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Abstract
We consider the problem of learning a periodic one-dimensional signal with neural networks,
and designing models that are able to extrapolate the signal well beyond the training
window. First, we show that multi-layer perceptrons with ReLU activations are provably
unable to perform this extrapolation task, and lead to poor performance in practice even
close to the training window. Then, we propose a modified training procedure for two-layer
architectures with sine activations with a more diverse feature initialization and well-chosen
non-convex regularization, that is able to extrapolate the signal with low error well beyond
the training window. This procedure yields results several orders of magnitude better than
its competitors for distant extrapolation (beyond 100 periods of the signal), while being
able to accurately recover the frequency spectrum of the signal in a multi-tone setting.
Keywords: Machine Learning, Periodic Signals, Frequency Estimation.

1. Introduction

Real-world signals, such as weather forecasts, biological data or financial indicators, often
exhibit periodic patterns. These patterns are notoriously difficult to capture with standard
neural networks such as ReLU networks (Parascandolo et al., 2017; Eger et al., 2019), thus
making deep learning approaches rather unsuccessful for these prediction tasks. While
most of the literature focused on using activation functions that exhibit a periodic behavior
(Parascandolo et al., 2017; Eger et al., 2019; Ziyin et al., 2020; Mehta et al., 2021), our
analysis shows that this approach is, in essence, necessary yet insufficient for the purpose
of distant extrapolation. More precisely, we show that ReLU networks are fundamentally
unable to learn periodic signals, and changing the activations to sine functions requires
additional work to ensure proper training. In this work, we propose a novel regularization
for sine neural networks that is able to accurately learn the frequency spectrum of a target
periodic signal, and thus extrapolate it well beyond the training window.

Sine-based architectures. Several architectures using sinusoids as activation have already
been proposed in various contexts. For the purpose of image representation, Tancik et al.
(2020) introduced a sine-based mapping with static weights used as a preprocessing step
to circumvent the issues of ReLU-based networks in learning high frequency components.
In a relatively similar setting, but with learned frequency weights, Sitzmann et al. (2020)
introduced a sine-based multi-layer architecture to encode various types of signals with
high-frequency components. Such changes in architecture are shown to empirically overcome
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the problem of learning high frequency components, typically encountered using standard
ReLU-based networks (see for instance Jacot et al. (2018) for estimations of the speed at
which each component is learned, or Rahaman et al. (2019) for a more targeted discussion
of the spectral bias towards lower frequencies). Contrary to the piecewise-linear functions
learned with ReLU activations, such choices have the representation power sufficient to learn
periodicity present in the data. To investigate this possibility, we construct a one-dimensional
well-defined problem where the underlying symmetry must be discovered during training.

Problem setup. We consider the problem of recovering a periodic function given observa-
tions only on a bounded interval, where the period is unknown. Under the condition that
at least two periods have been observed, this problem is always well-defined, however the
recovery of the periodic function on the full real line requires one to uncover the underlying
symmetry, which can be significantly harder than fitting the data on the observed interval.

For all the following, let T ∈ R∗
+ be a fixed but unknown period, and R ∈ R∗

+ be a fixed
window size. For all t ∈ R∗

+, let Ft ⊆ (R → R) be the set of continuous t-periodic functions,
i.e. satisfying ∀x ∈ R, f(x+ t) = f(x). Note that these sets of functions are not disjoint.
We will assume in all the following that at least two periods have been observed, that is to
say R ≥ 2T . Without this condition, recovering the entire function is clearly impossible, and
this condition alone is sufficient to make the problem well defined: If f∗ ∈ FT with T ≤ R/2,
then the squared-error minimizer is unique (see Appendix A for a proof)

argmin
f∈∪t≤R/2Ft

Ex∼U(0,R)

[
(f(x)− f∗(x))2

]
= {f∗} (1)

The difficulty of this problem does not come from a plethora of indistinguishable minima,
as is customary in machine learning, but from the unusual structure of the assumption.
Although each Ft is a vector space, their union is not, for the sum of two periodic functions
is not periodic in general. It also lacks an easily exploitable convexity to treat it as an
optimization problem that we could easily solve. Moreover, ignoring the periodicity hypothesis
and just fitting a function g : [0, R] → R to the segment, with a neural network for instance,
renders the problem ill-defined, for the loss is supported only on the segment and does not
specify how to extend the learned function to the entire real line.

