Learned Count-Min Sketch (PL-CMS) variant, which leverages
the comprehensive output space score of a learned oracle to enhance the performance of a standard
CMS. We have proposed a theoretically motivated heuristic, which given a fixed set of thresholds
defining the partitions of PL-CMS, optimizes space allocation for each backup data structure and
its parameters. Our empirical results demonstrate that it significantly outperforms the baseline algo-
rithms in the task of identifying (ε, k)-frequent items on datasets with a Zipfian distribution using
very simple learned models.

Future research is needed to tighten the analysis for the upper bound on the false positive rate re-
turned by PL-CMS as well as to find a way to optimize the threshold values with respect to the
parameter k. Furthermore, it’s important to note that our experiments with PL-CMS are limited to
3-CMS. Determining the optimal number of partitions is a crucial next step that can significantly
enhance its performance. It is also worth mentioning that the approach of partitioning the learned
model’s output score space can be extended to any frequent item estimation algorithm, including
Count-Sketch. Nevertheless, future study is needed to fine-tune the parameters of such a learned
variant.
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A APPENDIX

A.1 OPTIMIZING CMS PARAMETERS FOR EACH REGION IN PRACTICE

In this section, we verify the formulas for setting mi and ti (equation 5) for each Count-Min Sketch
i from Section 3.1. To do that, we run a series of experiments using the LCMS algorithm of Hsu
et al. (2019). LCMS is equivalent to PL-CMS with a single threshold at l1 and thus a single Count-
Min Sketch CMS1 with parameters t1 and m1, that is allocated s1 units of space. We conduct the
experiments on the Macbeth dataset, which is a text corpus dataset of Shakespeare’s work containing
n = 18, 292 words (Bird et al., 2009).

Using different settings for the CMS1 space usage s1 and the single learned model output threshold
l1, we compute t∗1, the optimal t1 value given by the formula in equation 5, using exact values
of F1 and E1. We then range t1 from 1 to 10 and calculate the FPR in the task of identifying
(ε, k)-frequent words from Macbeth with n/k = 26 and ε = 0.5. We run the experiment with 10
repetitions and report the average FPR values for each t1. In Table A.1, we observe that rounding
up the t∗1 values computed by optimizing the FPR upper bound for space allocations 750 and 2000
achieves the optimal false positive rate in practice. With 5000 units of space, we get near-optimal
results – t∗1 achieves a slightly larger FPR than the actual optimal t1 value. These findings indicate
that setting ti and mi using equation 5 generally works well in practice.

LCMS s1 = 750, l1 = 100 s1 = 2000, l1 = 200 s1 = 5000, l1 = 400
t∗1=0.4868 t∗1=1.2305 t∗1=2.8760

Avg FPR Avg FPR Avg FPR
t1 = 1 0.2172 0.0663 0.0259
t1 = 2 0.3085 0.0546 0.0175
t1 = 3 0.5421 0.0669 0.0150
t1 = 4 0.7816 0.0678 0.0143
t1 = 5 0.9289 0.1100 0.0138
t1 = 6 0.9852 0.1670 0.0143
t1 = 7 0.9997 0.2431 0.0139

Table 1: Comparison of t1 values optimized using the FPR bound (equation 5), denoted as t∗1, and
t1 values found in practice for Macbeth dataset using LCMS with space s1 and threshold l1. The
bolded FPR values represent the lowest FPR values for a given space and cutoff setting. The boxed
values represent the FPR values achieved by t∗1 rounded up to the closest integer. Notice, the boxes
coincide with the bolded values in the first two columns.

A.2 ZIPF’S LAW AND THE LEARNED MODEL FOR THE ZIPFIAN DATASETS

We leverage Zipf’s law to predict the frequencies of words in the Macbeth and Bible datasets. The
law states that given a large sample of words, the frequency of any word is inversely proportional to
its rank in the frequency table. Specifically, we have that for any element x from a distribution, the
fraction of times it occurs is given by:

f(x) =
1

rsxHN,s

where rx is the rank of x, s is the value of the exponent characterizing the distribution and N the
number of elements in this distribution. The value HN,s represents the N -th generalized harmonic
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number. As for human languages, word frequencies can be modeled well by a Zipfian distribution
with s = 1. Thus, we predict the frequency of a word using the following formula:

F (x) =
1

HN,1 · rx
· n, (8)

where n is the total length of the dataset and N = 171, 476 is the approximate number of words in
the English language given by the Oxford English Dictionary. Using the literary works chosen for
our training dataset, we compute a word ranking by tracking the number of times each word appears.
Then, we calculate frequency predictions for items in our testing dataset according to equation 8 with
adjusted n values. In Figure 5 we observe that the model roughly approximates the true frequencies
of words in the two text corpora.

