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ABSTRACT

In federated learning, data heterogeneity is the main reason that existing
theoretical analyses are pessimistic about the convergence error caused by local
updates. However, empirical studies have shown that more local updates can
improve the convergence rate and reduce the communication cost when data
are heterogeneous. This paper aims to bridge this gap between the theoretical
understanding and the practical performance by providing a theoretical analysis
for federated averaging (FedAvg) with non-convex objective functions from
a new perspective on data heterogeneity. Identifying the limitations in the
commonly used assumption of bounded gradient divergence, we propose a
new assumption, termed the heterogeneity-driven Lipschitz assumption, which
characterizes the fundamental effect of data heterogeneity on local updates. In
the convergence analysis, we use the heterogeneity-driven Lipschitz constant
and the global Lipschitz constant to substitute the widely used local Lipschitz
constant and we show that our assumptions are weaker than those used in
the literature. Based on the new assumption, we derive novel convergence
bounds for both full participation and partial participation, which are tighter
compared to the state-of-the-art analysis of FedAvg. This result can also imply
that more local updates can improve the convergence rate even when data
are highly heterogeneous. Further, we discuss some insights of the proposed
heterogeneity-driven Lipschitz assumption. One interesting finding is that for
some quadratic objective functions, we can identify a region where FedAvg (also
known as local SGD) can outperform mini-batch SGD even when the gradient
divergence is arbitrarily large.

1 INTRODUCTION

Federated learning (FL) has emerged as an important technique for locally training machine learning
models over geographically distributed workers. It has advantages in improving training efficiency
and preserving data privacy. In this paper, we consider the following optimization problem in FL:

minx

{
f(x) := 1

N

∑N
i=1 Fi(x)

}
, (1)

where N is the number of workers; Fi(x) is the expected loss function of worker i1 given by

Fi(x) := Eξi∼Di
[ℓ(x; ξi)], (2)

where ℓ(·) is the loss function, ξi is the random data sample on worker i, and Di is the data
distribution on worker i. In addition, we use D to denote the global data distribution. In FL,
each worker performs I > 1 local iterations using its local dataset to reduce the communication
cost, which is called local updates. Federated averaging (FedAvg), also known as local stochastic
gradient descent (local SGD), is one of the most popular algorithms to solve the above optimization
problem (McMahan et al., 2017). In addition to FedAvg, a number of FL algorithms (Yu et al.,
2019a; Karimireddy et al., 2020; Reddi et al., 2020; Li et al., 2020b; Wang et al., 2020a;b) have been
proposed, whereas the core mechanism, local updates, is still the foundation of FL. Nevertheless,
existing theoretical analyses are pessimistic on the convergence error caused by local updates. In

1The objective function can be extended to weighted average by multiplying each local objective function
by a possibly distinct constant.
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Table 1: Estimated Lh, L̃, Lg with the MNIST dataset. Heterogeneity is shown by the percentage
of data on each worker that are not uniformly sampled from the global dataset. Results for linear
regression can be found in Appendix C.

Obj. Function Two-layer Neural Network
Heterogeneity 25% 50% 75% 100%

L̃ 127.62± 10.21 130.97± 11.67 134.24± 12.23 141.92± 12.78
Lh 0.35± 0.06 0.82± 0.11 1.66± 0.23 2.36± 0.29
Lg 122.23± 9.75 122.23± 9.75 122.23± 9.75 122.23± 9.75

particular, some works (Yu et al., 2019a;b) showed that convergence error of FL algorithms grows
as the number of local updates increases, which is inconsistent with empirical studies. This will be
explained in detail as follows.

There is a gap between the theoretical understanding and the experimental results. Unlike
the centralized SGD running on a single machine, where the gradients are directly sampled from the
global data distributionD, the local gradients in FedAvg are sampled from the local data distributions
{Di}, which are often highly heterogeneous (Kairouz et al., 2021). This can deteriorate FL’s
performance since the local models could drift to different directions during local updates (Zhao
et al., 2018; Karimireddy et al., 2020). Therefore, a common understanding is that local SGD
can have a larger convergence error than that of centralized SGD due to local updates. Existing
theoretical analyses for non-convex objective functions (Yu et al., 2019a;b; Wang & Joshi, 2019;
Yang et al., 2020) confirmed this intuition and showed that the convergence error caused by local
updates grows fast when the number of local updates I increases. However, in practice, local updates
have been successfully applied (Li et al., 2020a; Niknam et al., 2020; Rieke et al., 2020) and showed
superior experimental performance compared to mini-batch SGD (each worker performing I = 1
local iteration per round) (McMahan et al., 2017; Lin et al., 2020). This means that increasing I can
improve the convergence rate and reduce the communication cost when data are highly non-IID in
practice. This inconsistency between the pessimistic theoretical results and the good experimental
results for the local updates implies that the existing theoretical analysis may overestimate the error
caused by local updates. It is indeed challenging to show theoretically when local SGD (I > 1) can
outperform mini-batch SGD (I = 1) (Woodworth et al., 2020a;b).

Figure 1: An illustrative comparison
between local updates and centralized
updates. x̄r is the global model at rth
round. The local models after k local
iterations at the rth round are denoted
by xr,k

1 and xr,k
2 . The average of

xr,k
1 and xr,k

2 is x̂r,k. The centralized
model after k centralized iterations is
denoted by xr,k

c . It can be seen that
ζ shows the difference between xr,k

c

and xr,k
i , i = 1, 2 and Lh shows the

difference between xr,k
c and x̂r,k.

Although local models could drift to different
directions, the average of local models can still be close
to the centralized model. To the best of our knowledge,
the only metric of data heterogeneity in existing works
(Yu et al., 2019b; Wang & Joshi, 2019; Karimireddy et al.,
2020; Woodworth et al., 2020b) is gradient divergence
(ζ), which characterizes the difference between the
expected local gradient ∇Fi(x) of worker i and the
expected global gradient ∇f(x). As shown in Figure 1,
the intuition behind the gradient divergence is that
when ζ is large, the difference between local gradients
and the global gradient is large. Then after multiple
local iterations, the local models will drift to different
directions. Previous theoretical results based on the
gradient divergence show that when ζ is large, I has to
be small to avoid the divergence of the FL algorithms.
However, in FL, the final output is the global model on
the server, which is the average of local models after local
updates. As shown in Figure 1, although ζ is large, the
averaged model x̂r,k can still be close to the centralized
model xr,k

c obtained using centralized SGD. This means
that the convergence error caused by local updates is close
to zero. While ζ successfully characterizes the variance
among local gradients, it cannot capture the difference
between the averaged model and the centralized model. Consequently, relying solely on the gradient
divergence in convergence analysis can lead to an overestimation of the convergence error caused by
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local updates. To obtain a better convergence upper bound, it is necessary to introduce a new metric
which can characterize the difference between the averaged model and the centralized model.

To address the inconsistency between the theory and the practice, we introduce a new metric Lh,
referred to as the heterogeneity-driven Lipschitz constant. As shown in Figure 1, the proposed metric
Lh captures the difference between the averaged model and the centralized model, which cannot be
characterized by ζ. In our analysis, we use the heterogeneity-driven Lipschitz constant Lh and the
global Lipschitz constant Lg to substitute the widely used local Lipschitz constant L̃. This is based
on our important observation that L̃ is affected by data heterogeneity, which is neglected by previous
theoretical results. In the literature (Yu et al., 2019b; Yang et al., 2020; Khaled et al., 2020), L̃ is used
to characterize the smoothness of the gradients for all local objective functions under any degree of
the data heterogeneity. However, as shown in Table 1, L̃ increases fast as the percentage of non-IID
data increases. We use Lh to characterize the information on data heterogeneity contained in L̃ and
we use Lg to show the smoothness. We will show that using Lh and Lg to substitute L̃ can make
the assumptions weaker.

Contribution of this paper. In this paper, we reveal the fundamental effect of the data heterogeneity
on FedAvg by introducing a new perspective shown by Lh, the heterogeneity-driven Lipschitz
constant in Assumption 4.2. In particular, our main contributions are as follows. (1) Using the
new assumptions, which are proved to be weaker than those in the literature, we develop a novel
analysis for FedAvg with general non-convex objective functions, which shows that if Lh is small
enough, even for a large ζ, the convergence error caused by local updates can still be small so that a
large I can be used to obtain a good convergence performance and to reduce communication costs.
(2) Our analysis can incorporate partial participation where only a subset of workers are sampled to
perform the local updates in each round. We show that with partial participation, increasing I can
still improve the convergence rate. (3) We discuss the significance of the proposed Lh, by which,
we identify a region where local SGD can outperform mini-batch SGD for some quadratic objective
functions. (4) Our theoretical results are validated using experiments.

2 RELATED WORKS

FedAvg, also known as local SGD, was first proposed in McMahan et al. (2017) and there have
been a considerable amount of works analyzing the convergence rate of local SGD with non-convex
objective functions including FedAvg (Haddadpour, Farzin et al., 2019; Yu et al., 2019b; Reddi
et al., 2020). There is also a line of work focusing on the partial participation (Yang et al.,
2020), compression and quantization (Jiang & Agrawal, 2018; Richtárik et al., 2021) in local
SGD. However, in these works, the gradient divergence is the only metric of data heterogeneity.
Thus, it is hard to show that local updates can improve the convergence rate when data are
highly heterogeneous (Woodworth et al., 2020a;b) while our paper show that more local updates
can improve the convergence rate. Based on local SGD, some works aim to overcome the data
heterogeneity by introducing additional control variates, such as SCAFFOLD (Karimireddy et al.,
2020). However, the communication overhead is larger compared to local SGD. There are two
papers (Wang et al., 2022; Das et al., 2022) closely related to our work, which also aim to find new
assumptions that can better characterize the effect of data heterogeneity in local SGD. However,
both works cannot capture the information on the data heterogeneity contained in the local Lipschitz
constant as shown in our paper so their convergence upper bounds can be worse compared to ours.
A detailed discussion for related works can be found in Appendix A.1.

3 PRELIMINARIES

In FedAvg, each round is composed of the local update phase and the global update phase. The
global model is initialized as x̄0. At the start of round r, the server distributes the global model x̄r

to all workers. During the local update phase, each worker updates its local model with the local
learning rate γ and the stochastic gradients sampled from their own local data distribution Di,

xr,k+1
i = xr,k

i − γg(xr,k
i ; ζi), (3)

where xr,k
i is the local model at the rth round and kth iteration. For simplicity, we use gi(·) to

denote the gradient g(·; ζi). In addition, ḡ(·) denotes the gradient sampled from the global dataset
D. We assume that the local stochastic gradient is an unbiased estimate of the expected local gradient
E
[
gi(x

r,k
i )
∣∣xr,k

i

]
= ∇Fi(x

r,k
i ). After I local iterations, worker i sends the local model update at
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the rth round ∆r
i := x̄r − xr,I

i to the server. During the global update phase, the server updates the
global model using the following equality:

x̄r+1 = x̄r − η · 1
N

∑N
i=1 ∆

r
i , (4)

where η is the global learning rate. Let x̂r,k be the “virtual” averaged model during the local update
phase and

x̂r,k+1 := 1
N

∑N
i=1 x

r,k+1
i = x̂r,k − γ · 1N

∑N
i=1 gi(x

r,k
i ), (5)

where k ∈ {0, 1, 2, . . . , I − 1}. Note that the virtual model x̂r,k may not be observed in the system,
and is mainly used for the theoretical analysis. We define xr,k

c as the model obtained by applying
centralized updates2 at kth iteration of rth round given the averaged model x̂r,k, which means that
the gradient is sampled from the global data distribution D. Specifically,

xr,k+1
c := x̂r,k − γḡ(x̂r,k), (6)

where E
[
ḡ(x̂r,k)

]
= ∇f(x̂r,k).