2. Proposed architecture and training procedure

2.1. Regular Sine-based neural networks

We experiment with two-layer networks with sine as activation (sin : R → [−1,+1]). For a
width m ∈ N∗, we initialize independently at random ωi ∼ N (0, 1), ai ∼ N (0, 1/

√
m) and

bi ∼ N (0, 1/
√
m), to get weights (ω, a, b) ∈ Rm × Rm × Rm. This ensures

∑
i E[a2i ] = 1 =∑

i E[b2i ], so the initial response is bounded. We train (ω, a, b) by gradient descent to minimize
the empirical loss, using as prediction function Fω,a,b : x 7→

∑
i∈[m] ai sin(ωix) + bi cos(ωix).

2.2. Modified initialization and regularization

This minimal modification of the traditional multi-layer perceptron has had little success,
because it does not seem to converge to approximations as good as the ReLU-based neural
networks. We show that by carefully altering the initialization procedure and regularization,
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Figure 1: Neuron trajectories in the Fourier half-plane. Black dots indicate the final position
of each neuron, red trails depict the trajectory of each neuron during training.
Green diamonds indicate an optimal configuration representing the signal exactly
(though this parametric global minimum is not unique)

this architecture is capable of distant extrapolation of periodic functions, beating the ReLU-
based networks by several orders of magnitude.

To ensure diversity of the initial frequency weights, we initialize them at regular intervals
ωi = i δ, for i ∈ [m] (δ = π/R in experiments, and there is no need for negative frequencies by
symmetry). We initialize the amplitude weights at zero (a, b) = (0, 0). To promote sparsity in
the amplitudes, and avoid interferences between very close but distinct frequencies, we use a
non-convex sparsity-promoting penalty (with ε = 1e-20 a small constant for differentiability)

R : (a, b) 7→ −
∑
i∈[m]

exp

(
−
√

a2i + b2i + ε

)
(2)

Note that we are not interested in finding the minimum to a different (regularized)
loss function, we are merely trying to steer the trajectory of weights toward relatively
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sparser amplitudes during training. For this reason, we instead use the time-dependent loss
(t, w, a, b) 7→ L0(w, a, b) + e−t/τ R(a, b) (with τ = 10 in experiments), that is a weighted
sum of the empirical loss L0 and our regularizer R, but whose weight tends to zero during
training, such that we truly converge to a minimum of the empirical loss alone when possible.

Figure 2: Level sets of regularizations on the (ai, aj) slice (with (bi, bj) = (0, 0) for simplicity).
The sparsity-inducing effect, with R-suboptimality of a = (1, 1) when ωi = ωj is
visible on the picture, a = (2, 0) and a = (0, 2) having lower regularizer values.

In the following sections, we explain the reasons that motivated these choices, starting
with the need for a different periodicity-compatible activation function, and then how to fix
the training problems that this change induces.

2.3. Limits of universal approximation on compacts, the need for sines

A historically strong argument in favor of the representation of functions as neural networks
is the theorem of universal approximation on compacts (Cybenko, 1989; Barron, 1993; Leshno
et al., 1993), stating that for any continuous function with a compact domain, there exists
functions arbitrarily close to it that are representable as a neural network, provided only
that the activation function is non-polynomial. This property is not sufficient for periodic
recovery, as the followng proposition shows.

Proposition 1 If a function f : R → R is representable as a multi-layer perceptron with
ReLU activations and finitely many weights, and if f is periodic, then f is constant.

Proof Such a function is piecewise linear with finitely many pieces (see e.g. Hanin and
Rolnick, 2019). Thus there exists a constant B > 0 such that it is affine on [B,+∞[. If it is
both periodic and affine on that interval, then it must be constant on that interval, thus it is
constant on R by periodicity.

This proposition does not constitute a problem in itself, because it remains possible that
the learned function is not perfectly periodic, yet remains a very good approximation for
a large number of periods after the observed interval, which would suffice in all practical
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applications. However, our experiments demonstrate that such networks fail to extrapolate
to even a single period outside the training interval.

2.4. Problems of the regular sine-based architecture

As presented in the previous section, the sine-based architecture is strikingly similar to a
two-layer perceptron with only a modification in activation functions, and this is sufficient to
fix the representation problem, all periodic functions are approximable on the whole real line
by networks of this form. However, experiments show that training this modified architecture
as-is still fails to extrapolate outside the training interval. We identify several problems and
propose modifications to the training procedure to fix each of these issues.

Diagnostic of ill-convergence. Figure 1 depicts the trajectories of neuron weights over
time with two different initializations. A weight (w, a, b) ∈ Rm×3 is depicted as a set of m
points (wi, a

2
i + b2i ) ∈ R× R+, together with the corresponding red trail for their evolution

over time. The green diamonds correspond to an optimal set of weights, exactly representing
the signal. As seen in the first case of Figure 1 (top left), independent initialization of
frequency weights (w ∈ Rm) with a normal distribution barely ever produces very high
frequencies, which become harder for the network to learn (a long "distance" has to be
traveled by the weights), a more diverse initialization appears preferable.