(a) Macbeth dataset (b) Bible dataset

Figure 5: Predicted versus actual frequencies of words in the text corpora.

A.3 ADDITIONAL RESULTS

In this section, we include additional results for the Macbeth dataset as well as another real-world
dataset, AOL.

A.3.1 Macbeth

For setting with n
k = 80, we use the following set of thresholds for 2-CMS and 3-CMS, respectively:

(l1 = 400, l2 = 80) and (l1 = 400, l2 = 80, l3 = 20). In Figure 6 we observe that, although 2-
CMS-A and 2-CMS-E perform similarly to 1-CMS and LCMS, both 3-CMS variants outperform
the former by over 10% across different space settings.

Figure 6: False positive rate vs. space for the Macbeth dataset with n
k = 80.

A.3.2 AOL

Dataset. We include results for the AOL search query data, as employed by Hsu et al. (2019). This
dataset comprises search queries collected over 90 days, accompanied by their respective lookup
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frequencies (Huang, 2006). We utilize the data collected on the first day consisting of 204, 431
unique items with a combined frequency of 372, 763 to predict the frequencies of 185, 296 queries
made on the second day, which collectively amounted to a total length of 339, 199.

Learned Model. Regarding our AOL model, we opted not to employ the model introduced by Hsu
et al. (2019) due to its high accuracy, which resulted in PL-CMS not surpassing LCMS that correctly
identifies all frequent items via an oracle. Instead, we adopted a different approach by leveraging
the fasttext library for search query vectorization, along with the Scikit-learn toolkit. We trained a
simple classifier using data from the initial day to predict query frequencies on the following day.
The classifier uses a single hidden layer with 100 neurons, the ReLU activation function and the
Adam optimizer, yielding a classification score of 0.69.

Figure 7: False positive rate vs. space for AOL dataset with different nk values.

Results. In Figure 7 we observe that PL-CMS does not outperform the baseline algorithms, but
reports similar false positive rates as the standard CMS for larger space allocations. In the case of
small space budgets, the standard CMS obtains a significantly lower FPR than PL-CMS in the task
of identifying very frequent items with n/k = 500. This is due to the data set being very skewed
since roughly 95% of the queries appear only once in the stream and, as a result, it is easy to identify
elements with high frequency using just the standard CMS variant.

A.3.3 ROBUSTNESS

In this section, we study the empirical performance of PLCMS under random predictions. Specifi-
cally, fixing the number of unique buckets, we let the oracle assign the elements of the data stream
uniformly into different regions. As previously, we use the training dataset to predict Ei and Fi
values. In Figure 8, we observe that PLCMS matches the performance of CMS and LCMS except
for 3-CMS on the Macbeth dataset with the n/k = 16 setting.

A.3.4 COMPARISON TO COUNT-SKETCH

In this section, we provide a comparison of PL-CMS to PL-CS, where the latter uses the Count-
Sketch algorithm instead of Count-Min Sketch. In all the experiments we use the same parameters
for PL-CS as for PL-CMS using the actual Ei and Fi values, since we do not know how to optimize
its parameters to minimize the FPR. We also apply the same best cutoff thresholds.

In Figure 9 we observe that the standard and learned CS of Hsu et al. (2019) (denoted as CS and
LCS, respectively) perform similarly to basic CMS and LCMS. For the Macbeth dataset with n/k =
16, PL-CS with 3 Count-Sketches (denoted as 3CS-A) achieves a worse FPR than the baseline
algorithms and 3-CMS-A. For Bible with n/k = 879, 2CS-A also underperforms and yields a much
higher FPR than the baseline algorithms and 2CMS-A. It is also important to mention that using
Count-Sketch induces a small false negative rate in the task of identifying the frequent elements
which is not present for Count-Min Sketch variants. While we do not expect the optimal PL-CS to
provide significant advantages as compared to PL-CMS, optimizing its parameters is an interesting
future research direction.

14



Under review as a conference paper at ICLR 2024

Figure 8: Comparison of the false positive rates obtained from 2CMS and 3CMS with random ora-
cles denoted at 2CMS-R and 3CMS-R, respectively with the baseline CMS and LCMS algorithms.

Figure 9: Comparison of the false positive rates obtained from Partitioned Learned Count-Sketch
(PL-CS) and PL-CMS using the same parameters and threshold values as well as the exactEi and Fi
values. CS denotes standard Count-Sketch, LCS denotes learned Count-Sketch of Hsu et al. (2019),
2CS-A and 3CS-A denote PL-CS with two and three Count-Sketch data structures, respectively.
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