The following assumptions are widely used in the literature for the analysis of algorithms including
FedAvg (Karimireddy et al., 2020; Yu et al., 2019b; Khaled et al., 2020; Wang et al., 2020a).
Assumption 3.1 (Local Lipschitz Gradient).

∥∇Fi(x)−∇Fi(y)∥ ≤ L̃ ∥x− y∥ ,∀x,y, i. (7)

There are also some works (Khaled et al., 2020) assuming that Lipschitz gradient condition holds for
each data sample ∥∇ℓ(x; ξ)−∇ℓ(y; ξ)∥ ≤ L′ ∥x− y∥ ,∀x,y, ξ, which is stronger and can imply
local Lipschitz gradient condition.
Assumption 3.2 (Bounded Stochastic Gradient Variance).

E
[
∥gi(x)−∇Fi(x)∥2

]
≤ σ2,∀i,x. (8)

Assumption 3.3 (Bounded Gradient Divergence).

∥∇Fi(x)−∇f(x)∥2 ≤ ζ2,∀i,x. (9)

Assumption 3.3 is often the only metric of data heterogeneity in the literature (Yu et al., 2019a;
Wang & Joshi, 2019), where it was shown that there is a term O(γ2L̃2I2ζ2) in the convergence
upper bound. This means that the gradient divergence (ζ) and the number of local updates (I) are
coupled, and the error caused by ζ grows fast as I increases and the effect of I2ζ2 is amplified by
L̃2. In this paper, we find that this result can be pessimistic since it can be seen from Table 1 that
L̃ can be very large, which means that the error caused by I2ζ2 can become much larger due to the
large L̃2. In the next section, we will solve this problem using our new assumption and analysis.

4 MAIN RESULTS

In this section, we present the convergence upper bound for non-convex objective functions using the
proposed new assumption. We also consider the partial participation in the analysis. We summarize
the technical novelties and provide proofs for all theorems and propositions in Appendix B.

In the literature, three classes of assumptions on stochastic gradient variance, gradient divergence
and smoothness are often made for theoretical analysis (Yu et al., 2019b; Wang et al., 2020a; Khaled
et al., 2020). We keep Assumption 3.2 for stochastic gradient variance and Assumption 3.3 for
gradient divergence. Assumptions 4.1 and 4.2 will replace Assumption 3.1. In Section 5, we will
show that Assumptions 4.1 and 4.2 are weaker than Assumption 3.1.
Assumption 4.1 (Global Lipschitz Gradient). The global objective function f(x) satisfies

∥∇f(x)−∇f(y)∥ ≤ Lg ∥x− y∥ ,∀x,y. (10)
2Note that the model xr,k

c is different from the model obtained by applying the centralized updates from
the beginning of the algorithm. We use this for ease of analysis, and leave the consideration of the “actual”
centralized model for future work.
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In our analysis, the Lipschitz gradient condition is only needed for the global objective function
instead of for each local objective function as in Assumption 3.1 or for each data sample as in
Khaled et al. (2020).

Assumption 4.2 (Heterogeneity-driven Lipschitz Condition on Averaged Gradients). There exists
a constant Lh ≥ 0 such that ∀xi,∥∥∥ 1

N

∑N
i=1∇Fi(xi)−∇f (x̄)

∥∥∥2 ≤ L2
h

N

∑N
i=1 ∥xi − x̄∥2 , (11)

where x̄ = 1
N

∑N
i=1 xi and Lh is referred to as the heterogeneity-driven Lipschitz constant.

We consider Assumption 4.2 as a new perspective on data heterogeneity for the following reasons.
First, Lh can be used to characterize the convergence error caused by local updates. In particular,
we will show that L̃ can be replaced by Lh in the convergence error caused by local updates in
the literature. Second, unlike Assumption 3.3, Lh can characterize the difference between averaged
model and the centralized model. This difference captures the real impact of data heterogeneity as
discussed in Section 1. We will discuss these new perspectives of Assumption 4.2 and Ln in detail
in this section and in Section 5. Next, we present the theoretical results for full participation.

Theorem 4.3 (General Non-convex Objective Functions). Assuming Assumptions 3.2, 3.3, 4.1, 4.2
hold, when γ ≤ 1

30(Lh+Lg)I
and γη ≤ 1

4ILg
, then after R rounds of FedAvg, we have

min
r∈[R]

E ∥∇f(x̄r)∥2 = O
(
F

γηRI
+

γηLgσ
2

N︸ ︷︷ ︸
error caused by SGD

+ γ2L2
h(I − 1)2ζ2 + γ2L2

h(I − 1)σ2︸ ︷︷ ︸
error caused by local updates

)
, (12)

where F := f(x0)− f∗.

An improved bound by using new assumption. In (12), the stochastic gradient variance in the
error caused by SGD depends on Lg while the error caused by local updates depends on Lh. It
can be observed that, in Yu et al. (2019b;a); Yang et al. (2020), the variance in the error caused by
SGD is O(γηL̃σ2

N ), and the error caused by local updates is O(γ2L̃2(I − 1)2ζ2 + γ2L̃2(I − 1)σ2),
where L̃ is substituted by Lg and Lh, respectively, in (12). As shown by the experimental results
in Table 1, both Lh and Lg are smaller than L̃. In Section 5, we also prove theoretically that Lh

and Lg are smaller than L̃. In particular, Lh can be far less than L̃. Therefore, existing theoretical
results overestimate both the error caused by SGD and the error caused by local updates while the
convergence upper bound using new assumption is better.

New insights about the effect of data heterogeneity. It can be observed that in the error caused
by local updates, both ζ2 and σ2 are multiplied by Lh. A key message is that when ζ2 is large, as
long as L2

h is small enough, the error caused by local updates can still be small. Since Lh and ζ
characterize the effect of the data heterogeneity in different perspectives, we show that it is possible
that Lh = 0 while ζ can be arbitrarily large by providing an example in Section 5. In this case, no
matter how large ζ is, the convergence error of local SGD is the same as that of centralized SGD,
which means that I can be arbitrarily large and only one aggregation is sufficient. Moreover, when
Lh = 0, we can see that the impacts of γ and η on the convergence upper bound are the same
since the error caused by local updates is zero and the error caused by SGD is a function of γη. In
this case, the two-sided learning rates may not help and only a single learning rate, e.g., let η = 1,
suffices to achieve the desired convergence upper bound.

It is worth noting that although Lh increases with the percentage of heterogeneous data, Lh can still
be small even if the percentage of heterogeneous data is large as shown by the experimental results
for the two-layer neural network in Table 1 and the experimental results for CNN in Section 6. The
following corollary shows that more local iterations can improve the convergence rate.

Corollary 4.4. With γη =
√

FN
RILgσ2 , there exists γ ≤ 1

30(Lh+Lg)I
such that

min
r∈[R]

E∥∇f(x̄r)∥2 = O

(√
FLgσ2

RIN
+

ζ2 + σ2/I

RIN

)
. (13)
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From (13), it can be seen that FedAvg achieves linear speedup in the number of iterations RI with
respect to the total number of workers N since the convergence rate is given byO

(
1√
RIN

+ 1
RIN

)
.

If we keep the product of R and I , the convergence rate will be the same. This means that we can
choose a large I and a small R such that the communication cost can be reduced. From the second
term O

(
ζ2+σ2/I
RIN

)
, it can be observed that although ζ can be large, more local updates can still

improve the convergence rate.

Analysis for Partial Participation. We also use the new assumption to derive the convergence
upper bound for partial participation. At each round, M workers are uniformly sampled with
replacement. The result provides the insights into the relationship between local updates and
partial participation. It is worth noting that the technique for partial participation in existing works
cannot be directly applied in our analysis since the Lipschitz gradient (see Assumption 3.1) is often
assumed for each local objective function in the literature. Therefore, we develop new techniques to
incorporate the partial participation using Lh and Lg , which can be found in Appendix B.
Theorem 4.5 (Partial Participation). Consider uniformly sampling M (1 ≤ M ≤ N ) workers in
each round of FedAvg. Assuming Assumptions 3.2, 3.3, 4.1, 4.2 hold, when γ ≤ 1

30(Lh+Lg)I
and

γη ≤ 1
4ILg

, after R rounds of FedAvg, we have

min
r∈[R]

E ∥∇f(x̄r)∥2 = O
(
F

γηRI
+

γηLgσ
2

M︸ ︷︷ ︸
error caused by SGD

+
γηLgIζ

2

M︸ ︷︷ ︸
error caused by p.p.

+ γ2L2
h(I − 1)2ζ2 + γ2L2

h(I − 1)σ2︸ ︷︷ ︸
error caused by local updates

)
,

(14)

where “p.p.” means partial participation.

Compared with Theorem 4.3, there are two differences in the convergence bound. First, the variance
term in the error caused by SGD depends on M . This means that more workers sampled in each
round can reduce the variance. Second, there is an extra term γηLgIζ

2

M in the convergence bound for
partial participation, which denotes the error caused by partial participation. In the literature (Yang
et al., 2020), this term is often multiplied by L̃. In (14), this term depends on Lg and not on Lh. This
means that a small Lh cannot reduce the error caused by partial participation, which can be shown
explicitly by the following corollary.
Corollary 4.6. Consider uniformly sampling M workers during each round in FedAvg. With γη =√

MF
LgIR(σ2+Iζ2) , there exists γ ≤ 1

30(Lh+Lg)I
such that

min
r∈[R]

E ∥∇f(x̄r)∥2 = O

(√
FLgζ2

RM
+

√
FLgσ2

RIM
+

ζ2 + σ2/I

RIN

)
. (15)

It can be seen from Corollary 4.6 that increasing I can still reduce the convergence error. However,
the error caused by partial participation, which is shown by the first term in (15), cannot be reduced
by increasing I . This is because that Lh characterizes the difference between the averaged model
over all workers and the centralized model (we will formally explain this property in Section 5).
However, with partial participation, the global model on the server becomes a stochastic estimate
of the average models over all workers since only a subset of workers are randomly sampled. The
variance caused by the sampling strategy is not characterized by Lh. In addition, the dominant
term in (15) becomes O

(√
1/RM

)
. This means that given the sampling strategy, to achieve a small

convergence error, performing a large number of aggregations is necessary. However, increasing I
can still accelerate the convergence since the other two terms are reduced.

5 DISCUSSIONS

In this section, first, we show that the global Lipshictz gradient (Assumption 4.1) and the
heterogeneity-driven Lipschitz constant (Assumption 4.2) used in this paper are weaker than the
commonly used local Lipschitz gradient assumption (Assumption 3.1). Second, we explain the
significance of Lh by showing its ability to characterize the difference between the virtual averaged
model (defined in (5)) and the centralized model. Third, we consider a special case of Lh = 0,
demonstrating that under such conditions, local SGD can outperform mini-batch SGD.

6



Under review as a conference paper at ICLR 2023

Assumptions in this paper are weaker. In the following proposition, we show that Assumptions 4.1
and 4.2 are weaker than the commonly used Assumption 3.1 in the literature.

Proposition 5.1. If Assumption 3.1 holds, then Assumption 4.1 holds by choosing Lg = L̃ and
Assumption 4.2 holds by choosing Lh = L̃.

Proposition 5.1 also shows how the information about the data heterogeneity contained in L̃ is
captured. The information about the smoothness of the gradients remains in Lg , which does not
change with the data heterogeneity, while Lh characterizes the effect of data heterogeneity. In
addition, Proposition 5.1 implies that Lg ≤ L̃ and Lh ≤ L̃. However, as shown in Table 1, Lh can
be much smaller than L̃. We examine the intricate relationship between Lh and L̃ through a deeper
analysis of the quadratic3 (potentially non-convex) objective function:

Fi(x) =
1
2x

TAix+ bT
i x+ ci. (16)

By (1), we directly obtain that the global objective function is given by f(x) = 1
2x

TAx+bTx+c,
where A = 1

N

∑N
i=1 Ai and b = 1

N

∑N
i=1 bi. In this case, we can derive the explicit forms of Lh

and L̃ as shown by the following proposition.