This problem of absence of high frequencies at initialization is common to all network
initializing features weights independently with too low a variance, typically reducing the
variance with the number of neurons. For instance, to deal with this issue, SIREN architectures
using an initialization of wi ∼ U(−

√
6/m,+

√
6/m) with m ∈ N∗ the number of neurons,

have to resort to a hardcoded constant ω0 = 30 (Sitzmann et al., 2020, section 3.2) in the
activation x 7→ sin(ω0x), tuned to the considered applications and chosen network sizes, to
ensure that the higher frequencies are present at initalization.

Additional regularization to avoid interferences. The trajectories of gradient descent
have several times been linked with a form of "ℓ2-inertia", see for instance Gunasekar et al.
(2018). Indeed in Figure 1, we see that many neurons have a small but non-zero amplitude.
While this may not be a problem in the training interval, it tends to cause unwanted wiggling
outside the training interval, because these frequencies are usually not rationally linked and
thus do not produce exactly periodic functions but only functions that look approximately
periodic on the training interval, see for instance learned signals in Figure 3. This issue
can be fixed by promoting sparsity in the amplitudes, but some care must be taken to not
introduce a phase bias by the choice of regularization. Indeed, a change of phase in the
signal corresponds to a rotation in the (a, b) plane. Therefore, to avoid the phase-bias, the
regularization chosen must depend on r2i = a2i + b2i but not ai and bi individually. As shown
in Fig. 1, an ℓ1 regularization

∑
i ri does induce sparsity, but does not distinguish between

two very similar neurons, which causes issues on large extrapolation intervals, which are of
particular interest in these experiments (see loss values in Fig. 1). To avoid these interferences,
we use the non-convex penalty R(a, b) = −

∑
i exp(−ri), which even for ωi = ωj , forces

either ri or rj to be null, where the ℓ1 penalty allows any combination with constant sum.
We emphasize that this problem is very different from the previous point. While non-

independent initialization is used to ensure presence of high frequencies in the learned signal,
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this regularization ensures frequency localization after training. The effect can be observed
in Figure 1. On the top right panel, there is a diverse initialization, thus higher frequency
components are present, but the support is spread out, many frequencies have non-zero
amplitude. As a result, the training error L0 is very low, but the extrapolation error L99

remains high, because the learned function is not periodic. See Appendix B.1 for a discussion
of why. In contrast, on the bottom panels, the learned signal is much more localized in
frequency, corresponding to the desired periodic behavior.

3. Experiments

Figure 3: Learned function and corresponding error for each architecture (single tone signal).

Evaluation methods. We use R = 10 as window size for our experiments. For each
experiment, we select a period T ∈ [0, R], a T -periodic function f∗ ∈ FT , a number of observed
samples n ∈ N∗. We then sample independently uniformly at random on [0, R] a collection
of n samples (xi)i∈[n] ∈ [0, R]n. Along with these inputs, algorithms are provided with the
noiseless response (yi = f∗(xi))i∈[n] ∈ Rn. After training, we evaluate the empirical error
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L0 : f 7→ 1
n

∑
i(f(xi)− yi)

2, and the k-windows expected error Lk : f 7→ Ex[(f(x)− f∗(x))2]
where x ∼ U(0, k R), for various values of k ∈ N∗. In similar settings in machine learning, the
empirical error L0 is referred to as "train loss", and the 1-window expected error L1 as the
"test loss", for its underlying distribution corresponds to that of the samples. However, the
performance we are truly interested in is the k-windows expected error Lk for large values of
k (typically k ≥ 10 at the very least for simple signals), for which we can really claim that
the periodicity assumption has been exploited.

Baseline architectures evaluated We experiment with multi-layer perceptrons with
ReLU activations ((·)+ : x ∈ R 7→ max(0, x)). For a number of hidden layers L ∈ N∗,
and a width m ∈ N∗, we initialize independently at random θ0i ∼ N (0, 1) for i ∈ [m]
for the first layer, θki,j ∼ N (0, 1) for (i, j) ∈ [m] × [m] for layer k ∈ {1, · · · , L − 1}, and
θLi ∼ N (0, 1/

√
m) for i ∈ [m] for the last layer. For an input x ∈ R, we set the initial

activation z0 = x, then recursively zk+1
i = max(0, θki · zk) for k < L, and use as prediction

function Fθ(x) =
∑

i θ
L
i z

L
i ∈ R. We then train the weights θ ∈ Rm × (Rm×m)

L−1 × Rm by
gradient descent (Adam optimizer, step size 1e-4) to minimize the empirical loss. We also
perform experiments with other non-linearities such as tanh, and the snake x 7→ x+ 1

a sin
2(ax)

activation (Ziyin et al., 2020) with a = 27.5 (authors recommend a ∈ [5, 50]).

