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ABSTRACT

Newton’s method is an important second-order optimization algorithm that has
been extensively studied. However, many challenging optimization problems
break the classical assumptions of Newton’s method. For example, the objective
function may not be twice differentiable, and the optimal solution may be non-
unique. In this article, we propose a general Newton-type algorithm named S5N,
to solve problems that have possibly non-smooth gradients and non-isolated solu-
tions, a setting highly motivated by the sparse optimal transport problem. Com-
pared with existing Newton-type approaches, the proposed S5N algorithm has
broad applicability, does not require hyperparameter tuning, and possesses rigor-
ous global and local convergence guarantees. Extensive numerical experiments
show that on sparse optimal transport problems, S5N gains superior performance
on convergence speed and computational efficiency.

1 INTRODUCTION

Optimal transport (OT, Villani et al., 2009) is an important tool for modern machine learning, as it
characterizes how one probability measure can be transformed to another, and it defines the Wasser-
stein distance as a metric between statistical distributions. OT also motivates many impactful ma-
chine learning models such as the Wasserstein generative adversarial networks (Arjovsky et al.,
2017), differentiable sorting and nearest neighbors (Cuturi et al., 2019; Xie et al., 2020), and OT-
based domain adaptation (Courty et al., 2017), among many others. One major challenge of apply-
ing OT to large-scale problems is its high computational cost, so various approximate OT algorithms
have been proposed, among which one of the most popular approaches is the entropic-regularized
OT based on the well-known Sinkhorn algorithm (Cuturi, 2013). However, the transport map ob-
tained from the Sinkhorn algorithm is strictly positive, thus completely dense. In scenarios where
the transport plan is of interest, a sparse result is generally preferred, as the unregularized optimal
transport plan typically demonstrates a sparse pattern, and sparsity also enhances interpretability.

As an alternative approach, the quadratically regularized optimal transport (QROT, Blondel et al.,
2018; Lorenz et al., 2021) outputs sparse transport plans. Proposition 1 of Blondel et al. (2018)
shows that QROT can be reduced to an unconstrained optimization problem minx f(x), where f :
Rd → R is a continuously differentiable function, but f is not twice continuously differentiable.
Clearly, standard first-order methods such as the gradient descent algorithm can be used, but in
general, second-order methods such as Newton’s method have much faster convergence speed.

Newton’s method is an important second-order optimization algorithm that has been extensively
studied. Assuming f is twice continuously differentiable, the classic Newton method generates a
sequence of iterates {xk} using the updating formula xk+1 = xk − [H(xk)]−1g(xk), where g and
H are the first and second order derivatives of f , respectively.

However, for objective functions that are not twice differentiable, including the QROT dual objective
function, the classic Newton method cannot be applied, as the Hessian matrix H(x) = ∇2

xxf(x) is
not well-defined. To this end, various generalized Newton methods, also known as the non-smooth
Newton methods (Pang, 1990; Kummer, 1992; Qi & Sun, 1993; Qi, 1993), have been proposed,
which take the form xk+1 = xk − V −1

k g(xk), where Vk ∈ Rd×d is some substitute to the Hessian
matrix H(xk) as in the smooth case; also see Qi & Sun (1999) for a survey of non-smooth Newton
methods. For convenience, we loosely name Vk as one generalized Hessian matrix of f at xk.
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Although these non-smooth Newton methods have been successfully applied to many optimization
problems, one critical limitation is that they require the matrix Vk to be non-singular, which implies
the uniqueness of the optimal point combined with other regularity conditions. Unfortunately, these
conditions do not hold for QROT as well as many other challenging problems. In fact, Lorenz et al.
(2021) proves that the generalized Hessian matrix Vk for QROT has a non-trivial null space, and the
optimal solution may not be unique or isolated.

Largely motivated by the QROT problem, in this article we propose a general Newton-type optimiza-
tion method for objective functions with a semi-smooth gradient and a possibly singular generalized
Hessian, where the definition of semi-smoothness is given in Section 2.1. The new method also has
a mechanism to automatically adjust a shift parameter that needs to be manually set in some existing
Newton-type algorithms, thus avoiding heavy hyperparameter tuning. Combining all these features,
we name this algorithm as the semi-smooth, self-shifting, and singular Newton method (S5N).

We emphasize that although S5N is highly motivated by the sparse OT problem, the algorithm itself
is fully general, and can be applied to many other problems. S5N borrows ideas from other second-
order optimization techniques, including semi-smooth Newton methods (Qi, 1993; Qi & Sun, 1999),
Levenberg–Marquardt methods (LM, Levenberg, 1944; Marquardt, 1963), and trust-region methods
(Sorensen, 1982; Jorge & Stephen, 2006), but it combines the merits of these techniques in a non-
trivial way, and also adds extra flexibility. We rigorously prove the global convergence of S5N, and
also show that it has a fast quadratic local convergence rate under mild conditions. We compare S5N
with various specialized algorithms for sparse OT on a large collection of test problems, and find
that it consistently demonstrates a high performance both in convergence speed and actual run time.

Overall, our main contributions are summarized as follows:

1. We propose a novel Newton-type method, S5N, that is applicable to non-smooth gradients and
singular (generalized) Hessian matrices, thus enriching the toolbox of second-order optimiza-
tion algorithms for challenging problems.

2. We provide a rigorous convergence analysis for S5N, showing that it is globally convergent,
and has a fast local quadratic convergence rate.

3. We test S5N on a large collection of sparse OT problems, and demonstrate its excellent com-
putational efficiency and robustness across different data sets.

4. In addition to the methodology, we implement nine major sparse OT algorithms in efficient
C++ code, and provide user-friendly Python and R packages.1

2 THE S5N METHOD

2.1 SEMI-SMOOTH FUNCTIONS

In this section, we revisit some fundamental results from non-smooth analysis that are necessary
to develop the proposed algorithm. Throughout this article, ∥x∥ is the Euclidean norm of a vector
x, ∥A∥ and ∥A∥F stand for the operator norm and Frobenius norm of a matrix A, respectively,
and ⟨A,B⟩ =

∑
i

∑
j aijbij represents the inner product between two matrices A = (aij) and

B = (bij). We first introduce the notion of generalized differentials for functions that lack smooth
derivatives, rooted in Rademacher’s theorem.

Theorem 1 (Rademacher). Let F: Rn → Rm be a function that is locally Lipschitz continuous
(definition in Appendix A). Then F is differentiable almost everywhere.

Denote by DF ⊆ Rn the set of points at which F is differentiable. Then the B(ouligand)-derivative
and Clarke’s generalized Jacobian are defined as follows.

Definition 1 (Clarke, 1990). Let F : Rn → Rm be locally Lipschitz continuous. The B-derivative
of F at point x is defined as

∂BF (x) =

{
lim
k→∞

∇F (xk)
∣∣∣∣xk ∈ DF , x

k → x

}
.

1The code to reproduce the experiments in this article is available at https://1drv.ms/f/s!
ArsORq8a24WmpE-MUCg5ph-uz-Pq.

2

https://1drv.ms/f/s!ArsORq8a24WmpE-MUCg5ph-uz-Pq
https://1drv.ms/f/s!ArsORq8a24WmpE-MUCg5ph-uz-Pq


Clarke’s generalized Jacobian is then defined as the convex hull of the B-derivative, given by

∂F (x) = conv(∂BF (x)).

B-derivative and Clarke’s generalized Jacobian have the following properties.
Theorem 2 (Clarke, 1990). Let F : Rn → Rm be locally Lipschitz continuous. Then for x ∈ Rn,
the sets ∂BF (x) and ∂F (x) are nonempty and compact, and the set-valued mappings ∂BF and ∂F
are locally bounded and upper semi-continuous (definition in Appendix A).

Then we are ready to give the definition of semi-smooth functions.
Definition 2 (Qi & Sun, 1993). Let F : Rn → Rm be locally Lipschitz continuous. F is said to be
semi-smooth at point x if for any V ∈ ∂F (x+ p),

∥F (x+ p)− F (x)− V p∥ = o(∥p∥), as ∥p∥ → 0.

And F is said to be strongly semi-smooth at x if the condition above is replaced by

∥F (x+ p)− F (x)− V p∥ = O(∥p∥2), as ∥p∥ → 0.

If F is (strongly) semi-smooth at any x ∈ Rn, then it is said to be (strongly) semi-smooth on Rn.