Proposition 5.2. For quadratic objective functions defined in (16), Assumptions 3.1 and 4.2 hold
with L̃ = maxi∈[N ] |λ(Ai)|, Lh = 2 · maxi∈[N ] |λ(Ai −A)|, respectively, where |λ(A)| denotes
the largest absolute value of the eigenvalues of A.

From Proposition 5.2, it can be seen that both Lh and L̃ capture the properties of Hessian matrices
for quadratic objective functions. The heterogeneity-driven Lipschitz constant Lh characterizes
the largest eigenvalue of the “deviation” of {Ai} from the global Hessian matrix A, while L̃
characterizes the largest eigenvalue of {Ai} themselves. It can be observed that when Ai = A,∀i,
which means that the difference of local Hessian matrices is zero, Assumption 4.2 holds with
Lh = 0. Note that, at the same time, we can pick an Ai such that L̃ = maxi∈[N ] |λ(Ai)| is
much larger than zero. This observation shows that while the difference among Hessian matrices
of local objective functions, shown by Lh, can be small, the eigenvalues of the individual Hessian
matrix, shown by L̃ can still be very large.

Explanation of Lh. Assumption 4.2 captures the difference between the averaged model and
centralized model, which can be seen from the following proposition. At the kth iteration of the
rth round, we consider the virtual averaged model in (5) and the centralized model in (6).

Proposition 5.3. Given the virtual averaged model at the rth round and kth iteration x̂r,k, we have∥∥E[x̂r,k+1|x̂r,k]− E[xr,k+1
c |x̂r,k]

∥∥2 ≤ γ2 · L
2
h

N

∑N
i=1

∥∥∥xr,k
i − x̂r,k

∥∥∥2 . (17)

Proposition 5.3 shows that although the difference among local models, captured by
∥∥xr,k

i − x̂r,k
∥∥2

(depends on both ζ and σ), can be large after multiple local iterations, the difference between the
averaged model and centralized model can still be small if Lh is small. This means that while the
variance among local models depends on ζ and σ, Lh determines how the averaged model is affected
by this variance among local models, which is consistent with the theoretical results in Theorem 4.3.
Now we show that when Lh = 0, ζ can be arbitrarily large.

Proposition 5.4. For quadratic objective functions defined in (16), when ζ = 0, Assumption 4.2
holds with Lh = 0, while when Lh = 0, ζ can be arbitrarily large.

Proposition 5.4 shows that Lh = 0 is not a sufficient condition for ζ = 0, which implies that only
using ζ can overestimate the effect of the data heterogeneity. This is because that as we have seen
in Proposition 5.2, for quadratic objective functions, the key effect of heterogeneity on the local
updates is shown on the difference between A and Ai while ζ depends not only on the difference
between A and Ai but also on the difference between b and bi. In addition, we notice that in
multi-label learning (Zhang & Zhou, 2014), when A = Ai, b can be very different from bi since

3Here we do not assume the Hessian matrix is positive definite so that the quadratic objective function can
be non-convex.
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data examples sharing the same feature can have different labels. This means that Lh = 0 but ζ > 0
is possible in practice.

Extended discussion about Local SGD v.s. Mini-batch SGD. In the following theorem, we
consider the case of Lh = 0, by which we show that local SGD can outperform mini-batch SGD
even when ζ is arbitrarily large. Instead of directly applying Lh = 0 to Theorem 4.3, we develop a
new technique for Theorem 5.5. The difference on the techniques can be shown by the requirement
on the learning rate, which no longer depends on I while in Theorem 4.3, it depends on I . In
Theorem 4.3, it is shown that when Lh = 0, two-sided learning rates do not have advantage over
a single learning rate for non-convex objective functions. Without loss of generality, we consider
η = 1 in the following.
Theorem 5.5 (Special Case of Lh = 0). For quadratic objective functions defined in (16), with a
common Hessian A = Ai,∀i, if γ ≤ 1

|λ(A)| and η = 1, for local SGD with I local iterations,

min
r∈[R],k∈[I]

E
[∥∥∇f(x̂r,k)

∥∥2] = O( F
γRI

+
γLg

N
σ2

)
; (18)

for mini-batch SGD with the batch size I ,

min
r∈[R],k∈[I]

E
[∥∥∇f(x̂r,k)

∥∥2] = O( F
γR

+
γLg

NI
σ2

)
. (19)

A fair comparison between local SGD and mini-batch SGD. In Theorem 5.5, the cost of
communication and computation is the same for both local SGD and mini-batch SGD since the
number of aggregations is R and the total number of gradients sampled is NRI for both algorithms.
The restriction for the learning rate is also the same. Comparing (18) with (19), we see that the
difference is on the place where I appears. For local SGD, I is in the first term of (18), which means
that local SGD uses more computation to reduce the error caused by the initialization. For mini-batch
SGD, I is in the second term of (19), which means that mini-batch SGD uses more computation to
reduce the error caused by the variance. When the variance σ2 is small (i.e., σ2 → 0), the first terms
of (18) and (19) dominate, and it becomes beneficial to choose γ to be as large as possible, so we
can choose γ = 1

|λ(A)| for both cases. Then, as σ2 → 0, the convergence rate of local SGD goes
to O( 1

RI ) while the convergence rate of mini-batch SGD goes to O( 1
R ). This implies that when σ2

is small, the speed of convergence for local SGD can be much faster than that for mini-batch SGD,
which will be validated in the experiments in the next section.The discussion on the comparison
between local SGD and mini-batch SGD for non-convex quadratic objective functions with Lh ̸= 0
can be found in Section A.2.

6 EXPERIMENTS

For the non-IID setting, the data on each worker is sampled in two steps. First, X% of the data on
one worker is sampled from a single label. Then we uniformly partition the remaining dataset into
all workers and we say that the percentage of heterogeneous data on this worker is X%. Additional
experimental details and results can be found in Appendix C.

Results with MNIST dataset. In Table 1, a two-layer neural network with cross-entropy loss and a
linear regression model with mean squared error (MSE) is trained with the MNIST dataset (LeCun
et al., 1998). The MNIST dataset is partitioned into 10 workers.

Results with CIFAR-10 dataset. A CNN model with cross-entropy loss is trained with the
CIFAR-10 dataset (Krizhevsky & Hinton, 2009). The CIFAR-10 dataset is partitioned into 100
workers, and we randomly sample 10 workers in each round. The results for the general non-convex
functions with partial participation are shown in Table 2 and Figure 2. In Table 2, it can be seen that
Lh is far smaller than L̃. In Corollary 4.6, it is shown that when Lh is small, increasing I can reduce
the convergence error. This is validated by experimental results in Figure 2. It can be observed
that for both 50% and 75% of heterogeneous data, I = 80 is the best curve and increasing I can
accelerate the convergence.

Results with synthetic data. For the special case of Lh = 0, we construct quadratic examples
to validate the insights from Theorem 5.5. We construct the objective function as Fi(x) =
1
2 ∥Ux− vi∥2, where U ∈ R100×100, vi ∈ R100. Each column of U and vi are sampled from

8
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Table 2: Estimated Lh, L̃, Lg for a CNN model trained with the CIFAR-10 dataset.

Obj. Function CNN
Heterogeneity 25% 50% 75% 100%

L̃ 447.59± 22.27 898.49± 38.57 1131.36± 47.82 1662.24± 62.18
Lh 0.96± 0.13 1.21± 0.19 1.63± 0.26 2.15± 0.34
Lg 323.35± 15.36 323.35± 15.36 323.35± 15.36 323.35± 15.36

(a) Training-50%. (b) Test-50%. (c) Training-75%. (d) Training-75%.

Figure 2: Results with CNN. The dataset is CIFAR-10. The learning rates are chosen as η = 2 and
γ = 0.05. Results for 50% of the heterogeneous data are shown in (a) and (b). Results for 75% of
the heterogeneous data are shown in (c) and (d).

a normal distribution N (0, I). In this case, the gradient divergence is ∥U(vi − v)∥2 > 0. Table 3
shows the results for quadratic objective functions. To distinguish the number of local updates from
the mini-batch size in the experiments, we use a separate variable s to indicate the mini-batch size.
Theorem 4.3 shows that when Lh = 0, using two-sided learning rates does not have advantages
over a single learning rate. This is validated by the experiments shown in Table 3, where there is no
difference among the results with different learning rates when keeping the product of learning rates.
Comparing results with I = 1, I = 5, and I = 10 with s = 1 in Table 3, it can be seen that more
local updates can reduce the communication cost, which validates the results in Theorem 5.5. By
the comparison between the results of I = 1, s = 5 and I = 5, s = 1 and the comparison between
the results of I = 1, s = 10 and I = 10, s = 1, we can see that keeping the number of gradients
sampled in one round the same, local SGD (I > 1) converges faster than mini-batch SGD (I = 1)
when σ2 is small, which validates the discussion for Theorem 5.5.

Table 3: Special case of Lh = 0 with the quadratic objective functions. I = 1 is equivalent to
mini-batch SGD. The number of rounds is the communication rounds needed for achieving a target
function value of 0.8. For (η, γ), we fix I = 10 and for (I, s), we fix η = 1, γ = 0.005.

(η, γ) (1, 0.005) (2, 0.0025) (5, 0.001) (10, 0.0005)
Number of Rounds 86± 1.6 86± 1.6 86± 1.6 86± 1.6

(I, s) (1, 1)&(1, 5) (1, 10) (5, 1) (10, 1)
Number of Rounds 927± 3.4 925± 1.7 187± 2.3 95± 2.4

7 CONCLUSIONS AND FUTURE WORKS

In this paper, we bridged the gap between the pessimistic theoretical results and the good
experimental performance for FL algorithms by introducing a new theoretical perspective of the
data heterogeneity, which is shown by the proposed heterogeneity-driven Lipschitz constant Lh.
Using the new assumption, we developed a novel convergence analysis for FedAvg and identified
the regions where local updates can help to improve the convergence even when data are highly
heterogeneous. Our convergence upper bounds for both full participation and partial participation
can be better compared to the state of the art in the literature. In addition, we showed that the new
assumptions used in this paper are weaker. Moreover, we discussed the significance of the proposed
heterogeneity-driven Lipschitz constant, by which, we successfully identified a region where local
SGD can out perform mini-batch SGD. It is worth mentioning that our new assumption and analysis
have the potential to be applied in the convergence analysis of other FL algorithms besides FedAvg.
The reason is that this new assumption can be employed in a pivotal step shared in existing literature
for the convergence analysis of various FL algorithms. More detailed discussion can be found in
Appendix A.1. Hence, our future works include leveraging our new assumption and analysis to
enhance the convergence upper bound of other FL algorithms.
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Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al.
Advances and open problems in federated learning. Foundations and Trends® in Machine
Learning, 14(1–2):1–210, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pp. 5132–5143. PMLR, 2020.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory for local sgd on
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APPENDIX

This Appendix is composed of three sections. Section A.1 provides more details of related works
and additional discussions on the theoretical results. Section B provides proofs for theorems,
corollaries and propositions in the main paper. Section C provides additional details and results of
experiments.

A ADDITIONAL DISCUSSIONS

A.1 ADDITIONAL DETAILS OF RELATED WORKS

There have been a considerable amount of works analyzing the convergence rate of federated
learning algorithms (not limited to FedAvg), with non-convex objective functions (Haddadpour,
Farzin et al., 2019; Yu et al., 2019b; Wang & Joshi, 2019; Karimireddy et al., 2020; Reddi et al.,
2020). A key step shared by these analyses is to relate the difference of gradients,

∥∥ 1

N

N∑
i=1

∇Fi(xi)−∇f(x̄)
∥∥,

to the model divergence,

1

N

N∑
i=1

∥xi − x̄∥ ,

which can be found, for example, in inequality (10) in the supplementary of Yu et al. (2019b), the
inequality (6) in the supplementary of Reddi et al. (2020), and the proof of Lemma 19 in Karimireddy
et al. (2020). In this step, the local Lipschitz gradient assumption is often applied, which amplifies
the effect of data heterogeneity. In this paper, the heterogeneity-driven Lipschitz constant Lh is
applied in this step so that the convergence error is much smaller than that based on L̃, since it can
be seen in Table 1 that Lh is often far smaller than L̃. Therefore, we believe that our techniques can
also be applied to other works to improve the convergence analysis.