Single-tone periodic recovery We set ω∗ = 2 and signal f∗ : x 7→ cos(ω∗x + π/12).
We use n = 1000 samples. Figure 3 shows the performance of each method, along with
the function learned. All methods achieve reasonably low error on the training set, and
comparable "test" error L1 (which is almost identical because a thousand-point average on
an interval of length 10 is a very good estimate). However, the ReLU architecture fails to
uncover the symmetry and produces linear extrapolations outside the training interval.

Figure 4: Error of the various architectures with a more complicated signal.

Multi-tone periodic recovery With n = 1000 samples as previously, we set ω∗ = 2,
K = 25 and ak = (−0.8)k for k < K, to construct the more complicated periodic target
signal f∗ : x 7→

∑
k<K ak cos((k + 1)ω∗x+ π/12). The results are depicted in Figure 4.
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The relative ordering of methods by reconstruction accuracy is essentially unchanged.
The more complicated signal induces higher average errors even on the observed interval
(the in-interval "test" error L1 is order of magnitudes larger than for the simple sine wave
of Fig. 3), and the errors are even larger when more periods are observed. One interesting
particularity in this experiment is that we observe increasing errors even for the regularized
sine network (albeit at a different rate). This seems to be caused by the inexactitudes in the
learned harmonics. Roughly speaking, we would want ωk = k ω1 essentially for a perfectly
periodic signal, whereas the learned ωk ≈ k ω1 yield small deviations from this periodic
behavior which are nearly invisible in the first few periods but start to show when more
periods are observed.

Figure 5: Frequency estimation performance with respect to noise level

Frequency estimation. In Figure 5, we compare the frequency estimation capability of
our method with periodogram maximization (Kootsookos, 1993) for n = 100 and n = 1000
samples on a window of size R = 10, with independent identically distributed noise (normal
distribution with mean zero and standard deviation σ for an amplitude of 1.0, yielding
a signal-to-noise ratio of 1/2σ2). For our method, we estimate the whole signal in 105

iterations, then return the frequency ωk associated with the maximum final amplitude
k = argmaxi(a

2
i + b2i ). Note that the computational cost of the algorithms are hardly

comparable, ours requires solving an optimization problem every time, whereas periodogram
maximization is nearly-instantaneous here. However this may still be useable in a regime
where very few data points are available. We depict the root mean squared error over 15
independent runs with true frequency sampled uniformly in [ω0, 15] for each run, where
ω0 = R/2π ≈ 1.59 is the minimal frequency to ensure that at least one period has been
observed. Error bars depict the minimum and maximum value of the root mean squared error.
Regarding orders of magnitudes, each frequency estimation with Sine-NN in the context of
Figure 5 took around 13 minutes in our experiments for n = 100 samples and 20 minutes
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with n = 1000 samples, compared to under a second with periodogram maximizer. We regard
these performance considerations as outside the scope of this paper, proper evaluations in
controlled environments should be conducted before any conclusions can be drawn. We
presented these experiments as simple counterexamples to conjectures in theoretical machine
learning, we claim only that they demonstrate plausible usability for the purpose of theorists,
not that this architecture and training procedure are usable as-is in realistic tasks.

4. Conclusion

We have shown with simple and well-defined examples that neural networks with sine activa-
tions, often disregarded in favor of more complicated solutions resembling ReLU activations,
require only minimal modifications to yield trainable architectures with competitive per-
formance on the task of periodic signal recovery. While the direct applicability of this
architecture to more realistic signals and partially-periodic datasets remains as future work,
these experiments provide good sanity checks and baselines for architectures designed to
learn periodic trends in larger settings in the future.
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Appendix A. Uniqueness of mean squared error minimizer

Let us prove Equation 1 (reproduced below).

argmin
f∈∪t≤R/2Ft

Ex∼U(0,R)

[
(f(x)− f∗(x))2

]
= {f∗}

The proof of unique minimizer is almost immediate on FT because it is a vector space.
The only difficulty in extending it to ∪t≤R/2Ft is to avoid picking t, then f ∈ Ft a minimizer
and try to show t = T , which does not hold in general, because the sets (Fu)u are not disjoint.