2.2 THE ALGORITHM

Consider the unconstrained convex optimization problem,

min
x

f(x), (1)

where f : Rd → R is convex and continuously differentiable. Let g : Rd → Rd be the first-order
derivative of f , and V ∈ ∂g(x) a generalized Jacobian (Hessian) matrix corresponding to f .

Similar to the classic Newton method, S5N generates a sequence of iterates {xk} to approach the
optimal solution. In the k-th iteration, it updates the current iterate xk using information of fk =
f(xk), gk = g(xk), and Vk = V (xk), where V (xk) is an arbitrary element from the generalized
Jacobian ∂g(xk). Specifically, it computes a search direction pk of the form

pk = −(Vk + λkI)
−1gk, (2)

where λk > 0 is a shift parameter whose expression will be given later. When Vk is known to be
positive semi-definite, which is the case when f is convex, the matrix Vk +λkI is always invertible.
This is exactly the reason why S5N is applicable to singular Vk’s, whereas classic semi-smooth
Newton methods are not. In addition, in each iteration, S5N computes a quantity ρk,

ρk =
f(xk)− f(xk + ηkpk)

m(0)−mk(ηkpk)
=
fk − f(xk + ηkpk)

fk −mk(ηkpk)
,

where ηk > 0 is a step size parameter, and the mk(·) function is a local quadratic approximation to
the objective function:

mk(p) = fk + gTk p+
1

2
pTVkp.

We postpone the discussion of ηk parameters to Section 2.3, and for now the only requirement is
that {ηk} needs to be bounded from both below and above, i.e., ηk ∈ [m̃, M̃ ] for some 0 < m̃ <

M̃ <∞.

Intuitively, ρk measures the ratio between the actual and predicted reduction of function values. The
quantity ρk is commonly seen in trust-region methods, but there ρk is typically defined by forcing
ηk ≡ 1. In S5N, ρk has two important functions: it determines how the shift parameter λk is
updated, and it decides whether to accept xk + ηkpk as the next iterate. The full algorithm of S5N
is given in Algorithm 1.

The design of Algorithm 1 is motivated by some widely-used second-order optimization methods.
For example, the use of the generalized Hessian matrix Vk comes from semi-smooth Newton meth-
ods, and the ratio ρk is derived from trust-region methods. Moreover, the form of the shift parameter
λk = µk∥gk∥δ has been used by some LM-type algorithms such as Qi et al. (2016). Overall, S5N
has the following advantages over existing Newton-type methods.
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Algorithm 1 A Semi-smooth, self-shifting, and singular Newton method (S5N)

1: Input: Initial point x0, parameters {µ0, m̃, M̃ , κ} > 0, ρ0 ∈ (0, 12 ), δ ∈ [1, 2], εtol > 0

2: Default values: µ0 = 1, m̃ = 0.01, M̃ = 1, κ = 0.001, ρ0 = 1
4 , δ = 1

3: for k = 0, 1, 2, . . . do
4: if ∥gk∥ < εtol then return xk

5: Compute Vk ∈ ∂g(xk), pk = −(Vk + µk∥gk∥δI)−1gk
6: Select any ηk ∈ [m̃, M̃ ]

7: Compute ρk =
f(xk)− f(xk + ηkpk)

mk(0)−mk(ηkpk)

8: Update µk+1 =


4µk, if ρk < ρ0
max{µk/2, κ}, if ρk ≥ 1− ρ0
µk, otherwise

9: if ρk > 0 then
10: xk+1 = xk + ηkpk

11: else
12: xk+1 = xk

1. Broad applicability. S5N can handle both non-smooth gradients and singular (generalized)
Hessian matrices, whereas many existing algorithms can only deal with one of the two issues.

2. Solid convergence guarantees. S5N has a rigorous global convergence guarantee without
relying on line search procedures. It also has a fast quadratic local convergence rate.

3. Tuning-free yet flexible. Key algorithmic parameters (e.g., λk) in S5N are automatically ad-
justed, but there is still flexibility in designing the step size parameter ηk for better performance.
The motivation and benefit of introducing ηk is discussed in Section 2.3.

A summary of some existing Newton-type methods for non-smooth or singular problems is given in
Table 1. We emphasize that combining the merits of existing algorithms and forming the S5N algo-
rithm is non-trivial, since the convergence properties of S5N cannot be directly obtained by gathering
existing results. For example, methods based on a non-singular Hessian rely on the uniqueness of
the solution, whereas S5N has a completely different analysis.

Table 1: A summary of Newton-type methods for non-smooth or singular problems. Column (a):
whether the method supports non-smooth gradients. Columns (b)(c): whether the algorithm itself
and the theoretical analysis can proceed with singular Hessian matrices. Column (d): whether the
method already has a global convergence guarantee, or relies on line search. Column (e): local
convergence rate. Question marks mean that the article does not provide the corresponding analysis.

(a)
Non-smooth

gradient

(b)
Singular
Hessian

(algorithm)

(c)
Singular
Hessian
(theory)

(d)
Global

convergence

(e)
Local

convergence

Pang (1990); Qi (1993) ✓ ✗ ✗ Line search Quadratic

Chen & Qi (1994) ✓ ✓ ✗ ? Superlinear

Li et al. (2004) ✗ ✓ ✓ Line search Quadratic

Zhou & Chen (2013) ✗ ✓ ✓ ✓ Cubic

Zhou & Toh (2005) ✓ ✓ ✓ Line search Superlinear

Xiao et al. (2018) ✓ ✓ ✗ ✓ Quadratic

Lorenz et al. (2021) ✓ ✓ ? Line search ?

This paper (S5N) ✓ ✓ ✓ ✓ Quadratic
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2.3 STEP SIZE SELECTION

The step size parameter ηk in Algorithm 1 is a unique design for our S5N algorithm. On one hand,
it is more flexible than classical trust-region methods, since in those algorithms the search direction
pk is directly added to the current iterate xk, i.e., xk+1 = xk + pk. While trust-region methods
offer an implicit step size adjustment mechanism via the λk parameter, consistently using a unit
step size often leads to repetitive sub-problem solving, which involves the computation of gradients,
generalized Hessian, and linear systems, culminating in high computational costs.

On the other hand, unlike line-search-based methods, in S5N we do not require ηk to satisfy any
sufficient decrease or curvature conditions. In fact, the only requirement is that {ηk} needs to be
bounded from both below and above. As for line search approaches, their computational costs until
termination are typically unpredictable, and to satisfy specific search conditions, infinite loops might
occur if the algorithm is not carefully engineered. Moreover, line search methods typically require
both objective function and gradient evaluations, which further increases the computational burden.

Based on these considerations, we advocate a step size selection method in Algorithm 2 to heuris-
tically choose ηk in each iteration. This method only sets the step size within a bounded range and
computes objective function values for candidate step sizes. It is fully acceptable that in some iter-
ations, the selected step size leads to an increase in objective function value, since the boundedness
of ηk still guarantees the global convergence, as we will show in Theorem 3. On the contrary, line
search methods typically require ηk to satisfy sufficient decrease or curvature conditions to guaran-
tee global convergence. Due to this distinction, we position our method a step size selection scheme
rather than a line search approach.

Algorithm 2 Step size selection

1: Input: Candidate step sizes 1 = η0 > η1 > · · · ηN > 0, current xk, pk, objective function f(·)
2: Initialize ηbest = 1, fbest = +∞
3: for i = 0, 1, 2 . . . , N do
4: Compute xtrial = xk + ηip

k, ftrial = f(xtrial)
5: if ftrial < fbest then
6: fbest = ftrial
7: ηbest = ηi
8: if fbest < f(xk) then return ηbest, fbest

9: return ηbest, fbest

2.4 CONVERGENCE ANALYSIS

In this section, we present the main theorems for the convergence properties of S5N. While the
assumptions and the presentation of the conclusions are similar to those of existing semi-smooth
Newton methods (Zhou & Toh, 2005; Xiao et al., 2018), we emphasize that the proofs are specific
to S5N under completely new settings, which are not trivial consequences of existing analyses. For
global convergence, we make the following two assumptions.

Assumption 1. The level set L(x0) = {x ∈ Rd : f(x) ≤ f(x0)} is bounded, and f(x) is convex
and continuously differentiable over L(x0). For all x ∈ L(x0), f(x) > −∞.

Assumption 2. Let L(x0) be defined as in Assumption 1. For all x ∈ L(x0), g(x) and any V ∈
∂g(x) satisfy

β1 = max {∥g(x)∥ : x ∈ L(x0)} <∞,

β2 = max {∥V ∥ : V ∈ ∂g(x), x ∈ L(x0)} <∞.