There are two papers (Wang et al., 2022; Das et al., 2022) closely related to our work. Both works
assume the Lipschitz gradient for each local objective function while we only assume it for the
global objective function. Therefore, the information about data heterogeneity contained in L̃ is
not characterized in either work. Wang et al. (2022) try to re-characterize the data heterogeneity
by extending the single gradient divergence assumption ((4) in Wang et al. (2022)) to the averaged
gradient divergence assumption ((15) in Wang et al. (2022)). Wang et al. (2022) consider the convex
objective function and their analysis cannot guarantee convergence to a stationary point while we
consider general non-convex objective function and our results can guarantee convergence to a
stationary point. Das et al. (2022) introduce a parameter α in the process of relating the difference
of gradients to the model divergence, which can be covered by Lh in this paper. But α cannot cover
what Lh can show since they still assume Lipschitz gradient for each local objective function. They
only use α as an intermediate step instead of theoretically analyzing the effect of data heterogeneity.
In their theoretical results, the convergence error increases with I even when α = 0.

In the following, we provide more details about the difference between Wang et al. (2022)) and our
paper. In Wang et al. (2022)), a new metric for data heterogeneity, ρ, the average drift at optimum,
is proposed. The definition of ρ is∥∥∥∥∥ 1

γI

(
1

N

N∑
i=1

xr,I
i − x̄r

)∥∥∥∥∥ = ρ. (A.1)

We discuss the difference between Wang et al. (2022)) and our paper in the following three aspects.

First, the new metric ρ in Wang et al. (2022)) focuses on the difference on models while in our
paper, we still focus on the difference on the gradients. The key insight in Wang et al. (2022)) is that
since ρ is small, when the global model is x∗, after multiple local updates, the averaged model does
not change significantly. In our paper, the key insight is that since Lh can be small, the difference
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between the current global gradient and the current averaged local gradients can be small. In Wang
et al. (2022)), the gradient divergence is not used in the analysis. In our analysis, we still use the
gradient divergence jointly with the proposed Lh to measure the data heterogeneity.

Second, in Wang et al. (2022)), it is only empirically shown that ρ can be small. In our paper, we not
only empirically show that Lh can be small, but also provide an analytical example. Our quadratic
example can be non-convex, a case which ρ cannot cover.

Third, one weakness of using ρ is that in the convergence bound in Wang et al. (2022)), the
convergence error shown by ρ cannot vanish. This means that by choosing γ = 1√

R
, when R

goes to infinity, the convergence bound cannot guarantee that FedAvg can converge to the local
minima of the global objective function. On the contrary, our convergence bound can guarantee the
convergence to the local minima of the global objective function, which is shown by Corollary 4.4.

A.2 MORE DISCUSSIONS ON THE THEORETICAL RESULTS

In this section, we provide a comparison between mini-batch SGD and local SGD for quadratic
objective functions with Lh > 0. For simplicity, we consider that all Ai’s are invertible.
Theorem A.1 (Quadratic Objective Functions with Lh ̸= 0). With γ ≤ { 1

L̃
, 1
ILh
}, for local SGD

with non-convex quadratic functions, we have

1

T

T−1∑
t=0

E
∥∥∇f(x̂t)

∥∥2 = O
(
F

γRI
+

γLgσ
2

2N
+ γ2L2

h(I − 1)2ζ2 + γ2L2
hIσ

2

)
. (A.2)

The proof can be found in Section B.13. Compared with the theoretical results for general
non-convex objective functions, the main improvement is on the choice of learning rate. We
develop new techniques in the proof to achieve the improvement on the learning rate, which fully
takes advantage of the properties of quadratic objective functions. For the ease of comparison, the
convergence bound for mini-batch SGD is provided as follows. With α ≤ 1

Lg
, for mini-batch SGD,

we have

1

T

T−1∑
t=0

E
∥∥∇f(x̂t)

∥∥2 = O
(
F
αR

+
αLgσ

2

2NI

)
. (A.3)

First, we consider the simplest case, σ = 0.
Corollary A.2 (σ = 0 for Quadratic Objective Functions). When σ = 0 and I ≤ 1

Lh
, with γ =

1

(RI)
1
3

, for local SGD, we have

1

T

T−1∑
t=0

E
∥∥∇f(x̂t)

∥∥2 = O
(
F

(RI)
2
3

+
ζ2

(RI)
2
3

)
, (A.4)

while for mini-batch SGD, we have

1

T

T−1∑
t=0

E
∥∥∇f(x̂t)

∥∥2 = O
(
FLg

R

)
. (A.5)

In this case, when I
1
3Lg ≥ R

1
3 , with non-convex objective functions, the convergence rate of local

SGD is better than that of mini-batch SGD.

Second, we consider the case where σ is small.
Corollary A.3 (σ is small). When σ2 ≤ 2NF

γ2LgRI and I ≤ 1
Lh

, with γ = 1

(RI)
1
3

, for local SGD, we

have

1

T

T−1∑
t=0

E
∥∥∇f(x̂t)

∥∥2 = O
(
F

(RI)
2
3

+
ζ2

(RI)
2
3

+
2NF
LgRI2

)
, (A.6)
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while for mini-batch SGD, we have

1

T

T−1∑
t=0

E
∥∥∇f(x̂t)

∥∥2 = O

(
NF

Lg(RI)
1
3

)
. (A.7)

When (RI)
1
3 ≤ Lg

N , with non-convex objective functions, the convergence rate of local SGD is
better than that of mini-batch SGD. From above two Corollaries, it can be seen that when Lh is
small enough and the stochatstic noise is small, local SGD can be better than mini-batch SGD.

B PROOFS

The description of FedAvg with two-sided learning rates can be found in Algorithm 1. For full
participation, we have Sr = {1, 2, . . . , N},∀r and M = N . For partial participation, we have
M < N .

Algorithm 1: FedAvg with two-sided learning rates

Input: γ, η, x̄0, I
Output: Global averaged model x̄R

1 for r = 0 to R− 1 do
2 Sample a subset of workers Sr, |Sr| = M ;
3 Distribute the current global model x̄r to workers in Sr;
4 for Each worker i in Sr, in parallel do

/* Local Update Phase */
5 k = 0;
6 while k < I do
7 Sample the stochastic gradient gi(x

r,k
i );

8 Update the local model
9 xr,k+1

i ← xr,k
i − γgi(x

r,k
i );

10 k ← k + 1;

11 Send ∆r
i ← x̄r − xr,I

i to the server;
/* Global Update Phase */

12 Update the global model
13 x̄r+1 ← x̄r − η · 1

M

∑
i∈Sr

∆r
i ;

B.1 TECHNICAL NOVELTIES

Before proceeding to the proof of our theoretical results, we summarize the technical novelties as
follows, which provides a reference for our techniques.

(1) We need to develop new techniques to incorporate Assumptions 4.1 and 4.2. In the proof
of Theorem 4.3 shown in the Appendix, we need to characterize the difference between local
gradients. In the literature, this is done by applying the local Lipschitz constant in shown in
Assumption 3.1 in the main paper. In our paper, since Assumption 3.1 is replaced by our newly
introduced Assumption 4.2, the proof techniques in the literature cannot be applied. It requires
developing new proof techniques to use Assumption 4.2 as shown in the proof of Lemma B.1-B.3.
For example, in Lemma B.1, due to the application of Assumptions 4.1 and 4.2, we have to deal
with a new term, the local gradient deviation ∥ 1

N

∑N
i=1∇Fi(xi)−∇Fj(xj)∥2, which is not shown

in other techniques. Another example is in the proof of Theorem 4.5. Due to that we only use the
global Lipschitz gradient assumption, we have to derive a new method to bound and incorporate the
sampling related term E∥ 1

M

∑
i∈Sr

∑I
k=0 gi(x

r,k
r )∥2, which can be seen from (B.33) to (B.40).

(2) In addition to using Assumption 4.2 to characterize the new convergence rate of FedAvg,
we also validate this assumption from the theoretical perspective. We develop the proof for
Proposition 5.1-5.3 in Appendix.
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(3) In Theorem 5.5, since we use iteration-by-iteration analysis in the proof, the learning rate is not
a function of I . It can be seen that in the literature, such as Theorem IV in Karimireddy et al. (2020),
for quadratic objective functions, the learning rate is upper bounded by I . The advantage of that γ
is not a function of I can be explained as follows. In Theorem 5.5, to obtain the optimal dependence
on R and I , we can choose γ = 1√

RI
. This requires that 1√

RI
≤ 1

Lg
, which means that I can be as

large as possible. However, if γ ≤ 1
ILg

, we will have 1√
RI
≤ 1

ILg
such that I ≤ R

L2
g

, which means

that to achieve the convergence rate of O( 1√
RI

), I cannot be arbitrarily large. Therefore, the range
of the learning rate in Theorem 5.5 significantly enhances the convergence analysis.

B.2 ADDITIONAL LEMMAS

In the proof, we use xi to denote the local model of worker i regardless of the number of iterations,
and use x̄ := 1

N

∑N
i=1 xi to denote the averaged model. Following lemmas are useful in the proof

for main theorems.
Lemma B.1 (Local Gradient Deviation). With Assumption 3.3, 4.1 and 4.2, we have

1

N

N∑
j=1

∥∥∥∥∥ 1

N

N∑
i=1

∇Fi(xi)−∇Fj (xj)

∥∥∥∥∥
2

≤ 3(L2
h + L2

g) ·
1

N

N∑
j=1

∥x̄− xj∥2 + 3ζ2. (B.1)

Lemma B.2 (Model Divergence). With γ ≤ 1
30(Lh+Lg)I

, we have

I−1∑
k=0

L2
h

N

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2 ≤ 3c(I − 1)3γ2L2

hζ
2 + c(I − 1)2γ2L2

hσ
2, (B.2)

where c = 3 and x̂r,k = 1
N

∑N
i=1 x

r,k
i .

Lemma B.3 (The Change of Averaged Models). With γ ≤ 1
3ILg

, at rth round, we have

E
∥∥x̂r,k − x̄r

∥∥2 ≤5(I − 1) · γ
2σ2

N
+ 30Iγ2

I−1∑
k=0

L2
h

N

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2

+ 30I(I − 1)γ2E ∥∇f(x̄r)∥2 . (B.3)

B.3 PROOF OF LEMMA B.1

We start with the LHS of the inequality in Lemma B.1.