Proof Let R ∈ R∗
+. Let f∗ ∈ FT be the target, with period T ∈ R∗

+ such that T ≤ R/2
(i.e. at least two periods have been observed). Define L the mean squared error on [0, R]:

L : f 7→ Ex∼U(0,R)

[
(f(x)− f∗(x))2

]
We will show that f∗ is the unique minimizer of L in ∪t≤R/2Ft. First, note that L(f∗) = 0,
and L has only non-negative values, therefore f∗ is a minimizer of L, and f∗ ∈ FT ⊆ ∪t≤R/2Ft

because T ≤ R/2 by assumption. It remains to show that f∗ is the unique such minimizer.
For the first part, note that if f ∈ FT , and L(f) = 0, then f = f∗, because (f − f∗) ∈ FT is
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a continuous T -periodic function null almost-everywhere in [0, R], therefore null on [0, R] by
continuity, thus null on R by T -periodicity since T ≤ R.

Let us proceed to show that all minimizers are in FT . Let f ∈ ∪t≤R/2Ft be such that
f /∈ FT , and let us show that L(f) ̸= 0. The assumption f /∈ FT implies that there exists
x ∈ R such that f(x) ̸= f(x + T ). By continuity, there exists an open interval I ⊆ R
containing x such that ∀u ∈ I, f(u) ̸= f(u + T ). However, since we have f ∈ ∪t≤R/2Ft,
there exists t ∈]0, R/2] such that f ∈ Ft, therefore we can assume without loss of generality
that x ∈ [0, R/2] (otherwise let v = x− ⌊x/t⌋t, satisfying v ∈ [0, t[⊆ [0, R/2[, and observe
f(v) = f(x) ̸= f(x+ T ) = f(v + T ) by t-periodicity of f). Observe now that (x+ T ) ≤ R
because x ≤ R/2 and T ≤ R/2. Therefore (up to shrinkage of I to ensure I + T ⊆ [0, R]
and I ∩ (I + T ) = ∅), there is an open interval I of ]0, R[ such that ∀u ∈ I, f(u+ T ) ̸= f(u)
and ∀u ∈ I, u+ T ∈ [0, R] \ I. To conclude, use the identity (a− b)2 + (a− c)2 ≥ 1

2(b− c)2,
which holds for all (a, b, c) ∈ R3, where a = f∗(u) = f∗(u+ T ) by T -periodicity of f∗, to get

L(f) = 1

R

∫
[0,R]

(f∗(u)− f(u))2 du

≥ 1

R

∫
I

(
(f∗(u)− f(u))2 + (f∗(u+ T )− f(u+ T ))2

)
du

≥ 1

2R

∫
I
(f(u)− f(u+ T ))2 du > 0

A.1. One observed period is not sufficient to learn the period

Figure 6: Counterexample to uniqueness if only one period is observed instead of two
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Appendix B. Ablation study

B.1. Effect of regularization on frequency localization

Learning a two-layer sine network representation for the function f∗ : x 7→ sin(ω∗x + φ)
would be trivial if we had access to values on R, we would just compute its Fourier transform.
Since it is composed of a single sine wave in input-space, this would lead to a dirac in
frequency-space, located at the sine frequency ω∗. However, we have access only to values on
the interval [0, R], thus for all practical purposes, f∗ is indistinguishable from the truncated
function (g : x 7→ 1(x ∈ [0, R]) sin(ω∗x+ φ)), identical to f∗ on [0, R], but zero outside.

Figure 7: Single-tone experiment with sine network variations

The Fourier transform of g is a convolution of the Fourier transform of f∗ with a cardinal
sine filter corresponding to the truncation to the interval. Thus, while the Fourier transform
of f∗ is perfectly localized in frequency because it corresponds to a periodic function in
input-space, the Fourier transform of g is "spread out", with many non-zero amplitudes
around ω∗ corresponding to the convolution with the filter. Without regularization, the
network tends to learn g rather than f∗ (both would lead to zero error, but the ℓ2 norm of
amplitudes for g is smaller than that for f∗). This can be observed in Figure 1 (top right) in
the Fourier half-plane, and in Figure 7 in input-space: as the gap between frequencies at
initialization shrinks, the learned function gets closer to g, with values of zero outside the
training interval.

13


	Introduction
	Proposed architecture and training procedure
	Regular Sine-based neural networks
	Modified initialization and regularization
	Limits of universal approximation on compacts, the need for sines
	Problems of the regular sine-based architecture

	Experiments
	Conclusion
	Uniqueness of mean squared error minimizer
	One observed period is not sufficient to learn the period

	Ablation study
	Effect of regularization on frequency localization