Then Theorem 3 shows that a subsequence of the iterates converges to an optimal solution.

Theorem 3. Suppose that Assumptions 1 and 2 are satisfied, and let {xk} be generated by Algorithm
1. Then either Algorithm 1 terminates in finite iterations, or gk satisfies

lim inf
k→∞

∥gk∥ = 0.
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Note that in our setting, the objective function f(x) may have more than one optimal solution,
and the solutions are not isolated due to the possible singularity of the generalized Hessian matrix.
Therefore, it is hard to judge the behavior of the iterates {xk} purely from the global convergence
result. However, under some extra conditions, we show that the iterates {xk} of the S5N algorithm
will be attracted by some optimal point x∗ in the following sense: once xk enters a neighborhood of
x∗, all subsequent iterates will stay in it, and xk then approaches the solution set X of problem (1)
with a quadratic rate.

Let dist(x,X ) = infy∈X ∥y− x∥ denote the distance between a point x and the solution set X , and
x̄k the projection of xk onto X , i.e.,

x̄k = argmin
x̄∈X

∥xk − x̄∥, ∥xk − x̄k∥ = dist(xk,X ).

The notation N(x, r) = {y : ∥y − x∥ ≤ r} stands for the neighborhood of point x with radius r.
We then make the following additional assumptions.
Assumption 3. Let L(x0) be defined as in Assumption 1, and x∗ an optimal point of problem (1).

1. g is Lipschitz continuous and strongly semi-smooth over L(x0).

2. There exist constants c1, r1 > 0 such that N(x∗, r1) ⊂ L(x0) and

c1 · dist(x,X ) ≤ ∥g(x)∥, ∀x ∈ N(x∗, r1).

3. There exists a constant L > 0 such that

∥g(y)− g(x)− V (y − x)∥ ≤ L∥y − x∥2, ∀x, y ∈ N(x∗, r1), V ∈ ∂g(x).

Then we have the local quadratic convergence guarantee as stated in Theorem 4.
Theorem 4. Let Assumptions 1 to 3 be satisfied, and {xk} be generated by Algorithm 1. Then there
exist constants r, c̃ > 0 such that if for some integer K, xK ∈ N(x∗, r), then

xk ∈ N(x∗, r1/2), ∀k ≥ K,

and
dist(xk + ηkpk,X ) ≤ c̃ · dist(xk,X )2,

which means that dist(xk,X ) → 0 quadratically.

3 THE SPARSE OPTIMAL TRANSPORT PROBLEM

In this section, we briefly introduce the sparse OT problem, and show how it can be solved by the
S5N algorithm. More background information for sparse OT and the QROT problem can be found
in Blondel et al. (2018) and Lorenz et al. (2021).

First, define the probability simplex as ∆n =
{
a ∈ Rn

+ :
∑

i ai = 1
}

. Consider two discrete distri-
butions ν ∈ ∆n and µ ∈ ∆m, and let U(ν, µ) =

{
Π ∈ Rn×m

+ : Π1m = ν,ΠT1n = µ
}

represent
the space of couplings that form a joint distribution with ν and µ being the marginals. Then the
QROT problem can be formulated as solving the optimization problem

W (Π;C, ν, µ) = min
Π∈U(ν,µ)

⟨C,Π⟩+ γ

2
∥Π∥2F , (3)

where C ∈ Rn×m
+ is a given cost matrix. Problem (3) has a unique global optimum Π∗, which is

typically a sparse matrix. It can be viewed as a sparse approximation to the unregularized optimal
transport plan (i.e., the case with γ = 0).

Given two vectors α ∈ Rn and β ∈ Rm, define α⊕ β to be a matrix such that (α⊕ β)ij = αi + βj .
For a matrix A = (aij), A+ stands for a matrix with elements max{aij , 0}. Then Lorenz et al.
(2021) shows that the dual problem of (3) is

min
x∈Rn+m

f(x), f(x) ≡ f(α, β) =
1

2

∥∥(α⊕ β − C)+
∥∥2
F
− γ ⟨ν, α⟩ − γ ⟨µ, β⟩ , (4)
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where x = (α, β). Let (α∗, β∗) be any optimal solution to (4), and then the sparse transport plan
Π∗ can be recovered as Π∗ = γ−1(α∗ ⊕ β∗ − C)+.

Clearly, the function f is continuously differentiable with respect to x, and we have the following
expressions for its gradient and generalized Hessian matrix.

Proposition 1. The gradient g(α, β) of f(α, β) is given by

g(α, β) =

(
(α⊕ β − C)+1m − γν
1T
n (α⊕ β − C)+ − γµ

)
,

and g is strongly semi-smooth. One generalized Hessian matrix of f is

V =

(
diag(σ1m) σ

σT diag(σT1n)

)
∈ ∂g(α, β),

where σij = 1 if αi + βj − cij ≥ 0, and σij = 0 otherwise. Moreover, V is symmetric positive
semi-definite.

Given the gradient and the generalized Hessian matrix, we are then ready to use S5N to solve (4). In
Algorithm 1, one key step is obtaining the Newton direction pk = −(Vk + λkI)

−1gk. Since σ is in
general a sparse matrix, the conjugate gradient method can be used to solve this linear system. We
provide the computational details in Appendix C.

4 RELATED WORK

Newton-type Methods Besides the articles listed in Table 1, there are a few methods that handle
the non-differentiability and singularity issues from a different angle. Chen et al. (1997) overcomes
the singularity of Vk by using its outer inverse, which, however, is typically obtained from costly
matrix decomposition, such as QR decomposition and singular value decomposition. Facchinei
et al. (2014) proposes the LP-Newton method, which applies to a class of non-smooth and singular
problems with a local quadratic convergence guarantee. However, in each iteration, the algorithm
needs to solve a large-scale linear programming problem, which can be very time-consuming.

LM-type Methods The LM algorithm was originally developed for nonlinear least squares prob-
lems, and later was also widely used for solving nonlinear equations of the form F (x) = 0, where
F : Rn → Rm is a vector-valued mapping. Given the current iterate xk, LM updates the point by
xk+1 = xk + pk, where the search direction pk is computed as pk = −(JT

k Jk + µkI)
−1JT

k F (x
k),

Jk = J(xk), and J(x) = ∇xF (x) is the Jacobian matrix of F (x). Various works have extended
LM to the case of non-smooth functions (Facchinei & Kanzow, 1997; Jiang, 1999; Jolaoso et al.,
2023), where the Jacobian matrix J(xk) is replaced by its generalized version. Although some LM
variants are able to handle non-smooth and singular problems with appealing convergence prop-
erties (Du & Gao, 2011; Ueda & Yamashita, 2012; Qi et al., 2016), we point out that one major
difference between LM and Newton-type methods is the form of the linear system that defines the
search direction pk. For LM, pk = −(V T

k Vk + µkI)
−1V T

k gk, whereas the Newton direction is
pk = −(Vk + µkI)

−1gk. Clearly, LM almost squares the condition number of the matrix to be
inverted when µk is small, which may result in numerical instability and drastically slow down it-
erative linear solvers such as the conjugate gradient method. Therefore, when Vk is known to be
symmetric positive semi-definite, Newton-type methods are typically preferred to LM methods.

Computational OT Efficient computation of OT has long been an active research topic in machine
learning. In its original form, OT can be solved via linear programming in O(n3 log n) time (Pele &
Werman, 2009), where n is the number of data points. The seminal work Cuturi (2013) introduces
the entropic-regularized OT and the well-known Sinkhorn algorithm, and numerous works have
been proposed to improve it (Altschuler et al., 2017; Dvurechensky et al., 2018; Schmitzer, 2019;
Guminov et al., 2021). For sparse OT, there are also a number of specialized algorithms developed
to solve the QROT problem (Lorenz et al., 2021; Pasechnyuk et al., 2023).
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5 NUMERICAL EXPERIMENTS

In this section we test the performance of S5N on a large collection of sparse OT problems, and com-
pare it with various specialized algorithms for QROT. We roughly categorize the existing algorithms
into three groups:

• Group I: the classical gradient descent method (GD) and other first-order and coordinate de-
scent methods summarized in Pasechnyuk et al. (2023), including the adaptive primal-dual
accelerated gradient descent (APDAGD), the block coordinate descent (BCD), and the primal-
dual accelerated alternating minimization (PDAAM).