1

N

N∑
j=1

∥∥∥∥∥ 1

N

N∑
i=1

∇Fi(xi)−∇Fj (xj)

∥∥∥∥∥
2

=
1

N

N∑
j=1

∥∥∥∥∥ 1

N

N∑
i=1

∇Fi(xi)−∇f(x̄) +∇f(x̄)−∇f(xj) +∇f(xj)−∇Fj (xj)

∥∥∥∥∥
2

≤ 3

∥∥∥∥∥ 1

N

N∑
i=1

∇Fi(xi)−∇f(x̄)

∥∥∥∥∥
2

+ 3 · 1
N

N∑
j=1

∥∇f(x̄)−∇f(xj)∥2 + 3 · 1
N

N∑
j=1

∥∇f(xj)−∇Fj (xj)∥2

(a)

≤ 3

∥∥∥∥∥ 1

N

N∑
i=1

∇Fi(xi)−∇f(x̄)

∥∥∥∥∥
2

+ 3L2 · 1
N

N∑
j=1

∥x̄− xj∥2 + 3ζ2

(b)

≤ 3 · D
2

N

N∑
i=1

∥x̄− xi∥2 + 3L2 · 1
N

N∑
j=1

∥x̄− xj∥2 + 3ζ2

= 3(D2 + L2) · 1
N

N∑
j=1

∥x̄− xj∥2 + 3ζ2, (B.4)

where (a) is due to Assumption 3.3 and 4.1 and (b) is due to Assumption 4.2.
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B.4 PROOF OF LEMMA B.2

At rth round, we have

L2
h

N

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2

=
γ2L2

h

N

N∑
i=1

E

∥∥∥∥∥∥
k−1∑
m=0

gi(x
r,m
i )− 1

N

N∑
j=1

gj(x
r,m
j )

∥∥∥∥∥∥
2

=
γ2L2

h

N

N∑
i=1

E

∥∥∥∥∥
k−1∑
m=0

(
gi(x

r,m
i )−∇Fi(x

r,m
i ) +∇Fi(x

r,m
i )

. − 1

N

N∑
j=1

∇Fj(x
r,m
j ) +

1

N

N∑
j=1

∇Fj(x
r,m
j )− 1

N

N∑
j=1

gj(x
r,m
j )

∥∥∥∥∥
2

≤ 2 · γ
2L2

h

N

N∑
i=1

E

∥∥∥∥∥∥
k−1∑
m=0

∇Fi(x
r,m
i )− 1

N

N∑
j=1

∇Fj(x
r,m
j )

∥∥∥∥∥∥
2

+ 2 · γ
2L2

h

N

N∑
i=1

∥∥∥∥∥∥
k−1∑
m=0

gi(x
r,m
i )−∇Fi(x

r,m
i ) +

1

N

N∑
j=1

∇Fj(x
r,m
j )− 1

N

N∑
j=1

gj(x
r,m
j )

∥∥∥∥∥∥
2

(a)

≤ 2 · γ
2L2

h

N

N∑
i=1

E

∥∥∥∥∥∥
k−1∑
m=0

∇Fi(x
r,m
i )− 1

N

N∑
j=1

∇Fj(x
r,m
j )

∥∥∥∥∥∥
2

+ 2 · γ
2L2

h

N

N∑
i=1

E

∥∥∥∥∥
k−1∑
m=0

(
gi(x

r,m
i )−∇Fi(x

r,m
i )

)∥∥∥∥∥
2

≤ 2 · γ
2L2

h

N

N∑
i=1

E

∥∥∥∥∥∥
k−1∑
m=0

∇Fi(x
r,m
i )− 1

N

N∑
j=1

∇Fj(x
r,m
j )

∥∥∥∥∥∥
2

+ 2γ2L2
hkσ

2

≤ 2k · γ
2L2

h

N
·

N∑
i=1

k−1∑
m=0

E

∥∥∥∥∥∥∇Fi(x
r,m
i )− 1

N

N∑
j=1

∇Fj(x
r,m
j )

∥∥∥∥∥∥
2

+ 2γ2L2
hkσ

2

(b)

≤ 2kγ2L2
h

k−1∑
m=0

(
3(L2

h + L2
g)

1

N

N∑
k=1

E ∥x̂r,m − xr,m
k ∥2 + 3ζ2

)
+ 2γ2L2

hkσ
2

= 6kγ2L2
h(L

2
h + L2

g)

k−1∑
m=0

1

N

N∑
i=1

E ∥x̂r,m − xr,m
i ∥2 + 6k2γ2L2

hζ
2 + 2γ2L2

hkσ
2, (B.5)

where (a) is due to 1
N

∑N
i=1 ∥yi − ȳ∥2 ≤ 1

N

∑N
i=1 ∥yi∥2 and we let yi =∑k−1

m=0 [gi(x
r,m
i )−∇Fi(x

r,m
i )], and (b) is due to Lemma B.1.

Note that when k = I , we have xr,k
i = xr+1,0

i = x̄r+1 and when k = 0, we have xr,k
i = x̄r. So we

have
∥∥∥xr,I

i − x̂r,I
∥∥∥2 = 0, for k = 0, I . Then sum over k for one round on both sides, we have

I∑
k=1

L2
h

N

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2

≤
I∑

k=1

(
6kγ2L2

h(L
2
h + L2

g)

k−1∑
m=0

1

N

N∑
i=1

E ∥x̂r,m − xr,m
i ∥2 + 6k2γ2L2

hζ
2 + 2γ2L2

hkσ
2

)
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≤3γ2L2
h(L

2
h + L2

g)I(I − 1)

I−1∑
m=0

1

N

N∑
i=1

E ∥xr,m
i − x̂r,m∥2

+ 6(I − 1)3γ2L2
hζ

2 + 2(I − 1)2γ2L2
hσ

2. (B.6)

Move the first term on RHS of (B.6) to LHS, we have(
L2
h − 3γ2L2

h(L
2
h + L2

g)I(I − 1)

) I−1∑
k=0

1

N

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2

≤ 6(I − 1)3γ2L2
hζ

2 + 2(I − 1)2γ2L2
hσ

2. (B.7)

With γ ≤ 1
30(Lh+Lg)I

, we have

L2
h − 3γ2L2

h(L
2
h + L2

g)I(I − 1) > 0. (B.8)

Since 2
1−3γ2(L2

h+L2
g)I(I−1)

< 3, we can choose c = 3 such that

I−1∑
k=0

L2
h

N

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2 ≤ 3c(I − 1)3γ2L2

hζ
2 + c(I − 1)2γ2L2

hσ
2. (B.9)

B.5 PROOF OF LEMMA B.3

At rth round, for k = 0, we have

E
∥∥x̂r,k − x̄r

∥∥2 = 0. (B.10)

At rth round, for 1 ≤ k ≤ I − 1, we have

E
∥∥x̂r,k − x̄r

∥∥2
= E

∥∥∥∥∥x̂r,k−1 − γ

N

N∑
i=1

gi(x
r,k−1
i )− x̄r

∥∥∥∥∥
2

= E

∥∥∥∥∥x̂r,k−1 − x̄r − γ

(
1

N

N∑
i=1

gi(x
r,k−1
i )− 1

N

N∑
i=1

∇Fi(x
r,k−1
i ) +

1

N

N∑
i=1

∇Fi(x
r,k−1
i )

−∇f(x̂r,k−1) +∇f(x̂r,k−1)−∇f(x̄r) +∇f(x̄r)

)∥∥∥∥∥
2

(a)

≤
(
1 +

1

2I − 1

)
E
∥∥x̂r,k−1 − x̄r

∥∥2 + γ2σ2

N
+ 6Iγ2E

∥∥∥∥∥ 1

N

N∑
i=1

∇Fi(x
r,k−1
i )−∇f(x̂r,k−1)

∥∥∥∥∥
2

+ 6Iγ2E
∥∥∇f(x̂r,k−1)−∇f(x̄r)

∥∥2 + 6Iγ2E∥∇f(x̄r)∥2

(B.11)

(b)

≤
(
1 +

1

2I − 1
+ 6Iγ2L2

g

)
E
∥∥x̂r,k−1 − x̄r

∥∥2 + γ2σ2

N
+

6Iγ2L2
h

N

N∑
i=1

E
∥∥∥xr,k−1

i − x̂r,k−1
∥∥∥2

+ 6Iγ2E∥∇f(x̄r)∥2

(B.12)

(c)

≤ 5(I − 1) · γ
2σ2

N
+ 30Iγ2

I−1∑
k=0

L2
h

N

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2 + 30I(I − 1)γ2E ∥∇f(x̄r)∥2 ,

(B.13)

where (a) is due to that ∥x+ y∥2 ≤ (1 + p) ∥x∥2 + (1 + 1
p ) ∥y∥

2
,∀p > 0, (b) is due to

Assumption 4.1 and 4.2 and (c) is due to (1 + 1
q )

q < e,∀q > 0, where e is the natural exponent.
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B.6 PROOF OF THEOREM 4.3

With Assumption 4.1, we have

E
[
f(x̄r+1)

]
≤ E [f(x̄r)]− γηE

〈
∇f(x̄r),

1

N

N∑
i=1

I−1∑
k=0

gi(x
r,k
i )

〉
+

γ2η2Lg

2
E

∥∥∥∥∥ 1

N

N∑
i=1

I−1∑
k=0

gi(x
r,k
i )

∥∥∥∥∥
2

= E [f(x̄r)]− γηE

〈
∇f(x̄r),

1

N

N∑
i=1

I−1∑
k=0

∇Fi(x
r,k
i )

〉
+

γ2η2Lg

2
E

∥∥∥∥∥ 1

N

N∑
i=1

I−1∑
k=0

gi(x
r,k
i )

∥∥∥∥∥
2

.

(B.14)

The second term in the RHS of (B.14) can be computed as follows.

− γηE

〈
∇f(x̄r),

1

N

N∑
i=1

I−1∑
k=0

∇Fi(x
r,k
i )

〉

= −γη

I
E

〈
I∇f(x̄r),

1

N

N∑
i=1

I−1∑
k=0

∇Fi(x
r,k
i )

〉

=
γη

2I
E

∥∥∥∥∥ 1

N

N∑
i=1

I−1∑
k=0

(
∇Fi(x

r,k
i )−∇f(x̄r)

)∥∥∥∥∥
2

− I2 ∥∇f(x̄r)∥2 −

∥∥∥∥∥ 1

N

N∑
i=1

I−1∑
k=0

∇Fi(x
r,k
i )

∥∥∥∥∥
2

=
γη

2I

E

∥∥∥∥∥
I−1∑
k=0

(
1

N

N∑
i=1

∇Fi(x
r,k
i )−∇f(x̂r,k)

)
+

I−1∑
k=0

(
∇f(x̂r,k)−∇f(x̄r)

)∥∥∥∥∥
2

−I2E ∥∇f(x̄r)∥2 − E

∥∥∥∥∥ 1

N

N∑
i=1

I−1∑
k=0

∇Fi(x
r,k
i )

∥∥∥∥∥
2


≤ γη

2I

2I

I−1∑
k=0

E

∥∥∥∥∥ 1

N

N∑
i=1

∇Fi(x
r,k
i )−∇f(x̂r,k)

∥∥∥∥∥
2

+ 2I

I−1∑
k=0

E
∥∥∇f(x̂r,k)−∇f(x̄r)

∥∥2
−I2E ∥∇f(x̄r)∥2 − E

∥∥∥∥∥ 1

N

N∑
i=1

I−1∑
k=0

∇Fi(x
r,k
i )

∥∥∥∥∥
2


(a)

≤ γη

2I

{
2IL2

h

N

I−1∑
k=0

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2 + 2IL2

g

I−1∑
k=0

E
∥∥x̂r,k − x̄r

∥∥2
−I2E ∥∇f(x̄r)∥2 − E

∥∥∥∥∥ 1

N

N∑
i=1

I−1∑
k=0

∇Fi(x
r,k
i )

∥∥∥∥∥
2
 , (B.15)

where (a) is due to Assumption 4.1 and Assumption 4.2.

The third term in the RHS of (B.14) can be computed as follows.

γ2η2Lg

2
E

∥∥∥∥∥ 1

N

N∑
i=1

I−1∑
k=0

gi(x
r,k
i )

∥∥∥∥∥
2

=
γ2η2Lg

2

∥∥∥∥∥ 1

N

N∑
i=1

I−1∑
k=0

∇Fi(x
r,k
i )

∥∥∥∥∥
2

+
γ2η2Lg

2
E

∥∥∥∥∥ 1

N

N∑
i=1

I−1∑
k=0

[
gi(x

r,k
i )−∇Fi(x

r,k
i )
]∥∥∥∥∥

2

≤ γ2η2Lg

2

∥∥∥∥∥ 1

N

N∑
i=1

I−1∑
k=0

∇Fi(x
r,k
i )

∥∥∥∥∥
2

+
γ2η2ILgσ

2

2N
. (B.16)
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Substitute (B.15) and (B.16) to (B.14), we have

E
[
f(x̄r+1)

]
≤ E [f(x̄r)] +

γηL2
h

N

I−1∑
k=0

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2 + γηL2

g

I−1∑
k=0

E
∥∥x̂r,k − x̄r

∥∥2
− γηI

2
E ∥∇f(x̄r)∥2 − γη

2

(
1

I
− γηLg

)
E

∥∥∥∥∥ 1

N

N∑
i=1

I−1∑
k=0

∇Fi(x
r,k
i )

∥∥∥∥∥
2

+
γ2η2ILgσ

2

2N

(a)

≤ E [f(x̄r)] +
γηL2

h

N

I−1∑
k=0

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2 + γηL2

g

I−1∑
k=0

E
∥∥x̂r,k − x̄r

∥∥2
− γηI

2
E ∥∇f(x̄r)∥2 + γ2η2ILgσ

2

2N

(b)

≤ E [f(x̄r)] +
γηL2

h

N

I−1∑
k=0

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2 − γηI

2
E ∥∇f(x̄r)∥2 + γ2η2ILgσ

2

2N

+ γηL2
gI

(
5(I − 1)

γ2σ2

N
+ 30Iγ2

I−1∑
k=0

L2
h

N

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2 + 30I(I − 1)γ2E ∥∇f(x̄r)∥2

)

≤ E [f(x̄r)] + 2γη

I−1∑
k=0

L2
h

N

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2 − γηI

4
E ∥∇f(x̄r)∥2 + γ2η2ILgσ

2

N

(c)

≤ E [f(x̄r)] + 2γη
[
3c(I − 1)3γ2L2

hζ
2 + c(I − 1)2γ2L2

hσ
2
]
− γηI

4
E ∥∇f(x̄r)∥2 + γ2η2ILgσ

2

N
,

(B.17)

where (a) is due to γη < 1
4IL , (b) is due to Lemma B.3 and (c) is due to Lemma B.2.

Rearrange the above inequality and average over r, we obtain

min
r∈[R]

E ∥∇f(x̄r)∥2 ≤ 1

R

R−1∑
r=0

E ∥∇f(x̄r)∥2 ≤ 4[f(x0)− f∗]

γηRI
+

γηLgσ
2

N

+ 24cγ2L2
h(I − 1)2ζ2 + 8cγ2L2

h(I − 1)σ2. (B.18)

Then we have

min
r∈[R]

E ∥∇f(x̄r)∥2 = O
(
f(x0)− f∗

γηRI
+

γηLgσ
2

N
+ γ2L2

h(I − 1)2ζ2 + γ2L2
h(I − 1)σ2

)
.

(B.19)

B.7 PROOF OF COROLLARY 4.4 AND COROLLARY 4.6

When I ≥ 1
Lh

, we let γ = 1
LhI

1√
RIN

, then we can verify that

γ =
1

LhI

1√
RIN

≤ 1√
RIN

≤ 1

30(Lg + Lh)I
, (B.20)

which satisfy the condition in Theorem 4.3 and implies I ≤ RN
900(Lg+Lh)2

. Hence the range of I
when I ≥ 1

Lh
is given by

I ∈
(

1

Lh
,

RN

900(Lg + Lh)2

)
. (B.21)

In this case, by plugging in γ = 1
LhI

1√
RIN

, the last two terms of (12) in Theorem 4.3 can be upper
bounded as

γ2L2
h(I − 1)2ζ2 + γ2L2

h(I − 1)σ2 ≤ ζ2

RIN
+

σ2/I

RIN
=

ζ2 + σ2/I

RIN
. (B.22)
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When I < 1
Lh

, let 1
LhI
· 1√

RIN
, then we have

γ =
1√
RIN

≤ 1

30(Lg + Lh)I
,

which satisfy the condition in Theorem 4.3 and implies I ≤ RN
900(Lg+Lh)2

. In this case, by plugging
in γ = 1

LhI
1√
RIN

, the last two terms of (12) in Theorem 4.3 can be upper bounded as

γ2L2
h(I − 1)2ζ2 + γ2L2

h(I − 1)σ2 ≤ γ2ζ2 + γ2 · σ
2

I
=

ζ2 + σ2/I

RIN
. (B.23)

Hence, the condition of I to make the upper bound of the last two terms of (12) in Theorem 4.3 is
I ≤ RN

900(Lg+Lh)2
.

Next, we compute the the first two terms of (12) in Theorem 4.3. When I ≤ Rσ2

16FNLg
, let γη =√

FN
RILgσ2 . Then the first two terms of (12) in Theorem 4.3 can be computed as

f(x0)− f∗

γηRI
+

γηLgσ
2

N
=

√
FLgσ2

RIN
. (B.24)

Hence, we finish the proof of Corollary 4.4. Corollary 4.6 can be proved using similar approach.

B.8 PROOF OF THEOREM 4.5

Consider the partial participation shown in Algorithm 1. In each round, M workers are uniformly
sampled with replacement. Then ∀r, k, we have

ESr

 1

M

∑
j∈Sr

∇Fj(x
r,k
j )

 =
1

N

N∑
i=1

∇Fi(x
r,k
j ). (B.25)

With Assumption 4.1, after one round of FedAvg, we have

E
[
f(x̄r+1)

]
≤ E [f(x̄r)]− γηE

〈
∇f(x̄r),

1

M

∑
i∈Sr

I−1∑
k=0

gi(x
r,k
i )

〉
+

γ2η2Lg

2
E

∥∥∥∥∥ 1

M

∑
i∈Sr

I−1∑
k=0

gi(x
r,k
i )

∥∥∥∥∥
2

= E [f(x̄r)]− γηE

〈
∇f(x̄r),

1

N

N∑
i=1

I−1∑
k=0

∇Fi(x
r,k
i )

〉
+

γ2η2Lg

2
E

∥∥∥∥∥ 1

M

∑
i∈Sr

I−1∑
k=0

gi(x
r,k
i )

∥∥∥∥∥
2

.

(B.26)

It can be seen that the inner-product term is the same as that in (B.15). So we have

− γηE

〈
∇f(x̄r),

1

N

N∑
i=1

I−1∑
k=0

∇Fi(x
r,k
i )

〉

≤ γη

2I

{
2IL2

h

N

I−1∑
k=0

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2 + 2IL2

g

I−1∑
k=0

E
∥∥x̂r,k − x̄r

∥∥2
−I2E ∥∇f(x̄r)∥2 − E

∥∥∥∥∥ 1

N

N∑
i=1

I−1∑
k=0

∇Fi(x
r,k
i )

∥∥∥∥∥
2
 . (B.27)

In this case, xr,k
i , i /∈ Sr is the virtual local model on worker i, which cannot be seen in the system.

The virtual local model in mainly used for theoretical analysis. For the third term in the RHS of
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(B.26), we have

E

∥∥∥∥∥ 1

M

∑
i∈Sr

I−1∑
k=0

gi(x
r,k
i )

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1

M

∑
i∈Sr

I−1∑
k=0

[
gi(x

r,k
i )−∇Fi(x

r,k
i ) +∇Fi(x

r,k
i )
]∥∥∥∥∥

2

= E

∥∥∥∥∥ 1

M

∑
i∈Sr

I−1∑
k=0

[
gi(x

r,k
i )−∇Fi(x

r,k
i )
]∥∥∥∥∥

2

+ E

∥∥∥∥∥ 1

M

∑
i∈Sr

I−1∑
k=0

∇Fi(x
r,k
i )

∥∥∥∥∥
2

≤ Iσ2

M
+ E

∥∥∥∥∥ 1

M

∑
i∈Sr

I−1∑
k=0

∇Fi(x
r,k
i )

∥∥∥∥∥
2

. (B.28)

For simplicity, we use Qi to denote the sum of expected gradients of worker i during rth round in
the following. Then for the second term in the RHS of (B.28), we have

E

∥∥∥∥∥ 1

M

∑
i∈Sr

I−1∑
k=0

∇Fi(x
r,k
i )

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1

M

∑
i∈Sr

Qi

∥∥∥∥∥
2

= E

∥∥∥∥∥∥ 1

M

∑
i∈Sr

Qi −
1

N

N∑
j=1

Qj +
1

N

N∑
j=1

Qj

∥∥∥∥∥∥
2

(a)
= E

∥∥∥∥∥∥ 1

M

∑
i∈Sr

Qi −
1

N

N∑
j=1

Qj

∥∥∥∥∥∥
2

+ E

∥∥∥∥∥∥ 1

N

N∑
j=1

Qj

∥∥∥∥∥∥
2

, (B.29)

where (a) is due to ESr

[
1
M

∑
i∈Sr

Qi

]
= 1

N

∑N
j=1 Qj by (B.25). Further we have

E

∥∥∥∥∥∥ 1

M

∑
i∈Sr

Qi −
1

N

N∑
j=1

Qj

∥∥∥∥∥∥
2

=E

 1

M2

∑
i∈Sr

∥∥∥∥∥∥Qi −
1

N

N∑
j=1

Qj

∥∥∥∥∥∥
2

+
1

M2

∑
i,j∈Sr,i̸=j

〈
Qi −

1

N

N∑
m=1

Qm, Qj −
1

N

N∑
m=1

Qm

〉
(a)
=

1

M2

∑
i∈Sr

E

∥∥∥∥∥∥Qi −
1

N

N∑
j=1

Qj

∥∥∥∥∥∥
2

=
1

M2

∑
i∈Sr

E ∥Qi∥2 − E

∥∥∥∥∥∥ 1

N

N∑
j=1

Qj

∥∥∥∥∥∥
2


=
1

MN

N∑
i=1

E ∥Qi∥2 −
1

M
E

∥∥∥∥∥∥ 1

N

N∑
j=1

Qj

∥∥∥∥∥∥
2

, (B.30)

where (a) is due to that the sampling is with replacement so ith sampling and jth sampling are
independent. Then we have

E

∥∥∥∥∥ 1

M

∑
i∈Sr

Qi

∥∥∥∥∥
2

=
1

MN

N∑
i=1

E ∥Qi∥2 +
M − 1

M
E

∥∥∥∥∥∥ 1

N

N∑
j=1

Qj

∥∥∥∥∥∥
2

. (B.31)
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Substituting above results back to (B.28), we obtain

E

∥∥∥∥∥ 1

M

∑
i∈Sr

I−1∑
k=0

gi(x
r,k
i )

∥∥∥∥∥
2

≤ Iσ2

M
+

1

MN

N∑
i=1

E

∥∥∥∥∥
I−1∑
k=0

∇Fi(x
r,k
i )

∥∥∥∥∥
2

+
M − 1

M
E

∥∥∥∥∥∥ 1

N

N∑
j=1

I−1∑
k=0

∇Fj(x
r,k
j )

∥∥∥∥∥∥
2

.

(B.32)
For the second term of (B.32), we have

E

∥∥∥∥∥
I−1∑
k=0

∇Fi(x
r,k
i )

∥∥∥∥∥
2

= E

∥∥∥∥∥
I−1∑
k=0

∇Fi(x
r,k
i )−∇f(xr,k

i ) +∇f(xr,k
i )−∇f(x̂r,k) +∇f(x̂r,k)−∇f(x̄r) +∇f(x̄r)

∥∥∥∥∥
2

(a)

≤ 4I2ζ2 + 4L2
gI

I−1∑
k=0

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2 + 4L2

gI

I−1∑
k=0

E
∥∥x̂r,k − x̄r

∥∥2 + 4I2E ∥∇f(x̄r)∥2 ,

(B.33)
where (a) is due to Assumption 3.3 and Assumption 4.1. Substituting back and rearranging, we
have

γ2η2Lg

2
E

∥∥∥∥∥ 1

M

∑
i∈Sr

I−1∑
k=0

gi(x
r,k
i )

∥∥∥∥∥
2

≤ γ2η2LgIσ
2

2M
+

γ2η2Lg(M − 1)

2M
E

∥∥∥∥∥ 1

N

N∑
i=1

I−1∑
k=0

∇Fi(x
r,k
i )

∥∥∥∥∥
2

+
2γ2η2LgI

2ζ2

M
+

2γ2η2L3
gI

MN

N∑
i=1

I−1∑
k=0

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2

+
2γ2η2L3

gI

MN

N∑
i=1

I−1∑
k=0

E
∥∥x̂r,k − x̄r

∥∥2 + 2γ2η2LgI
2

M
E ∥∇f(x̄r)∥2 .