• Group II: quasi-Newton methods, including two L-BFGS methods applied to the dual and
semi-dual objective function, respectively (Blondel et al., 2018).

• Group III: Newton-type methods, including the adaptive semi-smooth Newton (ASSN, Xiao
et al., 2018) and the globalized and regularized semi-smooth Newton (GRSSN, Lorenz et al.,
2021). For GRSSN, it has a shift hyperparameter λ similar to the λk in (2), but in GRSSN, λ is
fixed and needs to be manually set. We consider various values λ = 0.1, 0.01, 0.00001.

We then test each algorithm on the following three groups of test problems:

• Example 1: OT between two discrete distributions ν ∈ ∆n and µ ∈ ∆m, where ν and µ are
the discretizations of two identical continuous distributions.

• Example 2: OT between two different discrete distributions ν ∈ ∆n and µ ∈ ∆m.
• Image data: OT between a pair of images from the MNIST data (LeCun et al., 1998) or

Fashion-MNIST data (Xiao et al., 2017).

The details of data generation are given in Appendix D.1. Throughout the experiments, we fix the
QROT regularization parameter to be γ = 0.1, and the resulting transport plans are visualized in
Appendix D.2. In this section, we show the results of one pair of MNIST images, and the case of
n=m=512 for Examples 1 and 2. Results for larger-scale experiments are given in Appendix D.5.

To compare the performance of different algorithms, we plot the dual objective function value
against both the iteration number and the actual run time. The results for Example 1 are displayed
in Figure 1. From the plots it is clear that all first-order algorithms show a slow convergence, and
in particular, PDAAM also has oscillations in the dual objective function values. As for the quasi-
Newton algorithms, although the semi-dual L-BFGS has a fast convergence in iteration number, it
suffers from a long run time, since its gradient computation is more difficult and time-consuming
than other methods. Within the Newton-type algorithms, ASSN has a very slow convergence, and
the performance of GRSSN is extremely sensitive to the shift hyperparameter. Overall, S5N shows
visible advantages in terms of computational efficiency.
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Figure 1: Example 1 (n = m = 512). First row: dual objective function value vs. iteration number.
Second row: dual objective function value vs. run time.
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Figure 2: Example 2 (n = m = 512). First row: dual objective function value vs. iteration number.
Second row: dual objective function value vs. run time.
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Figure 3: MNIST (image IDs 2-54698). First row: dual objective function value vs. iteration
number. Second row: dual objective function value vs. run time.

When it comes to Example 2 (Figure 2), S5N significantly outperforms other algorithms in both
iteration count and run time. It is worth noting that in terms of iteration steps, GRSSN performs best
with λ = 0.01 in Example 1, whereas it excels with λ = 0.00001 in Example 2. This suggests that
GRSSN’s efficacy heavily relies on the selection of the shift hyperparameter. In contrast, S5N has a
self-shifting mechanism that dynamically adjusts λk, demonstrating a high robustness. Example 2
suggests that in scenarios where the two distributions in OT are very different, the advantage of S5N
might be even more evident.

Finally, the results for MNIST data as shown in Figure 3 lead to similar conclusions: S5N con-
sistently demonstrates a fast convergence both in iteration number and run time compared with
first-order and quasi-Newton methods, and offers the advantage of being adaptive and tuning-free
compared with other Newton-type algorithms.

6 CONCLUSION

In this article, we propose the S5N algorithm as a novel second-order optimization method for chal-
lenging non-smooth and singular problems. We have rigorously shown that the algorithm is globally
convergent, and has a fast local quadratic convergence rate. When viewed as a general optimiza-
tion method, S5N enjoys fast convergence, high efficiency, and great robustness. Meanwhile, it is
tuning-free yet flexible. S5N is also especially useful for solving the sparse OT problems, and we
have verified its empirical performance on a large collection of QROT test problems. We anticipate
that S5N has the potential of further boosting the computation and research of large-scale sparse OT.
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A ADDITIONAL DEFINITIONS

Definition 3. A function f : A ⊂ Rn → Rm is locally Lipschitz if for each x0 ∈ A, there exist
constants M > 0 and δ0 > 0 such that ∥f(x)− f(x0)∥ ≤M∥x− x0∥ whenever ∥x− x0∥ < δ0.
Definition 4. A set-valued mapping F is said to be upper semi-continuous at x, if for any ε > 0
there exists a δ > 0 such that, for all y in B(x, δ), F (y) ⊆ F (x) +B(0, ε).

B PROOFS OF THEOREMS

B.1 TECHNICAL LEMMAS

Lemma 1. Suppose that f : Rn → R is continuously differentiable. Then for any x ∈ Rn, |η| ≤ M̃ ,
and x+ ηp ∈ Rn with ∥p∥ → 0, the following statement holds:

Φ(x, ηp) := f(x+ ηp)− f(x)− g(x)T (ηp) = o(∥p∥),

where g(x) represents the gradient of f at x.

Proof. By definition, we need to prove that Φ(x, ηp)/∥p∥ → 0 when ∥p∥ → 0. By the mean value
theorem for multivariate functions, given that f is continuously differentiable, there exists some
ψ ∈ (0, 1) such that for all x and x+ ηp,

f(x+ ηp)− f(x) = g(x+ ψηp)T (ηp).

Rewriting the equation, we have

Φ(x, ηp) = g(x+ ψηp)T (ηp)− g(x)T (ηp).

To prove that Φ(x, ηp) is o(∥p∥), consider the ratio:∣∣∣∣Φ(x, ηp)∥p∥

∣∣∣∣ = ∣∣∣∣g(x+ ψηp)T (ηp)− g(x)T (ηp)

∥p∥

∣∣∣∣ .
Given the continuity of g, we have g(x+ ψηp) → g(x) as ∥p∥ → 0. Therefore,∣∣∣∣g(x+ ψηp)T (ηp)− g(x)T (ηp)

∥p∥

∣∣∣∣ = ∣∣∣∣ [g(x+ ψηp)− g(x)]T (ηp)

∥p∥

∣∣∣∣
≤ ∥g(x+ ψηp)− g(x)∥ · ∥ηp∥

∥p∥
≤ M̃ · ||g(x+ ψηp)− g(x)∥ · ∥p∥

∥p∥
= M̃ · ∥g(x+ ψηp)− g(x)∥ → 0 as ∥p∥ → 0.

The proof is complete.
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Lemma 2. Let Assumption 1 be satisfied. For any ε > 0, there exists a constant δ0 > 0 such that
for all x ∈ L(x0) and ∥p∥ ≤ δ0 satisfying x+ ηp ∈ L(x0), we have

max
x∈L(x0)

|Φ(x, ηp)| ≤ εM̃

4θ
∥p∥.

Proof. According to Lemma 1, for any x ∈ L(x0) and x+ ηp ∈ L(x0) with ∥p∥ → 0, we have

|Φ(x, ηp)| = o(∥p∥).
Therefore, for any ε > 0 and x ∈ L(x0), there exists δx > 0 such that for all ∥p∥ ≤ δx satisfying
x+ ηp ∈ L(x0), we have

|Φ(x, ηp)| ≤ εM̃

4θ
∥p∥.

Since
L(x0) ⊂

⋃
x∈L(x0)

B(x, δx),

where
B(x, δx) = {x′ ∈ Rn : ||x′ − x|| < δx},

we have that {B(x, δx) : x ∈ L(x0)} is an open covering for L(x0). Since L(x0) is non-empty and
compact, there exist a finite number of points in L(x0), say z1, z2, ..., zr, such that zj ∈ L(x0) for
j = 1, 2, ..., r, and

L(x0) ⊂
r⋃

j=1

B(zj , δzj ).

Let δ0 = min1≤j≤r δzj . Then we have that for all ||p|| ≤ δ0 and x ∈ L(x0),

max
x∈L(x0)

|Φ(x, ηp)| ≤ εM̃

4θ
∥p∥.

The proof is complete.

Lemma 3. Let {xk} be generated by Algorithm 1, and let fk = f(xk), gk = ∇f(xk), Vk ∈ ∂g(xk),
and pk = −[Vk + µk∥gk∥δI]−1gk. Then we have the lower bound of the predicted reduction:

mk(0)−mk(η
kpk) ≥ 1

2
∥gk∥ ·min

{
∥ηkpk∥, ∥gk∥

∥Vk∥

}
.