(B.34)
Substituting all terms back to (B.26), we have

E
[
f(x̄r+1)

]
≤ E [f(x̄r)]−

(
γηI

2
− 2γ2η2LgI

2

M

)
E ∥∇f(x̄r)∥2

−
(
γη

2I
− γ2η2Lg(M − 1)

2M

)
E

∥∥∥∥∥ 1

N

N∑
i=1

I−1∑
k=0

∇Fi(x
r,k
i )

∥∥∥∥∥
2

+
γ2η2LgIσ

2

2M
+

2γ2η2LgI
2ζ2

M
+

(
γηL2

h +
2γ2η2L3

gI

M

)
· 1
N

I−1∑
k=0

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2

+

(
γηL2

g +
2γ2η2L3

gI

M

)
I−1∑
k=0

E
∥∥x̂r,k − x̄r

∥∥2. (B.35)

With γη ≤ 1
4ILg

and Lemma B.3, we have

E
[
f(x̄r+1)

]
≤ E [f(x̄r)]−

(
γηI

2
− 2γ2η2LgI

2

M

)
E ∥∇f(x̄r)∥2 + γ2η2LgIσ

2

2M
+

2γ2η2LgI
2ζ2

M

+

(
γηL2

h +
2γ2η2L3

gI

M

)
· 1
N

I−1∑
k=0

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2

+

(
γηIL2

g +
2γ2η2L3

gI
2

M

)

·

(
5(I − 1) · γ

2σ2

N
+ 30Iγ2

I−1∑
k=0

L2
h

N

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2 + 30I(I − 1)γ2E ∥∇f(x̄r)∥2

)
.

(B.36)
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With γη ≤ 1
4ILg

and γ < 1
30(Lg+Lh)I

, we have

E
[
f(x̄r+1)

]
≤ E [f(x̄r)]− γηI

8
E ∥∇f(x̄r)∥2 + γ2η2LgIσ

2

2M
+

2γ2η2LgI
2ζ2

M
+

γησ2

N

+

(
2γηL2

h +
2γ2η2L3

gI

M

)
· 1
N

I−1∑
k=0

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2 . (B.37)

With Lemma B.2, we have

E
[
f(x̄r+1)

]
≤ E [f(x̄r)]− γηI

8
E ∥∇f(x̄r)∥2 + γ2η2LgIσ

2

2M
+

2γ2η2LgI
2ζ2

M
+

γησ2

N

+

(
2γηL2

h +
2γ2η2L3

gI

M

)
·
(
3c(I − 1)3γ2ζ2 + c(I − 1)2γ2σ2

)
. (B.38)

Then we obtain

min
r∈[R]

E ∥∇f(x̄r)∥2 ≤ 1

R

R−1∑
r=0

E ∥∇f(x̄r)∥2 ≤ 8(f0 − f∗)

γηIR
+

4γηLgσ
2

M
+

16γηLgIζ
2

M

+

(
16L2

h +
16γηL3

gI

M

)
·
(
3c(I − 1)2γ2ζ2 + c(I − 1)γ2σ2

)
. (B.39)

Rearrange,

min
r∈[R]

E ∥∇f(x̄r)∥2 = O
(
(f0 − f∗)

γηIR
+

γηLgσ
2

M
+

γηLgIζ
2

M
+ γ2L2

h(I − 1)σ2 + γ2L2
h(I − 1)2ζ2

)
.

(B.40)

B.9 PROOF OF PROPOSITION 5.1

First, using ∇f(x) = 1
N

∑N
i=1∇Fi(x), it is straightforward to show that Assumption 3.1 implies

Assumption 4.1 holds by choosing Lg = L̃.

Second, we can see that∥∥∥∥∥ 1

N

N∑
i=1

∇Fi(xi)−∇f (x̄)

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

N

N∑
i=1

[]∇Fi(xi)−∇Fi (x̄)]

∥∥∥∥∥
2

≤ 1

N

N∑
i=1

∥∇Fi(xi)−∇Fi (x̄)∥2

(a)

≤ L̃2

N

N∑
i=1

∥xi − x̄∥2 , (B.41)

where (a) is due to Assumption 3.1. By choosing Lh = L̃, Assumption 4.2 holds.

B.10 PROOF OF PROPOSITION 5.2

For quadratic functions, we have

∇Fi(x) = Aix+ bi,x ∈ Rd. (B.42)
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Let Ā := 1
N

∑N
i=1 Ai and b̄ := 1

N

∑N
i=1 bi. We have∥∥∥∥∥ 1

N

N∑
i=1

∇Fi(xi)−∇f (x̄)

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

N

N∑
i=1

(Aixi + bi)−
(
Āx̄+ b̄

)∥∥∥∥∥
2

=

∥∥∥∥∥ 1

N

N∑
i=1

Aixi − Āx̄

∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1

N2

N∑
i=1

N∑
j=1

(Aixi −Aixj)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1

N2

N∑
i=1

N∑
j=1

[(
Ai − Ā

)
(xi − x̄)−

(
Ai − Ā

)
(xj − x̄)

]∥∥∥∥∥∥
2

≤ 2

∥∥∥∥∥∥ 1

N2

N∑
i=1

N∑
j=1

(
Ai − Ā

)
(xi − x̄)

∥∥∥∥∥∥
2

+ 2

∥∥∥∥∥∥ 1

N2

N∑
i=1

N∑
j=1

(
Ai − Ā

)
(xj − x̄)

∥∥∥∥∥∥
2

≤ 2

N2

N∑
i=1

N∑
j=1

∥∥(Ai − Ā
)
(xi − x̄)

∥∥2 + 2

N2

N∑
i=1

N∑
j=1

∥∥(Ai − Ā
)
(xj − x̄)

∥∥2
(a)

≤ 2|λdiff |2max

N2

N∑
i=1

N∑
j=1

∥xi − x̄∥2 + 2|λdiff |2max

N2

N∑
i=1

N∑
j=1

∥xj − x̄∥2

≤ 4|λdiff |2max

N2

N∑
i=1

∥xi − x̄∥2 , (B.43)

where (a) is due to Cauchy’s inequality and |λdiff | := maxi∈[N ] |λ(Ai −A)|.

B.11 PROOF OF PROPOSITION 5.3

Recall that x̂r,k is the virtual averaged model defined in (5). During one local iteration, we have

E[x̂r,k+1|x̂r,k] = x̂r,k − γ · 1
N

N∑
i=1

∇Fi(x
r,k
i ). (B.44)

Using (6), if we use centralized update at this iteration, we have

E[xr,k+1
c |x̂r,k] = x̂r,k − γ∇f(x̂r,k). (B.45)

Using Assumption 4.2, we obtain

∥∥E[x̂r,k+1|x̂r,k]− E[xr,k+1
c |x̂r,k]

∥∥2 = γ2

∥∥∥∥∥ 1

N

N∑
i=1

∇Fi(x
r,k
i )−∇f

(
x̂r,k

)∥∥∥∥∥
2

≤ γ2 · L
2
h

N

N∑
i=1

∥∥∥xr,k
i − x̂r,k

∥∥∥2 . (B.46)

B.12 PROOF OF THEOREM 5.5

It can be observed that for quadratic objective functions when Ai = A,∀i, we have Lh = 0 and
Lg = |λ(A)|. In this section, we use t to denote the index of the total number of iterations and x̂t is
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defined as

x̂t =

{
x̂r,k, t = rI + k, k ̸= 0,

x̄r, t = rI.

With Assumption 4.1, after one local iteration, we have

E
[
f(x̂t+1)

]
≤ E

[
f(x̂t)

]
− γE

〈
∇f(x̂t),

1

N

N∑
i=1

gi(x
t
i)

〉
+

γ2Lg

2
E

∥∥∥∥∥ 1

N

N∑
i=1

gi(x
t
i)

∥∥∥∥∥
2

= E
[
f(x̂t)

]
− γE

〈
∇f(x̂t),

1

N

N∑
i=1

∇Fi(x
t
i)

〉
+

γ2Lg

2
E

∥∥∥∥∥ 1

N

N∑
i=1

gi(x
t
i)

∥∥∥∥∥
2

.

(B.47)

For the second term in the RHS of (B.47), we have

− γE

〈
∇f(x̂t),

1

N

N∑
i=1

∇Fi(x
t
i)

〉

=
γ

2

E

∥∥∥∥∥ 1

N

N∑
i=1

∇Fi(x
t
i)−∇f(x̂t)

∥∥∥∥∥
2

− E
∥∥∇f(x̂t)

∥∥2 − E

∥∥∥∥∥ 1

N

N∑
i=1

∇Fi(x
t
i)

∥∥∥∥∥
2


≤ γ

2

L2
h

N

N∑
i=1

E
∥∥xt

i − x̂t
∥∥2 − E

∥∥∇f(x̂t)
∥∥2 − E

∥∥∥∥∥ 1

N

N∑
i=1

∇Fi(x
t
i)

∥∥∥∥∥
2
 . (B.48)

For the third term of (B.47), we have

γ2Lg

2
E

∥∥∥∥∥ 1

N

N∑
i=1

gi(x
t
i)

∥∥∥∥∥
2

≤ γ2Lg

2
E

∥∥∥∥∥ 1

N

N∑
i=1

∇Fi(x
t
i)

∥∥∥∥∥
2

+
γ2Lgσ

2

2N
. (B.49)

Substitute (B.48) and (B.49) back to (B.47), we obtain

E
[
f(x̂t+1)

]
≤ E

[
f(x̂t)

]
+

γL2
h

2N

N∑
i=1

E
∥∥xt

i − x̂t
∥∥2 − γ

2
E
∥∥∇f(x̂t)

∥∥2
−
(
γ

2
− γ2Lg

2

)
E

∥∥∥∥∥ 1

N

N∑
i=1

∇Fi(x
t
i)

∥∥∥∥∥
2

+
γ2Lgσ

2

2N

(a)

≤ E
[
f(x̂t)

]
+

γL2
h

2N

N∑
i=1

E
∥∥xt

i − x̂t
∥∥2 − γ

2
E
∥∥∇f(x̂t)

∥∥2 + γ2Lgσ
2

2N
, (B.50)

where (a) is due to γ < 1
Lg

. Rearrange the above inequality with Lh = 0, we have

E
∥∥∇f(x̂t)

∥∥2 ≤ 2E [f(x̂t)]− 2Ef(x̂t+1)

γ
+

L2
h

N

N∑
i=1

E
∥∥xt

i − x̂t
∥∥2 + γLgσ

2

N

=
2E [f(x̂t)]− 2Ef(x̂t+1)

γ
+

γLgσ
2

N
. (B.51)

Take the average over t on both sides, we obtain

min
t∈[T ]

E
∥∥∇f(x̂t)

∥∥2 ≤ 1

T

T−1∑
t=0

E
∥∥∇f(x̂t)

∥∥2 ≤ 2f(x̂t)− 2f∗

γT
+

γLgσ
2

N
. (B.52)
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B.13 PROOF OF THEOREM A.1

For quadratic objective functions, the global objective functions is

f(x) =
1

2
xTAx+ bTx+ c. (B.53)