Proof. Let rk = ∥ηkpk∥. If we take (p, λ) = (ηkpk, µk∥gk∥δ), then we can verify that (p, λ) meets
the following relations: 

gk + Vkp+ λp = 0

λ ≥ 0

rk − ∥p∥ ≥ 0

λ · (rk − ∥p∥) = 0

As mk(·) is a convex function, we have that ηkpk is a KKT point and an optimal solution to the
constrained optimization problem

min
p∈Rd

mk(p) = fk + gTk p+
1

2
pTVkp

s.t. ∥p∥ ≤ rk.

(5)

Next, consider the Cauchy point defined in Chapter 4 of Jorge & Stephen (2006),

pkc = −τk
rk

∥gk∥
gk,

where

τk =

{
1, if gTk Vkgk ≤ 0

min
{
1, ∥gk∥3

rkgT
k Vkgk

}
, if gTk Vkgk > 0

.
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Then we can obtain the following inequality by Lemma 4.3 of Jorge & Stephen (2006):

mk(0)−mk(p
k
c ) ≥

1

2
∥gk∥ ·min

{
rk,

∥gk∥
∥Vk∥

}
.

Meanwhile, the Cauchy point pkc is a feasible point for the constrained problem (5), and ηkpk is an
optimal solution for this problem. Therefore, mk(p

k
c ) ≥ mk(η

kpk), and we have

mk(0)−mk(η
kpk) ≥ 1

2
∥gk∥ ·min

{
rk,

∥gk∥
∥Vk∥

}
.

The proof is complete.

Lemma 4. Let gk and µk be generated by Algorithm 1. Under the conditions of Assumption 1 and
Assumption 2, if there exists a constant ε > 0 and an integer K such that

∥gk∥ ≥ ε, ∀k ≥ K,

then there must exist a sufficiently large constant µ̄ > 0, such that µk+1 ≤ 4µ̄ for all k ≥ K.

Proof. For a given µ̄, define I1 = {k : k ≥ K,µk < µ̄} and I2 = {k : k ≥ K,µk ≥ µ̄}. If for
some µ̄, I2 is finite, then it trivially holds that all µk has a global upper bound, which leads to the
desired conclusion. Therefore, we only consider the case that I2 is infinite for all µ̄ > 0. Since µ̄
can be chosen arbitrarily, {µk}k∈I2 must be unbounded.

Then we will estimate the bound of the following quantity,

|ρk − 1| =
∣∣∣∣mk(p

k)− f(xk + pk)

mk(0)−mk(pk)

∣∣∣∣ ,
where ρk, mk and fk are defined in the same manner as Algorithm 1.

According to Assumption 2, one has ∥gk∥ ≥ ε and ∥gk∥ ≤ β1 for k ≥ K. Due to the convexity of
f , we have that Vk ∈ ∂g(xk) is positive semi-definite, which implies that the minimum eigenvalue
of the matrix Vk + µk∥gk∥δI is at least µkε

δ . In other words,

∥(Vk + µk∥gk∥δI)−1∥ = [λmin(Vk + µk∥gk∥δI)]−1 ≤ µ−1
k ε−δ.

From Algorithm 1, we have

ηkpk = ηk(Vk + µk∥gk∥δI)−1gk,

and hence for all k ∈ I2,

∥ηkpk∥ ≤ ηk · ∥(Vk + µk∥gk∥δI)−1∥ · ∥gk∥
≤ M̃µ−1

k ε−δ · β1 ≤ M̃µ̄−1ε−δ · β1. (6)

Equation (6) indicates that ∥ηkpk∥, k ∈ I2 can be made arbitrarily small with a sufficiently large µ̄.
Therefore, we can choose some µ̄ such that

∥ηkpk∥ ≤ min

{
δ0,

ε

β2
,

ε

2θβ2

}
, ∀k ∈ I2,

where δ0 is defined in Lemma 2. Meanwhile, we know∣∣f(xk + ηkpk)−mk(η
kpk)

∣∣ = ∣∣∣∣Φ(xk, ηkpk)− 1

2
(ηkpk)TVk(η

kpk)

∣∣∣∣
≤
∣∣Φ(xk, ηkpk)∣∣+ 1

2
∥Vk(ηkpk)∥ · ∥ηkpk∥.

Based on Lemma 2, when ∥ηkpk∥ ≤ δ0, the function Φ satisfies∣∣Φ(xk, ηkpk)∣∣ ≤ εM̃

4θ
· ∥pk∥.
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Furthermore,

1

2
∥Vk(ηkpk)∥ · ∥ηkpk∥ ≤ 1

2
(β2 · ∥ηkpk∥) · ∥ηkpk∥

≤ 1

2
M̃

(
β2 ·

ε

2θβ2

)
· ∥pk∥

=
εM̃

4θ
· ∥pk∥.

In summary, we obtain∣∣f(xk + ηkpk)−mk(η
kpk)

∣∣ ≤ ∣∣Φ(xk, ηkpk)∣∣+ 1

2
∥Vk(ηkpk)∥ · ∥ηkpk∥ ≤ εM̃

2θ
· ∥pk∥. (7)

In view of Lemma 3 and ηk ∈ [m̃, M̃ ], for all k ∈ I2, the lower bound follows,

mk(0)−mk(η
kpk) ≥ 1

2
∥gk∥min

{
∥ηkpk∥, ∥gk||

∥Vk∥

}
≥ 1

2
εmin

{
∥ηkpk∥, ε

β2

}
=

1

2
ε∥ηkpk∥ ≥ m̃

2
ε∥pk∥. (8)

Therefore, by combining (7) and (8), we have

|ρk − 1| =
∣∣∣∣mk(η

kpk)− f(xk + ηkpk)

mk(0)−mk(ηkpk)

∣∣∣∣ ≤ M̃

θm̃
= ρ0,

which means that ρk ≥ 1 − ρ0 for all k ∈ I2. From Algorithm 1, it follows that for all k ∈ I2, we
have µk+1 ≤ µk.

Now we can show that µk+1 ≤ 4µ̄ for all k ≥ K by reduction. First, enlarge µ̄ when necessary to
ensure that µ̄ > µK . Then by Algorithm 1, we must have µK+1 ≤ 4µ̄. Now suppose that µl+1 ≤ 4µ̄
for some l ≥ K. If µl+1 ∈ I1, then clearly µl+2 ≤ 4µ̄ immediately holds. Otherwise, µl+1 ∈ I2, so
by the argument above, we have µl+2 ≤ µl+1 ≤ 4µ̄. In both cases, the conclusion holds. The proof
is complete.

Lemma 5. Under the same conditions as in Lemma 4, define

K =

{
k : k ≥ K, ρk ≥ M̃

θm̃

}
.

Then we have that K is finite.

Proof. We use proof by contradiction. Suppose that K is infinite. Since

ρk =
f(xk)− f(xk + ηkpk)

mk(0)−mk(ηkpk)
,

and note that xk+1 = xk if ρk < 0, we have f(xk+1) ≤ f(xk + ηkpk). Therefore,

f(xk)− f(xk+1) ≥ M̃

θm̃
(mk(0)−mk(η

kpk)) ≥ M̃

2θm̃
εmin

{
∥ηkpk∥, ε

β2

}
for all k ∈ K, where the second inequality is due to Lemma 3. Based on Assumption 1 and Algo-
rithm 1, f(xk) is monotonically non-increasing with a lower bound, so f(xk) has a limit, and

lim
k∈K,k→∞

∥ηkpk∥ = 0.
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On the other hand, pk = (Vk + µk∥gk∥δI)−1gk, which means that gk = (Vk + µk∥gk∥δI)(ηkpk).
Then we can show that

ε ≤ ∥gk∥ = ∥(Vk + µk∥gk∥δI)pk∥
≤ ∥Vk + µk∥gk∥δI∥∥pk∥
≤ [∥Vk∥+ ∥(µk∥gk∥δI)∥] · ∥pk∥
≤ (β2 + µkβ

δ
1)∥pk∥

≤ (β2 + µkβ
δ
1) ·

∥∥∥∥ηkm̃ · pk
∥∥∥∥

= (β2 + µkβ
δ
1) ·

1

m̃
· ∥ηkpk∥

In other words,

0 ≤ εm̃

β2 + µkβδ
1

≤ ∥ηkpk∥ → 0,

which implies that µk → ∞ for k ∈ K, k → ∞. This contradicts with the fact that µk ≤ 4µ̄ as
shown in Lemma 4. The proof is complete.

Lemma 6 (Zhou & Toh, 2005). Let G ∈ Rn×n be a positive semidefinite matirx and λ0 > 0 such
that

∥(G+ λ0)
−1∥ ≤ 1

λ0
,

and
∥(G+ λ0I)

−1G∥ ≤ 2.

Proof. Let σmin be the smallest singular value of G+ λ0I and λmin be the smallest eigenvalues of
1
2 (G+GT ) + λ0I . By Horn & Johnson (1991), Corollary 3.1.5.

σmin ≥ λmin.

Since G is a positive semi-definite, we have

λmin = min

{
xT [

1

2
(G+GT ) + λ0I]x

}
= min

{
xTGx+ λ0

}
≥ λ0,

where ∥x∥ = 1 and x ∈ Rn. Hence we can obtain

∥(G+ λ0I)
−1∥ =

1

σmin
≤ 1

λmin
≤ 1

λ0
.

Therefore

∥(G+ λ0I)
−1G∥ = ∥(G+ λ0I)

−1(G+ λ0I − λ0I)∥
= ∥I − λ0(G+ λ0I)

−1∥
≤ 1 + λ0∥(G+ λ0I)

−1∥
≤ 2.

The proof is complete.

Lemma 7. Under the conditions of Assumption 3, when xk ∈ N(x∗, r1/2), there is a constant
c2 > 0 such that

∥ηkpk∥ ≤ c2 · dist(xk,X ).

Proof. Since xk ∈ N(x∗, r1/2), we have

∥x̄k − x∗∥ ≤ ∥x̄k − xk∥+ ∥xk − x∗∥ ≤ ∥x∗ − xk∥+ ∥xk − x∗∥ ≤ r1,
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which means that
x̄k ∈ N(x∗, r1). (9)

Let λk = µk∥gk∥δ , and we know from Assumption 3,

λk = µk∥gk∥δ ≥ κcδ1 · dist(xk,X )δ = κcδ1∥x̄k − xk∥δ.

Based on Lemma 6, we have

∥ηkpk∥ = ∥ηk(Vk + λkI)
−1gk∥

≤ M̃
{
∥(Vk + λkI)

−1[gk − g(x̄k)− Vk(x̄
k − xk)]∥+ ∥(Vk + λkI)

−1Vk(x̄
k − xk)∥

}
≤ M̃

{
λ−1
k · L∥x̄k − xk∥2 + 2∥x̄k − xk∥

}
Since ∥g(x)∥ is bounded from Assumption 2. Thus,

λ−1
k ∥x̄k − xk∥ =

dist(xk,X )

µk∥gk∥δ

≤ ∥gk∥1−δ

c1κ

≤ β1−δ
1

c1κ

Then we have

∥ηkpk∥ = ∥ηk(Vk + λkI)
−1gk∥

≤ M̃
{
λ−1
k · L∥x̄k − xk∥2 + 2∥x̄k − xk∥

}
≤ M̃

{
β1−δ
1

c1κ
L∥x̄k − xk∥+ 2∥x̄k − xk∥

}

= M̃

(
β1−δ
1 L

c1κ
+ 2

)
∥x̄k − xk∥ = c2 · dist(xk,X ).

Lemma 8. Suppose that f : Rn → R is a LC1 function (i.e., f is differentiable and its derivative
g is locally Lipschitz; see Qi, 1994). Then for any x ∈ Rn and x + ηp ∈ Rn with ∥p∥ → 0, the
following statements hold true.

f(x+ ηp)− f(x)− gT (ηp)− 1

2
(ηp)TV (ηp) = o(∥p∥2)

Proof. According to second-order mean value theorem Hiriart-Urruty et al. (1984)(Theorem 2.3) for
LC1 functions, for any x, x+ p ∈ Rn and V ∈ ∂g(x), there exists t ∈ [0, 1] and V ′ ∈ ∂g(x+ tηp),
where V ′ is the projection of V on set ∂g(x+ tηp), such that

f(x+ ηp)− f(x)− gT (ηp) =
1

2
ηpTV ′ηp

From Theorem 2 and the upper semicontinuiy of ∂g(x), we, as ∥p∥ → 0, V ′ → V , which means,∣∣∣∣f(x+ ηp)− f(x)− gT (ηp)− 1
2 (ηp)

TV (ηp)

∥p∥2

∣∣∣∣ = ∣∣∣∣ 12 (ηp)TV ′(ηp)− 1
2 (ηp)

TV (ηp)

∥p∥2

∣∣∣∣
≤ M̃2

2

∣∣∣∣∥V ′ − V ∥ · ∥p∥2

∥p∥2

∣∣∣∣
=
M̃2

2
∥V ′ − V ∥

→ 0 (∥p∥ → 0)
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Lemma 9. Under Assumption 1 to Assumption 3, when xk ∈ N(x∗, r1/2) there exists a constant
κ̄ > κ such that

µk ≤ κ̄

Proof. By Assumption 3 and Lemma 7, when xk ∈ N(x∗, r1/2),

mk(0)−mk(η
kpk) ≥ 1

2
∥gk∥min

{
∥ηkpk∥, ∥gk∥

∥Vk∥

}
≥ c1

2
∥xk − x̄k∥min

{
∥ηkpk∥, c1

β2
∥xk − x̄k∥

}
≥ c1

2c2
∥ηkpk∥min

{
∥ηkpk∥, c1

β2c2
∥ηkpk∥

}

Based on Lemma 8, for ∥pk∥ → 0, we can obtain,

|ρk − 1| =
∣∣∣∣f(xk + ηkpk)−mk(η

kpk)

mk(0)−mk(ηkpk)

∣∣∣∣
≤ o(∥pk∥2)

c1
2c2

∥ηkpk∥min
{
∥ηkpk∥, c1

β2c2
∥ηkpk∥

} → 0.

Therefore, from Lemma 7 we can obain that when dist(xk,X ) → 0 so that ∥ηkpk∥ → 0, and then
ρk → 1. Hence, we have that there exists a constant κ̄ > κ > 0 such that µk ≤ κ̄.

Lemma 10. {xk} is generated by Algorithm 1. If xk, xk+1 ∈ N(x∗, r1/2), and then there exists a
constants c3 > 0 such that

dist(xk + ηkpk,X ) ≤ c3 · dist(xk,X )2.

Proof. According to Assumption 3, g(x) is Lipschitz continuous on N(x∗, r1/2), and then there
exists a constant L̃ such that

∥g(y)− g(x)∥ ≤ L̃∥y − x∥, ∀x, y ∈ N(x∗, r1/2).

From Lemma 7 and Lemma 9, there exist constants K1 and K2 such that

K1∥x̄k − xk∥δ ≤ λk = µk∥gk∥δ = µk∥g(x̄k)− gk∥δ ≤ K2∥x̄k − xk∥δ,

where K1 = cδ1κ and K2 = L̃δκ̄.
Since ρk → 1 which means ρk > 0 for all k large enough, according to Algorithm 1 we have

xk+1 = xk + ηkpk.

From the conditions with Assumptions 3, we can obtain for δ ∈ [1, 2]

c1∥x̄k+1 − xk+1∥ ≤ ∥gk+1∥
= ∥g(xk + ηkpk)∥
≤ ∥g(xk + ηkpk)− g(xk)− Vk(η

kpk)∥+ ∥g(xk) + Vk(η
kpk)∥

≤ L∥ηkpk∥2 + ∥λkI · pk∥

≤ L∥ηkpk∥2 + λk
m̃

∥ηkpk∥

≤ Lc22 · dist(xk,X )2 +
K2c2
m̃

· dist(xk,X )1+δ

≤
(
Lc22 +

K2c2
m̃

)
dist(xk,X )2

which means

dist(xk+1,X ) ≤
(
Lc22
c1

+
K2c2
c1m̃

)
dist(xk,X )2.

The proof is complete.
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Lemma 11. Let r = min
{

r1
2+4c2

, 1
2c3

}
. And then there exists a integer K large enough such that

when xK ∈ N(x∗, r), then we can obtain that xk ∈ N(x∗, r1/2) for all k ≥ K.

Proof. Let x̄i be the projection of xi onto X . We define i as the i-th item following K, where i
takes the values 1, . . . , k, which means that xK represents the item when i = 0.