The local objective function of worker i is

Fi(x) =
1

2
xTAix+ bT

i x+ ci, (B.54)

where A = 1
N

∑N
i=1 Ai, b = 1

N

∑N
i=1 bi and c = 1

N

∑N
i=1 ci. The local stochastic gradient is

gi(x) = Aix+ bi + ξi, (B.55)

where E[ξ] = 0 and E[ξ2] = σ2. By Assumption 3.3, we have

∥∇Fi(x)−∇f(x)∥2 = ∥(Ai −A)x+ (bi − b)∥2 ≤ ζ2,∀i,x. (B.56)

By Proposition 5.2, we have L̃ = maxi |λ(Ai)|, Lg = |λ(A)| and Lh = 2maxi |λ(A−Ai)|.
Now we start the proof. During local updates, we have

xr,k+1
i = xr,k

i − γ(Aix
r,k
i + bi + ξi,k) = (I − γAi)x

r,k
i − γbi − γξi,k

= (I − γAi)
kx̄r − γ

k−1∑
l=0

(I − γAi)
l(bi + ξi,l)

= (I − γAi)
kx̄r − γ

k−1∑
l=0

(I − γAi)
lbi − γ

k−1∑
l=0

(I − γAi)
lξi,l

(a)
=

[
I − γ

k−1∑
l=0

(I − γAi)
kAi

]
x̄r − γ

k−1∑
l=0

(I − γAi)
lbi − γ

k−1∑
l=0

(I − γAi)
lξi,l

= x̄r − γ

k−1∑
l=0

(I − γAi)
l [Aix̄

r + bi]− γ

k−1∑
l=0

(I − γAi)
lξi,l

= x̄r − γ

k−1∑
l=0

(I − γAi)
l∇Fi(x̄

r)− γ

k−1∑
l=0
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where (a) is due to
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l = 1

γ

[
I − (I − γAi)

k
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Then for the model divergence, we have
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where (a) is due to E[ξi,l] = 0.
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For the first term in the RHS of (B.58), with γ ≤ 1
|λ(Ai)| , we have
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For the first term in RHS of (B.59), we have
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where (a) is due to ∥I − γAi∥2 ≤ 1 since we have γ < 1
L̃

.

For the second term in RHS of (B.59), we have
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where (a) is due to∥∥(I − γAi)
l − (I − γA)l

∥∥2 (b)

≤ l2 ∥I − γAi − I + γA∥2 = γ2l2 ∥Ai −A∥2 ≤ γ2L2
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2.
(B.62)
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Now we prove (b). Let Bi = I−γAi, we have ∥Bl
i∥ ≤ 1 since γ ≤ 1
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. When l is an even, we have
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When l is odd, we have
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By recursion, when l is even, we always have ∥Bl
i −Bl∥ ≤ l∥Bi −B∥.

Taking all terms back to (B.59), we can obtain
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For the second term in RHS of (B.58), we have
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where (a) is due to ∥I − γAi∥2 ≤ 1 since we have γ < 1
L̃

.

With (B.50), we have
E
[
f(x̂t+1)

]
≤ E

[
f(x̂t)

]
+

γL2
h

2N

N∑
i=1

E
∥∥xt

i − x̂t
∥∥2 − γ

2
E
∥∥∇f(x̂t)

∥∥2 − (γ

2
− γ2Lg

2

)
E

∥∥∥∥∥ 1

N

N∑
i=1

∇Fi(x
t
i)

∥∥∥∥∥
2

+
γ2Lgσ

2

2N

≤ E
[
f(x̂t)

]
+

γL2
h

2

(
8γ2(I − 1)2ζ2 + 8γ4I4L2

hE ∥∇f(x̄r)∥2 + 2γ2Iσ2
)

− γ

2
E
∥∥∇f(x̂t)

∥∥2 + γ2Lgσ
2

2N

= E
[
f(x̂t)

]
+ γ

(
4γ2L2

h(I − 1)2ζ2 + γ2L2
hIσ

2
)
− 1

2
[γ − 4γ5L4

hI
4]E
∥∥∇f(x̂t)

∥∥2 + γ2Lgσ
2

2N
(a)

≤ E
[
f(x̂t)

]
+ γ

(
4γ2L2

h(I − 1)2ζ2 + γ2L2
hIσ

2
)
− γ

4
E
∥∥∇f(x̂t)

∥∥2 + γ2Lgσ
2

2N
(B.67)

where (a) is due to γ < 1
2ILh

. Rearranging the above inequality, we obtain
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where the learning rate satisfies γ ≤ min{ 1
IL ,

1
L̃
} and T = RI .
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(a) Training Loss. (b) Test Accuracy.

Figure C.1: Results with MNIST dataset. The model is a two-layer neural network with the
cross-entropy loss. The percentage of heterogeneous data is 50%. The learning rates are chosen
as η = 2 and γ = 0.1.

(a) Training Loss. (b) Test Accuracy.

Figure C.2: Results with MNIST dataset. The model is a two-layer neural network with the
cross-entropy loss. The percentage of heterogeneous data is 75%. The learning rates are chosen
as η = 2 and γ = 0.1.

C ADDITIONAL DETAILS AND RESULTS OF EXPERIMENTS

In this section, we provide additional details of our experiments. More experimental results are
provided for full participation with the MNIST dataset and the CINIC-10 dataset (Darlow et al.,
2018).

Environment. All our experiments are implemented in PyTorch and run on a server with four
NVIDIA 2080Ti GPUs. The mini-batch size of SGD is 20. We run each experiment 5 times then
plot their average and the stadard deviation.

(a) Training Loss. (b) Test Accuracy.

Figure C.3: Results with MNIST dataset. The model is linear regression with the MSE loss. The
percentage of heterogeneous data is 50%. The learning rates are chosen as η = 2 and γ = 0.01.
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(a) Training Loss. (b) Test Accuracy.

Figure C.4: Results with MNIST dataset. The model is linear regression with the MSE loss. The
percentage of heterogeneous data is 75%. The learning rates are chosen as η = 2 and γ = 0.01.

Model. For experimental results with CIFAR-10 dataset in the main paper, we use a CNN model.
The structure of the CNN is 5×5×32 Convolutional→ 2×2 MaxPool→ 5×5×32 Convolutional
→ 2× 2 MaxPool→ 4096× 512 Dense→ 512× 128 Dense→ 128× 10 Dense→ Softmax. For
experimental results with MNIST dataset, we use a two-layer neural network with cross-entropy
loss and a linear regression model with MSE loss. For experimental results with CINIC-10
dataset (Darlow et al., 2018), we use VGG-16 with the cross-entropy loss.

Further explanation of the percentage of heterogeneous data. For example, the percentage of
heterogeneous data is 50% means that 50% of the data on each worker are with the same label, e.g.,
50% of the data on worker 1 are with label 1. Another 50% of the data are sampled uniformly from
the remaining dataset.

The estimate of Lh. Let the global model be x̄ and the local models be xi, i = 1, 2, . . . , N in the
beginning of a round, then we estimate Lh using the following equations.

L2
h ≈

∥∥∥∇f(x̄)− 1
N

∑N
i=1∇fi(xi)

∥∥∥2
1
N

∑N
i=1 ∥xi − x̄∥2

.

Starting from a global model that is close to convergence, we perform FedAvg for 10 rounds and
estimate L2

h in each round. Then we use the averaged L2
h over 10 rounds as the estimate for L2

h.
The reason for starting from a global model that is close to convergence is that this can make the
variance of the estimate smaller. Similarly, the methods of estimating Lg and L̃ are given by

Lg ≈
∥∇f(x̄)−∇f(ȳ)∥

∥x̄− ȳ∥
,

L̃ ≈ max
i

∥∇Fi(x̄)−∇Fi(xi)∥
∥x̄− xi∥

.

The results of estimating Lh, Lg and L̃ with linear regression and MSE loss can be found in
Table C.1.

Table C.1: Estimated Lh, L̃, Lg with the MNIST dataset.

Obj. Function Linear Regression
Heterogeneity 25% 50% 75% 100%

L̃ 2010.51± 34.68 3577.35± 47.32 20563.42± 112.87 25402.19± 143.94
Lh 226.15± 10.13 916.20± 23.45 3172.41± 57.79 4610.54± 66.13
Lg 869.07± 18.46 869.07± 18.46 869.07± 18.46 869.07± 18.46

Additional Experimental Results. We partition the MNIST dataset into 10 workers. During each
round, all workers will perform the local updates. Results with a two-layer neural network and the
cross-entropy loss are shown in Figure C.1 and C.2. As shown in Table 1 of the main paper, Lh is
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Table C.2: Training loss/test accuracy of FedAvg with MNIST dataset and MLP model when fixing
the product of R and I . The percentage of the heterogeneous data is 50%.

Training Loss/Test Accuracy I = 10 I = 20 I = 30 I = 40
RI = 120 0.34/88.84% 0.34/89.38% 0.35/89.70% 0.35/89.45%
RI = 240 0.21/93.76% 0.27/91.61% 0.29/90.96% 0.25/90.91%
RI = 360 0.19/94.01% 0.20/93.72% 0.23/92.57% 0.23/92.80%
RI = 480 0.17/94.46% 0.18/94.27% 0.21/93.4% 0.23/92.84%
RI = 600 0.15/95.05% 0.15/95.47% 0.16/94.63% 0.18/94.22%
RI = 720 0.12/96.04% 0.14/95.14% 0.15/94.68% 0.17/94.13%
RI = 840 0.12/95.90% 0.12/95.71% 0.14/95.06% 0.14/95.17%
RI = 960 0.10/96.49% 0.11/95.95% 0.13/95.50% 0.12/96.06%

(a) Training Loss. (b) Test Accuracy.

Figure C.5: Results with CINIC-10 dataset. The model is VGG-16. The percentage of
heterogeneous data is 50%. The learning rates are chosen as η = 2 and γ = 0.01.

very small in this case. In Corollary 4.4, with full participation, it is shown that when Lh is small,
increasing I can improve the convergence even when data are highly heterogeneous. As shown in
both Figure C.1 and C.2, the curve with the largest number of local iterations, I = 40, converges
the fastest and achieves best accuracy, which validates Corollary 4.4. Results with linear regression
and the MSE loss are shown in Figure C.1 and C.2. Since Lh and Lg are larger compared to that of
the two-layer neural network, a smaller γ and smaller I’s are chosen according to Corollary 4.4. It
can be seen in both Figure C.3 and C.4, the curve with the largest number of local iterations, I = 20
converges the fastest and achieves the best accuracy.

In order to verify the insight of fixing RI , we ran more experiment as shown in Table C.2. In
Table C.2, we provide the training loss and the test accuracy for the different choices of I by fixing
RI . It can be seen that by varying I , the training loss and testing accuracy do stay almost the
same if RI is given. This verifies our finding and cannot be explained by the existing theory in the
literature. In addition, if we take a closer look, it can be seen that the difference between I = 10 and
I = 20 is negligible. That is, the difference on the training loss is at most 0.06 and the difference on
the test accuracy is at most 1.16%. However, another implication of our results is that the number
of communication rounds are doubled for I = 10 to achieve the almost same testing accuracy.
Especially for RI = 960, the number of communication rounds is R = 96 for I = 10 while the
number of communication rounds is R = 48 for I = 10. Moreover, the difference on the training
loss between I = 10 and I = 40 is at most 0.06 and the difference on the test accuracy is at most
2.85%. However, the number of communication rounds of I = 10 is four times of that for I = 40.
We believe that the experimental results can support our theoretical results very well that we can
keep the product of R and I while increasing I and decreasing R simultaneously to achieve almost
the same convergence rate.
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(a) Training Loss. (b) Test Accuracy.

Figure C.6: Results with CINIC-10 dataset. The model is VGG-16. The percentage of
heterogeneous data is 75%. The learning rates are chosen as η = 2 and γ = 0.01.
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