And then we first consider i = 1, which corresponds to the xK+1 term,

|x1 − x∗∥ = ∥x0 + η0p0 − x∗∥ ≤ ∥x0 − x∗∥+ ∥η0p0∥
≤ ∥x0 − x∗∥+ c2∥x0 − x̄0∥ ≤ (1 + c2)r ≤ r1/2,

which means x1 ∈ N(x∗, r1/2). Suppose xi ∈ N(x∗, r1/2) for i = 2, . . . , k. Then we have from
Lemma 10 that

∥xi − x̄i∥ ≤ c3∥xi−1 − x̄i−1∥2

≤ · · · ≤ c2
i−1

3 ∥x0 − x∗∥2
i

≤ r

(
1

2

)2i−1

.

Hence,

||xk+1 − x∗|| ≤ ||x1 − x∗||+
k∑

i=1

||ηipi||

≤ (1 + c2)r + c2

k∑
i=1

||xi − x̄i||

≤ (1 + c2)r + c2r

k∑
i=1

(
1

2

)2i−1

≤ (1 + c2)r + c2r

∞∑
i=1

(
1

2

)i

≤ (1 + 2c2)r

≤ r1/2.

where the last inequality follows from r ≤ r1
2+4c2

. Consequently we have xk+1 ∈ N(x∗, r1/2).

Lemma 12. The derivative of the dual function Φ is (globally) Lipschitz continuous and semi-
smooth.

Proof. Let f : O → Rm. It is defined as piecewise Ck (with k ∈ [1,∞]), if f remains continuous
at each point x̄. Moreover, within a neighborhood V ⊂ O around x̄, we have

f(x) ∈ {f1(x), f2(x), . . . , fN (x)} ∀x ∈ O,

where each fi(x) for i = 1, 2, . . . , N belongs to the class of Ck functions. As demonstrated in Ul-
brich (2011), Proposition 2.26, a function being piecewise C1 is semi-smooth, and if it is piecewise
C2, it elevates to strongly semi-smooth.

Lemma 13. Let f(x) be the same as the problem (4),

f(x) := f(α, β) =
1

2

∥∥(α⊕ β − C)+
∥∥2
F
− γ ⟨ν, α⟩ − γ ⟨µ, β⟩

Then we can deduce its generalized Jacobian

V =

(
diag(σ1m) σ

σT diag(σT 1n)

)
∈ ∂g(α, β),

where σij = 1 if αi + βj − cij ≥ 0, otherwise, σij = 0
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Proof. The proof of this lemma is inspired by Clarke (1990) Example 2.3.17, Theorem 2.3.10 and
Hiriart-Urruty et al. (1984) Example 2.1, We first deduce its derivative g(α, β),

g(α, β) =

(
(α⊕ β − C)+1m − γν
1Tn (α⊕ β − C)+ − γµ

)
=

(∑m
j=1(αi + βj − cij)+ − γνi∑n
i=1(αi + βj − cij)+ − γµj

)
for i = 1, . . .,n and j = 1, . . . ,m. g(α, β) can be represented as

g(α, β) =

 g1(α, β)
g2(α, β)
...

gn+m(α, β)


For gi(α, β) =

∑m
j=1(αi + βj − cij)+ − γνi, its generalized derivative with respect to αi is,

∂gi(α, β)

∂αi
=


1, if αi + βj − cij > 0

0, if αi + βj − cij < 0

None, if αi + βj − cij = 0

Considering sequences αi + βj − cij approaching from the right, we have

lim
(αi+βj−cij)→0+

∇gi(αi + βj − cij) = 1

Similarly, from the left, we have:

lim
(αi+βj−cij)→0−

∇gi(αi + βj − cij) = 0

According to Definition 1, we are interested in the convex hull of these limiting gradients at αi+βj−
cij = 0. The convex hull of the set {0, 1} is the interval [0, 1]. Thus, for gi(α, β) at αi+βj−cij = 0,

∂Cgi(0) = [0, 1].

Thus we can compute ∂g(α,β)
∂α and ∂g(α,β)

∂β to get one of the Clarke Jacobian V ∈ ∂g(α, β).

V =

(
diag(σ1m) σ

σT diag(σT 1n)

)
∈ ∂g(α, β),

where σij = 1 if αi + βj − cij ≥ 0, and σij = 0 otherwise. The proof is complete.

Lemma 14. The Clarke’s generalized Jacobian matrix V in Lemma 13 is symmetric and positive
semi-definite.

Proof. The proof of this lemma is inspired by Lorenz et al. (2021) Lemma 3.2. From the construc-
tion of the Jacobian matrix V in Lemma 13, it can be observed that the upper-right block and the
lower-left block of the block matrix are a pair of transposed matrices.

V =

(
diag(σ1m) σ

σT diag(σT 1n)

)
∈ ∂g(α, β),

Hence, this Jacobian matrix is symmetric.
For any vector a ∈ Rn and b ∈ Rm, it follows that

(a, b)TV (a, b) =

m∑
j=1

n∑
i=1

σija
2
i +

m∑
j=1

n∑
i=1

σijb
2
j + 2

m∑
j=1

n∑
i=1

σijaibj =

m∑
j=1

n∑
i=1

σij(ai + bj)
2 ≥ 0.

which can be infered that the Jacobian matrix V is positive semi-definite,
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B.2 PROOF OF THEOREM 3

We proceed the proof by contradiction. Suppose that there exist some ε > 0 and an integer K such
that

∥gk∥ > ε, ∀k ≥ K.

Then Lemma 5 implies that the index set

K =

{
k : k ≥ K, ρk ≥ M̃

θm̃
= ρ0

}

is finite. This means that there is a sufficiently large integer K ′ such that ρk < ρ0 for all k ≥ K ′.
According to Algorithm 1, we must have

µk+1 = 4µk, ∀k ≥ K ′,

which means that µk → ∞. However, this contradicts with the fact that µk ≤ 4µ̄ for some µ̄ > 0 as
shown in Lemma 4. The proof is complete.

B.3 PROOF OF THEOREM 4

From Lemma 11 we have that there exists a sufficiently large integerK, ∀k > K, xk ∈ N(x∗, r1/2)
when xK ∈ N(x∗, r). According to Lemma 10 we can obtain

dist(xk + ηkpk,X ) ≤ c3 · dist(xk,X )2.

The proof is complete.

B.4 PROOF OF PROPOSITION 1

Based on the lemma 12, we have f(x) is a piecewise quadratic function, and its derivative g(x)
is a piecewise linear function, thus g(x) is strongly semi-smooth. According to Lemma 13, we
can obtain the gradient g(α, β). One of the Clarke’s generalized Jacobian matrix V ∈ Rn+m is
calculated as:

V =

(
diag(σ1m) σ

σT diag(σT 1n)

)
∈ ∂g(α, β),

where σij = 1 if αi + βj − cij ≥ 0, and σij = 0 otherwise. From Lemma 14, we can deduce that
V is a symmetric positive semi-definite matrix.

C COMPUTING THE NEWTON DIRECTIONS

We need to solve linear systems of the form (V + λI)−1x, where V ∈ R(n+m)×(n+m) is a positive
semi-definite matrix, λ > 0, x = (wT , zT )T , w ∈ Rn, and z ∈ Rm.

For QROT problems, V has the following form:

V =

[
diag(h1) σ

σT diag(h2)

]
,

where σ ∈ Rn×m is a sparse matrix, h1 = σ1m, and h2 = σT1n.

Recall the inverse formula for block matrices:[
A B
C D

]−1

=

[
A−1 +A−1B

(
D − CA−1B

)−1
CA−1 −A−1B

(
D − CA−1B

)−1

−
(
D − CA−1B

)−1
CA−1

(
D − CA−1B

)−1

]

=

[
A−1 +A−1B∆−1CA−1 −A−1B∆−1

−∆−1CA−1 ∆−1

]
, ∆ = D − CA−1B,
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where A and ∆ are invertible. As a result,[
A B
C D

]−1 [
w
z

]
=

[
A−1w +A−1B∆−1CA−1w −A−1B∆−1z

∆−1z −∆−1CA−1w

]
=

[
A−1w +A−1B∆−1y −A−1B∆−1z

∆−1z −∆−1y

]
=

[
v −A−1B∆−1(z − y)

∆−1(z − y)

]
, v = A−1w, y = Cv.

Therefore, for QROT problems, first compute

v = w ◦ (h1 + λ1n)
−1, y = σT v,

where ◦ is the elementwise multiplication operator, and for a vector v, v−1 means taking the recip-
rocal of each element of v. Then we have (V + λI)−1x = (rT1 , r

T
2 )

T , where

r2 = ∆−1(z − y)

r1 = v − (σr2) ◦ (h1 + λ1n)
−1.

We use conjugate gradient method to compute r2 = ∆−1(z − y), so we need to implement the
operator u→ ∆u. Note that ∆ = diag(h2) + λIm − σT [diag(h2) + λIn]

−1σ, so

∆u = h2 ◦ u+ λu− σT [(σu) ◦ (h1 + λ1n)
−1].

D ADDITIONAL EXPERIMENT RESULTS

D.1 TEST PROBLEMS

We consider four groups of test problems:

• Example 1: OT between the discretizations of two identical distributions. We set ν = n−11n,
µ = m−11m, and the cost matrix Cij = ∥Xi − Yj∥2, where Xi ∼ N(0, I10) and Yj ∼
N(0, I10).

• Example 2: OT between two different distributions. Let xi = 5(i− 1)/(n− 1), i = 1, . . . , n,
and yj = 5(j−1)/(m−1), j = 1, . . . ,m, which are equally-spaced points on [0, 5]. Define the
cost matrix as Cij = (xi − yj)

2. Let f1 be the density function of an exponential distribution
with mean one, and f2 be the density function of a normal mixture distribution 0.2 ·N(1, 0.2)+

0.8 ·N(3, 0.5). Then we set ãi = f1(xi), b̃j = f2(yj), νi = ãi∑n
k=1 ãk

, and µj =
b̃j∑m

k=1 b̃k
.

• (Fashion-)MNIST data: OT between a pair of images from the MNIST data (LeCun et al.,
1998) or Fashion-MNIST data (Xiao et al., 2017). The ν and µ vectors are the flattened and
normalized pixel values, and the cost matrix holds the Euclidean distances between individual
pixels.

• ImageNet data: OT between two categories of images from the ImageNet data set (Deng et al.,
2009). We use a subset of ImageNet from the Imagenette Github repository2, which contains
ten classes of ImageNet images: tench, English springer, cassette player, chain saw, church,
French horn, garbage truck, gas pump, golf ball, and parachute. Approximately 1000 images
per category are selected. We map each image to a 30-dimensional feature vector by first
passing the image to a ResNet18 network, resulting in a 512-dimensional vector, then followed
by a dimension reduction by principal component analysis. Let xi ∈ R30 be the feature vector
of an image in the first category, i = 1, . . . , n, and yj ∈ R30 be the feature vector of an image
in the second category, j = 1, . . . ,m. Then ν = n−11n, µ = m−11m, and the cost matrix is
Cij = ∥xi − yj∥2.

D.2 VISUALIZATION OF TRANSPORT PLANS

Figures 4 and 5 show the transport plans for both the unregularized OT and QROT, on Example 1 and
Example 2. The transport plans for (Fashion-)MNIST and ImageNet data are not easy to visualize
due to their large sizes, so they are not included here.

2https://github.com/fastai/imagenette.
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Figure 4: Transport plans for Example 1 (n = m = 256): OT vs. QROT.
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Figure 5: Transport plans for Example 2 (n = m = 256): OT vs. QROT.

D.3 VISUALIZATION OF DUALITY GAPS

Figures 6 to 8 show the convergence of duality gaps of different optimization algorithms.

D.4 COMPUTING TIME BY ITERATIONS

Tables 2 to 4 show the computing time by iterations for different algorithms on Example 1, Example
2, and MNIST data.

D.5 ADDITIONAL TEST PROBLEMS

Figures 9 to 20 show additional experiment results as supplements to Section 5. For Example 1 and
Example 2, we consider additional problem sizes, n = m ∈ {1024, 2048, 4096}. For image data,
we show more pairs of images obtained from MNIST or Fashion-MNIST data. We also include
results for the ImageNet data in this section.
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Figure 6: Example 1 (n = m = 512). First row: duality gap vs. iteration number. Second row:
duality gap vs. run time.
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Figure 7: Example 2 (n = m = 512). First row: duality gap vs. iteration number. Second row:
duality gap vs. run time.
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Figure 8: MNIST (image IDs 2-54698). First row: duality gap vs. iteration number. Second row:
duality gap vs. run time.
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Table 2: Run time (in milliseconds) of algorithms by iterations on Example 1 (n = m = 512).

#Iter GD BCD APDAGD PDAAM Dual
L-BFGS

Semi-dual
L-BFGS

ASSN GRSSN
λ = 0.01

S5N

100 28.3 1071.3 138.9 1214.0 24.0 566.5 52.1 28.2 45.3

200 57.0 2164.2 279.3 2428.9 48.7 1188.6 105.6 59.3 97.9

300 85.8 3255.9 419.9 3647.4 71.0 158.9 92.5 137.4

400 114.5 4348.0 560.2 4859.2 93.0 212.4 127.1 179.4

500 143.3 5439.8 701.1 6072.0 118.5 265.7 161.2 224.4

Table 3: Run time (in milliseconds) of algorithms by iterations on Example 2 (n = m = 512).

#Iter GD BCD APDAGD PDAAM Dual
L-BFGS

Semi-dual
L-BFGS

ASSN GRSSN
λ = 0.01

S5N

100 31.3 362.9 145.4 507.1 32.6 276.4 54.02 43.7 76.4

200 63.4 740.4 292.7 1020.2 66.9 481.6 109.2 84.93 159.2

300 95.62 1120.1 440.0 1523.0 102.3 694.9 164.4 125.6 229.0

400 127.5 1501.3 586.7 2010.5 134.0 908.8 219.8 166.5 296.3

500 159.6 1882.9 733.7 2517.4 158.1 1106.7 275.2 208.6 369.7

Table 4: Run time (in milliseconds) of algorithms by iterations on MNIST data.

#Iter GD BCD APDAGD PDAAM Dual
L-BFGS

Semi-dual
L-BFGS

ASSN GRSSN
λ = 0.01

S5N

100 59.3 2193.0 311.7 2540.5 60.0 1364.0 110.1 96.7 106.5

200 132.3 4438.3 626.6 5087.8 105.1 2988.7 225.9 175.9 233.0

300 209.2 6686.3 943.7 7625.9 147.8 4544.4 342.9 250.7 363.0

400 290.0 8937.2 1257.5 10167.0 192.7 5893.2 462.4 326.0 502.5

500 372.5 11189.9 1573.4 12708.9 245.6 7171.4 583.0 402.1 647.6
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Figure 9: Example 1 (n = m = 1024). First row: dual objective function value vs. iteration number.
Second row: dual objective function value vs. run time. Third row: duality gap vs. run time.
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Figure 10: Example 1 (n = m = 2048). First row: dual objective function value vs. iteration
number. Second row: dual objective function value vs. run time. Third row: duality gap vs. run
time.
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Figure 11: Example 1 (n = m = 4096). First row: dual objective function value vs. iteration
number. Second row: dual objective function value vs. run time. Third row: duality gap vs. run
time.
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Figure 12: Example 2 (n = m = 1024). First row: dual objective function value vs. iteration
number. Second row: dual objective function value vs. run time. Third row: duality gap vs. run
time.
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Figure 13: Example 2 (n = m = 2048). First row: dual objective function value vs. iteration
number. Second row: dual objective function value vs. run time. Third row: duality gap vs. run
time.
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Figure 14: Example 2 (n = m = 4096). First row: dual objective function value vs. iteration
number. Second row: dual objective function value vs. run time. Third row: duality gap vs. run
time.
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Figure 15: MNIST (image IDs 34860-45815). First row: dual objective function value vs. iteration
number. Second row: dual objective function value vs. run time. Third row: duality gap vs. run
time.
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Figure 16: MNIST (image IDs 239-43981). First row: dual objective function value vs. iteration
number. Second row: dual objective function value vs. run time. Third row: duality gap vs. run
time.
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Figure 17: Fashion-MNIST (image IDs 37372-54698). First row: dual objective function value vs.
iteration number. Second row: dual objective function value vs. run time. Third row: duality gap
vs. run time.
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Figure 18: Fashion-MNIST (image IDs 17390-49947). First row: dual objective function value vs.
iteration number. Second row: dual objective function value vs. run time. Third row: duality gap
vs. run time.
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Figure 19: ImageNette (Tench-English Springer). First row: dual objective function value vs. itera-
tion number. Second row: dual objective function value vs. run time. Third row: duality gap vs. run
time.
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Figure 20: ImageNette (Tench-Chain Saw). First row: dual objective function value vs. iteration
number. Second row: dual objective function value vs. run time. Third row: duality gap vs. run
time.
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